Mostrando postagens com marcador NASA. Mostrar todas as postagens
Mostrando postagens com marcador NASA. Mostrar todas as postagens

quarta-feira, 24 de abril de 2024

Conheça invenções da NASA que você tem em casa

Pode ser que você nem note, mas há 65 anos invenções da NASA fazem parte da sua vida diária.


Quem nunca falou ou viu a frase "Agora a NASA vem...", para mostrar sua indignação com algo. Acredite, a NASA já está presente na sua vida sem você nem ter que se preocupar com um cientista de roupa especial entrando na sua casa.

Mais de 550 milhões de telespectadores assistiram à primeira transmissão ao vivo via satélite quando o astronauta Neil Armstrong proferiu seu célebre dizer: “Um pequeno passo para o homem, um grande salto para a humanidade”.

Além de imortalizar a frase, Armstrong levou para o mundo o nome da NASA, a agência espacial norte-americana. O curioso é que, apesar do uso indiscriminado da expressão “agência espacial”, a tradução é imprecisa.

A NASA, acrônimo para National Aeronautics and Space Administration (Administração Nacional da Aeronáutica e Espaço, na tradução literal), é uma das principais agências federais dos Estados Unidos, tendo como principal atividade a pesquisa e o desenvolvimento de tecnologias aeroespaciais.

Ou seja, a agência vai muito além de estudar apenas o cosmos ou tecnologias que levem a humanidade ao espaço.

Há mais de 100 anos


A história da agência remonta ao início da aviação. Com o avanço da nova ciência, o governo norte-americano criou, em 1915, um comitê focado exclusivamente para o segmento. O NACA, ou National Advisory Committee for Aeronautics (Comitê Consultivo Nacional para a Aeronáutica), em pouco tempo, tornou-se uma referência mundial em pesquisas aeronáuticas.

Menos de quinze anos após sua criação, contava com quatro laboratórios e 500 cientistas altamente especializados. Com a Segunda Guerra, passou a ser uma provedora de soluções para o esforço de guerra e suas pesquisas em aerofólios ganharam notoriedade, que se mantém até os dias de hoje. Foi ainda co-responsável pelo desenvolvimento do X-1, o primeiro avião a quebrar a barreira do som.

S de Sputnik


Com a União Soviética avançando a passadas largas na pesquisa aeroespacial, os norte-americanos assistiram chocados ao lançamento do Sputnik, em 1957. Uma reunião emergencial na Casa Branca definiu que os Estados Unidos deveriam dedicar máximo esforço para manter sua liderança na tecnologia aeronáutica e, naquele momento, no recém-criado setor espacial.

A solução foi bastante óbvia: a NACA deixaria de ser apenas um comitê para aeronáutica, tornando-se uma agência de pesquisas aeroespaciais. O presidente Dwight D. Eisenhower sancionou a criação da NASA em julho de 1958, com a agência entrando em serviço em 1 de outubro do mesmo ano.

A criação da NASA não se restringiu a substituir o “C” pelo “S” da NACA. Além de herdar três laboratórios, mais de 8.000 funcionários e ganhar imediatamente um orçamento de US$ 100 milhões (equivalente a US$ 873 milhões em 2018), a nova agência superou fronteiras nas pesquisas espaciais.

Entre 1969 e 2018, a NASA registrou no US Patent and Trademark Office nada menos que 6.305 patentes. O número pode parecer pequeno, já que gigantes como a Google registraram, em vinte anos, mais de 60.000 patentes. A diferença é que a muitas dessas tecnologias que o Google criou, acredite, foi baseada em soluções e patentes da NASA.

Na prática, os trabalhos feitos pelos pesquisadores da NASA estão mais próximos do nosso cotidiano do que se pode imaginar.

Da NASA para sua vida


Travesseiro – Com espuma de memória


Acredite, a tecnologia do travesseiro da NASA é realmente da NASA. A espuma da memória foi criada por pesquisadores financiados pela NASA, que procuravam maneiras de manter o corpo dos pilotos de teste amortecidos durante os voos com vibrações bastante intensas. Atualmente, a espuma de memória é utilizada em travesseiros, colchões, sofás, assentos de carros e aviões, calçados, entre outros.

Selfies – Imagens digitais

As imagens feitas por seu smartphone, das câmeras fotográficas digitais, mesmo as filmagens do cinema, utilizam como base um sensor digital criado pela NASA no início dos anos 1990. Para atender às necessidades cada vez maiores de imagens espaciais, como a da Terra vista do espaço, a agência criou um sensor que emprega um semicondutor complementar de óxido de metal (CMOS). A vantagem foi criar um dispositivo muito pequeno, que requer pouca energia e é altamente eficiente. A tecnologia CMOS domina a indústria de imagem digital, permitindo que se desenvolvam câmeras de celular e vídeo de alta definição. Além de ser responsável por bilhões de selfies todos os anos.

Carros – Computador de bordo

Se o computador de bordo informa que os sistemas estão todos “okay” ao ligar o carro, agradeça aos engenheiros da NASA. Embora a indústria automobilística tenha aperfeiçoado o processo, ela não passa de uma licença sobre uma tecnologia by NASA. Atualmente, a equipe do Glenn Research Center da NASA desenvolve funções de aprendizagem simples e elementos adaptáveis ​​que podem ser colocados em pequenos sistemas de hardware, incluindo instrumentos para espaço, dispositivos médicos implantáveis ​​e observadores estocásticos.

Maracanã – Cobertura com mesmo material de trajes espaciais

O icônico aeroporto de Denver se destaca por sua cobertura branca, assim como os grandes estádios de futebol utilizam enormes coberturas flexíveis. O material foi originalmente desenvolvido para trajes espaciais pela BirdAir a pedido da NASA e são feitos de um composto de fibra de vidro e Teflon, exatamente o mesmo material que protegeu os astronautas da Apollo enquanto eles caminhavam na Lua. E você ironizou a cobertura bilionária do Maracanã falando que era da NASA? Pois é, acertou.

Tempo bom – Previsão meteorológica


A previsão meteorológica é cada dia mais precisa. Em alguns locais é possível afirmar com quase certeza o horário exato que começará a chover, nevar ou ventar. Além desses dados, em muitos casos, serem obtidos por satélites da NASA, a maior parte dos algoritmos empregados nas complexas análises do clima foi criada pela agência ao longo das últimas décadas.

Na nuvem – Armazenamento de dados

Há uma década, a NASA iniciou o projeto para organizar seus sites, seja de conteúdo para internet ou de sua rede interna. O objetivo era padronizar métodos e ferramentas para seus desenvolvedores web. A solução levou à criação da tecnologia de computação em nuvem. Quase instantaneamente o padrão criou uma nova indústria no mundo, que possibilitou o desenvolvimento de sistemas de armazenamento em nuvem, aplicativos baseado na rede, até mesmo o Netflix e o AmazonPrime se beneficiam dessa tecnologia.

Aparelho fixo – Braces ortodônticos transparentes

No início dos anos 1980, a NASA trabalhava em um programa de pesquisa avançado para aplicação cerâmica. O estudo, conduzido em parceria com a Ceradayne, buscava uma solução para a criação de um material que pudesse ser empregado em radomes de radares infravermelhos. O objetivo era encontrar uma forma de proteger as antenas com uma cúpula o mais transparente possível, para permitir que o máximo de energia pudesse transplantar o radome sem perda. Materiais espessos ou opacos eram bastante problemáticos. O estudo levou à criação de um material chamado polycrystalline alumina (TPA). Pouco tempo depois a 3M contratou a Ceradayne para buscar um material resistente e ao mesmo tempo transparente para que pudesse ser utilizado na indústria odontológica. O resultado? O TPA se tornou a base para os braces invisíveis utilizados em aparelhos ortodônticos. Foi o alivio para muitas crianças.

Isolante térmico – TEEK é leve, moldável e resistente ao fogo

O engenheiro Erik Weiser trabalhava na seção de materiais e processos avançados no Langley Research Center, em uma pesquisa para desenvolvimento de uma substância que permitisse produzir compósito para uso em aeronaves supersônicas. Como inúmeras invenções do mundo, algumas coisas saem diferente do esperado. Uma das substâncias resultantes se mostrou uma excelente espuma de isolamento térmico, que deu à equipe de Weiser o prêmio NASA’s 2007 Commercial Invention of the Year. O material batizado de TEEK se mostrou leve, altamente moldável e resistente ao fogo, suportando temperaturas acima de 315°C (600°F) e criogênicas.

Terremoto – Edifícios e pontes com sistema de amortecimento


Edifícios e pontes em países e regiões com elevada incidência de terremotos, ou mesmo construções que necessitam de amortecimento contra vibrações, utilizam uma solução desenvolvida para o lançamento de naves espaciais. Os amortecedores absorventes de choque foram originalmente criados para proteger naves espaciais e equipamentos das plataformas durante as condições extremas dos lançamentos. A vibração intensa gerada pelos motores poderia literalmente colapsar a estrutura ao redor. Amortecedores especiais absorviam o choque e mantinham a estrutura praticamente inerte, mesmo com o chão tremendo como em um terremoto.

Ômega 3 – Favorece o desenvolvimento infantil

As missões para Marte nem começaram, mas a NASA trabalha há vários anos no projeto, criando condições mínimas para permitir a exploração do planeta vermelho. Enquanto pesquisadores desenvolviam suporte de vida para as missões marcianas descobriram uma fonte natural de um ácido graxo (ômega-3), o leite materno. As pesquisas mostraram que o ômega-3 desempenha um papel fundamental no desenvolvimento infantil. Desde então, o ingrediente foi adicionado a praticamente todas as fórmulas de leite e suplemento infantil disponível no mercado.

GPS, Rnav e Waze – A revolução da navegação por satélite

Possivelmente o leitor já voou usando como referência dados de GPS, pousou por meio de um procedimento RNAV, entrou no carro e procurou no Waze o melhor caminho para chegar em casa. A constelação de satélites GPS foi criada pela Força Aérea dos Estados Unidos, mas, desde a década de 1990, também é utilizada para fins civis. Contudo, os militares liberaram o uso da rede GPS sem fornecer acesso aos dados corrigidos de localização, que podem apresentar um erro de até 15 metros. A incerteza das posições dos satélites e a interferência da atmosfera da Terra causam uma distorçam no sinal. Os pesquisadores do Jet Propulsion Laboratory (JPL), da NASA, instalado na CalTech, desenvolveram um software civil capaz de corrigir esses erros. Além disso, a NASA monitora a integridade dos dados globais de GPS em tempo real para os militares norte-americanos.

Caminhões – Projeto aerodinâmico

Quase todos os caminhões que rodam pelo mundo tiveram seu desenho aerodinâmico criado baseado em estudos da NASA. A pesquisa da agência no projeto aerodinâmico de veículos pesados levou às curvas e aos contornos que ajudam os caminhões modernos a atravessar o ar com menor arrasto. Anualmente, um caminhão médio gasta aproximadamente 25.000 litros a menos de óleo diesel graças a sua aerodinâmica.

Água pura – Sistema de filtragem para áreas remotas


Missões espaciais tripuladas enfrentam uma série de desafios, o maior deles: onde obter água? Para isso, a NASA desenvolveu uma série de filtros para reciclar a água na Estação Espacial Internacional (ISS) e mesmo em missões para Marte. Um filtro de nanofibra projetado para purificar a água no espaço tem sido fundamental para purificar a água em regiões remotas, especialmente em aldeias isoladas na África. Além disso, aquelas garrafas de água usadas por aventureiros em trilhas utilizam esse mesmo filtro.

Coração e boca – Bomba cardíaca e válvula de retenção microbiana

A ISS ainda trouxe outra inovação para a Terra, a válvula de retenção microbiana que evita a contaminação nos consultórios odontológicos. A experiência da NASA em simulações de fluxo de fluídos através dos motores de foguetes levou ao desenvolvimento de poderosos e eficientes sistemas de controle de combustível e refrigeração para naves espaciais. Porém, seu uso mais corriqueiro e nobre ocorre em hospitais, onde milhares de pessoas dependentes de um transplante de coração foram mantidas vivas graças a uma bomba cardíaca de assistência ventricular, que mantém o sangue circulando por todo o corpo baseado exatamente no sistema espacial.

Montanha-russa – Software para análise de dados estruturais

Na década de 1960, a NASA se tornou pioneira ao empregar computação na análise de dados estruturais. Anteriormente todos os cálculos eram manuais, sujeitos a erros e a uma eternidade de tempo para serem concluídos enquanto os soviéticos continuavam enviando foguetes e astronautas para o espaço. Com isso surgiu o Astran, um software de análise estrutural bastante popular até hoje, empregado em uma infinidade de aplicações, de reatores nucleares, a carros, bicicletas e especialmente na construção de montanhas-russas.

Esteira sem gravidade – Para pacientes com dificuldade de locomoção

A empresa de dispositivos médicos Alter-G licenciou uma tecnologia da NASA, em 2005, criando uma esteira “antigravidade” utilizada por pacientes que passaram por graves lesões, cirurgias na coluna ou pernas, ou mesmo quem sofre com tensões nas articulações, como artrite ou obesidade, e atletas profissionais. A esteira foi criada pela equipe da NASA para evitar que os astronautas na estação espacial tivessem perda óssea e muscular no ambiente de gravidade zero. Para aplicar o conceito no treinamento na Terra, a agência desenvolveu uma tecnologia para imitar a gravidade usando a pressão diferencial do ar. O princípio é inverso ao existente no espaço, onde seria desejável simular o peso adicional da gravidade, mas na Terra o processo é inverso, usado para aliviar a carga nas pernas de um usuário.

Alimentos – Processamento e acondicionamento seguros

No início do programa espacial tripulado, uma das preocupações da NASA era com relação à segurança alimentar dos astronautas no espaço. Procurando garantir a segurança absoluta dos alimentos pré-embalados para voos espaciais, a NASA em parceria com a Pillsbury Company criou um eficiente controle de qualidade, conhecido como Hazard Analysis and Critical Control Points (HACCP), que é uma análise de perigos no processamento e acondicionamento de alimento. O método HACCP se tornou um padrão da indústria alimentícia desde então.

Óculos – Lentes com filtro UV e sem arranhões


Os óculos que utilizamos hoje empregam algumas das primeiras pesquisas sobre revestimentos resistentes a arranhões para lentes feitas pelo Ames Research Center. Nos anos 1960, a NASA buscava revestimentos para viseiras dos capacetes e membranas plásticas usadas em sistemas de purificação de água. Duas décadas depois, a agência desenvolveu lentes com filtro UV que melhoraram a segurança em dias ensolarados e ainda aperfeiçoavam as cores absorvida pelos olhos. Hoje quase todos os óculos de sol, de esqui e máscaras de segurança para soldadores utilizam essa tecnologia.

Maiô olímpico – Reduz o arrasto quando nadador corta a água

Muitos medalhistas olímpicos devem parte de suas conquistas aos esforços feitos por engenheiros da NASA no túnel de vento do Langley Research Center. Os resultados obtidos tiveram um papel fundamental no desenvolvimento do traje LZR Racer da Speedo, que utilizou novos materiais e costuras para reduzir o arrasto quando um nadador corta a água. O maiô fez estreia olímpica em 2008, em Pequim, mas sua performance era tão superior que o maiô de corpo inteiro foi proibido pelas entidades esportivas.

Aviação – Dos winglets aos motores


Além disso, a NASA foi responsável por centenas de tecnologias utilizadas na aviação. São inúmeros soluções que advém das pesquisas da agência espacial. Entre elas estão os winglets, utilizados para aumentar a eficiência dos aviões, alguns dos materiais compostos, que garantem a produção de peças mais leves, flexíveis e resistentes, além de perfis de aerofólios, motores, sistema antigelo e diversas outras tecnologias.

Via Edmundo Ubiratan (Aero Magazine) - Fotos: NASA/Divulgação

terça-feira, 23 de abril de 2024

NASA 515: O Boeing 737 usado como um laboratório voador

A aeronave, que apresentava dois cockpits, contribuiu para avanços significativos na indústria da aviação.

Boeing 737-130 NASA 515 (Foto: NASA/LRC via Wikimedia Commons)
O Boeing 737 é um avião a jato de corpo estreito altamente popular que foi introduzido comercialmente pela primeira vez em 10 de fevereiro de 1968. Em janeiro de 2023, 57 anos após sua produção, 11.299 unidades da aeronave foram construídas e usadas para uma variedade de propósitos, incluindo transporte de passageiros e carga , aviação executiva, operações militares e testes experimentais. Um 737 particularmente notável é o NASA 515.

O protótipo do Boeing 737


Em 1974, o primeiro 737 já construído foi implantado no inventário da NASA e nomeado NASA 515. A aeronave modificada apresentava dois cockpits separados: um cockpit dianteiro convencional que fornecia suporte operacional e backup de segurança e um cockpit de pesquisa operacional atrás do que teria sido a cabine de primeira classe da aeronave.

NASA 515 Seção Transversal (Imagem: NASA)
Também foi equipado com uma variedade de instrumentos e equipamentos, incluindo sensores especializados, câmeras e sistemas de comunicação. O interior foi modificado para fornecer espaço para o equipamento e para acomodar os pesquisadores e a equipe necessária para conduzir os experimentos.

O NASA 515 foi mantido e pilotado pelo centro de campo mais antigo da Administração, o Langley Research Center em Hampton, Virgínia.

Um pioneiro no ar


O laboratório voador era uma instalação única que desempenhava um papel crucial na demonstração de novos conceitos em situações do mundo real. Ao contrário das instalações de pesquisa típicas, o NASA 515 permitiu que os observadores testemunhassem as inovações em primeira mão, aplicadas em condições cotidianas (como em condições de vento perigosas ou em uma área terminal movimentada).

NASA 515 cockpit principal (Foto: NASA)
Como tal, o 737 forneceu uma plataforma convincente para tomadores de decisão no governo e na indústria da aviação. Graças ao NASA 515 e suas instalações de apoio, várias novas tecnologias de aviação foram rapidamente adotadas na indústria da aviação.

Cerca de 20 tecnologias avançadas desenvolvidas no NASA 515 foram adotadas pela indústria da aviação, como o desenvolvimento de designs de asas de alta sustentação avançados e mais eficientes. Outras inovações incluem:
  • Displays Eletrônicos de Voo (1974): Os indicadores eletrônicos de atitude do tubo de raios catódicos e os displays de situação horizontal encontrados nas aeronaves Boeing 757 e 767 foram desenvolvidos e demonstrados pela primeira vez no NASA 515. Esses instrumentos melhoraram a compreensão dos pilotos de sua consciência situacional, contribuindo para aumentar a segurança e eficiência.
  • Runway Friction Program (1984): NASA 515 esteve envolvido na realização de testes para desenvolver um programa que pudesse melhorar e prever o manuseio de aeronaves em pistas escorregadias. A tecnologia foi adotada pela Federal Aviation Administration (FAA) e desde então tem sido usada na maioria dos aeroportos comerciais em todo o mundo.
  • Airborne Information Transfer System (1989): Testes de voo foram conduzidos no NASA 515 para comparar os benefícios do uso de link de dados eletrônicos contra voz como um sistema primário de comunicação entre aeronaves e controle de tráfego aéreo. Os resultados foram usados ​​pelo governo para desenvolver padrões operacionais e de design e, posteriormente, implementados nos 747 mais recentes , bem como em todos os cockpits do 777.
NASA 515 na pista (Foto: NASA)
O NASA 515 de US$ 2,2 milhões foi aposentado em 2003 e agora está em exibição pública no Museu do Voo em Seattle, Washington. Se você gostaria de ver um 737-100 de perto, esta é sua melhor aposta, pois é a última do tipo ainda existente.

Via Simple Flying com NASA

sexta-feira, 19 de abril de 2024

Como o programa de pesquisa hipersônica X-15 estabeleceu todos os tipos de recordes na aviação

O recorde de velocidade do X-15 permanece ininterrupto e (por algumas definições) seu recorde de altitude não foi quebrado até 2004.


Hoje em dia, quando as pessoas ouvem falar de experimentação hipersónica , normalmente, a discussão envolve mísseis hipersónicos, mas na década de 1960, o avião hipersónico movido a foguete X-15 teria vindo à mente. O X-15 da América do Norte ultrapassou os limites da ciência e foi um passo crucial no programa espacial da América e na ida à Lua. Antes de Neil Armstrong pisar na lua, ele voou no experimental X-15. O X-15 foi um avião-foguete que contornou os limites do espaço e continua a deter o recorde mundial de avião mais rápido que já voou.

Um avião-foguete no espaço


A NASA e a Força Aérea dos Estados Unidos trabalharam juntas para desenvolver o avião-foguete X-15 enquanto a corrida espacial esquentava. O X-15 foi o primeiro a usar traje pressurizado para o piloto. Sendo o primeiro a cruzar os limites do espaço exterior e voar a velocidades hipersónicas, regressou com uma riqueza de dados inestimáveis. 

A intenção era preencher a lacuna entre o voo tripulado na atmosfera e o voo tripulado no espaço. As informações coletadas no desenvolvimento desta aeronave e no voo em velocidades nunca vistas antes contribuíram para o desenvolvimento dos programas de voo espacial Mercury, Gemini e Apollo e do programa do ônibus espacial.

X-15 em exibição no Smithsonian National Air and Space Museum
(Foto: Museu Nacional do Ar e do Espaço Smithsonian/Flickr)
"... talvez o mais crítico é que [o X-15] forneceu um importante trampolim tecnológico para o espaço. em um ambiente sem ar, reentrar na atmosfera e realizar um pouso de precisão em um local pré-determinado." - NASA​
  • Primeiro voo: Junho de 1959
  • Introdução: Setembro de 1959
  • Aposentado: Dezembro de 1968
  • Voos: 199
  • Quantidade fabricada: 3
O X-15 foi projetado para ser transportado sob a asa de uma nave-mãe (um B-52). Dois B-52 foram adaptados para transportar o X-15 - NB-52A, "The High and Mighty One" e NB-52B, "The Challenger". Os X-15 foram lançados a uma altitude de cerca de 13,5 milhas e a uma velocidade de cerca de 500 mph.

Hoje, dois dos três estão preservados. O Museu Nacional do Ar e do Espaço possui um (X-15#1), e o Museu da Força Aérea na Base Aérea de Wright Patterson possui outro (X-15#2). A terceira aeronave (X-15#3) caiu na reentrada, matando o piloto, Capitão Michael Adams.

Um X-15 norte-americano voando bem acima das nuvens (Foto: Força Aérea dos EUA)

Um recordista


De acordo com a NASA, o X-15 estabeleceu os recordes mundiais não oficiais de velocidade e altitude, atingindo 4.520 mph (Mach 6,7) e voando a 354.000 pés (67 milhas). Para referência, a linha Karman está 62 milhas acima do nível do mar (uma fronteira proposta entre a atmosfera da Terra e o espaço sideral). 

Alguns dos voos do X-15 foram tão elevados que qualificaram os pilotos como astronautas (embora a União Soviética já tivesse colocado o primeiro homem no espaço em 1961). Os atuais voos espaciais turísticos da Blue Origin nem chegam a essa altura. As cápsulas da Blue Origin são elevadas logo acima da linha Karman (62,4 milhas), onde os passageiros podem experimentar alguns minutos de ausência de peso.

Um X-15 norte-americano em exibição no Pima Air and Space Museum (Foto: Joseph Creamer/Shutterstock)
O X-15 não apenas se tornou a primeira aeronave tripulada a atingir Mach 4 e o primeiro a atingir Mach 5 (mais rápido que Mach 5 é hipersônico) e Mach 6. O recorde de Mach 6,7 foi alcançado em 3 de outubro de 1967, por William J. Cavaleiro a uma altitude de 102.100 pés. Nenhuma aeronave tripulada hoje pode igualar esta velocidade fenomenal. Isto é muito mais rápido do que o famoso XR-71 Blackbird, às vezes chamado de aeronave tripulada rápida , voando a velocidades de até Mach 3,3.
  • Altitude máxima: 354.200 pés (67 milhas)
  • Primeiro a atingir Mach 4, 5 e 6
  • Velocidade máxima: Mach 6,72 (4.534 mph) (ininterrupto)
  • Primeiro traje espacial: traje espacial pressurizado
Depois que seus voos de teste iniciais foram concluídos em 1959, o X-15 foi equipado para ser a primeira aeronave alada a registrar Mach 4, 5 de março e Mach 6. À medida que a velocidade aumenta, aumenta também o atrito, e com o atrito vem o calor, então o X-15 foi construído para suportar temperaturas aerodinâmicas de 1.200 F.


A NASA lista 25 realizações específicas do X-15. Eles vão desde ser os primeiros a usar controles de reação para controle de atitude no espaço até desenvolver 'trajes espaciais' de proteção de pressão total. O X-15 também levou a muitas descobertas, incluindo o fluxo hipersônico da camada limite sendo turbulento em vez de laminar e pontos quentes gerados por irregularidades superficiais.

A questão da altitude


Robert White levou o X-15 a uma altitude de 314.688 em julho de 1962, e Joseph Walker subiu ainda mais alto, para 354.200 pés em 1963. Dito isto, o recorde mundial para o voo mais alto é tecnicamente detido por um jato soviético. 


Em 31 de agosto de 1977, o piloto russo Alexandr Fedotov voou com seu MiG E-266M a 123.523 pés. Isso é considerado um recorde porque as duas aeronaves eram incomparáveis. O X-15 era uma aeronave parasita que não tinha a intenção de decolar por conta própria (os B-52 o carregavam). Por outro lado, o recorde soviético foi o recorde de um avião lançado no solo.

Um X-15 em exibição no Museu Nacional do Ar e do Espaço (Foto: Ad Meskens/Wikimedia Commons)
O Smithsonian National Air and Space Museum afirma que em outubro de 2004, a SpaceShipOne atingiu uma altitude de 70 milhas acima da superfície da Terra, pilotada por Brian Binnie. Esta foi a primeira vez que uma aeronave no "Ganho de altitude, avião lançado de um porta-aviões" quebrou o recorde do X-15. A SpaceShipOne também estabeleceu um novo recorde mundial para a aeronave particular que voa mais alto.

Com informações do Simple Flying

quinta-feira, 1 de fevereiro de 2024

Vídeo: Documentário - Segundos para o Desastre - O último voo do Columbia

Ative a legenda em português nas configurações do vídeo

Caso tenha dificuldade em ativar a legenda, veja este tutorial: 

Gerenciar configurações de legendas - Ajuda do YouTube

Hoje na História: 1 de fevereiro de 2003 - O último voo do Columbia - O fim trágico da missão STS-107


Em 1 de fevereiro de 2003 aconteceu o acidente que matou sete astronautas a bordo do Columbia em seu processo de reentrada na atmosfera terrestre. Após 15 dias no espaço e a realização de uma série de experimentos científicos, a nave teve problemas no retorno para a Terra e foi pulverizada nos ares do Texas.

Columbia  foi o primeiro ônibus espacial da América. Ele voou para o espaço pela primeira vez em 11 de abril de 1981. A fatídica missão STS-107 foi seu 28º voo. Durante essas missões, o Columbia orbitou a Terra 4.808 vezes e passou 300 dias, 17 horas, 40 minutos e 22 segundos em voo espacial. 160 astronautas serviram a bordo dela. Ela viajou 125.204.911 milhas (201.497.722 quilômetros).

Tripulação morta no acidente do Columbia - da esquerda para a direita: David Brown, Rick Husband, Laurel Clark, Kalpana Chawla, Michael Anderson, William McCool e Ilan Ramon
Esse foi o segundo acidente fatal envolvendo o Programa Space Shuttle: o ônibus espacial Challenger explodiu sobre o Cabo Canaveral, na Flórida, apenas 73 segundos após sua decolagem. Nele também morreram sete astronautas, vítimas de uma falha em um anel de vedação no foguete de propulsão, que teve um vazamento de gás pressurizado. Isso fez com que o foguete direito se separasse da nave, causando uma falha estrutural no tanque externo do propulsor e o ônibus espacial em si acabou destruído pela força aerodinâmica.

O caso do Columbia foi bastante diferente, mas também causado por uma falha ocorrida já no lançamento da nave: durante o processo de decolagem, um pedaço de espuma isolante térmica do tamanho de uma maleta executiva desprendeu-se do foguete propulsor e acertou a asa do ônibus espacial.

Não era a primeira vez que isso acontecia – esse desprendimento de partes de espuma que servem para o isolamento do foguete. Outras quatro decolagens de ônibus espaciais registraram o mesmo fato, inclusive no lançamento da nave Atlantis, feito apenas duas decolagens antes da última do Columbia. Como nada de ruim havia acontecido, a NASA tratava o evento como um “desprendimento de espuma” comum.

Bloco de espuma isolante similar a que teria se soltado do propulsor do Columbia
e atingido a asa do ônibus espacial

Problemas acontecem


Era normal para a NASA lidar com esses problemas, afinal, decolagens são cheias deles. A diferença é que esses eventos são controlados e analisados para que suas consequências não sejam perigosas ou até mesmo fatais e, até então, esse desprendimento de espuma do isolamento térmico dos foguetes era considerado algo a se esperar.

Esse material isolante colocado na parte externa dos propulsores não serve para manter o calor do combustível dentro do foguete, mas sim para impedir que sua estrutura congele devido às baixíssimas temperaturas do hidrogênio e do oxigênio líquidos que servem como combustível para os motores.

Após 82 segundos da decolagem, um pedaço da espuma de isolamento desprendeu-se do propulsor e fez um buraco de 15 a 25 cm de diâmetro no painel de fibra carbono reforçado da asa esquerda do ônibus espacial. A NASA estava ciente disso pois possuía um sistema de filmagem feito especialmente para analisar os desprendimentos de detritos da nave e tratou de tentar analisar o tamanho do estrago.

Simulação do dano causado pelo desprendimento da espuma de isolamento no
painel de fibra de carbono da asa de um ônibus espacial

Buscando ajuda externa


Engenheiros da agência espacial entraram em contato com o Departamento de Defesa norte-americano no mínimo três vezes para que ativassem seus meios espaciais ou terrestres de maneira a conseguir visualizar melhor e avaliar a gravidade do dano feito na asa do Columbia. Entretanto, o gerenciamento da NASA impediu o contato do Departamento e chegou até a proibir que colaborassem com a análise.

A agência espacial acreditava de fato que não haveria nenhum problema a ser resolvido e que, mesmo que houve, seria impossível solucioná-lo. Todos os cenários analisados levavam à conclusão de que não havia possibilidade de nenhum acidente grave ou fatal, apenas avarias ao ônibus espacial, especialmente na parte de seu isolamento térmico. Para eles, a fibra de carbono reforçada era impenetrável.

As apertadas camas onde a tripulação do Columbia dormia
Outros métodos de análise dos possíveis riscos que o incidente poderia causar foram usados, inclusive um software desenvolvido para prever os danos possíveis na fibra de carbono. A ferramenta indicou que o choque poderia ter danificado severamente a área, mas a própria NASA minimizou o resultado. No fim das contas, a agência chegou à conclusão que não havia risco em relação ao incidente e enviou um email para a tripulação do ônibus espacial:

“Durante a subida, em aproximadamente 80 segundos, uma análise fotográfica mostra que alguns detritos do ponto de ligação -Y ET do Bipod foram soltos e, subsequentemente, impactaram a ala esquerda do orbitador [o ônibus espacial] na área de transição da junta para a asa principal, criando um a chuva de partículas menores. O impacto parece estar totalmente na superfície inferior e não são vistas partículas que atravessam a superfície superior da asa. Os especialistas analisaram a fotografia de alta velocidade e não há preocupação com os danos causados na fibra de carbono reforçada. Vimos esse mesmo fenômeno em vários outros voos e não há absolutamente nenhuma preocupação com a entrada”.

A tripulação do Columbia


Dentro do Columbia estavam sete astronautas de diversas origens e com diversas funções. O comandante da missão era o coronel Rick Husband, da Força Aérea dos Estados Unidos. O piloto era o comandante da Marinha norte-americana William McCool.

Os outros cinco especialistas de missão eram o tenente-coronel da Força Aérea Michael P. Anderson, o coronel Ilan Ramon (da Força Aérea de Israel), o capitão da Marinha David M. Brown e duas mulheres, a capitã da Marinha Laurel Blair Salton Clark e a engenheira aeroespacial Kalpana Chawla.

Algumas imagens foram registradas dos momentos anteriores ao acidente que causou a morte dos sete e a destruição completa do Columbia no dia 1 de fevereiro de 2003 ao tentar adentrar a atmosfera da Terra. A seguir, o vídeo mostra os últimos momentos da tripulação do Columbia (com legendas em inglês):


O retorno


Ao iniciar o procedimento de reentrada do Columbia na atmosfera terrestre, o comandante Husband e o piloto McCool receberam sinal positivo para a manobra e todas as condições eram positivas para o retorno. O ônibus espacial passou sobre o oceano Índico de cabeça-para baixo em uma altitude de 282 km e velocidade de mais de 28 mil km/h e penetrou a atmosfera sobre o Pacífico, já em posição correta, a 120 km de altura.

Foi aí que na temperatura da espaçonave começou a subir, o que é comum nesses casos. A asa do Columbia atingiu 2,5 mil °C, muito mais pela compressão do gás atmosférico causado pelo voo supersônico da nave do que apenas pelo atrito entre o veículo e o ar. O ônibus espacial começou a sobrevoar o solo norte-americano pela Califórnia, próximo a Sacramento. No minuto seguinte, relatos de testemunhas mostram que já era possível ver pedaços da espaçonave sendo desprendidas pelo céu.

Nesse momento, o Columbia parecia uma bola de fogo no ar por causa do ar superaquecido ao redor dele. Ainda não havia amanhecido na costa oeste dos Estados Unidos, o que colaborou com a visibilidade do evento. Até esse ponto, tudo estava ocorrendo como deveria em um pouso normal de ônibus espacial, mas o controle de voo na Terra começou a perceber problemas nos sensores da asa esquerda da nave.

O Columbia é fotografado como uma bola de fogo nos ares e diversos destroços se desprendendo da nave
O Columbia seguiu seu caminho planejado na direção da Flórida, onde faria seu pouso do mesmo lugar de onde partiu, o Kennedy Space Center no Cabo Canaveral. A nave fez algumas manobras para acertar o seu caminho enquanto sobrevoava os estados de Nevada, Utah, Arizona, Novo México, tudo isso com uma temperatura de 3 mil °C na asa, o que continuava sendo normal em um pouso.

O acidente


Ao sobrevoar o Texas, o Columbia perdeu uma placa de proteção térmica que acabou sendo a peça encontrada mais a Oeste dentre todas as partes recuperadas da nave. O controle da missão decidiu avisar os tripulantes sobre as falhas gerais nos sensores de ambas as asas, mas a resposta da nave acabou se perdendo. O comandante Husband confirmou ter recebido a informação, mas sua fala foi cortada.

Cinco segundos depois disso, a pressão hidráulica, usada para manobrar o ônibus espacial, foi perdida. Tanto o controle da missão em Terra sabia disso quanto os tripulantes da nave, que provavelmente ouviram um alarme indicando a falha. Só aí que os astronautas souberam que estavam tendo um problema gravíssimo no voo, com a nave perdendo completamente o controle.


Foi aproximadamente sobre a cidade de Dallas e arredores que o maior número de testemunhas em terra viram o Columbia sendo completamente pulverizada nos ares, com os pedaços da espaçonave se quebrando em partes cada vez menores que deixaram uma grande quantidade de rastros no céu. 

Menos de um minuto depois, o módulo da tripulação, que ainda estava como uma parte intacta, também foi destruído e os sete astronautas foram mortos.


Imagem dos destroços (em amarelo, vermelho e verde) captada por um
dos radares do Serviço Nacional (EUA) de Meteorologia

Legado humano e científico


Em 2011 o Programa Space Shuttle foi desativado. No lugar dele, diversas operações do governo, por meio da NASA, de empresas aeroespaciais particulares, como a SpaceX, e de outras agências espaciais de outros países, vêm tomando o lugar dos ônibus espaciais para levar cargas comerciais e científicas para o espaço, além de suprir a Estação Espacial Internacional (ISS) com todo o tipo de mantimentos necessários e, claro, astronautas.

Destroços recuperados do Columbia e remontados para investigação sobre o acidente
Alguns dos ônibus espaciais aposentados estão em exibição em diversos museus e instituições dos Estados Unidos (esse redator que vos escreve já teve a oportunidade de ver com os próprios olhos a Atlantis, exibida no Centro de Visitantes do Kennedy Space Center, no Cabo Canaveral). 

Já as duas espaçonaves que sofreram os acidentes fatais, como a Challenger e o Columbia, cuja história foi brevemente contada aqui, vão viver sempre na memória de quem sabe a importância que elas tiveram no desenvolvimento da ciência pelo ser humano.

Ônibus Espacial Atlantis em exposição no Centro de Visitantes do Kennedy Space Center
Os sete tripulantes do Columbia também não foram esquecidos e recebem homenagens regulares por parte de instituições de estudo da ciência e de memoriais espalhados não apenas pela Terra, mas até fora dela, como a placa que diz “In Memorian” e menciona o nome da tripulação no Mars Rover chamado Spirit, como se do espaço nunca tivessem saído e lá continuassem para sempre.

Memorial do Columbia no Mars Rover Spirit, em Marte

Nossa homenagem aos herois da missão STS-107

'AD ASTRA PER ASPERA'

"ATRAVÉS DE DIFICULDADES PARA AS ESTRELAS"


Edição de texto e imagens por Jorge Tadeu (Site Desastres Aéreos)

Conheça o AD-1, avião com asa giratória da Nasa, e entenda por que não é conhecido


Há um tempo, a agência espacial americana, Nasa, resolveu fazer alguns testes com aviões que tinham asas giratórias. Esse modelo de asa foi uma criação do engenheiro aeronáutico da agência Robert T. Jones. Já faz mais de 40 anos desde o último teste feito com esses aviões. A ideia dessa criação surgiu nos anos 1940.

Porém, foi apenas na década de 1970 que os testes com essa asa giratória começaram a ser feitos. No total, realizaram 79 voos com ela. Esse avião com a asa giratória recebeu o nome de AD-1. Além disso, ele é o único que possui essa tecnologia da asa giratória até então. Saiba mais informações sobre o AD-1 a seguir.

De acordo com seu criador, o avião teria algumas melhorias em comparação com os aviões normais, com os quais estamos acostumados. De acordo com Jones, por conta da asa, o avião economizaria o dobro de combustível, ao decolar faria menos barulho, além de possuir um alcance maior do que os outros.

Robert T. Jones posa com o AD-1
Além dessas características, o AD-1 possuía um orçamento baixo de produção. Como dissemos, esse modelo fez apenas 79 voos em toda a sua curta carreira. De lá para cá, não se ouviu mais falar no AD-1, apesar de parecer ter tido um futuro promissor com tantas melhorias inclusas.

O primeiro voo aconteceu em 21 de dezembro de 1979, tendo Thomas McMurtry como seu piloto. De acordo com o historiador-chefe do Armstrong Flight Research Center da Nasa, Christian Gelzer: “Ele estava ansioso sobre como ele [avião] se comportaria”, referindo-se a McMurtry.

“A asa podia girar de volta [ao tradicional] 90 graus em relação à fuselagem para poder pousar, e ele descobriu que você teria que fazer uma descida muito suave e lenta, mas conseguiria o que precisava e ficaria bem”, revelou o historiador.

Uma imagem de exposição múltipla mostrando o movimento da asa no AD-1
O modelo recebeu avaliação de todos os pilotos que fizeram os voos, e no final o desempenho foi tido como aceitável. As críticas recebidas pelos pilotos poderiam ser facilmente reajustadas pela Nasa. A conclusão, depois dos 79 voos, foi de que o projeto era bom, mas não o suficiente para se investir naquele momento.

“Eu nunca diria que o conceito nunca mais vai voltar”, afirmou Gelzer. “Mas não vejo a aplicação agora, porque temos uma maneira de contornar o que estávamos tentando consertar.”

Via Bruna Machado (Multiverso Notícias) e CNN - Imagens: Divulgação/NASA

domingo, 28 de janeiro de 2024

Vídeo: Análise - O Desastre do Ônibus Espacial Challenger


No vídeo, Lito Sousa conta a história do acidente com o Ônibus Espacial Challenger, e faz os paralelos desse acontecimento com a aviação.

Vídeo: Segundos Fatais - A Tragédia do Ônibus Espacial Challenger

Via Cavok Vídeos

Hoje na História: 28 de janeiro de 1986 - O desastre com o Ônibus Espacial Challenger

A Challenger antes da decolagem (© Wikimedia Commons)
Caso você tenha nascido a partir de meados da década de 80, talvez você não saiba sobre a tragédia envolvendo o ônibus espacial Challenger da NASA. Ele foi a terceira nave desse tipo a ser construída pela agência espacial norte-americana — vindo depois da Enterprise e da Columbia — e fez sua primeira viagem ao espaço em abril de 1983.

Quase três anos mais tarde, no dia 28 de janeiro de 1986, enquanto partia para a sua décima missão, algo deu muito errado durante o lançamento — que, além de ser acompanhado por centenas de pessoas no local, incluindo os familiares dos tripulantes, foi televisionado ao vivo. Apenas 73 segundos após a decolagem, a Challenger explodiu diante dos olhos atônitos de milhões de testemunhas. Assista a seguir a um dos vídeos do desastre:


Tragédia anunciada?


A Challenger levava uma tripulação de sete pessoas, que consistia nos astronautas Judith A. Resnik, Ronald E. McNair e Ellison S. Onizuka, no piloto Mike J. Smith e Francis R. Scobee, no comandante da missão Gregory Jarvis, especialista de carga, e Sharon Christa McAuliffe, que foi selecionada entre 11 mil professores para ser a primeira educadora a ser enviada ao espaço para lecionar de lá, assim como a primeira civil norte-americana a viajar fora da Terra.

Da esquerda para a direita, temos a professora Christa McAuliffe, o especialista de cargas Gregory Jarvis, a astronauta Judith A. Resnik, o comandante da missão Francis R. Scobee, o astronauta Ronald E. McNair, o piloto Mike J. Smith e o astronauta Ellison S. Onizuka

A ideia da Missão da Challenger era justamente iniciar um processo de exploração mais ampla e representativa do espaço, como se convidando a população geral a também embarcar – além de Christa, que se tornaria a primeira professora a viajar para fora do planeta, havia a astronauta Hudith Resnik e Ronald McNair, um dos primeiros astronautas negros da agência espacial estadunidense. 

Naturalmente Christa havia sido tornada em uma verdadeira celebridade antes da viagem, e sua presença na missão transformou o interesse internacional em verdadeiro frisson. A ideia era que a professora lecionasse uma aula de 15 minutos diretamente do espaço, mas a explosão interrompeu a vida de Christa e transformou para sempre o programa espacial dos EUA.

O lançamento da Challenger deveria ter ocorrido seis dias antes, mas foi reagendado devido a instabilidades climáticas e alguns problemas técnicos. 

Uma foto aproximada mostrando o gelo no local de lançamento
Na manhã do dia 28 de janeiro, a temperatura estava bem mais baixa do que o normal em Cabo Canaveral, na Flórida, o que levou os engenheiros da missão a alertar seus superiores de que alguns componentes da nave podiam falhar quando expostos ao frio.

Por algum motivo, os avisos acabaram sendo ignorados e, exatamente às 11 horas e 38 minutos da manhã, o lançamento da Challenger foi liberado.


Às 11h38min (EST), o ônibus espacial Challenger (OV-99) decolou do Complexo de Lançamento 39B no Centro Espacial Kennedy, Cabo Canaveral, Flórida, na Missão STS-51L.

Na decolagem, um anel de vedação entre os segmentos do Solid Rocket Booster (SRB) direito começou a vazar. Gases superaquecidos romperam o selo e começaram a queimar lateralmente.


Aos 58.778 segundos de voo motorizado, uma grande coluna de chama é visível logo acima do bocal de exaustão SRB, indicando uma ruptura na carcaça do motor (Foto acima - NASA).

A exaustão do foguete de ventilação queimou através do suporte de fixação SRB e no tanque de hidrogênio líquido na seção inferior do tanque externo. A parte traseira do tanque de hidrogênio líquido falhou e empurrou o tanque verticalmente para cima, para dentro do tanque de oxigênio líquido. Ambos os tanques se romperam e os propelentes detonaram.

1 minuto, 13 segundos após a decolagem, Challenger estava acelerando através de Mach 1,62 (1.069 milhas por hora, 1.720 quilômetros por hora) a aproximadamente 46.000 pés (14.020 metros) quando a explosão do tanque externo fez com que o ônibus espacial se desviasse repentinamente de seu Rota de Voo. O ônibus espacial foi submetido a forças aerodinâmicas muito além dos limites de seu projeto e foi destruído.


O tanque externo do Challenger, contendo hidrogênio líquido e oxigênio líquido, explodiu 1 minuto 13 segundos após a decolagem. Os dois propulsores de foguetes sólidos voaram em direções diferentes (Foto acima - Bruce Weaver/AP).

A cabine da tripulação, com seus sete astronautas a bordo, se separou da montagem do ônibus espacial em desintegração e continuou subindo por mais 25 segundos até aproximadamente 65.000 pés (19.080 metros), então começou uma longa queda para o oceano abaixo.

2 minutos e 45 segundos após a explosão, a cabine impactou a superfície do Oceano Atlântico a 207 milhas por hora (333 quilômetros por hora). A tripulação inteira foi morta.


A cabine da tripulação do ônibus espacial Challenger é visível perto do final da pluma de fumaça no centro superior desta fotografia, ainda subindo em velocidade supersônica (Foto acima - NASA).

A explosão ocorreu  1 minuto e 13 segundos após o lançamento (NASA)

Abaixo, veja o trecho que foi televisionado pela CNN na época:


Causas do acidente


Todos os tripulantes da Challenger morreram como resultado da explosão que fez a espaçonave se desintegrar. Com isso, o programa espacial norte-americano foi paralisado durante os vários meses em que durou a investigação do desastre. Na ocasião, Ronald Reagan, o então Presidente dos EUA, nomeou uma comissão especial para apurar as causas da tragédia — que foi liderada pelo ex-secretário de Estado William Rogers.

A comissão foi composta por vários nomes ilustres, como o renomado físico norte-americano — vencedor de diversos prêmios, incluindo o Nobel de Física de 1965 — Richard Philips Feynman, o astronauta Neil Armstrong e o piloto de testes Chuck Yeager. Depois de uma extensa e detalhada investigação, o grupo concluiu que o desastre havia sido ocasionado por um defeito no equipamento e no processo de controle de qualidade da fabricação das peças da nave.

A apuração revelou que ocorreu uma falha nas anilhas de borracha que serviam para vedar as partes do tanque de combustíveis. Mais precisamente, os anéis que se encontravam no foguete acelerador sólido direito, cuja missão era ajudar a proporcionar o “empurrão” necessário para que a Challenger levantasse voo, falharam durante o lançamento por conta da baixa temperatura — conforme os engenheiros da missão haviam previsto.


Com isso, o sistema de vedação permitiu que gases em alta temperatura e pressão escapassem e danificassem o tanque de combustível externo da Challenger, assim como o equipamento que prendia o acelerador ao tanque. O próprio Feynman fez uma simples demonstração — em rede nacional e ao vivo — de como o frio podia afetar as anilhas com um copo de água gelada.

Consequências


Após o acidente, a NASA deixou de enviar astronautas ao espaço por mais de dois anos e aproveitou para reformular uma série de componentes de seus ônibus espaciais. As viagens tripuladas só voltaram a acontecer a partir de setembro de 1988 — após o lançamento da Discovery. De lá para cá, inúmeras missões contendo “passageiros” foram conduzidas com sucesso.

Tripulação de voo do ônibus espacial Challenger STS-51L. Front Row, da esquerda para a direita, Capitão Michael J. Smith, Marinha dos EUA; Tenente Coronel Francis R. Scobee, Força Aérea dos EUA; Ronald Ervin McNair. Fila posterior, da esquerda para a direita: Tenente-Coronel Ellison S. Onizuka, Força Aérea dos EUA; Sharon Christa McAuliffe; Gregory Bruce Jarvis; Judith Arlene Resnick (NASA)
Entre elas estão as missões de reparo e manutenção do Telescópio Hubble e as que visaram a construção e ampliação da Estação Espacial Internacional. No entanto, infelizmente, em 2003, a Columbia também se desintegrou no ar — só que desta vez durante a reentrada na atmosfera terrestre — matando todos os tripulantes. Assim, apesar de as missões terem sido retomadas em 2005, o programa envolvendo os ônibus espaciais foi engavetado em 2011.

Fontes: This Day in Aviation / Mega Curioso / Wikipedia

É possível ver na Netflix o documentário "Challenger: Voo Final" ("Challenger: The Final Flight"). Veja o trailler:


Nossa homenagem aos heróis da missão STS-51L

'AD ASTRA PER ASPERA'

"ATRAVÉS DE DIFICULDADES PARA AS ESTRELAS"



Edição de texto e imagens por Jorge Tadeu (Site Desastres Aéreos)

sábado, 27 de janeiro de 2024

Hoje na História: 27 de janeiro de 1967 - Três astronautas morrem em teste da Missão Apolo 1

Em 27 de janeiro de 1967, durante um teste de "plugs out" do Módulo de Comando da Apollo 1, duas semanas antes do lançamento programado da Apollo/Saturn 1B AS-204 - o primeiro voo espacial tripulado do Programa Apollo - um incêndio eclodiu no local pressurizado ambiente de oxigênio puro da cápsula e rapidamente envolveu todo o interior.

A pressão aumentou rapidamente para 29 libras por polegada quadrada (200 kPa) e 17 segundos depois, às 23h31: 19,4 UTC, a cápsula se rompeu.

Os três astronautas, Tenente Coronel Virgil I. Grissom, Força Aérea dos Estados Unidos, Tenente Coronel Edward H. White II, Força Aérea dos Estados Unidos, e Tenente Comandante Roger B. Chaffee, Marinha dos Estados Unidos, foram mortos.

A Missão

A Apollo 1, inicialmente designada como AS-204, foi a primeira missão tripulada do Programa Apollo dos Estados Unidos, que teve como objetivo final um pouso lunar tripulado. Um incêndio na cabine durante um ensaio de lançamento no dia 27 de janeiro de 1967 no Complexo de Lançamento da Estação da Força Aérea do Cabo Kennedy matou todos os três membros da tripulação.

Imediatamente após o incêndio, a NASA convocou o Conselho de Revisão de Acidentes da Apollo 204 para determinar a causa do incêndio, e ambas as casas do Congresso dos Estados Unidos conduziram suas próprias investigações da comissão para supervisionar a investigação da NASA. A fonte de ignição do incêndio foi determinada como sendo elétrica, e o fogo se espalhou rapidamente devido à alta pressão na cabine de comando. 

White, Grissom e Chaffee
O resgate dos astronautas foi impedido pela escotilha da porta, que não podia ser aberta contra a pressão interna mais alta da cabine. A falha em identificar o teste como perigoso (porque o foguete não foi abastecido) levou o resgate a ser prejudicado pela falta de preparação para emergências.

Durante a investigação do Congresso, o então senador Walter Mondale revelou publicamente um documento interno da NASA, citando problemas com o principal contratante da Apollo North American Aviation, que ficou conhecido como "Phillips Report". Essa revelação envergonhou James Webb, o Administrador da NASA, que não tinha conhecimento da existência do documento, e atraiu controvérsia ao programa Apollo. 

Apesar do descontentamento do Congresso com a falta de abertura da NASA, ambos os comitês do Congresso determinaram que as questões levantadas no relatório não tinham relação com o acidente.

Detalhe do Módulo de Comando da Apollo 1 após o acidente
Os voos tripulados da Apollo foram suspensos por 20 meses, enquanto a Segurança do Módulo de comando foi questionada. No entanto, o desenvolvimento e os testes não-tripulados do Módulo lunar e do foguete Saturno V continuaram.

Edição de texto e imagens por Jorge Tadeu