quarta-feira, 6 de outubro de 2021

Aconteceu em 6 de setembro de 1981: Avião x Tornado - A queda do voo 431 da NLM Cityhopper


No dia 6 de outubro de 1981, um jato regional Fokker F28 operando um voo doméstico na Holanda encontrou uma linha de tempestades logo após a decolagem de Rotterdam. Enquanto os pilotos tentavam contornar a tempestade que se formava, uma lacuna se fechou sobre eles e o avião foi atingido por ventos extremos. 

De repente, uma rajada massiva atingiu o avião, submetendo-o a forças muito maiores do que seus limites de projeto. A asa direita arrancou em voo, fazendo o jato tombar das nuvens sobre Moerdijk. Nenhuma das 17 pessoas a bordo sobreviveu ao acidente.


Os investigadores se perguntaram: que força poderia ter derrubado um avião do céu tão de repente? A turbulência poderia realmente ser a culpada? 

Mas, à medida que a história se desenrolava, ficou claro que o voo 431 da NLM Cityhopper encontrou algo muito mais mortal do que mera turbulência: na verdade, o avião parecia ter voado direto para um tornado que estava abrindo seu próprio caminho de destruição no interior da Holanda nos minutos que antecederam a queda.

O Fokker F-28 PH-CHI envolvido no acidente
A NLM Cityhopper, agora conhecida como KLM Cityhopper, é uma subsidiária integral da transportadora de bandeira holandesa KLM, especializada em voos curtos dentro da Holanda e para países vizinhos. Na década de 1980, a NLM Cityhopper operava uma frota composta principalmente de turboélices Fokker F-27 e jatos regionais F-28 de fabricação holandesa. 

O voo 431 da NLM era um voo regular de Rotterdam para Hamburgo, Alemanha, com escala na cidade de Eindhoven. O avião Fokker F-28 Fellowship 4000, prefixo PH-CHI (foto acima), com motor traseiro, tinha espaço para 65 passageiros - mas no dia 6 de outubro de 1981, estava quase vazio. 

Apenas 17 pessoas embarcaram no voo do final da tarde, incluindo os dois pilotos, Capitão Jozef Werner e o Primeiro Oficial Hendrik Schoorl. Dois comissários de bordo cuidaram dos 13 passageiros, a maioria viajantes de negócios da Alemanha, Reino Unido e Estados Unidos.


Naquela tarde, um conjunto de condições climáticas incomuns convergiam para a Holanda. Uma frente quente e estacionária se estendia por grande parte da Europa Ocidental, trazendo altas temperaturas e chuvas para uma região que se estendia de Lisboa a Colônia. 

Enquanto isso, uma zona de baixa pressão e uma frente fria associada estavam se movendo para o leste através da Irlanda. Uma segunda área de baixa pressão ao largo da costa de Portugal colidiu com a frente quente, enviando uma onda que se propagou na frente e empurrando-a para o norte, para a Holanda. 

Ao mesmo tempo, a frente fria se aproximou da Holanda pelo oeste ao passar pelas Ilhas Britânicas, pressagiando uma colisão dos dois sistemas climáticos na área ao redor de Rotterdam. Impulsionado por ventos fortes a uma altitude de cerca de 3.000 pés, o ar frio começou a passar sobre a camada de ar quente que permanecia ao redor do solo. Como o ar quente geralmente sobe e o ar frio geralmente desce, uma massa de ar frio em cima de uma massa de ar quente é extremamente instável. 

Essa instabilidade pode gerar tempestades e outras condições climáticas severas, incluindo granizo, micro-explosões ou mesmo tornados. Quando as duas massas de ar colidiram sobre a Holanda, linhas de tempestades surgiram ao longo da zona de convergência, metralhando Holanda e Brabant com chuva, ventos fortes e relâmpagos.

Às 4h20 daquela tarde, o capitão Werner e o primeiro oficial Schoorl foram informados sobre as tempestades localizadas a sudeste de Rotterdam durante o briefing pré-voo. No entanto, até onde se sabia, essas tempestades não eram incomuns de forma alguma. 

Relatórios meteorológicos distribuídos a partir do radar instalado no Aeroporto Schiphol de Amsterdã indicaram apenas chuva leve e nenhum fenômeno anormal de vento. Os pilotos planejaram evitar as tempestades se possível, mas naquela época certamente não tinham motivos para se preocupar. Às 5h04, o voo 431 da NLM Cityhopper decolou do aeroporto de Rotterdam e virou para o sul, escalando a cidade. 

Os últimos relatórios meteorológicos da época ainda não incluíam nenhuma menção a quaisquer tempestades perigosas. Mas, na verdade, os boletins meteorológicos fornecidos pelos controladores em Rotterdam tinham mais de 20 minutos. 

Antes que alguém recebesse a informação, um meteorologista em Amsterdã teve que observar o estado da tela do radar meteorológico, esboçar as tempestades em um mapa e enviar cópias do mapa para aeroportos na Holanda, um processo que geralmente leva 20 minutos. Mas nesse período, muita coisa pode mudar.


Embora ninguém soubesse ainda, as condições na área ao sul de Rotterdam foram propícias à formação de ventos ciclônicos extremos. O que aconteceu a seguir foi mal compreendido na época, mas uma provável sequência de eventos pode ser reconstruída retroativamente usando o conhecimento moderno de como os tornados se formam. 

Na intersecção das duas frentes, ventos soprando em diferentes direções em diferentes altitudes começaram a causar a rotação da camada de ar entre elas. À medida que a massa de ar frio acima de 3.000 pés desceu pelo ar mais baixo e mais quente sob a força da gravidade, o ar quente foi forçado para cima, criando correntes ascendentes que colidiram com a camada giratória. 

A corrente ascendente e o “tubo” giratório de ar se fundiram, fazendo com que a corrente ascendente começasse a girar em torno do eixo vertical. Este vórtice, com vários quilômetros de diâmetro, é conhecido como mesociclone - e se as condições forem adequadas, pode rapidamente se transformar em um tornado. No entanto, um mesociclone não é diretamente visível no radar meteorológico, que detecta a intensidade da precipitação. 

Hoje, os meteorologistas podem detectar mesociclones procurando por padrões de vento revelados por radar Doppler, que pode medir a velocidade e direção dos ventos dentro de uma tempestade. 

Mas na Holanda, em 1981, os meteorologistas que divulgavam relatórios meteorológicos para aeronaves não tinham radar Doppler nem qualquer especialização em mesociclones e tornados. Como resultado, o mesociclone que se formou sobre o estuário Hollands Diep passou completamente despercebido.


Pouco depois das 17h, um tornado começou a tomar forma quando o mesociclone passou perto do município de Moerdijk, na costa sul de Hollands Diep. Uma corrente descendente penetrou no mesociclone, fazendo com que a coluna de ar em rotação descesse do fundo da base da nuvem em direção ao solo abaixo. 

A corrente descendente contraiu progressivamente a base da corrente ascendente ainda fluindo para o mesociclone, fazendo com que sua velocidade de rotação aumentasse como um patinador no gelo puxando seus braços para acelerar um giro. 

Um residente local tirou esta foto do tornado de Moerdijk na direção oposta
À medida que a corrente ascendente sugava o ar em baixa altitude, ela criou uma zona de baixa pressão que puxou o ciclone ainda mais para baixo até atingir o nível do solo. As velocidades extremas do vento precipitaram o vapor de água do ar, criando uma clássica nuvem em funil ao redor do ciclone. Não havia dúvida - um tornado havia atingido o interior da Holanda, a oeste do parque industrial de Moerdijk! 

Movendo-se para nordeste a mais de 50 quilômetros por hora, o tornado atravessou fazendas e campos antes de atingir o parque industrial, enviando fragmentos leves para o alto. No que diz respeito aos tornados, não era particularmente forte - provavelmente não mais poderoso do que um EF1, a segunda menor intensidade na escala de 0-5 Fujita aprimorada. Mas mesmo um tornado EF1 pode atingir velocidades de vento superiores a 170 quilômetros por hora, causando danos isolados, mas graves, a estruturas não reforçadas.


Sem saber da presença do tornado, os pilotos do voo 431 do NLM Cityhopper continuaram voando para o sul em direção ao estuário Hollands Diep. Cinco minutos após a decolagem, eles observaram tempestades à frente que ultrapassavam significativamente a intensidade sugerida pela última previsão do tempo. 

Para evitar o pior da tempestade, eles solicitaram um desvio para o sul para voar entre as duas áreas de precipitação mais intensa, conforme mostrado em seu radar meteorológico de bordo. O controlador de tráfego aéreo atendeu ao pedido, e o voo 431 apontou para a lacuna entre as duas nuvens cumulonimbus em forma de bigorna. 

À medida que voavam para a lacuna, as nuvens se fechavam em torno deles e a turbulência começou a sacudir o avião para cima e para baixo e de um lado para o outro. Os pilotos aceleraram para 425 km/h em uma tentativa de tornar a viagem mais suave. Enquanto isso, várias testemunhas avistaram o tornado quando ele passou sobre o parque industrial de Moerdijk, incluindo algumas que relataram um segundo tornado nas proximidades. 

Ao mesmo tempo, um policial em um barco em Hollands Diep perseguiu o tornado, tirando uma série de fotos da nuvem em funil que se movia rapidamente enquanto lutava para alcançá-la. Mas, apesar do grande número de testemunhas, não havia autoridade capaz de receber rapidamente os relatos do tornado e repassá-los às aeronaves próximas.


Precisamente às 17h12, quando o voo 431 passou sobre Hollands Diep a 3.000 pés, ele cruzou o caminho com o curso superior do tornado dentro da nuvem. A turbulência severa atingiu o avião, jogando-o violentamente em várias direções. Quando o avião se aproximou do vórtice, as correntes descendentes em torno do tornado o atingiram com força por cima, colidindo com o F-28 com 2,5 vezes a força da gravidade. 

Uma fração de segundo depois, o avião passou pela corrente ascendente central do tornado e para a corrente descendente do outro lado, fazendo com que a força invertesse a direção duas vezes, de -2,5g para + 6,8G para -3,2G, em um período extremamente curto. 

O golpe duplo da corrente ascendente violenta seguida pela corrente descendente extrema excedeu os limites do projeto estrutural do avião, arrancando a asa direita e incendiando os tanques de combustível rompidos.


Perdendo toda a asa direita, o voo 431 mergulhou das nuvens, girando em um saca-rolhas em um halo de fogo. Não havia absolutamente nada que os pilotos pudessem fazer para salvar suas aeronaves danificadas. 

O avião despencou do céu e caiu no chão segundos depois na borda do parque industrial. A fuselagem bateu na lateral da estrada do perímetro, enviando destroços sobre uma ponte da ferrovia e através de ambas as faixas de tráfego. 


O avião explodiu com o impacto, lançando uma nuvem de fumaça que o policial capturou em filme momentos depois de fotografar o tornado. A três quilômetros de distância, a asa direita decepada também caiu do céu, parando nas águas rasas de Hollands Diep. Quanto ao próprio tornado - ele se dissipou um minuto após a queda, desaparecendo no céu noturno de onde veio.


Equipes de emergência correram para o local, mas tudo o que restou do avião foram destroços espalhados e uma enorme cratera em um campo. Nenhuma das 17 pessoas a bordo havia sobrevivido. 

O acidente também tirou indiretamente a 18ª vida no solo: um bombeiro de 49 anos, ao avistar o avião caindo do céu acima dele, sofreu um ataque cardíaco e morreu no local. Fora da queda do avião, no entanto, o tornado causou relativamente poucos danos e ninguém mais morreu ou ficou ferido. 


Na verdade, a conexão entre o tornado e a queda do avião não era imediatamente óbvia. Jornais na Holanda relataram que havia mau tempo na área, mas não mencionaram um tornado, e as primeiras especulações culparam em grande parte a forte turbulência ou sabotagem. 

Mas o gravador de dados de voo pintou um quadro nítido: no espaço de apenas alguns segundos, o voo 431 foi submetido a forças que variam de + 6,8 G a -3,2 G, bem além dos limites estruturais de qualquer avião comercial. A tempestade era realmente tão intensa ou havia outra explicação? Os investigadores precisavam de provas de que o avião poderia ter encontrado o tornado fotografado pelo policial minutos antes do acidente.


Investigadores holandeses solicitaram uma análise do tornado ao Escritório Meteorológico do Reino Unido para avaliar a probabilidade de derrubar o voo 431. Ao analisar as fotografias, mapas meteorológicos, dados de voo e outros recursos, a equipe foi capaz de afirmar com certeza que o Fokker F-28 encontrou o curso superior do vórtice tornádico logo após o funil se elevar do solo próximo ao final de seu ciclo de vida. 

Mas o relatório precisava ir além disso. O encontro com o tornado foi um golpe de sorte completo ou poderia ter sido feito mais para evitar o acidente? 


O problema enfrentado pela indústria da aviação em 1981 era que não havia maneira confiável de detectar tornados, exceto observá-los visualmente do solo e relatar sua posição. Não se podia esperar que os pilotos veriam um tornado e se desviassem porque apenas a ponta inferior do tornado é visível.

Meteorologistas experientes podiam identificar áreas de provável formação de tornado procurando ecos de radar em forma de gancho nas bordas das tempestades, mas essa técnica, embora amplamente usada por caçadores de tempestades na América do Norte, era relativamente obscura na Europa na época. 

Na verdade, uma revisão dos dados do radar no momento do acidente mostrou um gancho distinto na área onde o tornado se formou, mas a importância disso não foi avaliada até depois do acidente.

Mapa mostra todos os tornados conhecidos que atingiram a Europa entre 2000 e 2012
No geral, as autoridades europeias pareciam pouco preparadas para lidar com a ameaça de mau tempo. Embora os tornados na América do Norte sejam muito mais fortes em média, os dados mostram que muitas áreas da Europa experimentam tornados a uma taxa por unidade de área semelhante à dos EUA e Canadá. Como a maioria deles é fraca, eles causam relativamente poucos danos, e as pesquisas sobre eles ficaram atrás das americanas. 

Mas, como o tornado de Moerdijk demonstrou, não é preciso um EF5 para derrubar um avião. Portanto, considerando o número de tornados que ocorrem em todo o mundo, qual a probabilidade de outro avião se encontrar na mesma situação que o voo 431 do NLM Cityhopper? 

Em seu relatório, o Escritório Meteorológico afirmou que um encontro entre um avião comercial e um tornado pode acontecer aproximadamente uma vez a cada 300 milhões de horas de voo - certamente raro, mas não tão raro que não precisasse ser pensado. O que a Europa precisava, eles escreveram, era algum sistema para detectar tornados ou outros eventos de vento severo - porque do jeito que as coisas estavam, a Europa não tinha sistema algum. 


Para fins de segurança da aviação, detectar um tornado não é tão diferente de detectar qualquer tipo de cisalhamento do vento - ou seja, o vento se movendo em direções diferentes em uma pequena área geográfica. 

Tornados são essencialmente apenas uma manifestação muito dramática de cisalhamento do vento, um problema que vem causando acidentes há anos. Na época, o melhor conselho que os reguladores podiam dar aos pilotos era evitar tempestades por princípio. Mas isso não era uma panacéia. 


Os pilotos do voo NLM 431 fizeram o possível para evitar a tempestade sobre Moerdijk, voando ao redor da parte mais intensa da célula. No entanto, os tornados costumam se formar adjacentes ao centro da tempestade, em vez de diretamente abaixo dele. Mal sabiam eles que, ao contornar a borda, o capitão Werner e o primeiro oficial Schoorl corriam um perigo ainda maior!

Ao longo dos próximos anos, o problema do cisalhamento do vento mudou para a vanguarda do interesse global devido a dois acidentes fatais nos Estados Unidos, ambos envolvendo micro-explosões - uma corrente descendente súbita e poderosa associada a uma tempestade que pode empurrar um avião para o chão. 

Em 1982, o voo 759 da Pan Am encontrou uma micro-explosão na decolagem de Nova Orleans, causando a queda do avião em uma área residencial. Todas as 145 pessoas a bordo e 8 no solo foram mortas. 

Acima: os restos do voo Delta 191
Três anos depois, o voo 191 da Delta caiu perto da pista depois de encontrar uma micro-explosão na aproximação final em Dallas, matando 136 das 163 pessoas a bordo, bem como uma no solo. Esses acidentes estimularam a Federal Aviation Administration a investir pesadamente em tecnologia para detectar cisalhamento do vento a bordo do avião.

A tecnologia para detectar cisalhamento de vento de um ponto centralizado no solo de fato já existia. Em 1973, o Laboratório Nacional de Tempestades Severas (NSSL) dos EUA documentou pela primeira vez todo o ciclo de vida de um tornado usando radar Doppler, que mede as mudanças na frequência de um sinal de rádio de retorno para determinar a velocidade das partículas transportadas pelo ar dentro de uma nuvem. 

Essa tecnologia já estava sendo empregada em algumas aeronaves militares, mas mal havia começado a ser aplicada para uso civil. Em 1981, o radar meteorológico Doppler entrou em serviço para detectar tempestades severas nos Estados Unidos, mas a Europa carecia de qualquer programa semelhante. 

Acima: espectadores observam um tornado na Romênia
Alguns aeroportos, como o London Heathrow, tinham sistemas que podiam detectar cisalhamento do vento perto das pistas, mas a maior parte do continente não tinha essa cobertura. No momento do acidente, Os meteorologistas da Holanda ainda estavam olhando para um mapa básico de precipitação, desenhando o que observavam e distribuindo os esboços aos aeroportos! 

No seu relatório, o Meteorological Office escreveu aos seus homólogos holandeses, “É opinião dos autores que algum serviço que alerta a aviação para a possibilidade de fortes tempestades e que pode operar de forma semelhante ao serviço de alerta de cisalhamento de vento em Heathrow ( mas com acesso a um visor de radar adequado) seria melhor do que nenhum serviço.” 

Em seu próprio relatório, os investigadores holandeses também recomendaram o estabelecimento de um programa que alertaria pilotos e controladores de tráfego aéreo sobre a presença de mau tempo em tempo hábil. Também recomendou que os reguladores estudassem a possível implementação de um sistema de alerta de tempestades em toda a Europa, auxiliado por novas tecnologias de detecção.

No final da década de 1980, ocorreram dois grandes avanços no combate ao cisalhamento do vento. Em 1988, os Estados Unidos implementaram um sistema de radares Doppler que forneceria uma cobertura quase completa de todo o país, permitindo que os meteorologistas detectassem com rapidez e precisão todos os tornados e outros eventos climáticos severos à medida que ocorressem, e os previsse com antecedência. 

Na mesma época, a FAA desenvolveu com sucesso um sistema de detecção de cisalhamento de vento que poderia ser instalado em aviões de passageiros. Esses sistemas foram implantados nos Estados Unidos em 1993 e, no mesmo ano, o Canadá completou sua própria rede nacional de radares Doppler. 

Os países europeus seguiram o exemplo no final da década de 1990, e a maioria alcançou cobertura completa em 2004. Durante esse tempo, nenhum outro avião voou para dentro de tornados e, graças aos modernos sistemas de detecção, tal encontro hoje é quase impossível de imaginar. 

O voo 431 da NLM Cityhopper continua, e provavelmente sempre será, o único caso confirmado de acidente aéreo causado por um tornado. O impacto que este acidente específico teve na segurança da aviação é difícil de avaliar, mas tal evento único não merece cair na obscuridade total.

Edição de texto e imagens por Jorge Tadeu (Site Desastres Aéreos)

Com Admiral Cloudberg, Wikipedia, ASN - Imagens: C. Mulder, Christian Volpati, WT Roach e J. Findlater, Vanessa Ezekowitz, LA Times, European Severe Storms Laboratory, Dallas Morning News, Romênia Journal e Johan van Tuyl. Algumas imagens são de domínio público.

Nenhum comentário: