quinta-feira, 12 de dezembro de 2024

O que é um "Flat Spin" e como recuperá-lo?


Poucas coisas causam mais medo nos corações e mentes dos pilotos do que o temido giro plano. Mas o que exatamente é uma rotação plana, o que a causa e como você se recupera dela?

Um giro plano é uma condição de voo perigosa da qual pode ser impossível se recuperar. Felizmente, não é provável que aconteça em nenhum voo de rotina. Ocorre quando o avião não tem velocidade no ar para frente enquanto gira em direção ao solo em torno de seu eixo vertical.

O que é um Spin?


Um giro ocorre quando a aeronave está estagnada, mas uma asa está mais gravemente estagnada do que a outra. Para entender precisamente o que isso significa, você precisará entender alguns termos básicos e um pouco de aerodinâmica.

Um estol ocorre quando o ângulo de ataque fica muito alto. O ângulo de ataque é o ângulo em que as asas de um avião encontram o vento relativo. Como o vento vem em um ângulo de ataque cada vez mais acentuado, o ar não consegue mais fluir suavemente sobre a superfície da asa. Quando isso acontece, a asa de repente produz muito menos sustentação do que antes de estolar.

Com a queda abrupta na quantidade de sustentação que a asa faz, é provável que ela não faça mais sustentação suficiente para manter a aeronave no ar. É importante perceber que um estol não significa que uma asa não está mais fazendo sustentação. Significa simplesmente que a asa não está mais funcionando com eficiência e a quantidade de sustentação que ela faz foi severamente reduzida.

À medida que o ângulo de ataque continua a ficar mais alto, além do ângulo crítico de ataque onde ocorre um estol, a quantidade de sustentação criada continua a diminuir. Portanto, há vários graus em que a asa de um avião pode estolar.

Conforme uma aeronave se aproxima de um estol, um movimento de guinada ou rolamento pode causar força de rotação suficiente para estolar uma asa antes da outra. Se a aeronave continuar a voar mais fundo no estol, a condição de ter sustentação diferencial através das asas agravará o estol em um giro.

Durante um giro, a aeronave geralmente se inclina para baixo e começa a girar em uma espiral em forma de saca-rolhas em direção ao solo. A velocidade no ar para a frente é muito lenta, pois a aeronave está estolada. Mas a taxa de afundamento em direção ao solo pode ser muito rápida e a taxa de rotação pode ser violenta e desorientadora para o piloto.

Tipos de giros


Os estols podem ser divididos aproximadamente em três categorias - vertical, invertida e plana.

Rotação automática

Giros verticais


Os giros na vertical são como os descritos acima. O avião afunda em direção ao solo em alta velocidade e gira em torno da asa mais estolada em alta velocidade. Mas, no geral, a aeronave está em uma atitude normal de voo.

Giros Invertidos


Os giros invertidos são exatamente como parecem - de cabeça para baixo.

Rotações planas


Os giros planos são o pior e mais perigoso tipo de giro. Em um giro plano, a aeronave não tem velocidade no ar para frente. Ele gira em torno de seu eixo vertical enquanto afunda direto no chão.

Sem nenhuma velocidade no ar para a frente, os controles de voo não são eficazes. O piloto efetivamente não tem como corrigir o giro e é possível (e talvez provável) que não possa ser corrigido.


O que causa uma rotação plana?


O tipo de rotação em que um avião entra depende do que aconteceu quando a condição começou e como a aeronave foi carregada. O peso e o equilíbrio desempenham um papel fundamental em paradas e giros.

Uma aeronave devidamente carregada terá o nariz pesado sem nenhuma entrada dos controles de voo. A única coisa que impede o nariz de afundar durante o voo de rotina é a força de cauda para baixo normalmente criada pelo estabilizador horizontal. Se não houver ar fluindo sobre o estabilizador, a força da cauda para baixo será inexistente e o nariz deverá afundar.

O afundamento do nariz deve fazer com que a velocidade no ar aumente, tornando impossível um giro plano. O avião é projetado para evitar essa condição perigosa e tudo o que o piloto precisa fazer é sair do caminho e permitir que o avião se recupere.

Mas e se o piloto ignorou o carregamento adequado do avião? Ao adicionar peso ao avião, os pilotos devem verificar se todas as forças permanecem dentro do envelope de voo seguro. Durante o planejamento de pré-voo, o piloto determinará a localização do centro de gravidade (CG).


Se o CG estiver localizado muito à frente, o nariz da aeronave cairá naturalmente. Neste caso, a força da cauda para baixo feita pelo estabilizador e profundor pode não ser suficiente para corrigir a pesada força do nariz para baixo feita por um CG avançado. O avião pode não conseguir girar na decolagem. Ou, uma vez no ar, o avião pode entrar em mergulho de nariz se a velocidade no ar ficar muito baixa.

Alternativamente, se o CG estiver localizado muito atrás, o nariz pode querer inclinar-se para cima. Se não for verificado, a força do nariz para cima pode causar um estol. Se o avião estolar e não houver fluxo de ar suficiente sobre os controles do estabilizador e do elevador, o piloto pode não tirar o avião do estol.

Se você combinar esta situação muito ruim com uma força de giro, você tem a configuração para um giro plano incontrolável e irrecuperável.

As forças de giro podem vir dos controles do piloto, como o leme ou ailerons, ou do motor. A hélice nos aviões causa várias forças de torção e de giro que podem exacerbar um estol ou giro sem cautela.

Como se recuperar de uma rotação plana


A FAA ensina a sigla “PARE” para ajudar os pilotos a se lembrarem de como se recuperar de uma técnica de recuperação de spin e spin.

P - Potência para marcha lenta

A - Ailerons neutros (manche de controle centrado)

R - Leme oposto à curva

E - Elevador para frente

Fases de um giro

Potência


Como mencionado anteriormente, a potência de uma hélice pode exacerbar um giro. Puxá-lo para marcha lenta pode reduzir as forças de giro e dar ao piloto mais tempo para se recuperar.

Ailerons


Os ailerons funcionam alterando o ângulo de ataque nas pontas das asas do avião. No meio de um giro, qualquer uso dos ailerons tornará o giro ainda pior. Lembre-se de que um giro ocorre quando uma asa está mais gravemente estagnada do que a outra. Os ailerons o deixarão ainda mais estagnado.

Leme


Com os ailerons removidos da equação, o leme torna-se a melhor ferramenta que o piloto possui para controlar a direção do voo. Além disso, o prop wash manterá o leme funcional em velocidades no ar muito baixas. Ao aplicar o leme total na direção oposta, o piloto pode interromper a rotação do giro.

Elevador


Um giro é fundamentalmente um estol agravado. A única maneira de se recuperar de um estol é reduzir o ângulo de ataque, e isso é feito movendo a coluna de controle para frente. Em um giro, isso pode parecer uma coisa muito anormal, já que o nariz da aeronave costuma estar apontado para baixo. Mas é a única maneira de sair dessa situação.

Se o giro for invertido, você terá que subir em vez de para baixo.


Chances de recuperação de rotação plana


Um avião pode se recuperar de um giro plano? A resposta é - nem sempre. E é exatamente por isso que as rotações planas são tão perigosas.

As etapas a serem experimentadas são as mesmas acima. Mas se não houver velocidade no ar para frente, provavelmente não haverá fluxo de ar sobre o elevador para forçar o nariz do avião para baixo.

Se a tentativa padrão de sair de um giro não funcionar, é hora de reescrever o livro . Para um giro plano onde nada mais está funcionando, tente adicionar potência para tornar o elevador e o leme mais eficazes.


Se isso não funcionar, o tempo está se esgotando. Você usou um paraquedas ? O avião tem paraquedas CAPS? Espero que sim - porque o tempo acabou.

Sério, peso e equilíbrio são super importantes. Pilotos - não saiam do solo sem verificar novamente. Para começar, não há razão para uma aeronave carregada corretamente entrar em um giro plano. E se chegar perto de estar em um, a recuperação deve ser fácil. É apenas ao voar “fora do envelope” que existe uma possibilidade.

Giros acrobáticos intencionais


Pilotos de acrobacias realizam acrobacias rotineiramente, incluindo giros planos simulados, para impressionar as multidões. Mas esses spins são fundamentalmente diferentes dos spins descritos acima. Esses giros são realizados com a aeronave carregada com muito cuidado dentro de seus limites.

Para obter a aparência e sensação de um giro plano, a potência é usada para nivelar a atitude de voo da aeronave durante um giro vertical normal. Mesmo assim, as forças que são aplicadas à fuselagem, ao motor e ao piloto são extremas durante tal manobra. Às vezes, a taxa de giro pode ser superior a 400 graus por segundo.

Treinamento de estol e giro


Os pilotos começam a praticar as técnicas de entrada e recuperação de estol no início das aulas de voo. Somente experimentando um estol um piloto pode entender os passos que precisa seguir para sair de um. E só experimentando isso o piloto pode começar a identificar os primeiros sinais de alerta de um avião estolando. Idealmente, esse treinamento os mantém longe de problemas no futuro.

A visão de dentro do avião é dramaticamente diferente durante um estol e durante um giro. Infelizmente, o treinamento de spin não é necessário para a maioria dos pilotos nos Estados Unidos. Os pilotos acrobáticos obtêm muita prática, mas muitos pilotos nunca giraram um avião. Um pouco de treinamento de spin é necessário para a licença de instrutor de voo, no entanto.

Existem muitas razões para esta falta de experiência, sendo que a menos importante delas são os riscos envolvidos. Os giros são exigentes nas aeronaves, e apenas aviões da categoria utilitários são aprovados para manobras de giro intencionais. Os aviões de categoria normal geralmente são marcados como "Não aprovado para giros".


É exatamente essa falta de prática física que torna o trabalho do livro importante. Sair dos giros não é difícil - em uma aeronave adequadamente balanceada, remover todas as entradas de controle do piloto e colocar a potência em marcha lenta deve fazer com que o avião comece sua recuperação por conta própria.

Mas, independentemente desses fatores, um piloto com uma base sólida de boas habilidades de manche e leme não deve ter problemas com giros de qualquer maneira. Ao manter velocidades e perfis de voo adequados, o avião nunca deve estar perto de estolar.

E ao reconhecer um estol e instituir a recuperação adequada bem antes do estol real, o piloto deve estar ainda mais longe de um giro. E por ter a aeronave carregada corretamente antes de um voo, um piloto não deve ter virtualmente nenhuma chance de entrar em um giro plano irrecuperável.

Este é o exemplo perfeito de como os pilotos reduzem o risco em voo devido a uma série de fatores. Nunca é uma coisa que um piloto faz que causa ou não um acidente. É uma cadeia de escolhas que deve ser feita para garantir a operação segura de uma aeronave.

Edição de texto e imagens por Jorge Tadeu (Site Desastres Aéreos)

Vídeo: PH RADAR 30 - Crash no taxi em Congonhas


Via Canal Porta de Hangar de Ricardo Beccari

Aconteceu em 12 de dezembro de 1991 - O dia em que um Boeing 747 virou um 'supersônico' e quase se desintegrou

Em 12 de dezembro de 1991, o avião cargueiro Boeing 747-121, prefixo N732PA, da Evergreen International Airlines, batizado "Clipper Storm King" (foto abaixo), estava a caminho do Aeroporto Internacional John F. Kennedy de Nova York (JFK) para Tóquio, no Japão, com uma parada intermediária no Aeroporto Internacional de Anchorage (ANC), no Alasca (EUA). O 747 levava seis tripulantes e nenhum passageiro.

Por volta das 5h20, horário padrão central (11h15 UTC), o 747 estava navegando no nível de voo 310 (31.000 pés / 9.449 metros) perto de Nakina, uma pequena vila de aproximadamente 150 milhas náuticas (278 quilômetros) a nordeste de Thunder Bay, Ontário, Canadá.

A tripulação de voo observou que as luzes de advertência de falha do Sistema de Navegação Inercial (INS) da aeronave estavam acesas. Verificando seus instrumentos, eles descobriram que o 747 havia entrado em uma margem direita de 90° e estava em uma descida de 30° –35°. O Boeing estava perdendo altitude rapidamente e ganhando velocidade.

Antes que a tripulação pudesse se recuperar, o N475EV havia perdido mais de 10.000 pés (3.048 metros) e teria atingido 0,98 Mach em seu mergulho. Depois de recuperar o controle do 747, a tripulação fez um pouso de emergência em Duluth, Minnesota, às 5h43, horário padrão central.

Na inspeção, um grande buraco, de aproximadamente 3 pés x 15 pés (0,9 x 4,5 metros), foi encontrado na ponta da asa direita, a bordo do motor número 3. Três painéis de folha de metal se rasgaram e atingiram o estabilizador horizontal direito, amassando sua borda dianteira. Ao pousar, um flap na asa esquerda caiu.

De acordo com um artigo no Seattle Times, um investigador do National Transportation Safety Board confirmou que o 747 havia excedido sua velocidade de projeto de Mach 0,92, mas como o Flight Data Recorder ainda não havia sido analisado, “ele não pôde confirmar relatos de que atingiu Mach 1,25.

O Seattle Times relatou o incidente: Mergulho! 747 em incidente inexplicado - Canadá investigando controles do piloto automático após susto quase supersônico.

As autoridades canadenses estão examinando os controles de voo automáticos de um jato jumbo Boeing 747-100 depois que o avião inexplicavelmente rolou 90 graus para a direita e mergulhou três quilômetros a uma velocidade quase supersônica.

O incidente ocorreu na última quinta-feira, quando o avião, um jato de passageiros convertido em cargueiro, voava a 31.000 pés acima de Nakina, Ontário, em um voo de Nova York para Anchorage. O jato pertence e é operado pela Evergreen International Airlines, com sede em McMinnville, Oregon.

Os pilotos endireitaram a nave a 22.500 pés, então fizeram um pouso de emergência seguro em Duluth, Minnesota.

Nenhum dos seis funcionários da Evergreen a bordo, incluindo a tripulação de vôo de três membros, ficou ferido, de acordo com Dave McNair, investigador do Conselho de Segurança de Transporte do Canadá.

McNair disse que os quatro motores turbofan do jato jumbo funcionaram corretamente. Ele disse que uma ampla investigação levará vários meses e incluirá um exame de computadores sofisticados projetados para pilotar o avião automaticamente durante a maior parte do voo.

“O que faremos é examinar toda a lógica do piloto automático e qualquer lógica associada”, disse ele.

Em algum ponto durante o incidente, três grandes painéis abaixo da borda dianteira da asa direita se rasgaram, deixando um buraco de 3 por 15 pés na seção dianteira interna da asa direita.

Os painéis danificaram a aba direita (localizada na borda posterior da asa) e amassaram a borda dianteira direita da seção horizontal da cauda, ​​de acordo com o porta-voz de McNair e Boeing, Chris Villiers. Ao pousar, parte do flap esquerdo também saiu, disse Villiers.

As autoridades disseram que não estava claro se os painéis da asa direita se soltaram primeiro e, assim, precipitaram o roll e mergulho, ou se as peças se soltaram quando o avião inclinou em um ângulo de descida de 30 a 35 graus - mais de três vezes uma taxa normal de descida. McNair disse que a idade da aeronave de 21 anos não é considerada um fator.

O 747-100 foi projetado para suportar uma velocidade máxima de Mach 0,92 - nove décimos da velocidade do som, ou mais de 500 milhas por hora naquela altitude. McNair disse que o avião atingiu velocidades mais rápidas do que durante o mergulho, mas ele não pôde confirmar relatos de que atingiu Mach 1,25, porque informações precisas do gravador de dados de voo não estavam imediatamente disponíveis.

O especialista em segurança de aviação de Tacoma, John Nance, ex-piloto do 747, disse que é plausível que o avião comece a se desintegrar assim que a velocidade ultrapassar o chamado "limite do projeto".

Nance descreveu os aviões a jato modernos como “cascas de ovo metálicas, muito fortes quando usadas exatamente como foram projetadas para ser usadas; muito fraco quando não.”

O incidente Evergreen ocorreu no mesmo dia em que o denunciante Darrell Smith, um ex-analista de computador do Boeing 747, tornou pública uma auditoria interna da Boeing delineando as principais falhas em um programa de software usado por um computador que detecta a posição das principais partes móveis do Boeing 747- 400, uma versão avançada do 747-100.

Funcionários da Boeing disseram que o computador que Smith analisou no 747-400 não existe no 747-100. O avião Evergreen foi um dos primeiros entregues da fábrica da Boeing em Everett em julho de 1970 para a Pan Am.

Mesmo assim, as alegações de Smith e o roll-and-dive do Evergreen adicionam uma série de casos nos últimos dois anos em que supostas ou aparentes falhas na tecnologia da Boeing se tornaram parte de um acalorado debate sobre segurança aérea:

"Em maio passado, um dispositivo de freio motor controlado eletronicamente, chamado reversor de empuxo, inexplicavelmente implantado quando um jato Lauda Air 767-300ER decolou de Bangkok, lançando o avião instantaneamente em um mergulho supersônico. Todos os 223 a bordo morreram".

As autoridades ainda não entendem completamente como um sinal elétrico perdido, vibração ou algum outro fenômeno pode ter acionado o reversor. Enquanto isso, a Boeing se recusou veementemente a responder a uma chamada do National Transportation Safety Board para atualizar as instruções do piloto sobre o que fazer se uma luz de advertência do reversor acender na cabine durante o voo. Reversores eletrônicos são usados ​​em todos os jatos da Boeing entregues nos últimos anos - quase 1.700 aviões ao todo.

Hoot Gibson, um ex-piloto da Trans World Airlines revelou nove reclamações de pilotos citando grandes problemas de controle em jatos Boeing 727 aparentemente relacionados a um mau funcionamento aleatório e misterioso do computador do piloto automático.

Gibson travou uma batalha de 12 anos com o NTSB e a Boeing para limpar seu nome das alegações de que ele fez um TWA 727 cair perigosamente de uma grande altitude ao tentar manipular inadequadamente os controles para melhorar o desempenho do avião. Gibson, que lutou contra o controle do avião no último minuto, afirma que uma falha no piloto automático desencadeou o mergulho.

"Em abril de 1990, o NTSB, baseando-se em dados técnicos e análises da Boeing, determinou que os pilotos do voo 5050 da USAir tomaram a decisão errada de abortar a decolagem de um 737-400 do aeroporto LaGuardia de Nova York em 20 de setembro de 1989. o piloto decidiu abortar a decolagem quando o avião deu uma guinada para a esquerda porque o leme estava preso totalmente à esquerda (O leme, a seção vertical da cauda, ​​deve estar em ponto morto para a decolagem).

O NTSB determinou que os pilotos deveriam ter notado o leme preso e, de qualquer forma, deveriam ter seguido a decolagem, mesmo com o leme preso. Dois passageiros morreram quando o avião caiu na Baía Bowery.

A decisão irritou os pilotos que sentiram pouco crédito devido a dezenas de relatos de problemas com um novo tipo de “compensação do leme”. Relatórios dos pilotos disseram que ele estava movendo o leme sem ser comandado para fazê-lo." (The Seattle Times, 19 de dezembro de 1991)

Um ano depois, o Chicago Tribune relatou: "Tom Cole, porta-voz da Boeing Commercial Airplane Co., disse que os testes de voo originais de 747s conduzidos em 1969 e 1970 levaram os modelos 747-100 a velocidades de Mach 0,99. Além disso, a Boeing conhece um caso em que um 747 operado pela Evergreen International fez uma descida de emergência a velocidades que ultrapassaram Mach 1, disse ele."

Após o incidente de dezembro de 1991, o N475EV foi reparado e voltou ao serviço. Mas esta não foi a primeira vez que o 19638 foi danificado.

Boeing 747 19638 (RA003) com um boom do nariz durante o teste de voo, 1969
(Jeff Ohlston / Boeing)

O Boeing 747-121, número de série 19638, número de linha RA003, fez seu primeiro vôo em 11 de julho de 1969. A Boeing usou a aeronave para testes de vôo e certificação. Após a conclusão desses testes, ele seria transportado para a fábrica da Boeing em Renton para ser modificado de acordo com os padrões de produção, reformado e, em seguida, entregue ao novo proprietário, Pan American World Airways.

Ao pousar na pista 15 do aeroporto Renton, às 11h11 do dia 13 de dezembro de 1969, o 19638 atingiu um aterro a cerca de 6 metros da pista. Nenhum dos 11 funcionários da Boeing a bordo ficaram feridos. Os motores número 3 e 4 foram danificados e pegaram fogo. O trem de pouso direito foi puxado para trás, mas preso à asa por ligações e atuadores. Os flaps da asa direita foram danificados. A superfície inferior da asa direita foi perfurada. Os incêndios foram extintos rapidamente.

Um videoclipe do acidente está disponível no YouTube:

O N732PA foi consertado e finalmente entregue à Pan American em 13 de julho de 1970. O 747 foi batizado de 'Clipper Storm King'. (Mais tarde, foi renomeado como 'Ocean Telegraph').

A Pan Am operou o avião por quase 21 anos. Foi vendido para a Evergreen International Airlines em 1° de julho de 1991 e convertido em cargueiro aéreo no depósito de manutenção da Evergreen em Marana, Arizona. Foi registrado novamente como N475EV.

Boeing 747-121, N732PA, Clipper Storm King da Pan American World Airways
(Aldo Bidini via Wikimedia)

A Evergreen voou N475EV até ser vendido para a Tower Air, em 13 de setembro de 1994. Sob nova propriedade, o Boeing 747 foi novamente registrado, para N615FF.

A FAA registrou o 747 para Kalitta Equipment LLC, 3 de agosto de 2000. O número N não mudou. O registro do avião foi cancelado em 30 de junho de 2017.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipédia e This Day in Aviation

Aconteceu em 12 de dezembro de 1986: Voo Aeroflot 892 Erro de comunicação provoca tragédia em Berlim Oriental


Em 12 de dezembro de 1986, o Tupolev Tu-134A, prefixo CCCP-65795, da Aeroflot, partiu para realizar o voo 892, um voo internacional regular de passageiros de Minsk, na Bielorrússia, para a então Berlim Oriental, na Alemanha, levando a bordo 73 passageiros e nove tripulantes.

Um Aeroflot Tu-134A , semelhante ao envolvido no acidente
Os tripulantes do voo 892 eram: Comandante da aeronave (CPS) Anatoly Vasilevich Bagalyubov; copiloto MV Andruh; Navegador V. P. Dilyonak; Engenheiro de voo Aleksey Makarovich Zhukau; Cartógrafo Anatoly Ryhorovich Feaktistov e o Inspetor VA Kolasov. Duas aeromoças trabalhavam na cabine do avião: Irina Ivanovna Belazerova e Tatsiana Yevgenauna Raskazava.

Devido às condições climáticas adversas, o voo programado de Minsk para Berlim Oriental foi desviado para Praga, na República Tcheca. Assim que o tempo em Berlim melhorou, o voo decolou para o destino original. 

Na chegada, as condições permitiam apenas um pouso ILS. O controlador do aeroporto autorizou o voo para pousar na pista 25L (esquerda), mas quando a aeronave estava entrando na aproximação final, as luzes da pista 25R (direita), que estava em reforma no momento e estava fechada, foram acesas. 

O controlador avisou a tripulação em inglês que se tratava de um teste, mas devido à falta de proficiência da língua inglesa entre os tripulantes da Aeroflot, o operador de rádio entendeu que isso significava que o avião deveria pousar na pista 25R. 

O piloto desligou o piloto automático e manualmente mudou o curso para a pista 25R, que estava 460 metros à direita da pista 25L e 2.200 metros mais próximo da posição da aeronave. O erro foi percebido em solo, mas os avisos passaram despercebidos por algum tempo devido a discussões entre a tripulação. O sinal ILS caiu. 

Assim que a tripulação percebeu seu erro, eles mudaram rapidamente de curso e acionaram o piloto automático, mas sem aumentar o impulso dos motores da aeronave. 

O Tu-134 estagnou e atingiu árvores a cerca de 3 km da cabeceira da pista 25L. Com o impacto, o combustível nos tanques da aeronave pegou fogo.

Os serviços de resgate encontraram 12 sobreviventes, mas dois morreram posteriormente no hospital. Ao todo, todos os 9 membros da tripulação e 63 passageiros (incluindo 20 dos 27 alunos da classe 10A do Schwerin ensino médio) perderam suas vidas.


O povo de Berlim soube da queda do avião já às 19h30 CET no noticiário "Aktuelle Kamera", a mensagem sobre a queda do avião não durou mais de 30 segundos, que após um obituário de 6 minutos sobre a morte de Paul Ferner, um político alemão membro do Politburo, fez com que muitas pessoas ouvissem a mensagem. O jornal soviético "Pravda" também se limitou a uma breve nota.


Mas essas mensagens curtas foram suficientes para espalhar rumores pela cidade de que a suposta tripulação russa estava bêbada ou que o avião estava com defeito. Como resultado, surgiram sentimentos anti-soviéticos na cidade, por isso, no dia do funeral, 18 de dezembro, o movimento dos soldados soviéticos foi restringido e as suas famílias não foram recomendadas a sair de casa.


Foi determinado que as instruções transmitidas pelo ATC na final curta foram inesperadas pela tripulação de voo que tomou decisões erradas. Como outra aeronave da transportadora nacional húngara Malev também estava se aproximando do aeroporto de Berlim, as mensagens ATC foram transmitidas em inglês na frequência, e certos elementos das diferentes mensagens foram mal interpretados pelos diferentes membros da tripulação soviética. 


Neste ponto, foram relatados os seguintes fatores contribuintes:
  • Falta de coordenação da tripulação,
  • Ausência de verificações cruzadas e controles mútuos nas várias ações,
  • Dificuldades de compreensão da fraseologia em inglês,
  • Falta de conhecimento e experiência na aplicação das regras relacionadas com transmissão de rádio durante voos internacionais.
Considerando a situação, o capitão deveria ter tomado a decisão de iniciar um procedimento de arremetida, todas as condições de segurança sendo claramente não atendidas.


Em decorrência da identificação dos culpados do desastre por culpa da tripulação, na presença de inspetor da unidade de aviação com controle do trabalho da tripulação e informações inoportunas (inesperadas) do comandante do voo no momento de pouso, o navegador-chefe da UGA bielorrussa  — Leonid Dzimidovich Lagun, por culpa indireta, foi transferido para o navegador da primeira classe da Força Aérea de Minsk. O chefe de gestão da BUGA — V. M. Kuril foi repreendido pelo Ministério dos Assuntos Civis (MGA).

Em 2010, a 500 metros do local do desastre nos arredores de Borndorf, onde passa a fronteira entre Berlim e Brandemburgo, foi erguida uma placa memorial. 

Em 2021, a placa foi desmontada e em seu lugar foi instalado um pequeno estacionamento para bicicletas. Isto deveu-se aos problemas psicológicos dos residentes da zona, nos céus sobre os quais o tráfego aéreo aumentou acentuadamente após a abertura do Aeroporto de Berlim-Brandenburg em 2020 e a transferência completa dos voos para ele a partir do fechado Aeroporto de Berlim Tegel.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipédia, ASN e baaa-acro

Vídeo: Mayday Desastres Aéreos - Voo Arrow Air 1285ㅤᅠᅠA Última Missão


Aconteceu em 12 de dezembro de 1985: Voo Arrow Air 1285 - Missão Final


No dia 12 de dezembro de 1985, o McDonnell Douglas DC-8-63C, prefixo N950JW, da Arrow Air, realizou o voo 1285 transportando tropas da 101ª Divisão Aerotransportada do Exército dos EUA colidiu com uma floresta segundos após a decolagem do Aeroporto Gander em Newfoundland, no Canadá, matando todas as 256 pessoas a bordo.

O DC-8 N950JW, da Arrow Air, envolvido no acidente

A investigação foi deixada com muito poucas pistas para examinar devido a gravadores de voo desatualizados e com defeito e, como resultado, os investigadores do Conselho de Segurança Aérea Canadense não conseguiram chegar a uma conclusão unânime sobre o que derrubou o avião. Cinco determinaram que o acidente foi causado por gelo em conjunto com o excesso de peso, enquanto quatro culparam uma explosão a bordo de origem desconhecida. 

Este artigo examina as evidências a favor e contra as duas principais teorias, com evidências e eventos postulados pela maioria e as opiniões minoritárias referidas como “maioria” e “dissidência”, respectivamente. Este é um artigo muito mais técnico do que o normal. Esteja preparado! Se você estiver no celular, não se esqueça de expandir o álbum para além do slide 10. Imagens provenientes de The Compass, DVIDS, Pedro Aragão, NTSB, Wikipedia, The Telegram, CTV News, FOX31 Denver e WKMS. Clipes de vídeo cortesia da Cineflix.

Em 1985, a 101ª Divisão Aerotransportada do Exército dos EUA, um prestigioso grupo de paraquedistas, foi destacada para uma operação de manutenção da paz na península do Sinai, no Egito. 

Perto do final do ano, a operação seria transferida para um novo grupo de soldados, e o exército planejava enviar as tropas em etapas de volta para casa em Fort Campbell, Kentucky, para passar o feriado de Natal com suas famílias.


O exército contratou uma companhia aérea fretada civil chamada Arrow Air para transportar os soldados em três viagens: pessoal casado nas duas primeiras, seguido por solteiros na terceira, calculando que quem tinha família tinha o direito de voltar para casa mais cedo. O voo em questão foi o segundo desses três.

Para os três voos, a Arrow Air forneceu um McDonnell-Douglas DC-8, um jato quadrimotor construído em 1969 que podia transportar cerca de 260 passageiros. No final das contas, 248 passageiros e oito tripulantes embarcaram no voo 1285 da Arrow Air no Cairo, Egito. 

A dissidência observou que nem toda a bagagem foi inspecionada e que aviões militares fretados haviam sido usados ​​para contrabandear “contrabando explosivo” dentro dos Estados Unidos no início daquele ano. 

Afirmou que era possível que terroristas colocassem um artefato explosivo na bagagem durante a escala de cinco horas no Cairo, ou que o avião estivesse sendo usado para transportar ilegalmente explosivos perigosos de volta aos Estados Unidos como "lembranças" pelos soldados (como foi considerado o caso em um dos incidentes anteriores). A maioria não encontrou evidências de qualquer tipo de explosivo a bordo da aeronave.

O voo 1285 voou primeiro para Colônia, Alemanha Ocidental, depois cruzou o Atlântico para Gander, em Terra Nova. Isso porque o DC-8 não tinha capacidade de combustível para cobrir toda a distância do Cairo a Fort Campbell sem parar para reabastecer. 

O voo 1285 se aproximou de Gander por volta das cinco horas da manhã. O tempo na época era uma chuva congelante muito leve. A maioria descobriu que isso era suficiente para criar uma camada de gelo muito fina, semelhante a uma lixa, que não seria perigosa em circunstâncias normais e provavelmente não seria detectável sem uma inspeção cuidadosa. Uma investigação não-oficial alegou que não havia evidência de gelo no avião.


O avião pousou em Gander e se preparou para uma escala de 90 minutos. Os passageiros desembarcaram; alguns ligaram para suas famílias em Kentucky para avisar que logo estariam em casa, enquanto a tripulação organizava o reabastecimento e inspecionava visualmente o avião. 

Enquanto o DC-8 estava reabastecendo, dois Boeing 737 decolaram de Gander e não relataram nenhum gelo em suas asas. A dissidência argumentou que isso era evidência de falta de gelo em geral; no entanto, a maioria afirmou que o gelo não era suficiente para causar problemas por conta própria e, portanto, teria escapado à atenção das tripulações de voo.

No entanto, havia outro fator em jogo que era exclusivo do voo da Arrow Air: o avião era mais pesado do que os pilotos esperavam. Eles haviam calculado seu peso de decolagem com base nas médias da aviação fornecidas para os passageiros e suas bagagens, mas isso deixou de levar em conta o fato de que um voo com militares não estaria em conformidade com essas médias. 


Como os passageiros eram quase todos homens grandes com equipamentos e armas militares anormalmente pesados, eles subestimaram o peso do avião em pelo menos 5.400 kg, com base nos pesos reais dos passageiros obtidos de seus registros médicos, bem como registros do peso de suas bagagens no voo de ida no início daquele ano. Esses números seriamente distorcidos afetaram os cálculos que os pilotos fizeram para determinar as configurações de empuxo e as configurações de superfície de controle necessárias para a decolagem.


O avião estava voando com um peso gravemente subestimado desde o Cairo, então isso não foi o suficiente para causar um acidente por conta própria. Mas, de acordo com o relatório da maioria, quando o avião decolou de Gander naquela manhã, a combinação do gelo nas asas prejudicando a sustentação do avião e o peso calculado incorretamente foram suficientes para causar um efeito negativo severo no perfil de voo. 

Sabe-se que o avião levou quatro segundos extras para atingir a velocidade de decolagem acima do esperado e usou 330 metros extras (1000 pés) de pista. O que aconteceu a seguir não pode ser conhecido com precisão devido à falta de informações das caixas pretas. Em vez disso, é fornecida uma descrição dos eventos de acordo com cada teoria.

De acordo com a maioria, logo após a decolagem, o empuxo insuficiente mostrou-se baixo para permitir a subida do avião. O avião atingiu uma altitude máxima de não mais que 125 pés antes de nivelar e começar a descer. Os dados sugerem que os pilotos não tentaram aumentar ainda mais sua velocidade no ar ou foram incapazes de fazê-lo. 


Cinco segundos após a decolagem, o avião começou a estolar. Os pilotos parecem ter puxado o nariz para cima em um esforço para evitar árvores, piorando o estol. O avião não caiu imediatamente porque o terreno desce do final da pista, então o DC-8 desceu logo acima do topo das árvores, descendo o perfil da colina em um ângulo de nariz de 18 graus. 

O avião voou direto sobre a Rodovia Trans-Canada, onde vários motoristas testemunharam a descida do avião, antes de se chocar contra as árvores perto da margem do Lago Gander. 

Os tanques de combustível se romperam com o impacto, provocando uma enorme explosão enquanto o avião avançava pela floresta. A fuselagem se partiu na colisão violenta e o fogo rapidamente rasgou as seções restantes, matando todas as 256 pessoas a bordo.


A avaliação dos eventos pela dissidência é radicalmente diferente. De acordo com os investigadores dissidentes, segundos após a decolagem, ocorreu uma explosão, provavelmente no porão de carga à frente das asas. 

A explosão e o incêndio subsequente destruíram a maioria dos sistemas da aeronave, incluindo linhas hidráulicas e controles do motor. Todos os motores começaram a perder potência e a aeronave começou a inclinar para a direita enquanto os pilotos lutavam para recuperar o controle do avião. A fumaça invadiu a cabine. A aeronave paralisada desceu pela Rodovia Trans-Canada e bateu em árvores, destruindo completamente a aeronave e matando todos a bordo.


Como os investigadores podem chegar a conclusões tão divergentes torna-se aparente ao examinar as poucas evidências que puderam ser coletadas. Infelizmente, o gravador de voz da cabine de comando apresentou defeito e não registrou nada de valor. O gravador de dados de voo era um modelo antiquado dos anos 1960 que registrava apenas quatro parâmetros de voo, fazendo marcas em uma folha de metal que girava lentamente. Cerca de metade desses parâmetros não foram registrados corretamente.

Como resultado, as conclusões só puderam ser tiradas da análise dos destroços carbonizados, resultados da autópsia, depoimentos de testemunhas oculares e uma pequena quantidade de dados rudimentares sobre altitude, velocidade do ar e direção.

O primeiro de vários exemplos de interpretações divergentes das evidências disponíveis reside nos resultados da autópsia. A maioria descobriu que, com base nos ferimentos conhecidos dos 256 passageiros e tripulantes, 41 provavelmente morreram instantaneamente devido aos ferimentos, 51 provavelmente morreram dentro de 30 segundos após receberem seus ferimentos e 148 provavelmente morreram entre 30 segundos e 5 minutos após receberem seus ferimentos (dos quais 31 morreram devido ao incêndio em vez de ferimentos por impacto). 


Os investigadores descobriram que o monóxido de carbono e o cianeto de hidrogênio, dois produtos químicos consistentes com a inalação de fumaça, estavam presentes apenas no sangue daqueles que não morreram instantaneamente. Em 39 casos em que a fuligem foi encontrada na garganta, 38 morreram pelo menos 30 segundos após o impacto e nenhum morreu instantaneamente. 

Essas descobertas mostraram que não havia fogo a bordo antes do acidente, porque se houvesse, então haveria evidência de inalação de fumaça em passageiros que morreram no momento do impacto. 

Os dissidentes questionaram toda a metodologia do experimento, argumentando que não foi possível determinar quanto tempo levou para um passageiro morrer após receber seus ferimentos, ou se eles continuaram a respirar e, assim, inalar a fumaça. 

Eles observaram que os relatórios de autópsia iniciais sugeriram que todos os passageiros morreram no impacto, caso em que a presença de cianeto de hidrogênio e monóxido de carbono no sangue dos passageiros deve indicar um incêndio durante o voo. 

Isso foi apoiado pela destruição total da aeronave, que os dissidentes argumentaram que eram evidências de forças G insuperáveis ​​no impacto que teriam matado instantaneamente todos os passageiros. 

O segundo ponto de divergência estava nos depoimentos de testemunhas oculares. Várias pessoas viram o acidente, incluindo vários caminhoneiros na rodovia Trans-Canada, bem como o controlador de tráfego aéreo no Aeroporto Gander. 

O relatório da maioria não sugere que qualquer uma das testemunhas tenha visto fogo na aeronave, mas que eles viram uma luz forte consistente com a iluminação normal da aeronave. 


A dissidência incluiu muito mais detalhes em sua análise do depoimento de testemunhas oculares, citando várias testemunhas que afirmam ter visto fogo do lado de fora do avião. Eles também incluíram depoimentos de testemunhas oculares que descreveram o avião voando na altura do nariz, em vez de na altura do nariz. 

Dois outros depoimentos também afirmaram não ter ouvido nenhum ruído de motor, corroborando o argumento dos dissidentes de que a explosão cortou a força dos motores. E a dissidência também publicou o depoimento de uma testemunha que afirmou ter havido duas explosões, uma antes do acidente e outra depois. 

Na maioria dos acidentes, o depoimento de uma testemunha ocular tem pouco peso devido à sua imprecisão, mas, neste caso, deve ser considerado devido à falta de outras evidências.


O terceiro ponto de divergência eram os próprios destroços, principalmente os motores. Não foi contestado que o dano rotacional mostrou que os motores estavam girando no momento do impacto. 

No entanto, os dissidentes alegaram que, como o acidente aconteceu logo depois que os motores perderam a potência, eles ainda estavam girando quando o avião atingiu o solo. Eles apoiaram essa afirmação observando que os eixos da turbina não estavam torcidos, mostrando que os motores não estavam de fato produzindo potência no momento do impacto. 

No entanto, a torção do eixo da turbina estava ausente apenas em dois dos quatro motores, e a maioria argumentou que esses motores atingiram o solo de uma maneira que não aplicou torque suficiente para que a torção ocorresse. A torção do eixo da turbina foi definitivamente descoberta em pelo menos um motor. 

Além disso, os dissidentes usaram evidências fotográficas para afirmar que havia evidências de “pétalas” externas em alguns dos destroços de metal que seriam consistentes com uma explosão que os lançaria para fora. A maioria argumentou que isso ocorreu durante o impacto. 

A maioria também observou que a autópsia não encontrou nenhuma evidência de estilhaços explosivos dentro dos corpos dos passageiros, enquanto os dissidentes argumentaram que esses tipos de ferimentos poderiam ter sido facilmente mascarados por ferimentos sofridos no impacto segundos depois. 

Nenhum resíduo explosivo foi encontrado no avião, o que a dissidência declarou ser "esperado" devido ao "desgaste" dos detritos antes do teste. E, finalmente, nenhuma evidência de destroços antes do local do acidente foi encontrada, sugerindo que não houve uma explosão enquanto o avião estava no ar.

Os dois lados também não chegaram a um acordo sobre os movimentos do avião enquanto estava no ar. A maioria determinou a inclinação do avião examinando como as árvores foram cortadas e calculou um ângulo de inclinação de 18 graus. 

A dissidência argumentou que isso não era apoiado por depoimentos de testemunhas oculares ou pela técnica de pilotagem básica, que exigiria que os pilotos apontassem o nariz para baixo se tivessem velocidade insuficiente (devido a um estol ou perda de potência do motor). 

No entanto, acidentes posteriores mostraram que pilotos experientes às vezes apontam o nariz para cima durante um estol, embora seja óbvio que não deve fazer isso. A maioria também atribuiu picos aleatórios nos parâmetros de dados de voo à vibração física da agulha devido ao “estolagem”, uma vibração séria que ocorre quando um avião está estolando. A dissidência rejeitou isso abertamente, alegando que os picos poderiam ser causados ​​por vibrações normais de decolagem. 


A dissidência também argumentou que a inclinação lenta para a direita foi devido a uma perda de controles de voo, enquanto a maioria observou que um desvio de rumo frequentemente ocorre durante estol em aeronaves de asa aberta como o DC-8.

Com relação ao gelo nas asas, como afirmado anteriormente, a dissidência alegou que não havia evidência de gelo, e que era ridículo acreditar que uma quantidade tão pequena de gelo, como sugerido pela maioria, pudesse afetar seriamente a aerodinâmica do avião. 

No entanto, acidentes posteriores, particularmente a queda do voo 1713 da Continental Airlines em 1987 (foto acima), mostram que uma fina camada de gelo transparente pode ser extremamente difícil de detectar e até 0,9 mm foi suficiente para causar desempenho reduzido no McDonnell-Douglas DC- 9, outra aeronave do mesmo fabricante. 

Em 1985, o congelamento de aeronaves não era bem compreendido e parece provável que a dissidência simplesmente não estava ciente da capacidade de uma quantidade extremamente pequena de gelo causar sérios problemas, especialmente em conjunto com peso excessivo, como no voo 1285 da Arrow Air, ou ângulo de decolagem excessivo,

Houve vários outros pontos de desacordo também. A dissidência alegou que os bombeiros relataram explosões contínuas até 40 minutos após o acidente, e notou que um incêndio não poderia ser apagado por 23 horas. Afirmaram que se tratava de evidência de material explosivo ou armamento transportado a bordo da aeronave. 

Armas carbonizadas recuperadas dos destroços da aeronave

Eles também alegaram que se a tripulação estivesse em uma situação em que a velocidade no ar fosse baixa, eles teriam levantado o trem de pouso, mas não o fizeram, sugerindo que não puderam fazê-lo devido à falha hidráulica proposta anteriormente. 

Além disso, um ou dois dias após o acidente, o grupo terrorista Jihad Islâmica assumiu a responsabilidade. A maioria sentiu que provavelmente estava além da capacidade do grupo explodir um avião em Newfoundland, enquanto os dissidentes sentiram que estava ao seu alcance e deram à reivindicação um peso considerável. 

No entanto, isso contradiz outras evidências apresentadas pelo dissidente, que eram mais consistentes com a detonação acidental de uma arma explosiva contrabandeada a bordo do avião, incluindo evidências fotográficas produzidas pelo dissidente para mostrar que cartuchos de morteiros e outras armas foram encontrados nos destroços.

É difícil saber o que fazer com essas descobertas e, devido à falta de evidências, a verdade provavelmente nunca será determinada. O amargo conflito entre os dois campos nunca foi resolvido. 


A maioria criticou a dissidência como uma teoria da conspiração infundada que carecia de evidências e metodologia adequadas, uma declaração à qual a dissidência se ofendeu seriamente, acusando a maioria de um acobertamento, bem como de uma investigação incompleta que evitou deliberadamente a explicação mais simples para o acidente . 

Devido à decisão dividida e à subsequente quebra da ordem profissional entre os investigadores, o CASB foi dissolvido e substituído pelo Transportation Safety Board, que agora é o principal órgão de investigação de acidentes aéreos no Canadá.


O relatório da maioria pediu grandes mudanças nos procedimentos de descongelamento e uma maior conscientização sobre os perigos do gelo. Infelizmente, esta mensagem não teve o impacto que os investigadores esperavam, devido à falta de uma decisão unânime. 

Foram necessários mais acidentes como o Continental 1713, o voo 1363 da Air Ontario e o voo 405 da USAir antes que os pilotos e as companhias aéreas começassem a adotar uma atitude mais rígida em relação ao gelo nas asas.

Em Fort Campbell, Kentucky, o Memorial homenageia os 248 soldados perdidos no acidente

Independentemente de saber se o gelo realmente causou o desastre do Arrow Air, esses avisos foram úteis e a maioria dos investigadores lamenta que o relatório tenha tido pouco impacto. 

The "Silent Witness", do artista de Kentucky Steve Shields. Memorial do voo 1285 da Arrow Air
no Lago Gander, com um DC-8 decolando ao fundo (Wikimedia)

Os investigadores dissidentes não são tão simpáticos. Nas palavras de Les Filotas, um dos quatro membros da dissidência, “Não é benéfico para a segurança aérea obter a causa errada de um acidente”. Se a maioria estava de fato errada é um assunto que sempre estará em debate.

Aconteceu em 12 de dezembro de 1968: Voo Pan Am 217 Acidente fatal na Venezuela - Tubarões atacam as vítimas


Em 12 de dezembro de 1968, o Boeing 707-321B, prefixo N494PA, da Pan American World Airways (Pan Am), denominado "Clipper Malay" (foto acima), realizava o voo 217 entre Nova York, nos Estados Unidos, e Caracas, na Venezuela.

A aeronave tinha menos de um ano. Seu primeiro voo havia acontecido em 7 de março de 1968 e foi entregue à Pan Am em 28 de março. Havia nove membros da tripulação, incluindo oito dos Estados Unidos e um da Suécia. O capitão tinha 50 anos e 24.000 horas de voo de experiência, incluindo 6.737 horas no Boeing 707.

Às 16h40 de quinta-feira, 12 de dezembro de 1968, a aeronave decolou do Aeroporto Internacional John F. Kennedy de Nova York em um voo programado para o Aeroporto Internacional Simon Bolivar de Caracas, na Venezuela, levando a bordo 42 passageiros e nove tripulantes. Seu pouso estava previsto para as 21h05, mas nunca chegaria ao destino.

Quando faltavam apenas 29 km para pousar e o avião estava voando em “aproximação e descida” a 1.800 pés acima do Caribe, a torre de controle perdeu contato. Às 21h50 ele foi declarado “desaparecido” e uma busca por mar e ar foi ativada.

Às 22h05, horário local, a aeronave caiu no Mar do Caribe e explodiu. 


Uma primeira testemunha afirmou ter visto um avião cair em chamas no mar. A Pan Am alegaria mais tarde que o capitão Sidney Stillwaugh não relatou nenhuma emergência. A companhia aérea não sofria nenhum acidente na América Latina nos últimos 15 anos.


Nesse momento, foi feita uma ligação à Marinha da Venezuela para a busca da aeronave. Os destroços do Boeing 707 foram encontrados a 11,4 mi (18,3 km) de Caracas. Todos os 51 passageiros e tripulantes morreram no acidente.


Uma das passageiras que morreram no acidente do voo 217 foi Olga Antonetti, ex- Miss Venezuela, que viajava com sua filha pequena, Liliana Dugarte Antonetti.  Também foi morto Rafael Antonio Curra, pioneiro dos estudos oceanográficos na Venezuela e professor universitário, e Mariela Zambrano, diplomata e poliglota venezuelana que retornou à Venezuela após completar um estágio nas Nações Unidas.


Muitos parentes e amigos já estavam em Maiquetía esperando por eles, mesmo sem saber com certeza absoluta se haviam embarcado. Por exemplo, num portal de Internet alguém comentou que a sua mãe, Gladys Delgado, tinha perdido o avião, mas a sua família não sabia e ainda desceram ao aeroporto para procurá-la e lá entraram em pânico quando souberam da tragédia .


Várias aeronaves e barcos, tanto navais como civis, foram empregados na operação de busca e recuperação. Alguns relatórios afirmam que muitos corpos foram comidos por tubarões. O acidente foi o desastre de aviação mais mortal que ocorreu na Venezuela até aquele momento, mas foi superado pelo voo 742 da Viasa em 1969.

A Boeing, fabricante do avião, foi a primeira a oferecer, depois de algum tempo, um primeiro relatório dedicado ao desenvolvimento e ao resultado de suas próprias investigações baseadas no interesse e na necessidade de especificar por que o 707, cujos destroços que caíram no mar, foram resgatados e não mostraram anomalias que levassem a deduzir qualquer falha mecânica ou estrutural do tetra reator quase parcialmente ocupado.

Placa memorial, na 8th Avenue, em Nova York
Acredita-se que a causa do acidente tenha sido um erro do piloto resultante de uma ilusão de ótica, criada pelas luzes da cidade de Caracas em uma encosta. Isso pode ter feito a tripulação descer até bater no mar, com a perda de todos a bordo. 

No entanto, o National Transportation Safety Board, NTSB, concluiu de forma diferente e declarou oficialmente que a causa provável era indeterminada.

O livro "The Lost Lives of the Clipper Malay" fornece detalhes da aeronave, o acidente e o longo processo de recuperação dos corpos dos nove membros da tripulação e 42 passageiros. 

A recuperação durou mais de um mês. O livro também fornece um relato biográfico de cada uma das cinquenta e uma vítimas.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipédia, ASN e josephclan.com

Passageira morre em voo que saiu de Brasília para Miami

Uma passageira morreu em um voo que saiu do Aeroporto de Brasília com destino à Miami, nos Estados Unidos, nesta terça-feira (10). A companhia aérea Gol confirmou a morte.


"A GOL se sensibiliza pelo ocorrido e informa que todos os procedimentos previstos para casos como este foram realizados de acordo com o preconizado pelos órgãos reguladores internacionais", diz nota enviada pela companhia aérea.

Segundo relato divulgado em uma rede social, a mulher passou mal durante a viagem e foi atendida por dois médicos passageiros a bordo do Boeing 737-8 MAX, prefixo PS-GRA, da Gol, mas ela não resistiu. De acordo com o passageiro, o avião pousou no aeroporto de Miami com a mulher já sem vida.

Relatos de passageiros indicam que os comissários de bordo solicitaram ajuda de algum passageiro que fosse médico. Duas pessoas que estavam no voo se apresentaram para o resgate e realizaram os procedimentos de emergência,


O que diz a Gol

"A GOL informa que durante o voo G3 7748, entre Brasília (BSB) e Miami (MIA), realizado nesta terça-feira (10/12), uma passageira passou mal e, infelizmente, faleceu a bordo. A aeronave pousou na cidade americana às 15h55 (hora local). A GOL se sensibiliza pelo ocorrido e informa que todos os procedimentos previstos para casos como este foram realizados de acordo com o preconizado pelos órgãos reguladores internacionais.”

Via g1 e O Globo

Você já voou no avião McDonald's?

Você já desejou um Big Mac enquanto voava, em vez da refeição padrão da companhia aérea? Em 1996, aconteceu muito bem - não apenas o Big Mac, mas um jato inteiro do McDonald's. Como isso aconteceu?

Em abril de 1996, uma transportadora suíça, a Crossair (LX), entregou seu Mcdonnell Douglas MD-83 a uma operadora de turismo local que operava com a Hotelplan, destinada a levar famílias em férias. As duas empresas fizeram parceria com a icônica rede de fast food e trabalharam juntas em um projeto especial naquele ano, e assim nasceu o McPlane.

“Aqui é o seu capitão falando no voo McPlane de Zurique para Palma. Big Macs e milkshakes agora serão servidos”, relatou o The Independent na época.


O McPlane


O tipo era originalmente um MD-81 e ingressou na Swiss em 1991, com o registro HB-IUH. Mais tarde, depois de modificado e convertido no MD-83, foi para o Crossair.

A conversão ocorreu em Shannon, na Irlanda, assim como a atraente pintura que apresentava o icônico “M” do rei do fast food na cauda. Os assentos padrão estavam fora e no lugar havia 161 assentos vermelho-ketchup brilhante. Cada encosto de cabeça também tinha o “M”.

Dito e feito, o primeiro voo do McPlane decolou de Basel, Suíça (BSL) para Heraklion, Grécia (HER), em abril daquele ano. o McPlane estaria em voo ativo para pontos turísticos em todo o Mediterrâneo europeu.


Mas por que não havia batatas fritas?


Além do Mc Nuggets, uma variedade de hambúrgueres do McDonald's estava disponível como parte da experiência geral. Mas nenhuma refeição do McDonald's está completa sem batatas fritas!

Conforme declarado pelo The Independent, “No entanto, batatas fritas grandes estarão fora de questão no Flying McDonald's. A empresa está ansiosa para evitar um incêndio no chip pan a 30.000 pés, e o serviço de balcão será substituído por refeições convencionais em um prato.”

A experiência foi uma delícia para qualquer criança que voou; um monte de brinquedos e materiais foram distribuídos em cada voo, e a melhor parte foi que as crianças puderam entrar na cabine para uma visita.

Edição de texto e imagens por Jorge Tadeu (com Airways Magazine)