As principais notícias sobre aviação e espaço você acompanha aqui. Acidentes, incidentes, negócios, tecnologia, novidades, curiosidades, fotos, vídeos e assuntos relacionados.
Visite o site Desastres Aéreos, o maior banco de dados de acidentes e incidentes aéreos do Brasil.
Poucas coisas causam mais medo nos corações e mentes dos pilotos do que o temido giro plano. Mas o que exatamente é uma rotação plana, o que a causa e como você se recupera dela?
Um giro plano é uma condição de voo perigosa da qual pode ser impossível se recuperar. Felizmente, não é provável que aconteça em nenhum voo de rotina. Ocorre quando o avião não tem velocidade no ar para frente enquanto gira em direção ao solo em torno de seu eixo vertical.
O que é um Spin?
Um giro ocorre quando a aeronave está estagnada, mas uma asa está mais gravemente estagnada do que a outra. Para entender precisamente o que isso significa, você precisará entender alguns termos básicos e um pouco de aerodinâmica.
Um estol ocorre quando o ângulo de ataque fica muito alto. O ângulo de ataque é o ângulo em que as asas de um avião encontram o vento relativo. Como o vento vem em um ângulo de ataque cada vez mais acentuado, o ar não consegue mais fluir suavemente sobre a superfície da asa. Quando isso acontece, a asa de repente produz muito menos sustentação do que antes de estolar.
Com a queda abrupta na quantidade de sustentação que a asa faz, é provável que ela não faça mais sustentação suficiente para manter a aeronave no ar. É importante perceber que um estol não significa que uma asa não está mais fazendo sustentação. Significa simplesmente que a asa não está mais funcionando com eficiência e a quantidade de sustentação que ela faz foi severamente reduzida.
À medida que o ângulo de ataque continua a ficar mais alto, além do ângulo crítico de ataque onde ocorre um estol, a quantidade de sustentação criada continua a diminuir. Portanto, há vários graus em que a asa de um avião pode estolar.
Conforme uma aeronave se aproxima de um estol, um movimento de guinada ou rolamento pode causar força de rotação suficiente para estolar uma asa antes da outra. Se a aeronave continuar a voar mais fundo no estol, a condição de ter sustentação diferencial através das asas agravará o estol em um giro.
Durante um giro, a aeronave geralmente se inclina para baixo e começa a girar em uma espiral em forma de saca-rolhas em direção ao solo. A velocidade no ar para a frente é muito lenta, pois a aeronave está estolada. Mas a taxa de afundamento em direção ao solo pode ser muito rápida e a taxa de rotação pode ser violenta e desorientadora para o piloto.
Tipos de giros
Os estols podem ser divididos aproximadamente em três categorias - vertical, invertida e plana.
Rotação automática
Giros verticais
Os giros na vertical são como os descritos acima. O avião afunda em direção ao solo em alta velocidade e gira em torno da asa mais estolada em alta velocidade. Mas, no geral, a aeronave está em uma atitude normal de voo.
Giros Invertidos
Os giros invertidos são exatamente como parecem - de cabeça para baixo.
Rotações planas
Os giros planos são o pior e mais perigoso tipo de giro. Em um giro plano, a aeronave não tem velocidade no ar para frente. Ele gira em torno de seu eixo vertical enquanto afunda direto no chão.
Sem nenhuma velocidade no ar para a frente, os controles de voo não são eficazes. O piloto efetivamente não tem como corrigir o giro e é possível (e talvez provável) que não possa ser corrigido.
O que causa uma rotação plana?
O tipo de rotação em que um avião entra depende do que aconteceu quando a condição começou e como a aeronave foi carregada. O peso e o equilíbrio desempenham um papel fundamental em paradas e giros.
Uma aeronave devidamente carregada terá o nariz pesado sem nenhuma entrada dos controles de voo. A única coisa que impede o nariz de afundar durante o voo de rotina é a força de cauda para baixo normalmente criada pelo estabilizador horizontal. Se não houver ar fluindo sobre o estabilizador, a força da cauda para baixo será inexistente e o nariz deverá afundar.
O afundamento do nariz deve fazer com que a velocidade no ar aumente, tornando impossível um giro plano. O avião é projetado para evitar essa condição perigosa e tudo o que o piloto precisa fazer é sair do caminho e permitir que o avião se recupere.
Mas e se o piloto ignorou o carregamento adequado do avião? Ao adicionar peso ao avião, os pilotos devem verificar se todas as forças permanecem dentro do envelope de voo seguro. Durante o planejamento de pré-voo, o piloto determinará a localização do centro de gravidade (CG).
Se o CG estiver localizado muito à frente, o nariz da aeronave cairá naturalmente. Neste caso, a força da cauda para baixo feita pelo estabilizador e profundor pode não ser suficiente para corrigir a pesada força do nariz para baixo feita por um CG avançado. O avião pode não conseguir girar na decolagem. Ou, uma vez no ar, o avião pode entrar em mergulho de nariz se a velocidade no ar ficar muito baixa.
Alternativamente, se o CG estiver localizado muito atrás, o nariz pode querer inclinar-se para cima. Se não for verificado, a força do nariz para cima pode causar um estol. Se o avião estolar e não houver fluxo de ar suficiente sobre os controles do estabilizador e do elevador, o piloto pode não tirar o avião do estol.
Se você combinar esta situação muito ruim com uma força de giro, você tem a configuração para um giro plano incontrolável e irrecuperável.
As forças de giro podem vir dos controles do piloto, como o leme ou ailerons, ou do motor. A hélice nos aviões causa várias forças de torção e de giro que podem exacerbar um estol ou giro sem cautela.
Como se recuperar de uma rotação plana
A FAA ensina a sigla “PARE” para ajudar os pilotos a se lembrarem de como se recuperar de uma técnica de recuperação de spin e spin.
P - Potência para marcha lenta
A - Ailerons neutros (manche de controle centrado)
R - Leme oposto à curva
E - Elevador para frente
Fases de um giro
Potência
Como mencionado anteriormente, a potência de uma hélice pode exacerbar um giro. Puxá-lo para marcha lenta pode reduzir as forças de giro e dar ao piloto mais tempo para se recuperar.
Ailerons
Os ailerons funcionam alterando o ângulo de ataque nas pontas das asas do avião. No meio de um giro, qualquer uso dos ailerons tornará o giro ainda pior. Lembre-se de que um giro ocorre quando uma asa está mais gravemente estagnada do que a outra. Os ailerons o deixarão ainda mais estagnado.
Leme
Com os ailerons removidos da equação, o leme torna-se a melhor ferramenta que o piloto possui para controlar a direção do voo. Além disso, o prop wash manterá o leme funcional em velocidades no ar muito baixas. Ao aplicar o leme total na direção oposta, o piloto pode interromper a rotação do giro.
Elevador
Um giro é fundamentalmente um estol agravado. A única maneira de se recuperar de um estol é reduzir o ângulo de ataque, e isso é feito movendo a coluna de controle para frente. Em um giro, isso pode parecer uma coisa muito anormal, já que o nariz da aeronave costuma estar apontado para baixo. Mas é a única maneira de sair dessa situação.
Se o giro for invertido, você terá que subir em vez de para baixo.
Chances de recuperação de rotação plana
Um avião pode se recuperar de um giro plano? A resposta é - nem sempre. E é exatamente por isso que as rotações planas são tão perigosas.
As etapas a serem experimentadas são as mesmas acima. Mas se não houver velocidade no ar para frente, provavelmente não haverá fluxo de ar sobre o elevador para forçar o nariz do avião para baixo.
Se a tentativa padrão de sair de um giro não funcionar, é hora de reescrever o livro . Para um giro plano onde nada mais está funcionando, tente adicionar potência para tornar o elevador e o leme mais eficazes.
Se isso não funcionar, o tempo está se esgotando. Você usou um paraquedas ? O avião tem paraquedas CAPS? Espero que sim - porque o tempo acabou.
Sério, peso e equilíbrio são super importantes. Pilotos - não saiam do solo sem verificar novamente. Para começar, não há razão para uma aeronave carregada corretamente entrar em um giro plano. E se chegar perto de estar em um, a recuperação deve ser fácil. É apenas ao voar “fora do envelope” que existe uma possibilidade.
Giros acrobáticos intencionais
Pilotos de acrobacias realizam acrobacias rotineiramente, incluindo giros planos simulados, para impressionar as multidões. Mas esses spins são fundamentalmente diferentes dos spins descritos acima. Esses giros são realizados com a aeronave carregada com muito cuidado dentro de seus limites.
Para obter a aparência e sensação de um giro plano, a potência é usada para nivelar a atitude de voo da aeronave durante um giro vertical normal. Mesmo assim, as forças que são aplicadas à fuselagem, ao motor e ao piloto são extremas durante tal manobra. Às vezes, a taxa de giro pode ser superior a 400 graus por segundo.
Treinamento de estol e giro
Os pilotos começam a praticar as técnicas de entrada e recuperação de estol no início das aulas de voo. Somente experimentando um estol um piloto pode entender os passos que precisa seguir para sair de um. E só experimentando isso o piloto pode começar a identificar os primeiros sinais de alerta de um avião estolando. Idealmente, esse treinamento os mantém longe de problemas no futuro.
A visão de dentro do avião é dramaticamente diferente durante um estol e durante um giro. Infelizmente, o treinamento de spin não é necessário para a maioria dos pilotos nos Estados Unidos. Os pilotos acrobáticos obtêm muita prática, mas muitos pilotos nunca giraram um avião. Um pouco de treinamento de spin é necessário para a licença de instrutor de voo, no entanto.
Existem muitas razões para esta falta de experiência, sendo que a menos importante delas são os riscos envolvidos. Os giros são exigentes nas aeronaves, e apenas aviões da categoria utilitários são aprovados para manobras de giro intencionais. Os aviões de categoria normal geralmente são marcados como "Não aprovado para giros".
É exatamente essa falta de prática física que torna o trabalho do livro importante. Sair dos giros não é difícil - em uma aeronave adequadamente balanceada, remover todas as entradas de controle do piloto e colocar a potência em marcha lenta deve fazer com que o avião comece sua recuperação por conta própria.
Mas, independentemente desses fatores, um piloto com uma base sólida de boas habilidades de manche e leme não deve ter problemas com giros de qualquer maneira. Ao manter velocidades e perfis de voo adequados, o avião nunca deve estar perto de estolar.
E ao reconhecer um estol e instituir a recuperação adequada bem antes do estol real, o piloto deve estar ainda mais longe de um giro. E por ter a aeronave carregada corretamente antes de um voo, um piloto não deve ter virtualmente nenhuma chance de entrar em um giro plano irrecuperável.
Este é o exemplo perfeito de como os pilotos reduzem o risco em voo devido a uma série de fatores. Nunca é uma coisa que um piloto faz que causa ou não um acidente. É uma cadeia de escolhas que deve ser feita para garantir a operação segura de uma aeronave.
Com as rodas dianteiras estragadas, a aeronave corria risco de explosão ao aterrissar.
O jornalista e escritor Paulo Palombo Pruss está resgatando histórias que tiveram a Capital como cenário para o seu próximo livro Aconteceu em Porto Alegre – a Cidade Parou. O texto a seguir faz parte dessa garimpagem e, assim, o autor adianta um dos assuntos que causaram forte impacto na nossa cidade.
"Era 3 de agosto de 1971, logo pela manhã a cidade ficou perplexa com a notícia. A Rádio Gaúcha já transmitia direto do aeroporto Salgado Filho, na zona norte de Porto Alegre. Em toda a cidade a expectativa era enorme. O repórter Otálio Camargo ligou diretamente do aeroporto para informar à Rádio Gaúcha que o avião Avro da Varig, prefixo PP-VDV, que tinha como destino Bagé e Livramento, e que decolara às 7h30min de Porto Alegre, estava retornando para tentar um pouso de emergência. Tinha a bordo 14 passageiros e quatro tripulantes.
A rádio transmitia tudo em tempo real: um problema técnico transformou aquele dia, até então normal, da capital gaúcha. O drama todo durou seis horas, centenas de pessoas foram acompanhar de perto, quem não foi, estava totalmente ligado no radinho acompanhando toda a movimentação.
Após a decolagem, o comandante Paulo Survilla, então com 33 anos, deu o comando de recolher o trem de pouso e uma luz vermelha se acendeu no painel do avião, alertando que nem tudo corria bem. Por um defeito nas rodas dianteiras da aeronave não havia obediência ao comando.
Depois de várias tentativas infrutíferas, não teve jeito, o trem de pouso dianteiro não poderia ser usado na aterrissagem, isso faria a fuselagem do avião raspar no solo, com riscos sérios de faíscas e explosão. Mas não havia outra opção, o comandante voltou para Porto Alegre, já que o aeroporto da Capital apresentava melhores condições de segurança, pista mais extensa e maior infraestrutura. Outra providência essencial era gastar o máximo possível do combustível para aliviar os tanques e minimizar o risco de fogo com o toque direto no chão. O piloto avisou a torre de controle que sobrevoaria a cidade até consumir todo o combustível.
O serviço de radioescuta da Gaúcha colocou no ar os diálogos do comandante Paulo Survilla com a torre:
Piloto: Não consegui solucionar o problema e nós vamos tentar o pouso sem as rodas. Confirme as condições de vento, por favor, câmbio.
Torre: Vento de 340 graus em velocidade de 15 nós. Possivelmente vocês iriam pousar na dois oito, entendido? Câmbio.
Piloto: Certo, certo, obrigado.
Torre: Gostaríamos de te perguntar a hora prevista do pouso, pois os carros de bombeiros estão sem rádio e nós teremos que avisar.
Piloto: Eu estou prevendo aí pela uma e meia, tô com 1.200 libras de combustível.
Torre: Fica a teu critério.
Piloto: Então fica combinado para a uma e trinta. Eu em breve já irei para o circuito, preparando os passageiros para toda a situação. Obrigado!
O tempo ia passando, e a tensão aumentava cada vez mais. A presença de bombeiros, ambulâncias, jornalistas, parentes e populares dentro e fora da estação de passageiros, tudo contribuía para o clima de expectativa.
Finalmente, depois de horas de angústia, o avião apareceu no céu e iniciou a aproximação, dando uma volta de 180 graus e descendo contra o vento, próximo do solo, o piloto corrigiu a descida deixando a aeronave em paralelo com a pista.
'Porto Alegre… O Delta Vitor está dentro da dois oito…'
O silêncio era absoluto, as rodas das asas, abaixadas corretamente, tocaram suavemente a pista, o pouso, de nariz, foi realizado exatamente às 13h13min. Enquanto deslizava, o avião levantou a cauda e começou a raspar a fuselagem dianteira no asfalto, sulcando a pista. Lentamente, ele foi parando, e logo o silêncio deu lugar a gritos e salvas de palmas ao comandante herói.
O comandante e herói Paulo Survilla, após o pouso, afirmou que tudo correu bem, com a devida colaboração dos passageiros, que em nenhum momento demonstraram pânico a bordo. Acrescentou ainda que em qualquer profissão existe perigo ocasional e que já estava pronto para a próxima viagem.
O PP-VDN foi recuperado e voou na Varig até 17 de junho de 1975, quando foi perdido em acidente na cidade de Pedro Afonso, em Goiás."
Em 11 de dezembro de 1999, o avião British Aerospace ATP, prefixo CS-TGM, da SATA Air Açores (foto abaixo), com 31 passageiros e quatro tripulantes, iniciou o voo SP530M de Ponta Delgada (na ilha de São Miguel ) para a Horta (na ilha do Faial), no âmbito da primeira etapa do voo mais largo de Ponta Delgada para Flores, nos Açores.
O voo partiu às 9h37 de Ponta Delgada, com um nível de voo previsto de 12.000 pés (3.700 m) pés e velocidade de cruzeiro de 260 nós, com uma duração estimada de 51 minutos tempo de voo. A tripulação de voo era composta pelo capitão Arnaldo Mesquita (55) e o primeiro oficial António Magalhães (46).
A informação meteorológica prevista entre as meia-noite e as 6h00 nas ilhas dos Açores indicava uma frente fria superficial, com nuvens pesadas, ventos moderados de sudoeste mudando para fortes ventos de norte, mas geralmente fracos em os grupos central e ocidental dos Açores. A força do vento para o itinerário variou de 30 a 45 nós.
Durante o percurso, a tripulação decidiu alterar o seu plano de voo, optando por uma rota que incluía uma descida de aproximação sobre o canal entre as ilhas do Pico e São Jorge, para interceptar o VOR/VFL Horta radial 250 graus.
A torre da Horta inicialmente liberou o voo para FL100 10.000 pés (3.000 m), mas a tripulação então solicitou (e foi liberada) para descer para 5.000 pés (1.500 m) com instruções para manter contato visual com a ilha do Pico.
Às 10h03, o co-piloto havia entrado em contato com a torre de controle de Santa Maria para comunicar que o voo estava passando pelo waypoint LIMA-MIKE. O voo estava planejado para uma rota direta para a Horta, mas quando a tripulação reportou a sua posição como LIMA-MIKE, o ATP já tinha desviado 14 milhas náuticas do seu curso; a tripulação não indicou estar ciente do desvio.
A cerca de 43 milhas náuticas da Horta, a tripulação foi autorizada pela torre da Horta a descer até 5.000 pés (1.500 m) e indicou o seu contato visual com o Pico. Durante a descida, foram encontradas chuvas fortes e turbulência.
O voo continuou o seu curso à medida que descia, cruzando a costa norte da ilha de São Jorge. Mas a tripulação havia perdido a consciência situacional e não conseguia distinguir suas altitudes barométricas dos indicadores de rádio-altímetro.
A tripulação só percebeu que estava sobrevoando a ilha a partir da indicação verbal do co-piloto e do som final audível do GPWS. Cinco segundos após o primeiro alarme do GPWS, o copiloto reagiu puxando os manetes para trás, e oito segundos após o alarme, os motores reagiram. O avião começou a recuperar sua altitude e virou para a esquerda.
Vista do Pico da Esperança, na ilha de São Jorge
Sete minutos (10h17) após o início da descida, a asa esquerda do ATP impactou a encosta norte e o flanco leste do Pico da Esperança e se separou da fuselagem, a aproximadamente 1.067 metros (3.501 pés) de altitude na ilha de São Jorge.
O avião continuou sua trajetória de queda, rolando ao longo de um caminho longitudinal e invertendo em direção ao mar antes de cair. O GPWS alertou a tripulação 17 segundos antes do impacto. Nenhuma chamada de emergência foi recebida da aeronave antes de ela cair. Não houve fogo.
As equipes de resgate chegaram aos destroços mais de quatro horas depois que o ATP caiu em São Jorge, onde espalhou destroços e vítimas por uma densa ravina. A busca foi cancelada após o anoitecer e apenas retomada no domingo, quando a equipe de investigação foi enviada do continente para o local isolado do acidente.
Sete corpos foram recuperados como resgatadores usando cordas e carregando macas, que escalaram a encosta íngreme da montanha antes do anoitecer. Da mesma forma, uma densa névoa envolveu a área, que era inacessível a veículos, dificultando a operação de busca.
Embora os helicópteros da Força Aérea Portuguesa estivessem de prontidão para retirar quaisquer sobreviventes, o tempo gasto fez com que os investigadores estivessem lá apenas para "recolher os corpos e examinar as causas do acidente", uma vez que "não havia esperança de encontrar sobreviventes", dos comentários do Ministro da Administração Interna, Fernando Gomes.
Todos os voos SATA foram cancelados após o acidente. O primeiro-ministro português António Guterres, que se encontrava em Helsinque, na Finlândia, para uma cimeira da União Europeia, cancelou uma visita prevista ao Kosovo e dirigiu-se diretamente para os Açores. A SATA organizou voos para as ilhas para parentes internacionais das vítimas do acidente.
O relatório final da comissão de inquérito do Instituto Nacional de Aviação Civil (INAC) concluiu que o voo tinha apresentado um ligeiro desvio da rota para a Horta, que não era perceptível pela tripulação. Este desvio cruzou a costa norte da ilha de São Jorge, onde se chocou com o Pico de Esperança.
A tripulação "estava completamente convencida" de que o avião estava sobre o Canal de São Jorge, e estava concentrada nas condições meteorológicas no momento da colisão. Depois de ouvir o aviso de impacto, três segundos antes do primeiro impacto, o copiloto alertou a tripulação que estavam "perdendo altitude e sobre São Jorge". Mas, mesmo com os pilotos aumentando a potência do motor, a manobra foi "insuficiente para superar o obstáculo".
A conclusão do relatório indicou que havia falta de rigor na manutenção da altitude segura prescrita, cálculo morto impreciso, falta de verificação cruzada das informações do rádio-altímetro e do altímetro barométrico e uso impróprio do radar meteorológico aerotransportado como uma facilidade adicional de navegação, todos os quais contribuíram para o desastre.
As más condições meteorológicas do dia (que incluíam nuvens, ventos moderados a fortes, com turbulência) e a falta de ajudas à navegação autônoma a bordo da aeronave (como GPS), que poderiam ter determinado sua posição, também foram fatores que contribuiu para o acidente. Em relação à aeronave, o relatório apurou que o ATP estava operando dentro das condições de navegação correspondentes aos regulamentos e procedimentos aprovados delineados pelas autoridades aeronáuticas.
Placa memorial com os nomes das vítimas da SP530 localizada no alto do Pico da Esperança
José Estima, membro da direção da Associação Portuguesa de Pilotos de Linha Aérea da APPLA afirmou que o fator que contribuiu para o acidente com o comutador da SATA foi “a dificuldade na qualidade e quantidade de infra-estruturas de apoio navegação aérea". Referindo-se à credibilidade do piloto do avião, o APPLA indicou que o “piloto voou mais de 20 anos no arquipélago” e registou que os pilotos da SATA “estão na linha da frente, visto que trabalham nestas condições adversas [locais]”.
Em 11 de dezembro de 1998, o voo 261 da Thai Airways International foi voo um voo doméstico de passageiros do Aeroporto Internacional Don Mueang em Bagkok, para o Aeroporto Internacional Surat Thani, em Surat Thani, ambas cidades da Tailândia. A aeronave, um Airbus, caiu em um pântano durante sua tentativa de pouso no aeroporto de Surat Thani. Das 146 pessoas a bordo, um total de 101 morreram no acidente.
A aeronave era o Airbus A310-204, prefixo HS-TIA, da Thai Airways (foto acima), anteriormente registrada como F-WWBI para testes de voo da Airbus. Recebendo o nome de 'Phitsanulok', o HS-TIA voou pela primeira vez em 3 de março de 1986 e foi entregue a Thai Airways em 29 de abril de 1986.
O voo 261 transportava 132 passageiros e 14 tripulantes. Havia 25 estrangeiros a bordo do avião, incluindo nacionalidades da Áustria, Austrália, Grã-Bretanha, Finlândia, Alemanha, Israel, Japão, Noruega e Estados Unidos. O restante dos passageiros eram tailandeses. Entre os passageiros estavam Siriwan, a irmã do Ministro dos Transportes e Comunicações da Tailândia, Suthep Thaugsuban, o ator e cantor tailandês Ruangsak Loychusak, e Thawat Wichaidit, um membro do Parlamento de Surat Thani.
O capitão, Pinit Vechasilp, teve 10.167 horas de voo, incluindo 3.000 horas no Airbus A300-600 / A310. Embora o A300 e o A310 sejam aeronaves separadas, a variante -600 do A300 tem um design de cabine quase idêntico ao do A310. O primeiro oficial - não identificado - teria 2.839 horas de voo, com 983 delas no Airbus A300-600 / A310.
O voo TG261 partiu do Aeroporto Internacional Don Mueang de Bangkok com 132 passageiros e 14 tripulantes às 17h40 hora local para Surat Thani, uma cidade porta de entrada para a popular ilha resort de Koh Samui, na Tailândia.
Ele foi autorizado a voar no nível de voo 310. O tempo de voo estimado foi de uma hora e 55 minutos. Na época, a Tailândia estava hospedando os Jogos Asiáticos de 1998 e muitas escolas foram fechadas devido ao evento. Muitos tailandeses foram para resorts de férias.
Às 18h26, horário local, o copiloto contatou o controlador de Surat Thani para abordagem. A aeronave estava localizada a 70 milhas náuticas do aeroporto. O Aeroporto de Surat Thani autorizou o voo para uma abordagem de acordo com as Regras de Voo por Instrumentos. O tempo no aeroporto de Surat Thani estava em boas condições, com boa visibilidade e vento calmo.
Às 18h39, horário local, o copiloto contatou Surat Thani para relatar a posição do voo 261. O controlador de Surat Thani declarou então que o Indicador de Caminho de Aproximação de Precisão no lado direito da pista 22 não estava funcionando e o indicador no lado esquerdo estava em uso. Dois minutos depois, o voo 261 foi liberado para pousar. As tripulações de voo foram advertidas de pista escorregadia devido à deterioração das condições meteorológicas.
Às 18h42, horário local, a pista foi avistada e os pilotos tentaram pousar a aeronave. Eles desistiram e então decidiram fazer uma segunda abordagem. O voo foi liberado para sua segunda tentativa de pouso. Desta vez, porém, os pilotos não conseguiram ver a pista e optaram por mais outra volta.
Às 19h05, horário local, a tripulação foi informada sobre o clima na área. O clima piorou e a visibilidade foi reduzida de 1.500 metros para 1.000 metros. Os pilotos informaram os passageiros sobre a deterioração das condições meteorológicas e anunciaram que tentariam, pela terceira vez, outro pouso e afirmaram que se falhassem novamente, desviariam o voo de volta para Bangkok.
Durante a sua volta, o ângulo de ataque da aeronave aumentou gradualmente de 18 graus para 48 graus. A velocidade da aeronave começou a diminuir e a aeronave começou a tremer. Ele entrou em estol. Quando começou a tremer, os comissários de bordo (sobreviventes) contaram que os passageiros começaram a gritar e pular de seus assentos, com a bagagem "voando por toda parte".
O Airbus A310 caiu em um terreno pantanoso perto de uma plantação de borracha inundada e explodiu em chamas.
O local do acidente estava localizado a cerca de 700 metros da pista. Muitos dos ocupantes morreram afogados pela água até a cintura, enquanto os sobreviventes restantes tiveram que rastejar para escapar dos destroços.
Os residentes locais correram imediatamente para o local do acidente para resgatar os sobreviventes. A operação de busca e salvamento foi dificultada pelo local do acidente, que era em um pântano.
As equipes de resgate relataram que a maioria dos sobreviventes estava sentada na parte dianteira da aeronave. Mais de 400 soldados e policiais foram mobilizados para ajudar na operação de resgate.
Em 12 de dezembro, as equipes de resgate conseguiram recuperar 100 corpos do local do acidente. Foi instalado um necrotério improvisado no Aeroporto Internacional de Surat Thani.
Os corpos foram colocados em fila no saguão principal e os sacos para cadáveres abertos para identificação pelos parentes. Muitos dos corpos foram queimados de forma irreconhecível, dificultando o processo de identificação. A identificação das vítimas também foi dificultada pelo fato de os passageiros não serem obrigados a preencher um formulário de voo doméstico. A operação de busca foi encerrada em 13 de dezembro após a recuperação da última vítima.
No total, 101 passageiros e tripulantes, incluindo o piloto e o copiloto, morreram no acidente. Siriwan, irmã do Ministro tailandês dos Transportes e Comunicações da Tailândia Suthep Thaugsuban, e Thawat Wichaidit, membro do Parlamento de Surat Thani, estavam entre os mortos.
Quarenta e cinco pessoas sobreviveram, sendo que 30 pessoas sofreram ferimentos graves. Entre os sobreviventes estavam 12 estrangeiros (três australianos, três japoneses, três alemães, dois israelenses e um britânico) e o ator e cantor tailandês Ruangsak Loychusak.
Uma busca pelas caixas pretas do voo foi realizada imediatamente. A busca foi inicialmente dificultada devido às condições do solo no local do acidente. Tanto o gravador de dados de vôo (FDR) quanto o gravador de voz da cabine (CVR) foram eventualmente encontrados pela equipe de busca e resgate, e foram retirados do local do acidente para investigação posterior.
Ambos os gravadores foram enviados ao National Transportation Safety Board (NTSB) nos Estados Unidos para análise de leitura.
Pedaços dos destroços foram recuperados e levados para fora do local para uma nova inspeção por investigadores tailandeses. A Airbus, fabricante da aeronave, anunciou que enviaria uma equipe de especialistas para auxiliar as autoridades tailandesas na investigação do acidente.
Logo após o acidente, muitos acreditaram que o clima foi um fator importante no desastre. Uma forte tempestade estava supostamente presente antes do pouso do voo 261. Vários sobreviventes e parentes das vítimas questionaram a decisão dos pilotos de pousar no aeroporto, embora o tempo não estivesse em condições aceitáveis para o pouso.
Funcionários da companhia aérea disseram aos tripulantes para voar de acordo com os procedimentos da empresa, nos quais os pilotos não deveriam pousar se as condições meteorológicas na área fossem adversas.
Os investigadores afirmaram que o mau tempo foi a causa provável do acidente, sem descartar o erro do piloto. Outras possíveis causas também estavam sendo investigadas.
Surgiram relatos de que a pista do aeroporto de Surat Thani carecia de um sistema de navegação essencial. Funcionários do aeroporto apenas comentaram que o sistema de radionavegação estava funcionando normalmente e não quiseram comentar mais sobre o assunto.
Autoridades tailandesas confirmaram que uma parte do sistema de navegação, denominado Instrument landing system (ILS), teve que ser retirada de linha devido a um programa de expansão do aeroporto. O sistema estava programado para ser colocado novamente em operação, mas a subsequente crise financeira asiática de 1997 fez com que fosse adiado.
Um piloto da força aérea tailandesa afirmou que, devido à remoção do sistema de pouso por instrumentos (ILS), os pilotos tinham que usar um sistema de radionavegação que era menos preciso.
No mesmo ano, a Thai Airways International começou a reduzir o número de pilotos estrangeiros. O vice-presidente da empresa, Chamlong Poompuang, afirmou que os pilotos foram treinados para ter muita cautela. Ao mesmo tempo, ele reconheceu que a companhia aérea tomou medidas para economizar combustível devido à crise econômica, mas que as operações de voo não deveriam ser realizadas se a segurança estivesse comprometida. O presidente da Thai Airways International, Thamnoon Wanglee enfatizou: "Segurança é nossa maior prioridade. Nossa política é, e o que aconteceu, são duas coisas diferentes."
O Comitê de Investigação de Acidentes de Aeronaves da Tailândia concluiu a causa do acidente da seguinte forma:
Após cuidadosa consideração. o Comitê de Investigação de Acidentes de Aeronaves do Reino da Tailândia finalmente chegou à conclusão de que o acidente ocorreu porque a aeronave entrou em uma condição de estol que pode ser causada pelo seguinte:
1. O piloto tentou se aproximar do aeroporto com visibilidade inferior à mínima com chuva.
2. O piloto não conseguiu manter o curso do VOR conforme estabelecido na carta de aproximação. A aeronave voou para a esquerda do curso do VOR em todas as abordagens.
3. Os pilotos sofreram com o acúmulo de estresse e não estavam cientes da situação até que a aeronave entrou na situação l.
4. Os pilotos não foram informados sobre o documento relativo à recuperação de tombamento de aviões de fuselagem larga fornecido pela Airbus Industrie para uso em treinamento de pilotos.
5. O sistema de iluminação e a carta de abordagem não facilitaram a abordagem de baixa visibilidade.
6. Os sistemas de aviso de estol e ajuste de inclinação podem não funcionar totalmente conforme descrito no FCOM e no AMM.
A Thai Airways International ofereceu indenização às famílias afetadas pelo acidente. O presidente Wanglee afirmou em uma entrevista coletiva que cada parente das 101 vítimas do acidente receberá uma indenização de US$ 100.000, enquanto os 45 sobreviventes feridos receberiam uma indenização de 200.000 baht (US$ 5.600) cada. A companhia aérea pagaria suas despesas médicas.
Este foi o segundo acidente de avião mais mortal na Tailândia, atrás apenas do voo 004 da Lauda Air. Foi o quinto pior acidente envolvendo o Airbus A310 e a quarta perda do casco de um Airbus A310.
O voo 434 da Philippine Airlines, às vezes referido como PAL434 ou PR434, foi um voo em 11 de dezembro de 1994 de Cebu, nas Filipinas, para Tóquio, no Japão, em um Boeing 747-283B que foi seriamente danificado por uma bomba, matando um passageiro e danificando sistemas de controle vitais.
A aeronave que operava o voo 434 era o Boeing 747-283BM, prefixo EI-BWF, da Philippine Airlines (foto acima), com 15 anos de operação. Este avião fez seu primeiro voo em 17 de fevereiro de 1979, e foi entregue à Scandinavian Airlines (SAS) em 2 de março de 1979 como SE-DFZ, operando o avião como "Knut Viking". O avião foi então entregue à Philippine Airlines em 1º de abril de 1992, após voar com a Nigeria Airways, Lionair (Luxemburgo) e Aerolineas Argentinas, de 3 de junho de 1983 a 30 de março de 1992.
A tripulação de voo consistia no seguinte: Capitão Eduardo "Ed" Reyes (1936–2007), um piloto veterano de 58 anos que serviu na Força Aérea Filipina de 1958 a 1964 e voava pela Philippine Airlines desde 1964. O primeiro oficial Jaime Herrera (1948–2021), também um piloto veterano que voava pela Philippine Airlines desde 1970. Herrera tinha 46 anos e servia como co-piloto no momento do incidente. Engenheiro de Voo Dexter Comendador (nascido em 1960), que, como Reyes, também foi piloto da Força Aérea Filipina , servindo de 1983 a 1992. Ele voava pela Philippine Airlines desde 1992. Dexter Comendador tinha 34 anos na época.
O terrorista Ramzi Yousef embarcou na aeronave para a parte do voo de Manila a Cebu. O avião partiu de Manila às 5h35. Depois que o avião decolou, ele foi ao banheiro com sua bolsa de higiene na mão e tirou os sapatos para retirar as baterias, fiação e fonte de faísca escondida no calcanhar abaixo de um nível onde os detectores de metal em uso na época podiam detectar qualquer coisa.
Yousef removeu um relógio digital Casio modificado de seu pulso para ser usado como um cronômetro, desempacotou o material restante de sua bolsa de higiene e montou sua bomba. Ele acertou o cronômetro para quatro horas depois, quando estaria muito tempo desembarcado e o avião estaria longe, sobre o oceano e a caminho de Tóquio durante a próxima etapa da viagem, colocou a bomba inteira de volta na bolsa e voltou para seu assento designado.
Depois de pedir permissão a um comissário de bordo para ir para o assento 26K, alegando que ele poderia ter uma visão melhor daquele assento, Yousef mudou-se para lá e enfiou a bomba montada no bolso do colete salva-vidas embaixo. Ele saiu da aeronave em Cebu.
A comissária de bordo doméstica filipina Maria De La Cruz notou que Yousef trocou de lugar durante o voo de Manila para Cebu e saiu do avião em Cebu com a tripulação doméstica, mas não repassou a informação à tripulação internacional que embarcou em Cebu para a viagem a Tóquio.
Outros 25 passageiros também desceram do avião em Cebu, onde mais 256 passageiros e uma nova tripulação de cabine formada pelo Flight Purser Isidro Mangahas, Jr., Comissários de bordo Fernando Bayot, Agustin Azurin, Ronnie Macapagal, E. Reyes, R. Santiago, Flight Os participantes M. Alvar, Alpha Nicolasin, Cynthia Tengonciang, Andre Palma, Socorro Mendoza, E. Co, L. Garcia, N. dela Cruz, Adora Altarejos, L. Abella e o intérprete japonês K. Okada embarcaram no avião para a etapa final do voo para Tóquio.
O voo 434 pousou em Cebu às 6h50, após um tempo de voo de 1 hora e 15 minutos. Às 8h38, após um atraso de 38 minutos devido ao congestionamento do aeroporto, o avião decolou com um total de 273 passageiros a bordo. Entre eles estava Haruki Ikegami, de 24 anos, um fabricante de máquinas de costura industrial japonês que voltava de uma viagem de negócios a Cebu, ocupando um assento 26K.
Às 11h43, 4 horas depois de Yousef plantar sua bomba, o dispositivo explodiu embaixo de Ikegami, matando-o imediatamente e ferindo mais dez passageiros nos assentos adjacentes na frente e atrás do assento 26K.
A explosão também explodiu uma porção de dois pés quadrados (0,2 m²) do piso da cabine, deixando um buraco que levava ao porão de carga, e a rápida expansão da cabine a partir da explosão cortou uma série de cabos de controle no teto que controlavam o o aileron direito do avião, bem como cabos que se conectavam aos controles de direção do capitão e do primeiro oficial.
A gravidade do desastre foi reduzida por vários fatores atenuantes. Uma era que este 747 em particular tinha um arranjo de assento modificado em vez do layout padrão, tornando o assento 26K duas fileiras à frente do tanque de combustível central.
Resultado do atentado, fotografado pelo Serviço de Segurança Diplomática dos Estados Unidos
O buraco no chão sob o assento perfurou o porão de carga em vez do tanque de combustível, evitando que o avião explodisse. A orientação da bomba, posicionada de frente para trás e inclinada para cima a partir da horizontal, fez com que a explosão se expandisse verticalmente e longitudinalmente. Isso poupou a estrutura externa do avião, já que o corpo de Ikegami absorveu a maior parte da força da explosão.
A metade inferior de seu corpo caiu no porão de carga. Além disso, devido ao atraso de 38 minutos na decolagem de Cebu, o avião não estava tão longe no mar quanto o previsto, o que contribuiu para as opções do capitão para um pouso de emergência.
Masaharu Mochizuki, um passageiro do voo, lembrou que os passageiros, tanto feridos como ilesos, tentaram inicialmente se afastar do local da explosão, mas a tripulação disse aos passageiros que permanecessem no local até que uma avaliação da situação pudesse ser feita.
O comissário assistente e comissário de bordo da classe econômica, Fernando Bayot, retirou um passageiro ferido chamado Yukihiko Osui do local da bomba. Bayot então viu Ikegami e tentou puxá-lo para fora do buraco, mas logo percebeu que a maior parte do corpo de Ikegami abaixo da cintura estava danificado ou ausente por completo.
Para evitar pânico adicional, Bayot chamou outro comissário de bordo para dar a impressão de que estava atendendo às necessidades de Ikegami com um cobertor e máscara de oxigênio e, em seguida, relatou a extensão dos ferimentos dos passageiros na cabine. Dos dez passageiros feridos, um precisava de atendimento médico urgente.
Imediatamente após a explosão, a aeronave inclinou fortemente para a direita, mas o piloto automático corrigiu a inclinação rapidamente. Após a explosão, o capitão Reyes pediu ao engenheiro de sistemas Dexter Comentador para inspecionar o local da explosão para verificar se havia danos. Reyes fez a ligação do Mayday, solicitando o pouso no Aeroporto de Naha , Ilha de Okinawa, Prefeitura de Okinawa.
O controlador de tráfego aéreo japonês teve dificuldade em tentar entender o pedido de Reyes, então controladores de tráfego aéreo americanos de uma base militar dos EUA em Okinawa assumiram e processaram o pouso de Reyes. Eles direcionaram um jato Lear da USAF em direção ao PAL 434 para verificar visualmente se havia danos na fuselagem externa e se o trem de pouso estava no lugar. O piloto automático parou de responder aos comandos de Reyes e a aeronave passou por Okinawa.
Reyes disse em uma entrevista para a série de televisão canadense Mayday que, quando desligou o piloto automático, temeu que a aeronave tombasse para a direita novamente e a tripulação perdesse o controle da aeronave; devido à necessidade urgente de pousar rapidamente para atender aos feridos e inspecionar o avião em busca de danos adicionais, porém, Reyes instruiu o primeiro oficial Jaime Herrera a assumir seus próprios controles e, em seguida, Reyes desativou o piloto automático.
A aeronave não tombou após o desligamento do piloto automático, mas também não respondeu aos comandos de direção de nenhum dos controladores devido ao dano ao cabo de controle causado pela bomba. A tripulação teve dificuldade em usar os ailerons, que podiam permitir que a aeronave girasse, mas ainda não conseguiam mudar a direção do avião.
Depois de pensar nos diferentes métodos hipotéticos de controle, a tripulação decidiu usar o empuxo assimétrico para controlar o jato, de maneira muito semelhante à tripulação do vôo 232 da United Airlines cinco anos antes, porque outros métodos de controle foram considerados muito arriscados para tentativa, ou não teria tanto efeito quanto outras maneiras.
Usando os aceleradores para dirigir o avião, reduzindo a velocidade do ar para controlar o raio das curvas e permitir que o avião desça, e despejando combustível para diminuir a tensão no trem de pouso, o capitão pousou o 747 danificado em Naha Aeroporto às 12h45, uma hora após a explosão da bomba. Os outros 272 passageiros e 20 membros da tripulação da aeronave sobreviveram.
Os promotores dos EUA disseram que o dispositivo era uma " microbomba" PETN "Mark II" construída usando relógios digitais Casio, conforme descrito na Fase I da trama de Bojinka, para a qual este foi um teste.
No voo 434, Yousef usou um décimo da força explosiva que planejava usar em onze aviões americanos em janeiro de 1995. A bomba foi, ou pelo menos todos os seus componentes foram, projetada para escapar da segurança do aeroporto verifica não detectado.
O explosivo usado era nitroglicerina líquida, disfarçada como um frasco de fluido para lentes de contato. Outros ingredientes incluem glicerina, nitrato,ácido sulfúrico e concentrações mínimas de nitrobenzeno, azida de prata e acetona líquida. Os fios que ele usou foram escondidos no calcanhar do sapato, abaixo da faixa detectável dos detectores de metais usados por aeroportos do dia.
A polícia de Manila conseguiu rastrear as baterias usadas na bomba e muitos de seus conteúdos de Okinawa até Manila. A polícia descobriu o plano de Yousef na noite de 6 de janeiro e na madrugada de 7 de janeiro de 1995, e Yousef foi preso um mês depois no Paquistão.
Ele foi extraditado de volta aos Estados Unidos para enfrentar um julgamento no qual a Suprema Corte de Nova York lhe deu uma sentença de prisão perpétua com mais 240 anos. Simultaneamente, Yousef cumpre suas penas na prisão ADX de Florença . Os cúmplices de Ramzi Yousef também receberam 240 anos de prisão.
A cabine de comando e os membros da tripulação de cabine foram elogiados pelo presidente Fidel Ramos por seu "tratamento profissional de uma situação potencialmente desastrosa" e seguiram caminhos separados após o incidente.
Ed Reyes foi transferido para Cebu Pacific para trabalhar como piloto administrativo de verificação, instrutor de voo e capitão do DC-9 até sua aposentadoria em 2002. Ele serviu como secretário do conselho e diretor da Escola Internacional de Aviação Airlink, também atuando como professor do curso de aviação na mesma instituição até seu falecimento, em 14 de fevereiro de 2007, de câncer de próstata.
O primeiro oficial Jaime Herrera foi posteriormente promovido a capitão e continuou a voar para a Philippine Airlines até sua aposentadoria em 2008. Ele morreu em 27 de março de 2021, aos 73 anos.
A tripulação do voo 434 da Philippine Airlines, liderada pelo capitão Eduardo Reyes, centro, é entrevistada após pousar com segurança um Boeing 747 em Okinawa, Japão, após uma explosão na cabine
O engenheiro de sistemas Dexter Comendador também se mudou para Cebu Pacific em 1998 e atuou como piloto de gerenciamento nessa empresa, depois mudou-se para a AirAsia Filipinas em 2011, onde atuou como COO e mais tarde foi nomeado CEO em julho de 2016. Comendador se aposentou em julho de 2019.
A aeronave, então registrada como EI-BWF, foi posteriormente convertida para uma configuração de carga como Boeing 747-283B (SF). Posteriormente, mudou de mãos várias vezes, sempre para empresas de carga aérea, e foi finalmente armazenado em 2007 no aeroporto "Marcel Dassault" de Châteauroux-Centre.
A Philippine Airlines ainda usa o voo número 434, mas atualmente opera como um setor Cebu – Narita que utiliza um Airbus A321 ou A330. A companhia aérea aposentou sua última aeronave 747 em setembro de 2014. A PAL ainda opera um setor Manila-Tóquio (Narita e Haneda) separadamente.
Os eventos do voo 434 foram apresentados em "Bomb on Board", um episódio da 3ª temporada (2005) da série de TV canadense Mayday (chamada Air Emergency and Air Disasters nos Estados Unidos e Air Crash Investigation no Reino Unido e em outros lugares ao redor do mundo). O ator canadense filipino Von Flores interpretou o capitão Reyes, enquanto o ator e comediante canadense Sam Kalilieh interpretou Ramzi Yousef.
Neste dia, nas primeiras horas de 11 de dezembro de 1978, seis homens armados em uma van Ford roubada estacionaram em frente ao depósito de carga da Lufthansa Airlines no Aeroporto Internacional John F. Kennedy da cidade de Nova York.
Em poucas horas, os homens fugiriam, tendo cometido um dos maiores roubos de dinheiro nos Estados Unidos, iniciando uma investigação que duraria décadas e passaria a ser chamada de 'Assalto da Lufthansa'.
Os homens, todos membros e associados da máfia americana, cortaram os portões do prédio de carga e fizeram vários funcionários da Lufthansa como reféns, algemando-os na cantina.
O alvo eram notas de banco sem identificação e joias que a Lufthansa transportava regularmente para o depósito. Na noite, a quadrilha estimou um valor total de roubo de cerca de US$ 2 milhões.
Sob a mira de uma arma, os assaltantes obrigaram um funcionário a abrir o cofre de onde retiraram 72 caixas de dinheiro. Pouco mais de uma hora depois, eles escaparam com aproximadamente US$ 5 milhões em notas bancárias e US$ 875.000 em joias.
Apesar dos muitos suspeitos, apenas uma pessoa, Louis Werner, foi condenada pelo roubo e muito pouco do dinheiro e das joias foi recuperado.
Werner, que trabalhava como agente de carga para a Lufthansa, devia milhares de dólares em dívidas de jogo e acredita-se que tenha ajudado a planejar o ataque.
Henry Hill, ligado à Família Lucchese
Acredita-se que o arquiteto do roubo tenha sido James 'Jimmy' Burke, um associado da notória Família Lucchese.
Suspeita-se que Burke posteriormente planejou ou cometeu pessoalmente o assassinato da maioria dos agressores nos meses seguintes ao roubo, a fim de evitar implicação.
Em dinheiro de hoje, o valor do roubo é estimado em mais de US$ 24 milhões e mais tarde inspirou o enredo do premiado filme de 1990 'Os Bons Companheiros'.
Os assaltos a aeroportos ao longo dos anos totalizaram centenas de milhões de dólares.
Em 2005, o Aeroporto Schiphol de Amsterdã foi alvo de um roubo de diamantes, onde um total de US$ 80 milhões foi roubado.
Mais recentemente, em 2013, nos aeroportos de Bruxelas, oito pistoleiros mascarados disfarçados de policiais roubaram US$ 50 milhões em diamantes de uma aeronave Fokker 100 com destino a Zurique.
Em 11 de dezembro de 1972, às 19:54:58 (UTC) o Módulo lunar da Apollo 17, com os astronautas Eugene A. Cernan e Harrison H. Schmitt pousou no Vale Taurus-Littrow, na Lua.
A Apollo 17 foi a última missão lunar tripulada.
Gene Cernan foi o último humano a permanecer na superfície lunar.
A Agência Nacional de Aviação Civil (ANAC) publicou no Diário Oficial da União da última sexta-feira (08), o edital do novo concurso.
A Agência Nacional de Aviação Civil (ANAC) publicou no Diário Oficial da União da última sexta-feira (08), o edital do novo concurso público que oferece 70 vagas. A inscrições serão abertas entre 13 de dezembro e 4 de janeiro de 2024 e podem ser feitas pelo site da organizadora da seleção, a Cebraspe.
As oportunidades são para o cargo de especialista em Regulação de Aviação Civil, de nível superior. As vagas são em três áreas de atuação: são 25 para profissionais em qualquer área de formação acrescida de licença de piloto(a) de avião ou helicóptero, 25 para engenheiros(as) e 20 para profissionais de qualquer segmento de formação.
Ainda haverá a formação de cadastro reserva, em que serão classificados 246 candidatos ao todo. Do total de vagas, 5% serão destinadas aos candidatos com deficiência e 20% às pessoas negras. Os convocados irão trabalhar no Distrito Federal ou em São Paulo e vão receber uma remuneração de R$ 16.413,35.
A seleção abrange duas etapas. Na primeira, haverá a aplicação das provas objetiva e discursiva (situação-problema sobre o gerenciamento de segurança operacional – safety), prevista para o dia 3 de março de 2024, e a avaliação de títulos.
A segunda e última fase é a realização de um curso de formação com até 160 horas de duração, divididas em aulas online e presenciais, em Brasília (DF), no mês estimado de agosto de 2024.
A segunda e última fase é a rA segunda e última fase é a realização de um curso de formação com até 160 horas de duração, divididas em aulas online e presenciais, em Brasília (DF), no mês estimado de agosto de 2024.
Nem é preciso dizer que o som da descarga de uma descarga de um avião é ensurdecedor. Considerando que o sistema de ventilação da aeronave e os motores combinados já estão fornecendo ruído ambiente suficiente para abafar uma conversa normal de fala, o fato de que a descarga de um banheiro atravessa esses sons e pode ser ouvido no meio da cabine, é um eufemismo chamar isso ruído 'alto'.
Mas por que a descarga do banheiro de um avião é muito mais alta do que a descarga de um banheiro doméstico comum?
O volume da descarga do vaso sanitário de uma aeronave é aproximadamente equivalente a estar a um ou dois metros de uma serra elétrica ou a ficar em uma plataforma e ser ultrapassado por um trem em movimento.
Foto: Getty Images
De acordo com o Wall Street Journal, o banheiro é essencialmente a parte mais barulhenta da experiência de voo, relatando que os anúncios da tripulação normalmente variam entre 92 e 95 decibéis. Em comparação, as descargas do vaso sanitário atingem 100 decibéis - junto com fortes batidas na porta do compartimento superior. Certamente há uma boa explicação para isso.
Então, por que a descarga do banheiro dos aviões faz um barulho tão alto?
Simplificando, o volume da descarga é devido a um vácuo parcial que suga o conteúdo do vaso sanitário para o tanque de dejetos da aeronave. Considerando que seu 'banheiro subterrâneo' padrão é drenado com a liberação de cinco a dez litros de água, não é tão viável dedicar tanto espaço e combustível para transportar tanta água para banheiros no céu. E então, é claro, haveria a complicada questão de derramamento durante a decolagem, pouso e turbulência!
Provavelmente não é necessário incluir um exemplo. Mesmo assim, caso você não saiba o som da descarga do vaso sanitário de uma aeronave (ou, mais provavelmente, tenha esquecido depois de ter passado tanto tempo no solo), aqui está um videoclipe para sua conveniência:
De acordo com o site The Points Guy, o banheiro moderno da aeronave foi inventado por James Kemper, que patenteou o banheiro a vácuo em 1975. Esta invenção foi então instalada nos aviões da Boeing em 1982. Em vez de usar a combinação convencional de água e gravidade, um vácuo é usado para mover água e resíduos em alta velocidade para o tanque de resíduos. De acordo com o CBC, o conteúdo liberado pode se mover a altas velocidades de até 150 metros por segundo - ou 300 milhas por hora!
Os banheiros da aeronave também são cobertos com um revestimento antiaderente para garantir que a bacia seja completamente esvaziada (Foto: Tiowiafuk)
Descendo para os tanques de resíduos
Como você deve saber, a cabine de passageiros de uma aeronave é pressurizada a uma altitude superior. O sistema sanitário da aeronave inclui uma válvula que mantém essa diferença de pressão. Na descarga, a válvula se abre e, em seguida, esse resíduo é sugado pelos tubos que enchem o tanque.
Dependendo do tamanho da aeronave, há um ou mais tanques localizados na parte traseira do avião, embaixo do piso. Os banheiros se conectam a esses tanques por meio de tubulações instaladas em toda a extensão da aeronave. Portanto, sempre que alguém da primeira classe ou classe executiva descarrega, esses conteúdos estão sendo movidos em alta velocidade para a parte traseira da aeronave.
Remoção de dejeto sanitário de aeronaves
Parte do tempo que uma aeronave passa no portão do aeroporto geralmente inclui o esvaziamento de seus tanques de resíduos (Foto: mnts)
Provavelmente também não ajuda o fato de você normalmente ter a porta do banheiro fechada quando você aperta o botão para dar descarga. Como as ondas sonoras têm poucos lugares para ir, isso inevitavelmente intensificaria o fluxo ao ricochetear no espaço confinado.