segunda-feira, 3 de fevereiro de 2025

Por que os aviões não conseguem voar quando está muito frio ou muito quente


Quando está muito frio, os voos de avião frequentemente atrasam ou, em casos extremos, são até cancelados. Em primeiro lugar, se nevar muito, essas condições diminuem drasticamente a visibilidade, tornando inseguro taxiar e decolar. Durante uma nevasca, o controle de voo pode dar o comando para que a aeronave permaneça no solo e espere até que a tempestade de neve diminua. 

O gelo na pista é outro motivo: o trem de pouso de um avião não se parece com as rodas de um carro e não pode ser equipado com tachões para evitar derrapagens. Mesmo que fosse, um avião precisa desenvolver velocidades muito mais altas no solo do que em uma estrada comum para decolar com sucesso. Se a pista estiver escorregadia com gelo, o avião pode deslizar facilmente.


Coisas como essa realmente aconteceram no passado: por exemplo, em janeiro de 2014, o aeroporto JFK em Nova York foi fechado depois que um avião derrapou na pista e caiu na neve. Felizmente, ninguém ficou ferido, mas a equipe do aeroporto teve que retirar a aeronave da neve, e até a polícia local se juntou aos esforços. 

A mesma coisa acontece com o pouso, que é ainda mais complicado em condições de congelamento, pois um avião está em um ambiente muito menos controlado e viajando em velocidades ainda maiores. Além disso, enquanto um avião que decola e derrapa provavelmente entrará em uma área aberta e vai parar lá, um que estiver prestes a pousar pode acabar colidindo com a infraestrutura do aeroporto. Nem é preciso dizer que isso é muito mais perigoso para todos.


As condições climáticas congelantes também podem causar o acúmulo de gelo e camadas de gelo no próprio avião. Os aviões são cuidadosamente projetados, e qualquer alteração na estrutura deles pode causar grandes problemas. Como dizem os pilotos experientes, mesmo uma fina crosta de gelo sobre as asas de um avião pode atrapalhar seu design delicado e destruir a sustentação. 

Os aviões podem ser descongelados, mas a equipe do aeroporto geralmente os pulveriza com uma solução especial que não permite que o gelo se acumule na superfície da aeronave. Mas... voltando à pista — se ela estiver coberta de gelo, há pouco a fazer. A menos que o sol esteja brilhando, as chances de remover o gelo com segurança são quase zero.


Há também a chance de danificar a pavimentação, fazendo buracos, o que pode resultar em problemas de segurança tanto na decolagem quanto na aterrissagem. Imagine passar por um buraco com um carro a toda velocidade... superdesagradável. E agora multiplique por cerca de mil, pois um avião é muito mais pesado que um carro, e não se esqueça de que o trem de pouso não está lá exatamente para dirigir. 

O combustível de aviação e o equipamento que o bombeia também podem congelar se a temperatura estiver muito baixa. O combustível congela a −40 °C, mas isso só pode acontecer em solo antes da decolagem. Em uma altitude de cruzeiro, as temperaturas podem cair a até −57 °C, mas, como o líquido está dentro do avião e queimando constantemente, é muito mais quente lá. No chão, porém, nada impede que o combustível se transforme em gelo. Se isso acontecer, os voos não estarão disponíveis, obviamente.


O mesmo vale para o equipamento de bombeamento: mesmo que o combustível ainda esteja líquido, a bomba pode ficar coberta de gelo e simplesmente parar de abastecer o combustível nos tanques do avião. Na pior das hipóteses, ela pode quebrar, levando a reparos extensos e a atrasos prolongados nos voos. 

Finalmente, as equipes de terra precisam fazer muito trabalho antes de decolar ou pousar, e são todos humanos, o que significa que não conseguem suportar o frio por muito tempo. Esse problema geralmente é resolvido com o revezamento de equipes: um grupo de trabalhadores sai em campo para fazer o trabalho, enquanto o outro espera por eles em um abrigo. Após cerca de 20 minutos, o primeiro grupo volta para o aquecimento e o segundo retoma o trabalho onde o primeiro parou. Embora seja eficiente, retarda muito as operações, o que também pode causar atrasos.


Mas, apesar de todos os problemas que o clima frio pode causar, na verdade ele é mais benéfico para um avião do que o calor extremo. O ar frio é mais denso que o quente, então os aviões ganham mais sustentação e ficam mais seguros enquanto estão no ar. Eles também são mais facilmente controlados em voo. 

As moléculas de ar são mais lentas e mais próximas, criando um fluxo constante de ar ao redor das asas e do cockpit. Em grandes altitudes, o ar naturalmente fica mais rarefeito à medida que as moléculas de ar se espalham e ficam mais escassas. É exatamente por isso que os aviões não conseguem chegar às camadas superiores da atmosfera: simplesmente não há ar suficiente para criar sustentação.


No entanto, o mesmo acontece quando está muito quente no chão. As moléculas de ar ficam mais rápidas e se espalham, o que significa que as asas do avião não têm tanto ar para empurrar e entrar no modo de voo. Para decolar em calor extremo, um avião precisa se mover muito mais rápido para gerar resistência do ar e sustentação suficientes. 

Mas, para se mover mais rápido, o avião precisa que seus motores funcionem melhor, e isso também é impossível quando está muito quente. Como o ar fica mais rarefeito, a quantidade de oxigênio também diminui. E os motores a jato usam oxigênio na atmosfera para combustão. Quando não têm esse elemento crucial, eles não conseguem converter energia suficiente em impulso, o que significa aceleração mais lenta e pior produção de energia em geral.


O problema é que o avião precisa ter uma distância maior na pista para ganhar velocidade e sustentação suficientes para decolar, mas não consegue, porque seus motores não estão funcionando da melhor maneira possível. Isso geralmente não causa problemas, mas apenas até certo ponto. Quando a temperatura no nível do solo atinge cerca de 49 °C, alguns voos podem ser cancelados, pois é perigoso tentar e decolar. 

Outros aviões são mais potentes e resistentes ao calor, mas isso também depende do calor. Algumas aeronaves ainda precisam reduzir seu peso removendo parte do combustível, da carga ou até de passageiros quando está muito quente. Carga mais leve significa melhor aceleração antes da decolagem e ajuda a evitar cancelamentos, mas também significa que os aviões não estão funcionando em sua capacidade total.


A altitude média de cruzeiro para um avião é de cerca de 10.700 metros. Tecnicamente, eles não precisam ficar tão no alto, mas essa altitude oferece melhor velocidade e eficiência. O ar fica mais rarefeito em maiores altitudes, o que significa menos resistência ao vento, e menos sustentação. Para a maioria das aeronaves comerciais, a área entre 9.200 e 12.200 metros de altitude é o ponto ideal onde os dois fatores se equilibram. 

Você provavelmente não está usando um laptop de 1999 e seu computador não está voando perto da velocidade do som. Felizmente, os aviões têm uma vida útil muito maior do que a dos computadores. Há aviões do início dos anos de 1970 que ainda estão bons. Eles podem não conseguir acompanhar os aviões novos em termos de velocidade e eficiência de combustível, mas os aviões mais antigos não são menos seguros do que os modernos.


Os rastros, aqueles trilhos brancos que os aviões costumam deixar para trás em grandes altitudes, são facilmente confundidos com o escapamento do motor, mas a maioria não passa de vapor d’água. Durante um voo, a umidade do ar se acumula nos motores antes de ser ventilada com o escapamento. O ar quente e úmido que sai dos motores se mistura com o ar frio e seco encontrado em grandes altitudes, resultando em longas e finas linhas de vapor. 

A umidade determina quando os rastros se formam e por quanto tempo eles permanecem visíveis. Já reparou naqueles números no final da pista? Na verdade, eles são usados ​​para mostrar ao piloto para qual direção o avião está voltado. Por exemplo, o número 36 é a abreviação de uma direção de 360 ​​graus, ou norte. Com os números, as letras D e E indicam se a pista mais próxima está à direita ou à esquerda.


Se alguém conseguisse abrir a porta no meio do voo, seria imediatamente puxado para fora do avião, pela mudança repentina na pressão do ar. Isso também pode causar sérios danos à aeronave, e até mesmo causar a sua queda. 

Felizmente, é algo quase impossível de fazer. As portas de um avião abrem para dentro, enquanto a pressão da cabine as empurra para fora. A diferença entre a pressão interna e externa impossibilita a abertura da porta. As luzes nas pontas das asas de um avião são chamadas de luzes de posição ou de navegação; elas são usadas em períodos de visibilidade reduzida.


Essas luzes ajudam os aviões a se verem no escuro e também podem dizer aos pilotos em que direção uma aeronave está viajando. A luz vermelha marca a ponta da asa esquerda enquanto a luz verde está na direita. A terceira luz é branca e é encontrada na cauda ou perto dela. 

Pode parecer estranho que a tripulação de voo se preocupe com as persianas das janelas: se elas estão para cima ou para baixo. A principal razão é o ajuste dos olhos dos passageiros à luz externa. Na maioria das vezes, é apenas uma questão de despertar ou relaxar as pessoas rapidamente, mas, em uma emergência, a última coisa que se quer é que as pessoas parem para piscar antes de evacuar o avião.

Vídeo: Como funcionam os aviões que COMBATEM INCÊNDIOS?


Como os aviões que combatem incêndios funcionam? No Aerolito de hoje, Lito Sousa mostra como esses aviões combatentes ajudam tanto na prevenção quanto na extinção de incêndios de todos os tamanhos ao redor do mundo. Além disso rolou um bate papo incrível com o comandante Sepé Tiaraju Diniz Barradas, que trabalha como piloto agrícola e combatente aéreo a incêndios!

Por que sistema anticolisão não evitou choque entre avião e helicóptero que matou 67 pessoas nos EUA? Entenda

Tecnologia conhecida como TCAS é obrigatória para grandes aeronaves há mais de 30 anos no país, mas não emite sinal a baixas altitudes.

Colisão entre avião e helicóptero nos EUA remete ao acidente da Air Florida em 1982
(Foto: Reprodução Us Army Corps Of Engineers)
A colisão entre um voo comercial e um helicóptero militar próximo a Washington, na noite de quarta-feira, despertou uma série de questionamentos sobre a gestão do espaço aéreo e a segurança da aviação civil nos Estados Unidos. Há mais de 30 anos, o governo americano obriga as aeronaves de grande porte a portar um Sistema de Alerta de Tráfego e Prevenção de Colisão (TCAS, em inglês), que foi desenvolvido para evitar que os aviões colidissem em pleno ar após vários acidentes trágicos. A maioria dos helicópteros do Exército também são equipados com transponders (dispositivo eletrônico que transmite e recebe sinais de rádio) que podem interagir com os aviões. Por que então esse sistema não evitou o acidente?

Financiado pela Administração Federal de Aviação dos EUA, o sistema foi projetado para detectar continuamente outras aeronaves em um alcance de cerca de 20 km, o que vai muito além do buffer de segurança usual de 5 km a 8 km na distância horizontal e 300 metros na vertical. Por meio desse sistema, a posição das aeronaves no ar é transmitida automaticamente. Um sinal de alerta é emitido se dois aviões estiverem convergindo, mas cabe aos pilotos determinarem o curso a ser seguido.

Não houve nenhuma colisão no ar nos EUA envolvendo uma aeronave equipada com um sistema anticolisão em funcionamento e outra com um transponder em funcionamento desde que a tecnologia TCAS se tornou obrigatória. Ainda assim, ela não é totalmente à prova de falhas. Em 2002, um avião de carga e um jato de passageiros russo — ambos equipados com TCAS — colidiram sobre Uberlingen, na Alemanha, depois que o piloto ignorou as informações do sistema anticolisão e optou por seguir as ordens do controlador aéreo, que divergiam das do TCAS.

No acidente de quarta-feira, que matou todos as 67 pessoas a bordo das duas aeronaves, a altura do voo pode também ter influenciado. Muitos detalhes da colisão ainda não estão claros, mas parece que ambas voavam em uma baixa altitude — o avião estava se preparando para pousar — e o TCAS não foi projeto para enviar alertas nesses casos, para não distrair a tripulação em momentos estressantes para os pilotos, como a decolagem e o pouso.

Além disso, o sistema considera que, em altitudes mais baixas, os aviões podem contar com os controladores de tráfego aéreo para garantir que as rotas de voo não entrem em conflito, disseram especialistas consultados pelo Washington Post.

Escassez de pessoal


De acordo com um relatório interno preliminar de segurança da Administração Federal de Aviação sobre a colisão na noite de quarta-feira, que foi revisado pelo The New York Times, o pessoal na torre de controle de tráfego aéreo do Aeroporto Nacional Ronald Reagan "não era normal para a hora do dia e o volume de tráfego".

Segundo o jornal americano, o controlador que estava lidando com helicópteros nas proximidades do aeroporto na quarta-feira à noite também estava instruindo aviões que estavam pousando e partindo de suas pistas. Essas tarefas normalmente são atribuídas a dois controladores, em vez de um.

Isso aumenta a carga de trabalho do controlador de tráfego aéreo e pode complicar o trabalho. Um motivo é que os controladores podem usar diferentes frequências de rádio para se comunicar com pilotos de aviões e pilotos de helicópteros. Enquanto o controlador está se comunicando com os pilotos do helicóptero e do jato, os dois conjuntos de pilotos podem não conseguir ouvir um ao outro.

Como a maioria das instalações de controle de tráfego aéreo do país, a torre do Aeroporto Reagan está com falta de pessoal há anos. A torre estava quase um terço abaixo dos níveis de pessoal almejados, com 19 controladores totalmente certificados em setembro de 2023, de acordo com o mais recente Air Traffic Controller Workforce Plan, um relatório anual ao Congresso que mostra níveis de pessoal alvo e real. As metas definidas pela Administração Federal de Aviação (FAA) e pelo sindicato dos controladores pedem 30.

A escassez — causada por anos de rotatividade de funcionários e orçamentos apertados, entre outros fatores — forçou muitos controladores a trabalhar até seis dias por semana e dez horas por dia.

A FAA não respondeu imediatamente a um pedido de comentário.

O acidente


O avião colidiu com o helicóptero e caiu no Rio Potomac, nos arredores de Washington, quando se preparava para pousar no Aeroporto Nacional Ronald Reagan, na noite de quarta-feira. Ninguém sobreviveu ao acidente, e uma operação de "recuperação" de corpos está em curso, segundo as autoridades. Até o momento, o Corpo de Bombeiros conseguiu retirar 40 mortos das águas.

A colisão entre a aeronave comercial e o helicóptero militar foi gravada em vídeo. Imagens publicadas nas redes sociais mostram o momento em que uma bola de fogo se forma no céu e cai nas águas do rio. Um áudio gravado momentos antes da colisão entre um controlador de tráfego aéreo e o piloto do helicóptero, obtido pela rede americana CNN, demonstra que o militar visualizou o avião comercial antes da colisão.

O avião, um Bombardier CRJ700 construído há cerca de 20 anos, havia partido de Wichita, no Kansas, e pousaria em Washington. O voo da American Airlines era operado pela PSA Airlines. O helicóptero era um Sikorsky UH-60 Black Hawk, fabricado pela Lockheed Martin, empresa americana de Defesa, segundo um comunicado do Exército. Ele estava em voo para um treinamento em Fort Belvoir, na Virgínia, segundo o secretário de Defesa, Pete Hegseth, que classificou o acidente como "absolutamente trágico".

Uma grande operação de resgate foi lançada no local da queda, em um trecho do rio que fica na divisa de Washington, Virgínia e Maryland. Cerca de 300 socorristas foram enviados para atender à emergência, e os esforços são visíveis desde a noite de quarta-feira, quando barcos e helicópteros circulavam pela área do acidente, tentando localizar sobreviventes.

Via O Globo (com agências internacionais)

FAB intercepta avião do Peru com drogas no espaço aéreo brasileiro, no Amazonas

Durante a operação, a aeronave realizou um pouso forçado em área rural próxima ao município de Manacapuru (AM).


A Força Aérea Brasileira (FAB) e a Polícia Federal (PF) interceptaram, neste domingo (2), uma aeronave vinda do Peru que transportava drogas no espaço aéreo brasileiro. A operação ocorreu no Amazonas, a cerca de 80 km de Manaus, em uma pista de terra.


A aeronave, o Embraer EMB-810 Seneca, prefixo PT-RFU, registrada na ANAC para AOC Agonegócios Ltda., foi detectada pelos radares do Sistema de Defesa Aeroespacial Brasileiro (SISDABRA) e imediatamente interceptada com o uso de aeronaves A-29 Super Tucano, E-99 e H-60 Black Hawk, além de plataformas orbitais para a obtenção de informações de inteligência.

A interceptação ocorreu por volta das 10h (horário de Brasília) e seguiu os protocolos estabelecidos pelas Medidas de Policiamento do Espaço Aéreo (MPEA).

Após ser ordenado o pouso obrigatório, o piloto realizou um pouso forçado, colidindo com árvores na área de terra.


Embora o piloto tenha conseguido fugir do local após incendiar a aeronave, uma equipe da Polícia Federal apreendeu o carregamento de drogas antes que as chamas consumissem o avião.


A Polícia Federal, em parceria com a Força Aérea Brasileira (FAB), o Grupo Especial de Fronteira de Mato Grosso (Gefron-MT) e a Polícia Militar de Mato Grosso (PMMT), apreendeu aproximadamente 500 kg de Skunk.

A ação fez parte da Operação Ostium, integrada ao Programa de Proteção Integrada de Fronteiras (PPIF), com o objetivo de combater atividades criminosas na fronteira.


Com informações do g1, Metrópoles, Portal Norte e ANAC - Fotos: Divulgação/FAB

Aconteceu em 3 de fevereiro de 2022: O quase acidente com o voo Aerosucre 157 na Colômbia


No dia 3 de fevereiro de 2022, o Boeing 737-2X6C Adv., prefixo HK-5192, da Aerosucre (foto abaixo), que realizava um voo doméstico de Puerto Carreno a Bogotá, na Colômbia, levando a bordo apenas cinco tripulantes, sofreu um mau funcionamento do motor na decolagem.

A aeronave envolvida no incidente (Foto: Harold Buitrago V./JetPhotos)
A aeronave iniciou a decolagem na pista 07 com potência máxima de decolagem, ventos de 060 graus a 4 nós em condições meteorológicas visuais diurnas, V1 calculado em 130 KIAS, Vr em 132 KIAS e V2 em 138 KIAS. De acordo com os relatórios da tripulação, todos os parâmetros permaneceram normais durante a decolagem, a aeronave girou e decolou, o trem de pouso foi levantado, enquanto o trem estava em movimento, a aeronave bateu no topo de uma árvore. 

Imediatamente após esse contato, o gerador do motor esquerdo (JT8D) falhou e o motor esquerdo perdeu potência. A tripulação realizou as listas de verificação relacionadas e com os parâmetros presentes decidiu reiniciar o motor esquerdo. O motor deu partida e estabilizou, porém indicava altas temperaturas. 

A aeronave subiu para 2500 pés, a tripulação decidiu retornar a Puerto Carreno solicitando apoio terrestre. A tripulação não tinha certeza se o trem de pouso havia sido comprometido durante o contato, a tripulação estendeu e retraiu o trem de pouso com resultados satisfatórios. 


A tripulação calculou Vref em 135 KIAS com flaps em 40 graus e pousou com segurança na pista 07 cerca de 20 minutos após a decolagem. Após o pouso, a aeronave deu meia-volta para retornar à pista 07, quando os serviços de emergência relataram fumaça no motor esquerdo, nenhum incêndio foi observado. 

A tripulação desligou o motor e taxiou até o pátio. Após o pouso, a aeronave deu meia-volta para retornar à pista 07, quando os serviços de emergência relataram fumaça no motor esquerdo, nenhum incêndio foi observado. 


A tripulação desligou o motor e taxiou até o pátio. Após o pouso, a aeronave deu meia-volta para retornar à pista 07, quando os serviços de emergência relataram fumaça no motor esquerdo, nenhum incêndio foi observado. A tripulação desligou o motor e taxiou até o pátio.

Como visto em um vídeo abaixo, compartilhado na internet, a aeronave evitou por pouco o topo de árvores, linhas de energia elétrica e casas situadas a cerca de 250 metros do final da pista do lado de fora do aeroporto.


A tripulação continuou a decolagem e retornou com segurança para um pouso de emergência alguns minutos depois. Testemunhas oculares dos moradores vizinhos teriam ficado surpresas com a proximidade da aeronave de carga.

Uma inspeção da aeronave no dia seguinte revelou vegetação incrustada em várias juntas dos slats, bordo de ataque da asa esquerda e motor nº 1, foi evidente a ingestão de vegetação pelo motor esquerdo.

A árvore atingida na posição N6.1902 W67.4836 tinha 14 metros (46 pés) de altura e estava localizada 295 metros após o final da pista.


De acordo com o site The Transponder 1200, a companhia aérea de carga foi revisada em todos os aspectos técnicos, climáticos, humanos, operacionais e outros múltiplos pelas autoridades competentes e partes interessadas.

O Boeing 737-200 envolvido neste incidente tinha 37,4 anos e chegou à companhia aérea colombiana em outubro de 2017. Seu primeiro operador foi a MarkAir, companhia aérea que o recebeu em 1984. Doze anos depois ingressou na Malaysian Transmile AirServices onde voou cinco anos; depois disso, ele voou novamente na América com a Alaska Airlines até 2007, quando operou para a Aloha Airlines. Um ano depois mudou sua configuração para cargueiro e operou para a Aloha Air Cargo até 2015. Este 737-200 ficou armazenado por dois anos e em 2017 passou para as mãos de seu atual operador. 

O Relatório Preliminar do Incidente foi divulgado pela Dirección Técnica de Investigación de Accidentes – DIACC, em 15 de fevereiro de 2022.

Por Jorge Tadeu (Site Desastres Aéreos) com The Aviation Herald, Aeroin e ASN

Aconteceu em 3 de fevereiro de 2005: Acidente no voo Kam Air 904 deixa 105 mortos em acidente no Afeganistão


O voo Kam Air 904 foi um voo doméstico regular de passageiros, do Aeroporto Internacional de Herate, em Herate, para o Aeroporto Internacional de Cabul, na capital do Afeganistão, Cabul. Em 3 de fevereiro de 2005, a aeronave impactou um terreno montanhoso, matando todos os 96 passageiros e 8 tripulantes a bordo.

O acidente ocorreu pouco depois das 4h00, hora local (UTC+4:30) quando um Boeing 737-200 da Kam Air, operado pela Phoenix Aviation desapareceu. O avião estava se aproximando de Cabul. No momento do acidente, uma forte tempestade de neve foi observada na área. O acidente é o mais mortal da história do Afeganistão.


Em 3 de fevereiro de 2005, o Boeing 737-242 Advanced, prefixo EX-037, da Kam Air, alugado Phoenix Aviation (foto acima), a aeronave perdeu comunicação durante a pior tempestade de neve de inverno em 5 anos. A causa da perda de comunicação e da queda subsequente é desconhecida. O líder do Talibã, Mullah Dadullah, afirmou que seus guerrilheiros não haviam derrubado o avião e expressou tristeza com a queda. 

O controle de tráfego aéreo para a área de Cabul foi fornecido pela Força Internacional de Assistência à Segurança (ISAF). Perto de Cabul está a Base Aérea de Bagram, que está no controle das forças militares dos Estados Unidos. Teria sido possível que o voo 904 desviasse e pousasse na Base Aérea de Bagram, em vez do Aeroporto Internacional de Cabul.

No momento do acidente, não havia um plano de agência intragovernamental estabelecido no Afeganistão para lidar com um grande acidente aéreo. Inicialmente, foi proposto que o Ministério dos Transportes fosse responsável não só pela investigação, mas também pela identificação e recuperação de restos mortais e recuperação de destroços. 

Quando a lógica desse conceito se desfez devido ao pequeno tamanho do MOT e sua quase total falta de recursos, essas atribuições foram divididas entre o Ministério da Defesa e o Ministério da Saúde (restos mortais), o Ministério do Interior (recuperação dos destroços), e o MOT (investigação do acidente).


Uma operação de resgate foi lançada sob más condições climáticas pela ISAF e pelo Exército Nacional Afegão (ANA). A cauda do avião foi avistada de dois helicópteros Apache holandeses por volta das 9h30 UTC.

A ISAF fez várias tentativas malsucedidas de resgate por helicópteros. Quando essas tentativas falharam, o Ministério da Defesa afegão ordenou que o Corpo Central da ANA montasse uma equipe para tentar resgatar as vítimas que se presumiam estar vivas. 

O Comando do Exército Nacional Afegão respondeu a pé, mas foi forçado a sair devido a uma tempestade de neve. 

Um pelotão do Exército Nacional Afegão em uma operação de resgate
No quarto dia após o acidente, uma equipe de resgate da ISAF conseguiu chegar ao local do acidente e confirmou que todos os passageiros e tripulantes estavam mortos.

O local do acidente estava a uma altitude de 11.000 pés no pico da montanha Chaperi, a 32 km a leste da capital afegã, Cabul.

A tripulação do helicóptero confirmou o local dos destroços com os sensores da aeronave e relatou sua descoberta. O local do acidente foi em um cume de alta montanha chamado Cheri Ghar a cerca de 3.000 metros (ou 10.000 pés).


O cume era um lugar assustador; íngreme de um lado, com declive acentuado do outro, com profundos campos de neve e varridos por ventos fortes ou cobertos por névoa congelante. 

A neve escondia quaisquer trilhas ou caminhos locais e as estradas de acesso das aldeias vizinhas eram intransitáveis para veículos, apesar das várias tentativas das patrulhas da ISAF e ANA para encontrar um caminho para o cume. 

O inverno não deu outra oportunidade até 7 de fevereiro, quando uma abertura de tempo bom permitiu que um helicóptero Cougar espanhol da ISAF pousasse uma equipe de 5 homens de tropas de resgate de montanha eslovenas no cume do cume. 


Avançando pela neve que chegava até a cintura e consciente da possível ameaça da mina, a equipe chegou ao local. Embora a equipe não tenha encontrado restos humanos, os destroços danificados espalhados ao longo da linha de cume e as condições extremas tornam muito improvável que alguém tenha sobrevivido ao acidente.

Foi descoberto que todos os 105 passageiros e tripulantes a bordo morreram, e o avião foi completamente destruído. O gravador de dados de voo foi encontrado após uma busca extensa e extremamente difícil e entregue à análise da National Transportation Safety Board.

O gravador não continha nenhum dado válido do voo. O gravador de voz da cabine, que forneceria informações cruciais sobre as ações da tripulação de voo durante a aproximação, nunca foi localizado.


O local do acidente em si era compacto horizontalmente, mas não verticalmente. A aeronave atingiu uma linha de cume em direção ao leste, perto do topo da montanha, cerca de 50 pés abaixo do topo. 

A trajetória de voo final provavelmente tinha alguma quantidade de vetor ascendente, porque a fuselagem à frente da caixa da asa foi impulsionada, em fragmentos, sobre a crista e caiu do lado do penhasco para o vale abaixo. 

A documentação real dos destroços durante cinco visitas ao local foi difícil porque a maioria das partes estavam enterradas sob vários pés de neve e inacessíveis, fora do cordão livre de minas e inacessíveis, ou descendo o lado do penhasco e, portanto, também inacessíveis a todos sem montanha treinamento de escalada. 


A peça mais proeminente e reconhecível dos destroços presentes foi o estabilizador vertical e uma pequena parte da fuselagem traseira. 

A maioria dos destroços visíveis estava localizada entre duas pedras empilhadas, estruturas sem telhado que eram postos de observação usados pelos lutadores de Mujahadeen para monitorar os movimentos das tropas soviéticas no vale de Cabul durante os anos 1980. 

Dentro de um círculo de 60 metros, após uma árdua remoção de neve, os investigadores identificaram partes de ambos os motores, ambas as asas, o conjunto do trem de pouso principal esquerdo, muitos componentes da galera de popa, o estabilizador horizontal, restos humanos e objetos pessoais, e muitos outros detritos. 


Alguns materiais, como um escorregador de fuga e alguns componentes certos do motor, estavam localizados fora da área livre de minas terrestres. Esses itens foram documentados com binóculos e recursos de zoom de câmera digital.

A equipe de investigação enfrentou condições climáticas muito desafiadoras, terreno difícil e riscos potenciais de minas terrestres. 

As evidências recuperadas do local foram insuficientes para determinar uma causa definitiva para o acidente, mas o local sugeriu que a tripulação havia descido abaixo da altitude mínima de descida para a fase da abordagem em que estavam. 


Sem o gravador de voz da cabine, sobreviventes, testemunhas ou uma gravação de dados de voo válida, a investigação estagnou. Em 2006, a Operação de Aviação Civil do Ministério dos Transportes do Afeganistão divulgou seu relatório final concluindo que o avião voou em terreno abaixo do caminho de aproximação ideal, provavelmente como resultado de erro do piloto.

Clique AQUI para acessar o Relatório Final do acidente.

Das 104 pessoas a bordo, 96 eram passageiros e oito tripulantes. Pelo menos 25 eram estrangeiros: 9 turcos, 6 americanos, 4 russos, 3 italianos, 1 holandês e 1 iraniano, bem como o primeiro oficial, que tinha dupla cidadania no Canadá e na Rússia. 

Segundo relatos, os russos eram membros da tripulação, os turcos eram civis que trabalhavam para empresas sediadas na Turquia e os italianos incluíam um arquiteto que trabalhava para as Nações Unidas, Andrea Pollastri, além de outro civil italiano e um capitão da marinha italiana. 

Três dos seis americanos a bordo eram mulheres que trabalhavam para a ONG Management Sciences for Health (MSH) sediada em Cambridge, Massachusetts, e uma engenheira holandesa de recursos hídricos, líder da equipe de um projeto de desenvolvimento nas bacias ocidentais.

A Kam Air é uma companhia aérea privada estabelecida em 2003, operando uma frota de aeronaves Boeing e Antonov alugadas em rotas domésticas e internacionais. O avião que caiu durante o voo 904 era um Boeing 737-200 registrado EX-037, que foi originalmente entregue à Nordair como C-GNDR em 1980. Ele havia sido alugado pela Kam Air e operado pela Phoenix Aviation, uma empresa com sede em Sharjah, nos Emirados Árabes Unidos.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipédia, ASN e baaa-acro.com

Aconteceu em 3 de fevereiro de 1984: O sequestro do voo Cruzeiro do Sul 302 - Os Piratas Aéreos do Ceará


Corria o ano de 1984 e a abertura democrática avançava rápido, a Ditadura estava com os dias contados. Aconteceu, porém, em Fortaleza um fato discrepante: dois jovens simpatizantes da esquerda, sem filiação partidária, moradores do Conjunto Ceará, influenciados pelo livro 'A Ilha', de Fernando Morais, sequestraram um avião lotado, desviando o voo para Cuba. 

Os rapazes esperavam aprender técnicas de guerrilhas, para fazer a revolução no Brasil. Os terroristas cearenses eram João Luís Araújo e Fernando Santiago, que ainda levou a tiracolo a esposa Raimunda Aníbal e a filha Fernanda,  então um bebê de três meses de idade.

Em 3 de fevereiro de 1984, o avião Airbus A300B4-203, prefixo PP-CLB, da Cruzeiro do Sul (foto mais acima), operava o voo 302, um voo doméstico de passageiros do Rio de Janeiro com destino a Manaus, com escalas previstas em Salvador, Recife, Fortaleza, São Luís e Belém. 

Após cumprir algumas etapas do voo, o comandante Milton Cruz partiu do Aeroporto Internacional Marechal Cunha Machado, em São Luís, no Maranhão (que era uma das escalas), às 22h38 da sexta-feira, 3 de fevereiro, levando 176 pessoas (162 passageiros e 14 tripulantes) e pousaria Aeroporto Internacional Val de Cans, em Belém, no Pará, duas horas depois. 

Antes que o avião chegasse a Belém, alguns dos sequestradores entraram no cockpit e forçaram o piloto a desviar o voo para Cuba.

Os pilotos explicaram que não possuíam combustível suficiente para chegar a Cuba e tentaram repetidas vezes fazer contato com o controle do aeroporto de Caiena, na capital da Guiana Francesa, com a finalidade de pousar para reabastecer, mas não tiveram êxito, visto que não havia pessoal no controle àquela hora da noite.

Após tentarem fazer contato por quase duas horas, foram instruídos pelo controle de Belém a efetuar pouso emergencial em Paramaribo, a capital do Suriname.

À 0h56 de 4 de fevereiro, a aeronave pousou no Aeroporto Zanderij, principal aeroporto internacional do Suriname, onde os sequestradores negociaram com o então embaixador do Brasil no país, Luiz Felipe Lampreia, e concordaram em libertar os 162 passageiros em troca de combustível extra e mapas, mas ainda mantendo os 14 membros da tripulação no avião.

Os passageiros não foram avisados de que o avião havia sido sequestrado e inicialmente achavam que más condições climáticas tinham atrasado o pouso em Belém, mas pela hora em que o avião pousou no aeroporto de Zanderij, sabiam que haviam sido sequestrados, mas não sabiam aonde estavam.

Após a parada em Zanderij, o avião decolou para Cuba às 5h20 e pousou às 9h42 no Aeroporto Internacional Ignacio Agramonte, em Camagüey, em Cuba.

As autoridades cubanas levaram os sequestradores em custódia e permitiram que a tripulação levasse o avião de volta ao Brasil. Não houve registro de feridos.


Os sequestradores permaneceram mais de um mês em observação, sabatinados com perguntas que tinham o objetivo de descobrir intenções ocultas naquela aventura. 


Depois de muito interrogatório, as autoridades cubanas chegaram à conclusão que os rapazes falavam a verdade, e a partir daí, receberam apoio oficial.  Ficaram em Cuba por dez anos, tendo os estudos custeados pelo governo. 


Todos retornaram ao Brasil em 1995, com a prescrição do crime. Fernando passou a viver no Acre, trabalhando como historiador; João Luís, psicólogo de profissão, foi morar em Crateús. Raimundo Aníbal separou-se de Fernando ainda em Cuba e casou-se novamente com um cidadão cubano, de quem depois enviuvou.

Aconteceu em 3 de fevereiro de 1975: Comida envenena 144 em avião da Japan Air Lines. Oficial de catering comete suicídio


Em 3 de fevereiro de 1975, 197 pessoas adoeceram a bordo de um Boeing 747 da Japan Air Lines em rota de Anchorage, no Alasca, para Copenhague, na Dinamarca , após consumirem uma refeição a bordo contaminada com estafilococos. Cento e quarenta e quatro pessoas necessitaram de hospitalização, tornando-se o maior incidente de intoxicação alimentar a bordo de um avião comercial.

Aeronaves e passageiros

Um Boeing 747-246B da Japan Air Lines, semelhante ao envolvido no incidente
O incidente ocorreu a bordo de um Boeing 747-246B da JAL - Japan Air Lines. O número de matrícula da aeronave não é conhecido. No momento do incidente, a Japan Air Lines tinha o 747-100 e o 747-200B em sua frota de longa distância.

A aeronave transportava 344 passageiros. O número exato de tripulantes não é conhecido, mas o fato de 364 refeições terem sido levadas a bordo indica uma tripulação de 20 pessoas. A maioria dos passageiros do voo fretado eram vendedores japoneses da The Coca-Cola Company e seus familiares, que tinham ganhou uma viagem para Paris.

Sequência de eventos

O voo teve origem no Aeroporto Haneda, em Tóquio, no Japão. e fez escala para abastecimento no Aeroporto Internacional de Anchorage, no Alasca. Depois de cruzar o Ártico, outra parada para abastecimento no Aeroporto de Copenhague, na Dinamarca, foi programada antes que o voo continuasse até seu destino final no Aeroporto Charles de Gaulle de Paris, na França.

A aeronave chegou ao espaço aéreo europeu após um voo sem intercorrências. 90 minutos antes do pouso programado em Copenhague, os comissários serviram omeletes de presunto no café da manhã.

Cerca de uma hora depois do pequeno-almoço, enquanto se aproximavam de Copenhague, 196 passageiros e um comissário de bordo adoeceram com náuseas, vómitos, diarreia e cólicas abdominais. 144 deles estavam tão gravemente doentes que necessitaram de hospitalização; 30 estavam em estado crítico. Os outros 53 foram atendidos em prontos-socorros improvisados.

Como nenhum dos médicos na Dinamarca falava japonês e apenas alguns passageiros eram fluentes em dinamarquês ou inglês, funcionários dos restaurantes de Copenhague que falavam japonês foram convocados ao hospital para atuar como tradutores.

Investigação

A equipe de investigação foi liderada pelo oficial do Serviço de Saúde Pública dos Estados Unidos, Dr. Mickey S. Eisenberg, do Departamento de Saúde do Estado do Alasca.

Exames laboratoriais de amostras de fezes e vômito de passageiros, bem como 33 amostras de sobras de omeletes de presunto, detectaram Staphylococcus aureus. Concentrações elevadas de toxinas produzidas pelos estafilococos também foram detectadas no presunto, explicando o tempo de incubação extremamente curto.

Contaminação de refeições

A investigação começou por rastrear os agentes patogénicos até à sua origem e centrou-se nas instalações da International Inflight Catering, uma subsidiária da Japan Airlines com sede em Anchorage, onde as refeições foram preparadas. Verificou-se que três cozinheiros prepararam as refeições, um dos quais apresentava lesões infeccionadas nos dedos indicador e médio da mão direita. 

Descobriu-se que as lesões nos dedos do cozinheiro estavam infectadas com estafilococos. Os testes revelaram tipos de fagos idênticos e resistências a antibióticos para todas as amostras, indicando que o cozinheiro era a fonte da contaminação.

A aeronave possuía quatro cozinhas nas quais eram servidas 354 refeições, sendo 40 na primeira classe e 108 em cada cozinha do convés principal. Segundo Eisenberg, o cozinheiro suspeito preparou refeições para três das quatro cozinhas. Ele havia feito curativos nas lesões, mas não as comunicou ao seu superior, por considerá-las triviais. Além disso, a administração não verificou se ele estava bem de saúde, apesar de ser obrigado a fazê-lo, segundo Eisenberg.


O cozinheiro suspeito preparou todas as 40 omeletes servidas na primeira classe, bem como 72 das 108 para uma das cozinhas do convés principal. Além disso, ele manuseou todas as 108 omeletes para outra cozinha (as fontes divergem sobre se ele colocou o presunto nessas omeletes ou se os dois cozinheiros levaram as fatias de presunto para as omeletes que prepararam no mesmo recipiente). 

Ele havia, portanto, preparado um total de 220 refeições. Segundo a hipótese de Eisenberg, 36 pessoas que receberam refeição em uma das cozinhas da frente, bem como as 108 que receberam a refeição na de trás, comeram refeições não contaminadas.

Propagação de patógenos


De acordo com microbiologistas, podem ser necessários apenas 100 estafilococos para causar intoxicação alimentar. A logística de catering a bordo proporcionou condições ideais para que as bactérias crescessem e libertassem toxinas, que provocam náuseas, vómitos, diarreia e cólicas abdominais graves. Por serem resistentes ao calor, as toxinas não foram destruídas quando as omeletes foram aquecidas.

Antes de serem servidas, as refeições foram armazenadas em temperatura ambiente na cozinha por 6 horas, depois refrigeradas (embora a 10 °C insuficientes (50°F) por 14 horas e meia e depois armazenadas nos fornos das aeronaves, novamente sem refrigeração , por mais 8 horas. Se os alimentos tivessem sido mantidos devidamente refrigerados desde o momento em que foram preparados até estarem prontos para serem servidos, o surto não teria ocorrido.


Os médicos dinamarqueses afirmaram que a maioria dos que adoeceram ocupavam assentos na parte dianteira da aeronave, consistente com o padrão de distribuição hipotético de Eisenberg das omeletes contaminadas. 86% dos que comeram omeletes manuseados pelo cozinheiro suspeito adoeceram, enquanto nenhum dos que comeram uma das outras omeletes desenvolveu sintomas.

Depois

O gerente de catering da Japan Air Lines, Kenji Kuwabara, de 52 anos, cometeu suicídio ao saber que o incidente havia sido causado por um de seus cozinheiros. Havia uma nota de suicídio que dizia: “Assumo total responsabilidade pela intoxicação alimentar”.  Ele foi a única fatalidade. 

Os investigadores enfatizaram que as pessoas com lesões infectadas não devem manusear os alimentos e que os alimentos devem ser armazenados a temperaturas suficientemente baixas para inibir o crescimento de bactérias.

Foi por acaso que o piloto e o primeiro oficial não tenham comido nenhuma das omeletes contaminadas, já que a companhia aérea não tinha regulamentos relativos às refeições da tripulação. Como os relógios biológicos dos pilotos estavam no horário do Alasca e não no horário da Europa, eles optaram por um jantar de bifes em vez de omeletes - se não tivessem feito isso, talvez não tivessem conseguido pousar a aeronave com segurança.

Eisenberg sugeriu que os membros da tripulação da cabine comessem refeições diferentes preparadas por cozinheiros diferentes para evitar que surtos de intoxicação alimentar incapacitassem toda a tripulação, uma regra posteriormente implementada por muitas companhias aéreas.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipédia e sci-hub.se

Aconteceu em 3 de fevereiro de 1959: O quase acidente do voo Pan Am 115 - Mergulho no Atlântico


O voo 115 da Pan Am era um voo comercial de Paris via Londres para a cidade de Nova York. Às 22h05 (GMT), em 3 de fevereiro de 1959, ele estava envolvido em um dos mais notáveis incidentes da era do avião comercial a jato, sobre o Atlântico Norte perto de Newfoundland.


A aeronave era o Boeing 707-121, prefixo N712PA, da Pan Am, apelidada de "Clipper Washington" (foto acima). Seu primeiro voo ocorreu em 13 de outubro de 1958 (mesmo mês em que os 707s entraram em serviço regular na Pan Am), e quando o incidente ocorreu menos de quatro meses depois, a aeronave havia acumulado apenas 705 horas de voo.
 
O jato, tripulado pelo piloto em comando Capitão Waldo Lynch, auxiliado pelo copiloto, o Capitão Samuel Peters, pelo engenheiro de voo George Sinski e pelo navegador John Laird, com 119 passageiros e 10 tripulantes no total, experimentou uma descida de emergência de 29.000 pés - a partir dos 35.000 pés - com o piloto automático acionado quando o capitão saiu da cabine. 

Durante sua ausência, o piloto automático desligou e a aeronave entrou suave e lentamente em uma espiral descendente íngreme. O copiloto não estava monitorando adequadamente os instrumentos da aeronave ou o progresso do voo e não estava ciente das ações da aeronave até que uma velocidade considerável foi ganha e a altitude perdida. 

Durante a descida rápida, o copiloto não foi capaz de efetuar a recuperação. Quando o capitão percebeu a atitude incomum da aeronave, ele retornou à cabine e com a ajuda dos outros membros da tripulação foi finalmente capaz de recuperar o controle da aeronave a aproximadamente 6.000 pés. 

Mais tarde, eles fizeram um pouso de emergência no Aeroporto de Gander, em Terra Nova e Labrador, no Canadá, com as asas danificadas.


A evidência foi posteriormente fornecida ao Conselho da Aeronáutica Civil dos Estados Unidos de que a aeronave estava voando a 35.000 pés a Mach 0,82 e com um peso de cerca de 195.000 lb. 

Durante os dois voos anteriores, o piloto automático Bendix PB-20 foi relatado em um caso como causou um pitch down e em outro desligou após uma mudança de rumo de 20 graus, mas em 3 de fevereiro a operação foi considerada normal na chegada a Gander. A luz de aviso de desligamento estava totalmente apagada.

A edição da Flight Magazine de 3 de abril de 1959 relatou: "O capitão Waldo Lynch, o piloto no comando, disse que a aeronave fez uma manobra brusca para baixo e para a direita. A 17.000 pés a velocidade no ar era superior a 400 kt, o botão de compensação elétrico estava inoperante e seu horizonte de giroscópio havia caído. O copiloto contou que 'Às 22h00Z, o navegador postou uma mudança no rumo que exigia uma curva à esquerda. Botão giratório do piloto automático usado. Vire OK. Em seguida, buffeting leve, mais aumento do fator de carga positivo. Um forte golpe fez com que as luzes do painel falhassem'".

O engenheiro de voo disse que estava preso em seu assento quando o alerta Mach soou. Quando a carga g foi aliviada, ele puxou os disjuntores de alimentação do painel traseiro e do piloto automático porque pensou que o painel traseiro tinha "fugido". Foi indicada uma inclinação total da cauda do nariz para baixo de 3 graus. Ele o enrolou de volta para a posição de nariz para cima, mas depois o cortou para baixo.


A Aviation Safety Network relata que a causa do incidente foi a desconexão não intencional do piloto automático enquanto o capitão havia deixado a cabine e entrado na cabine de passageiros. O copiloto não prestou atenção suficiente aos instrumentos e o avião mergulhou em uma curva em espiral no sentido horário.

Clique AQUI para ler o Relatório Final do incidente.

Algumas semanas após o incidente, em 25 de fevereiro de 1959, o N712PA, perdeu o motor nº 4 sobre a França em um voo de de treinamento. O avião pousou em Heathrow e foi reparado no hangar sul da Pan Am (foto acima).

Depois de ser operada por várias empresas, a fuselagem do N712PA foi finalmente desfeita em agosto de 1984, em Taipei, Taiwan.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipédia e ASN

Aconteceu em 3 de fevereiro de 1959: Tragédia no voo American Airlines 320 - Queda no East River, em Nova York


Em 3 de fevereiro de 1959, o Lockheed L-188 Electra que realizava o voo 320  da American Airlines, entre o Aeroporto Internacional de Chicago Midway e o Aeroporto LaGuardia, em Nova York, caiu no East River, matando 65 das 73 pessoas a bordo. 


O voo 320 da American Airlines era um voo regular entre Chicago e Nova York usando a aeronaves Lockheed L-188A Electra, prefixo N6101A, da American Airlines (foto acima). A companhia aérea havia começado a voar com a nova aeronave em 23 de janeiro de 1959 e oferecia seis voos diários de ida e volta em suas rotas entre Nova York e Chicago, com planos de expansão para outras rotas, uma vez que as novas aeronaves fossem entregues.

Na noite de 3 de fevereiro de 1959, o voo estava programado para deixar o aeroporto Midway de Chicago, mas a neve trazida pelo vento atrasou a partida. 

O voo acabou no ar às 21h54 (horário do leste), com 54 minutos de atraso e foi um dos últimos voos a partir de Chicago naquela noite, antes de o aeroporto ser fechado devido à tempestade.

Levando 68 passageiros e 5 tripulantes a bordo, a viagem deveria durar uma hora e quarenta e dois minutos. A escalada de Chicago e o voo para a área da cidade de Nova York foram tranquilos, operando com piloto automático a uma altitude de cruzeiro de 21.000 pés.

Às 23h34, o voo se aproximou da área de Nova York. Os controladores de tráfego aéreo do aeroporto LaGuardia informaram aos pilotos que as condições climáticas daquele momento no aeroporto incluíam céu nublado com teto de 120 m (400 pés) e visibilidade de 2.000 m (1,25 milhas).

O controlador da torre instruiu o voo a prosseguir para o norte do aeroporto e a se preparar para realizar uma abordagem direta sobre o East River para pousar na pista 22.

Às 23h55, enquanto a aeronave estava a 4,5 km do aeroporto, os controladores deram ao voo sua autorização de pouso final para a pista 22. A tripulação de voo reconheceu a autorização com um simples reconhecimento de "320" e não houve mais comunicação de rádio.

Momentos depois, a aeronave atingiu a superfície do East River a cerca de 4.900 pés (1.500 m) antes da pista, a uma velocidade de 140 nós (160 mph; 260 km/h).

Uma testemunha a bordo de um rebocador próximo relatou ter visto a aeronave voando muito baixo sobre o rio antes de atingir a água com um barulho tremendo. 


Outro membro da tripulação no mesmo rebocador afirmou que viu a aeronave atingir a água e que pensou que a aeronave atingiu o ângulo do nariz para baixo. 

Uma testemunha em um carro se aproximando da ponte Whitestone descreveu ter visto a aeronave passar sobre sua cabeça a uma altitude de cerca de 100 pés (30 m). Ele não percebeu se o trem de pouso estava abaixado, mas disse que podia ver toda a barriga e as luzes da aeronave.

Os passageiros sobreviventes e membros da tripulação na cabine principal disseram que a descida antes do acidente parecia ser rotineira e sem intercorrências. Entrevistas com vários residentes na área revelaram que muitos relataram ter ouvido o Electra voar acima e que parecia que estava voando mais baixo do que o normal.

O acidente foi o primeiro acidente envolvendo a aeronave Lockheed L-188 Electra, que havia entrado em serviço comercial na American Airlines nas semanas anteriores. 

Foi o primeiro acidente significativo envolvendo uma aeronave da American Airlines desde a queda do voo 327 da American Airlines em 6 de janeiro de 1957.


Um rebocador de propriedade privada da Nova Inglaterra estava no rio perto do local do acidente quando a tripulação do barco ouviu o impacto. Soltou as barcaças que vinha rebocando e foi o primeiro a chegar ao local, iluminando a área com o holofote do barco.

Todos os oito sobreviventes do acidente foram salvos pela tripulação, incluindo um homem que foi puxado de 1,2 m abaixo da superfície da água.

Pelo menos uma dúzia de barcos da Guarda Costeira e da polícia, e dois helicópteros da polícia chegaram minutos depois. 

No nevoeiro escuro, os resgatadores podiam ouvir os gritos dos sobreviventes, mas a pouca visibilidade e as correntes rápidas do rio tornaram a recuperação das vítimas e sobreviventes extremamente difícil. Os resgatadores e os residentes próximos na área relataram ter ouvido gritos de ajuda em locais consideravelmente distantes do local do acidente.

Agências de segurança pública instalaram quatro estações de resgate ao longo do rio para evacuar os sobreviventes, mas as ambulâncias que levavam sobreviventes feridos para hospitais tiveram dificuldade em navegar nas estradas geladas.

Os sobreviventes foram levados ao Flushing Hospital e ao Queens General Hospital, onde alguns dos sobreviventes iniciais morreram devido aos ferimentos. Dois necrotérios temporários também foram montados em lados opostos do rio para receber as vítimas.

Às 5h da manhã seguinte, pelo menos 9 sobreviventes foram recuperados, 22 corpos foram localizados e 39 outras vítimas ainda estavam desaparecidas.

Ventos fortes e chuva forte levaram os pesquisadores a suspender a operação de resgate. A Cruz Vermelha de Nova York forneceu suprimentos de tipos de sangue raros para ajudar as vítimas do acidente. 

Corpos que foram recuperados foram levados ao Queens General Hospital para identificação com a assistência de agentes do Federal Bureau of Investigation e 25 detetives da cidade. Os agentes usaram registros de impressão digital de seus arquivos de imigração, identificação pessoal e serviço de guerra para identificar as vítimas.

Após o impacto, o corpo da aeronave se partiu em vários pedaços, sendo uma seção de seis metros da fuselagem a maior seção intacta. 

Depois de duas horas, apenas 3 pés (1 m) da cauda da aeronave era visível acima da superfície da água. Pesquisadores em barcos e na costa recolheram destroços de aviões, pertences pessoais e correspondência que estavam a bordo da aeronave.


Em Washington DC, o Civil Aeronautics Board (CAB) despachou imediatamente dois investigadores assim que as autoridades tomaram conhecimento do acidente e ordenou que os registros da companhia aérea fossem apreendidos.

Uma equipe adicional de 25 investigadores foi montada e enviada no dia seguinte. A equipe recebeu a tarefa de investigar todos os aspectos do voo, incluindo o clima, operações de voo, motores e hélices, instrumentos de voo e estruturas da aeronave.

O promotor distrital de Queens County, Frank O'Connor, também iniciou um inquérito, com o objetivo de estabelecer um sistema de barcos de resgate para servir os dois aeroportos da cidade.

O Comitê de Comércio Exterior e Interestadual da Câmara ligou o chefe da Agência Federal de Aviação para relatar o acidente em uma sessão fechada dias após o acidente. Após a reunião de duas horas e meia, um subcomitê especial da Câmara foi nomeado para investigar o acidente e as questões gerais de segurança levantadas pela transição para aeronaves a jato e turboélice.

Dias depois do acidente, fontes de notícias começaram a relatar que havia sistemas de segurança que não existiam no aeroporto e que poderiam ter ajudado a prevenir o acidente.
 

Um representante da Air Line Pilots Association disse que um sistema de luzes intermitentes conhecido como Electronic Flash Approach System poderia ter ajudado o piloto a avaliar sua altitude, se tivesse sido instalado. 

A associação também pediu a instalação de um sistema de pouso por instrumentos mais abrangente que teria fornecido orientação de altitude para as tripulações de voo que pousavam na pista 22, além do sistema existente que fornecia orientação horizontal. 

Tal sistema já estava instalado no extremo oposto da pista que o voo estava se aproximando. Na época, havia apenas dois aeroportos nos Estados Unidos que tinham esse sistema instalado nas duas pontas de uma pista. 

Em uma reunião em 5 de fevereiro, comissários da Autoridade Portuária de Nova York explicaram que a instalação de tal sistema na pista 22 foi considerada muito difícil porque o sistema de iluminação de aproximação bloquearia a hidrovia usada pelos navios para chegar às docas no Queens.

A recuperação dos destroços da aeronave começou assim que as condições meteorológicas permitiram, com 25 por cento do avião recuperado até 5 de fevereiro e cinquenta por cento no dia seguinte.

No dia seguinte ao acidente, guindastes de salvamento tentaram elevar a fuselagem da aeronave até a superfície da água, mas tiveram sucesso apenas por um breve período antes que ela se partisse e a maior parte voltasse para a água.


A cauda foi levantada pelas tripulações na noite de 5 de fevereiro, e artigos de jornais relataram que os danos a essa seção sugeriram que a aeronave pode ter caído na posição "nariz para cima", como se o piloto tivesse notou no último minuto que ele estava bem longe da pista. 


Mergulhadores foram trazidos para localizar seções perdidas da aeronave abaixo da superfície da água, mas os esforços de recuperação foram impedidos por ventos fortes, fortes correntes de rio e águas turvas. 


Alguns pedaços do avião foram varridos por correntes e foram encontrados tão longe quanto Northport, Long Island, mais de trinta milhas de distância. Cada peça foi identificada, etiquetada e limpa e realocada para o Hangar 9 do Terminal Marítimo do Aeroporto LaGuardia. 


A seção do nariz e a cabine do piloto foram recuperadas no final de 7 de fevereiro. A cabine foi recuperada em boas condições, com o relógio de mola no painel de instrumentos ainda funcionando quando a seção foi recuperada do rio.


A aeronave era uma aeronave com hélice de turbina Lockheed L-188 Electra, número de série 1015, registrada como cauda número N6101A. Ela havia sido fabricado pela Lockheed Aircraft Corporation em 27 de novembro de 1958. No momento do acidente, a aeronave havia voado por um total de 302 horas. Ele era equipado com quatro motores Allison 501-D13.

Promovido como uma aeronave eficiente, rápida e lucrativa, o Electra foi a primeira aeronave com turbina a ser produzida nos Estados Unidos. O primeiro avião foi entregue à Eastern Air Lines em outubro de 1958, que começou a operar voos comerciais com a aeronave em 1º de janeiro de 1959. A American Airlines recebeu seu primeiro Electra em dezembro de 1958 e seu primeiro o voo comercial foi doze dias antes do acidente. 

A aeronave envolvida em foto tomada antes do acidente
Após a queda do voo 320 da American Airlines, mais dois Electras caíram nos meses seguintes após sofrer falhas estruturais catastróficas: o voo 542 da Braniff caiu em setembro de 1959 e o voo 710 da Northwest Orient Airlines caiu em março de 1960. Ambos os acidentes resultaram na perda de todos a bordo. 

Após extensa pesquisa, a Lockheed identificou e corrigiu uma falha nos suportes do motor que havia sido a causa das falhas estruturais dos outros dois acidentes, mas a publicidade negativa em torno de todos os acidentes envolvendo o avião em um curto período de tempo levou à perda de confiança do público na segurança da aeronave, e apenas 174 foram produzidos.

O voo transportou 68 passageiros e 5 tripulantes, todos residentes nos Estados Unidos. Dos 68 passageiros, 5 sobreviveram; os corpos de duas das vítimas nunca foram recuperados. 

Um dos dois comissários de bordo e o capitão do voo morreram no acidente. incluído entre os passageiros que morreram no acidente estava Beulah Zachary, o produtor executivo da série de televisão 'Kukla, Fran and Ollie' que foi transmitida de 1947 a 1957

Também a bordo do avião estava Robert Emerson, um professor pesquisador da Universidade de Illinois que era conhecido internacionalmente por sua pesquisa em fotossíntese de plantas e Herbert Greenwald, um incorporador imobiliário de Chicago.


O piloto do voo, Capitão Albert Hunt DeWitt, tinha 59 anos. Ele começou sua carreira na American Airlines em 1929 voando para a Thompson Aeronautical Corporation de Cleveland, que mais tarde foi adquirida pela American. Residente de Decatur, Michigan, ele estava qualificado para voar todas as aeronaves que haviam sido operadas pela American Airlines e foi considerado um dos pilotos comerciais mais experientes do mundo, com sete milhões de milhas voadas.

Ele tinha um total de 28.135 horas de experiência de voo, incluindo 48 horas no Lockheed Electra e 2.500 horas de tempo por instrumentos, e já havia atuado como um dos principais pilotos da American na área de Nova York. Ele aprendeu a pilotar aviões quando tinha 24 anos. Em 1930, ele se envolveu em um acidente enquanto pilotava um avião do correio sobre Mishawaka, Indiana, a caminho de Chicago. 

Pego em uma forte tempestade de neve, sua aeronave estagnou e entrou em parafuso, mas ele foi capaz de pular do avião antes que ele caísse e pousasse em uma árvore de 75 pés de altura. Antes de ingressar na American Airlines, ele era um novato em Indiana e Michigan, e foi instrutor de várias escolas e clubes de aviação na década de 1920. 

Ele serviu em ambas as Guerras Mundiais; na Primeira Guerra Mundial, ele foi um motoboy e, durante a Segunda Guerra Mundial, serviu como instrutor em escolas de aviação em Nova York e Chicago. Ele planejava se aposentar em maio daquele ano, mas não sobreviveu à queda do voo 320. Sua causa de morte foi listada como afogamento, mas o legista afirmou que ele também havia sofrido gravemente ferimentos internos que provavelmente teriam sido fatais se ele não tivesse se afogado.

O primeiro oficial, Frank Hlavacek, de 33 anos, morava em Wilmette, Illinois, e trabalhava na empresa há oito anos. Ele teve um total de 10.192 horas registradas, das quais 36 horas foram no Electra. Ele voava desde os 14 anos de idade e serviu nas Forças Aéreas do Exército dos Estados Unidos na Segunda Guerra Mundial. 

Antes de ingressar na American Airlines, ele possuía seu próprio serviço aéreo com base em La Jolla, Califórnia. Após o acidente, ele ajudou dois dos sobreviventes a alcançar os restos da asa do avião, onde foram resgatados. Ele quebrou a mandíbula e a pélvis, duas pernas quebradas no acidente e também ferimentos internos, mas acabou se recuperando e voltou a trabalhar na American Airlines.

O engenheiro de voo, Warren Cook, tinha 36 anos e trabalhava para a American Airlines há onze. Ele teve um total de 8.700 horas de voo, das quais 81 foram no Electra. Ele serviu no United States Army Air Corps de 1940 a 1945. No acidente, ele sofreu uma forte torção nas costas, cortes e hematomas. Depois de se recuperar de seus ferimentos, ele voltou a trabalhar na American Airlines.

Duas horas após o acidente, os investigadores entrevistaram o engenheiro de voo Warren Cook, na qual ele afirmou que a descida do voo foi completamente rotineira até o ponto em que a aeronave inesperadamente atingiu a água. 

Eles não puderam entrevistar imediatamente o primeiro oficial Frank Hlavacek por causa de sua condição médica, mas quando entrevistado vários dias depois, ele disse aos investigadores que havia chamado as altitudes indicadas para o capitão DeWitt durante a descida em incrementos de trinta metros conforme eles se aproximavam da pista.

Ele disse que mal tinha pronunciado as palavras por quinhentos pés quando o avião atingiu o rio. A declaração de Cook aos investigadores, feita independentemente em um hospital separado, confirmou que eles atingiram o rio no momento em que Hlavacek dizia "quinhentos pés".

Os investigadores previram que levaria pelo menos duas semanas para verificar todos os instrumentos para determinar se eles estavam funcionando corretamente no momento do acidente. Os primeiros relatórios da investigação revelaram que as condições das superfícies de controle de voo revelaram que no momento do impacto, a aeronave não havia feito uma curva violenta ou mergulhado quando atingiu a água.

Em 9 de fevereiro, a Agência Federal de Aviação anunciou que as restrições de voo seriam aplicadas em pousos em mau tempo por aeronaves Lockheed Electra. As restrições aumentaram as condições mínimas de visibilidade exigidas para o pouso em más condições. 

Em comunicações com as tripulações de voo, tanto a American Airlines quanto a Eastern Airlines descreveram as restrições como apenas temporárias, provavelmente durando apenas alguns dias. 

A Lockheed Aircraft Corporation expressou desapontamento com as novas restrições, mas concordou em cooperar com a investigação em toda a extensão. No dia seguinte, a Agência mudou de curso e disse que os aviões Electra poderiam retomar a operação normal se substituíssem os novos altímetros por altímetros de estilo antigo.

Ambas as companhias aéreas concordaram em substituir imediatamente os altímetros como medida de precaução. A Agência também estendeu a ordem para incluir a exigência de que os altímetros de novo estilo que haviam sido instalados nas aeronaves Boeing 707 precisassem ser substituídos.

Os altímetros usados ​​na aeronave foram o foco inicial da investigação. As unidades que a Lockheed havia usado em seus turboélices Electra eram de um estilo diferente do que era usado em aeronaves mais antigas do tipo pistão.

Uma ilustração do antigo altímetro de três ponteiros mostrando uma altitude de 10.180 pés
O tipo mais antigo usava três ponteiros de comprimentos diferentes para indicar a altitude da aeronave, mas o novo design combinava uma agulha que exibia centenas de pés e uma tela retangular com números impressos em tambores giratórios que indicavam os milhares de pés. 

A Kollman Instrument Corporation, que construiu os dois tipos, descreveu o novo estilo como um "altímetro de tambor de precisão" e disse que ele foi "desenvolvido como resultado de um estudo de engenharia humana feito pelo Aero Medical Laboratory, por um órgão governamental não identificado, e por instigação da Força Aérea, principalmente para atender às necessidades de voos mais rápidos."

Uma ilustração de um altímetro de novo estilo, com uma única agulha e tambores
 giratórios para mostrar uma altitude de 6.000 pés
A Força Aérea experimentou vários problemas com os altímetros de estilo antigo, onde seus pilotos cometeram erros de 10.000 pés. Pilotos treinando na nova aeronave relataram vários casos em que eles interpretaram incorretamente a altitude nos novos altímetros, fazendo com que eles interpretassem incorretamente a altitude da aeronave em até 1.000 pés.

Por causa da confusão, os primeiros relatórios diziam que a companhia aérea havia feito planos para instalar um terceiro altímetro adicional do tipo antigo no centro do painel do piloto, enquanto continuava a usar os altímetros de estilo mais recentes.

Os pilotos da Eastern Airlines que voavam na aeronave Electra também reclamaram do novo estilo de altímetro, afirmando que não apenas eram fáceis de interpretar erroneamente, mas tendiam a ficar para trás em relação ao estilo antigo. Essa companhia aérea instalou um terceiro altímetro, de estilo antigo, em seus cockpits.

A American Airlines defendeu o novo estilo de altímetro como "um altímetro novo e muito superior com gradações mais finas" e negou ter recebido reclamações com os instrumentos. Ela reconheceu que planejou instalar um terceiro altímetro nas cabines, mas disse que a terceira unidade foi planejada para ser um modelo de novo estilo. No momento do acidente, a aeronave do voo 320 ainda tinha apenas os dois altímetros originais.

Uma audiência investigativa do CAB começou na cidade de Nova York em 18 de março de 1959. Em depoimento perante o conselho, o primeiro oficial Hlavacek confirmou a informação que havia dado em suas entrevistas anteriores e afirmou que ele e os outros membros da tripulação tinham checaram seus altímetros várias vezes durante o voo, inclusive quando passaram por Newark, New Jersey, dizendo que o seu altímetro e o do piloto estavam muito próximos.

Ele disse que no momento do acidente, o piloto estava usando o piloto automático com controle manual parcial durante a aproximação, e também disse que algum gelo se formou na parte superior do para-brisa, mas não foi considerado grave. Ele disse que não viu nenhum sinal da pista através do para-brisa à frente, mas que avistou algumas luzes avermelhadas passando por suas janelas laterais pouco antes do impacto.

O conselho de investigação confrontou o engenheiro de voo Cook com as transcrições de uma entrevista que ele deu imediatamente após o acidente, na qual ele afirmou que o altímetro da aeronave tinha mostrado menos de trinta metros no momento do impacto, mas ele posteriormente testemunhou que mostrava quinhentos pés.

Cook afirmou que, na época, ele estava em estado de choque e que em sua mente ele havia confundido o do tambor com 30 metros em vez de 300 metros. Ele confirmou que ligou o equipamento de descongelamento antes de o avião iniciar a descida e confirmou que o piloto estava usando o piloto automático para pilotar o avião durante a descida.

Ele disse que voava com o capitão Dewitt desde 1951, que o conhecia bem, e que era costume do piloto usar o piloto automático para descer até cerca de 400 pés acima da pista, quando ele mudaria para manual ao controle. Ele também testemunhou que não tinha visto nada além de escuridão através do para-brisa até o momento do acidente.

Os investigadores do acidente levaram os altímetros que foram recuperados do acidente para a loja de instrumentos no aeroporto de La Guardia para um exame detalhado. 

Em 26 de fevereiro, um artigo no Chicago Tribune relatou que depois que os altímetros foram limpos de corrosão, água e sujeira, eles foram testados em uma câmara de pressão. De acordo com o artigo, ambos os dispositivos funcionaram normalmente até 1000 pés acima do nível de pressão do solo, mas abaixo de 1.000 pés eles travaram ou se atrasaram consideravelmente. 

No entanto, em depoimento oficial perante o conselho, o fabricante dos altímetros apresentou um relatório ao conselho que dizia que sua investigação concluiu que os instrumentos não apresentavam qualquer falha mecânica ou mau funcionamento antes do acidente.

Quando eles foram resgatados da água, os instrumentos do piloto e do copiloto indicaram menos 1.500 pés e menos 1.640 pés, respectivamente, refletindo danos a partes dos instrumentos causados ​​pela pressão de imersão. Quando questionado, o investigador reconheceu que não havia meios de determinar o que os altímetros mostraram no momento do impacto. 

Em depoimento perante o CAB, o diretor de voo da American Airlines disse que o mau funcionamento idêntico de dois altímetros ao mesmo tempo era "quase matematicamente impossível". 

O CAB ouviu especialistas da Lockheed Aircraft Corporation que tentaram reproduzir um erro de 500 pés na altitude relatada, causado pelo acúmulo de gelo nas linhas de pressão do ar. 

Eles voaram em um avião Electra atrás de um navio-tanque da Força Aérea que estava pulverizando água para produção de gelo para ver se eles poderiam causar o entupimento da linha de pressão. 

Em outros testes, eles tamparam artificialmente a linha, afetaram a abertura de vários equipamentos e até fizeram um mecânico borrifar um jato de água diretamente na porta de pressão. Nenhum dos testes produziu o erro de 500 pés relatado pelos pilotos e produziu um erro apenas de quarenta ou cinquenta pés.

Na tentativa de determinar por que a tripulação do Electra não tinha visto a pista à frente deles, o CAB ouviu dois pilotos de um DC-3 da Northeast Airlines que pousou no aeroporto de La Guardia um ou dois minutos na frente do Electra. 

Eles testemunharam que não tiveram problemas em entrar sob o teto de nuvens de 120 metros e que podiam ver toda a pista de quilômetros à frente deles. No entanto, entrevistas com sobreviventes do acidente e membros da tripulação do rebocador de resgate sugeriram que um pedaço isolado de nuvens baixas e névoa pairava sobre o rio no momento do acidente.

O CAB divulgou um relatório final sobre o acidente em 10 de janeiro de 1960. Os investigadores concluíram que a tripulação estava preocupada com os aspectos do voo e havia negligenciado o monitoramento dos instrumentos de voo essenciais durante a descida, levando a uma descida prematura abaixo dos mínimos de pouso.

Contribuindo para o acidente estavam fatores, incluindo a experiência limitada da tripulação com o tipo de aeronave, uma técnica de abordagem defeituosa em que o piloto automático foi usado para ou quase à superfície, uma configuração errada do altímetro do piloto, tempo marginal no área de abordagem, possível interpretação errônea do altímetro e dos indicadores de taxa de descida da aeronave e a ilusão sensorial da tripulação com relação à altura e altitude resultante da falta de referências visuais.

O conselho foi crítico em relação à falta de treinamento adequado no simulador da aeronave antes de colocá-la em serviço de passageiros, e fez recomendações à FAA para que todas as aeronaves de grande turbina usadas no transporte aéreo fossem equipadas com um gravador de voo.


Mais de 90 por cento dos componentes estruturais primários da aeronave e a maioria dos componentes do sistema foram recuperados pelos investigadores. Eles descobriram que, no momento do impacto, os flaps estavam aproximadamente na posição de aproximação, o trem de pouso foi estendido e os ângulos das pás da hélice eram relativamente uniformes e consistentes com as leituras de potência obtidas a partir dos instrumentos da aeronave recuperados e consistentes com o depoimento da tripulação sobre a potência utilizada durante a abordagem.

Nenhum dos dois mecanismos indicadores de velocidade vertical foi recuperado. Ambos os altímetros foram recuperados, mas como os diafragmas de ambos foram sobrecarregados devido à submersão, foi impossível estabelecer a calibração ou precisão de qualquer um dos altímetros antes da queda.

Os investigadores obtiveram todos os registros de manutenção, incluindo reclamações dos pilotos de todos os operadores, civis e militares, do tipo de altímetro usado no voo. Nenhum dos incidentes relatados envolveu mais de um dos altímetros instalados ao mesmo tempo, e após revisar a possibilidade de uma falha simultânea de ambos os altímetros, o CAB concluiu que envolveria uma improbabilidade matemática tão extrema que escolheu rejeitar essa teoria, bem como rejeitar partes do testemunho dos membros sobreviventes da tripulação.

Também concluiu que, após consideração de todos os cenários possíveis, era improvável que ocorresse uma falha de apenas um dos altímetros. Com base no depoimento de uma testemunha ocular e na análise do ponto de impacto, o CAB concluiu que era provável que um ou mais pilotos tivessem interpretado mal o altímetro por não estar familiarizado com o novo estilo.

Também concluiu que havia a possibilidade de que a tripulação tivesse interpretado incorretamente os indicadores de velocidade vertical, que também usavam uma escala diferente daquela usada em aeronaves mais antigas ou no treinamento recebido pelo capitão.

O CAB concluiu que todas as luzes exigidas do aeroporto, limite e pista estavam acesas e funcionando no momento do acidente. No entanto, porque as luzes estavam inclinadas para cima entre três e cinco graus, e por causa de um dique localizado entre o final da pista 22 e a água, o CAB concluiu que elas não seriam visíveis para a tripulação porque da descida prematura da aeronave abaixo do nível das nuvens.

As conclusões do CAB foram fortemente criticadas pelo presidente da Associação de Pilotos de Linha Aérea, que classificou o relatório como "grosseiramente impreciso em vários aspectos", e que o relatório não explicou satisfatoriamente o motivo do acidente e presumiu fatores que não foram estabelecido pelo fato.

Ele disse que os pilotos da American Airlines se uniram em protesto contra o relatório, dizendo que "caluniava e acusava injustamente" os membros da tripulação do avião, e tinha como objetivo "convenientemente escrever o acidente fora dos livros", em vez de determinar com precisão uma causa.

Ele disse que, no julgamento da associação, o acidente foi resultado de condições meteorológicas marginais e abordagem inadequada e recursos de iluminação no aeroporto. O primeiro oficial Frank Hlavacek disse que estava "furioso" com o relatório do CAB, dizendo que o conselho tentou pegar o caminho mais fácil culpando um capitão morto. Ele disse que esperava que a American Airlines protestasse contra o relatório.

Em 6 de fevereiro de 1959, um subcomitê especial da Câmara foi nomeado para investigar o acidente e as questões gerais de segurança que a indústria da aviação estava enfrentando durante a transição de aeronaves a pistão para aeronaves a jato e turboélice.

O subcomitê foi chefiado pelo Representante John Bell Williams do Mississippi, um ex-piloto de bombardeiro da Segunda Guerra Mundial. O representante Oren Harris, do Arkansas, disse que o subcomitê examinaria o equipamento que estava sendo usado na nova aeronave, bem como o treinamento de suas tripulações. 

Os cinco membros do subcomitê visitaram o Campo de LaGuardia em 12 de fevereiro e inspecionaram a pista onde o voo 320 estava tentando chegar, mas se recusaram a discutir publicamente os resultados de sua investigação. 

Em março, o comitê anunciou que estava investigando a Agência Federal de Aviação por suprimir informações que o comitê havia solicitado sobre as dificuldades encontradas com o novo tipo de altímetro usado nas aeronaves Lockheed Electra e Boeing 707.

Durante as audiências do subcomitê de aviação do Comitê de Comércio do Senado em janeiro de 1960, o diretor de segurança do CAB testemunhou que se a pista do LaGuardia tivesse sido equipada com luzes de alta densidade, "o acidente provavelmente não teria acontecido".

Ele também defendeu mais treinamento de copilotos de aeronaves e a instalação de gravadores eletrônicos de voo nas aeronaves para auxiliar nas investigações de acidentes.

Como resultado do depoimento, três dos senadores no subcomitê pediram a instalação de sistemas modernos de iluminação no aeroporto Midway de Chicago e outros campos de pouso, e a implementação de requisitos para que os copilotos fossem certificados nas aeronaves que voam.

Elwood Richard Quesada , administrador da Agência Federal de Aviação, testemunhou que o governo se comprometeu a pagar 75 por cento do custo para instalar iluminação de alta intensidade e abordagens de radar em La Guardia antes do acidente, mas que os funcionários do aeroporto se recusaram a pagar os 25% necessários para a cooperação local.

As más condições climáticas no destino fizeram com que a tripulação tivesse que descer através de nuvens densas e nevoeiro, mas a aeronave voou mais baixo do que os pilotos pretendiam e caiu no rio gelado a 4.900 pés (1.500 m) antes da pista a uma velocidade de 140 nós (160 mph; 260 km / h). A American Airlines voava esse tipo de aeronave em serviço comercial apenas cerca de duas semanas antes do acidente.


Testemunhas oculares do acidente relataram que a aeronave estava voando significativamente mais baixo do que o normal para aviões que se aproximavam do aeroporto, enquanto os membros da tripulação de voo sobreviventes alegaram que os instrumentos da aeronave haviam lhes dito que o voo estava operando em altitudes normais até o momento do impacto. 

Uma investigação da Civil Aeronautics Board concluiu que erros cometidos pela tripulação de voo, a inexperiência da tripulação de voo no tipo de aeronave e as más condições climáticas foram as causas do acidente. A conclusão foi contestada pela Air Line Pilots Association, que considerou que o acidente foi causado por instrumentos defeituosos e más condições meteorológicas, e não por erros cometidos pela tripulação altamente experiente.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipédia, ASN e baaa-acro.com