Mostrando postagens com marcador Tecnologia. Mostrar todas as postagens
Mostrando postagens com marcador Tecnologia. Mostrar todas as postagens

terça-feira, 16 de dezembro de 2025

A NASA também tem o seu: avião do vômito da Nasa foi usado para treinar astronautas e gravar filmes

'Cometa vômito', avião da Nasa para experiências e treinamentos com gravidade zero (Foto: Alan Wilson)
Sentir enjoos em um avião não é uma das melhores sensações que se pode ter em um voo. Isso é tão comum que as companhias aéreas até disponibilizam os famosos saquinhos de vômito para seus clientes.

Isso é um efeito colateral, ou seja, não é o que se deseja que aconteça em um voo. Entretanto, um avião da Nasa, a agência espacial americana, é famoso justamente por causar enjoos nos seus passageiros devido à maneira como ele voa.

Apelidada de "cometa vômito", essa aeronave foi utilizada para simular ambientes com gravidade zero, como no espaço. Durante décadas ela serviu para o treino de astronautas dos programas espaciais dos EUA.

Apollo 11: Buzz Aldrin, segundo homem a pisar na lua, treina a bordo do avião do vômito,
um KC-135 adaptado (Imagem: Nasa)

Funcionamento


O avião do vômito não é um único avião em particular, mas um conjunto de aeronaves que tinham finalidade de simular a gravidade zero ou microgravidade. Para isso, era preciso voar em parábolas, subindo o avião em um ângulo de 45° e, depois, fazendo um mergulho com o nariz (ponta dianteira) inclinado também 45° em direção ao solo.

Imagem mostra como funcionam as parábolas de gravidade zero do avião do vômito
(Imagem: Tradução/Alexandre Saconi)
Durante a subida, a força da gravidade pode ser até duas vezes maior do que a que alguém sente na superfície da Terra. Quando chega ao ápice da parábola, a sensação é de gravidade zero, e é possível "flutuar" dentro desses aviões.

Cada um desses ciclos de voo dura cerca de 65 segundos, mas a gravidade zero só ocorre durante 25 segundos, sendo necessário recomeçar a operação. Em um único voo, são feitas dezenas de parábolas como parte do treinamento de missões espaciais.

"Cometa vômito" no cinema


O avião da Nasa também já foi usado em gravação para o cinema. O longa "Apollo 13 - Do Desastre ao Triunfo" (Universal Pictures, 1995), estrelado por Tom Hanks, Kevin Bacon e Bill Paxton, teve suas cenas gravadas a bordo do "cometa vômito".

Os atores Bill Paxton, Kevin Bacon e Tom Hanks em cena de 'Apollo 13', que foi gravado no
 'cometa vômito' (Imagem: Reprodução)
A Nasa colaborou emprestando o avião para a produção gravar as cenas. Foram centenas de tomadas feitas, já que a duração da gravidade zero era muito curta.

Modelos

Detalhe no nariz do Boeing KC-135 N931NA, o 'cometa vômito', explica manobra de
zero gravidade (Imagem: Clemens Vasters)
Embora a Nasa já tenha usado outros aviões, como o C-9 e o C-131, o "cometa vômito" mais conhecido foi o KC-135 Stratotanker, da Boeing. O modelo passou a ser usado na década de 1960, e foi aposentado nos anos 2000.

Originalmente fabricado para realizar reabastecimento aéreo, ele também é capaz de fazer operações aeromédicas. Ao todo, cinco exemplares do Stratotanker foram adaptados para voos de simulação de gravidade zero.

Ele é um quadrimotor que pode pesar até cerca de 140 toneladas e voar a até 15 quilômetros de altitude. Esse modelo adaptado do KC-135 também pode voar a uma distância de até 4.800 km e atingir uma velocidade de 940 km/h.

Hoje esses dois exemplares estão expostos no Museu Pima do Ar e Espaço e, outro, na base aérea Ellington Field, em Houston (EUA). Atualmente, a Nasa usa o serviço de empresas particulares para fazer treinamentos e experiências com gravidade zero.

Ed Mitchell e Al Shepard, astronautas da Apollo 14, treinam a bordo do
'cometa vômito' da Nasa (Imagem: 4.nov.1970/Nasa)
Por Alexandre Saconi (UOL)

Voo Parabólico: Como Zero G é alcançado em aeronaves

A Novespace, uma agência espacial francesa subsidiária, possui e opera um A310
dedicado para voos Zero G (Foto: Getty Images)
Os voos parabólicos são uma forma de os cientistas estudarem fenômenos de gravidade zero fora do espaço. A aeronave pode atingir a gravidade zero usando uma trajetória de vôo específica, que a vê em forma de parábola. Os voos Zero G também são abertos ao público, permitindo que todos se sintam temporariamente como se estivessem no espaço. Vamos descobrir como isso funciona.

Como funciona


Alcançar a gravidade zero ainda na atmosfera terrestre exige que os aviões voem de maneira precisa. Um vôo parabólico começa como qualquer outro, com o avião decolando de uma pista, mas é aí que as coisas mudam. Logo após a decolagem, os pilotos mudam o ângulo de ataque para 50° até 6.000 pés, dando aos passageiros uma sensação de hipergravidade (1.8G). Isso dura cerca de 20 segundos antes de os pilotos entrarem na manobra parabólica.

A parábola começa com uma chamada “injeção”, onde os pilotos reduzem a velocidade da aeronave enquanto se movem para cima. A redução da velocidade faz com que a gravidade caia para zero (0G), criando uma sensação de leveza entre os passageiros. Essa parábola dura cerca de 22 segundos, após os quais os pilotos aumentam a velocidade mais uma vez.

Os passageiros ficam sem gravidade por 22 segundos durante a fase parabólica do voo (Foto: Air Zero G)
Para sair da parábola e nivelar, os pilotos inclinam o nariz do avião 42° para baixo. Essa inclinação mais uma vez faz com que os passageiros sintam hipergravidade (1.8G) e, 20 segundos depois, o avião está mais uma vez no nível da terra. Os passageiros geralmente veem várias parábolas durante um único voo.

Controles especiais


Os voos parabólicos são realizados em aeronaves especializadas devido à complexidade de suas manobras. Conforme mencionado, a agência espacial francesa, CNES, atualmente possui um Airbus A310 dedicado para voos de gravidade zero. Embora fisicamente igual a outros A310s, possui controles de vôo ligeiramente diferentes.

A aeronave é pilotada por três pilotos, todos com funções distintas durante o voo. Um piloto controla a inclinação da aeronave, o segundo controla o rolamento e o terceiro controla a velocidade do motor e verifica os avisos. Os controles separados garantem que a gravidade quase zero possa ser alcançada durante o vôo.

Os voos são realizados em um A310 especializado com controles de voo separados (Foto: Air Zero G)
Esta configuração é diferente de um A310 comercial, pois os comandos de rotação e inclinação são dissociados um do outro, de acordo com o Air Zero G. Isso permite que diferentes pilotos controlem as duas funções durante o vôo.

Aberto ao público


Embora os voos parabólicos sejam geralmente reservados para experimentos e testes de equipamentos espaciais, o público também pode experimentar. A agência espacial francesa CNES oferece voos de experiência com sua aeronave A310 Zero G especialmente modificada. Operados pela Air Zero G, esses voos acontecem algumas vezes por ano e em cidades de toda a Europa. No entanto, eles não são baratos.

O voo custa aos passageiros enormes € 6.000 (Foto: Air Zero G)
Um voo normal no Zero G Airbus A310 inclui 15 ciclos parabólicos (dando cerca de cinco minutos sem gravidade). Este vôo custaria aos passageiros de € 6.000 a € 8.000, definitivamente não uma experiência barata. Embora possa custar o mesmo que uma passagem de primeira classe em todo o mundo, esta experiência é verdadeiramente única.

domingo, 14 de dezembro de 2025

O céu é o limite? Quais as altitudes máximas que os aviões podem alcançar?


Cada modelo de aeronave tem um limite de altitude, e esse limite depende praticamente da potência do motor. Monomotores, por exemplo, são os aviões menos potentes do mundo. O popular modelo agrícola Ipanema, da Embraer, chega a atingir 938 metros de altura. Já a maior altitude registrada foi de um potente supersônico militar soviético modificado, o MIG-25 'Foxbat': em 1977, o piloto Alexandr Fedotov subiu a 37 quilômetros na atmosfera —um recorde na aviação mundial. Os aviões nem sempre voam na altitude máxima. A altitude depende do tipo de viagem. O motor de um Airbus A350-800 pode subir a 13 quilômetros, por exemplo. Só que voos de modelos comerciais operam em altitude de cruzeiro —uma faixa entre os 10 e os 12 quilômetros de altura.

Essa altitude padrão é uma norma internacional baseada nos caprichos da natureza: a cada quilômetro que subimos, a temperatura da atmosfera cai cerca de 7°C. Essa diminuição drástica gera turbulência em voos. Só que, entre 10 e 12 quilômetros, a temperatura média é de -55°C —ela é praticamente constante nesses dois quilômetros. Por isso, essa faixa é a menos turbulenta, e é ali que os aviões comerciais trafegam. A altitude de cruzeiro ainda é ideal para a economia de combustível. A velocidade é constante, e a resistência do ar é menor do que em lugares mais baixos - quanto mais alto, menos denso é o ar.

Como há milhares de aviões voando em uma faixa estreita ao mesmo tempo no planeta inteiro, todos devem respeitar uma norma internacional que prevê a separação de 300 metros entre uma aeronave e outra. Tanto na lateral quanto acima e abaixo. Essa separação é controlada por radares (nos aviões) e em solo (nas torres de controle). Como o número de aviões só aumenta, já existem estudos para diminuir a separação para 100 metros. Mas não há motivo de preocupação: junto com estes estudos, as aeronaves estão cada vez mais modernas, equipadas com radares supersensíveis. Além disso, aviões comerciais trafegam em rotas pré-definidas —isso reduz a chance de colisão no ar.

Monomotores sofrem muita turbulência justamente porque a potência é tão inferior que eles não podem alcançar a faixa dos 11 quilômetros. É preciso encarar as diminuições drásticas de temperatura, os ventos inconstantes e a densidade atmosférica para voar abaixo da altitude de cruzeiro. E os aviões militares costumam ter motores mais poderosos - só que a altura do voo depende da missão que a aeronave vai cumprir. Escapar dos radares, por exemplo, pode exigir altitudes maiores. Mas existe um truque mais eficiente para fugir do radar inimigo. Os aviões invisíveis são cobertos por um material (o nome e o tipo do material é um segredo da aeronáutica) que absorve o sinal e não o reflete de volta.

Potência máxima do motor


A não ser que o piloto queira bater um recorde de altitude, para qualquer avião decolar, é preciso que o motor esteja a pleno funcionamento. Afinal, as pistas de aeroportos não são infinitas, e em um determinado momento o avião precisará ter um motor potente para vencer o seu próprio peso (e consequentemente a força da gravidade) para subir.

O motor de um avião (independente do modelo) consegue ficar até dois minutos funcionando em sua potência máxima - a partir de dois minutos, ele pode esquentar-se a ponto de fundir. Repare na próxima vez em que você estiver em um voo comercial: dois minutos após a decolagem, o barulho do motor diminui. O piloto costuma reduzir a potência do motor para cerca de 80% da capacidade máxima. Quando o avião alcança a altitude de cruzeiro, a potência diminui mais um pouco - vai para 65%. Ela continua constante até a aterrissagem, quando é reduzida ainda mais, e o comandante deixa a força da gravidade terrestre ajudar o avião a descer.

Teto operacional


Se o piloto é mais corajoso que o russo Alexandr Fedotov e sonha em bater o recorde de altitude (insuperável desde 1977), ele não vai decolar usando 100% da capacidade do motor. Senão, teria de acabar com a brincadeira aos dois minutos de voo, e o avião ainda poderia estar longe do seu teto operacional - a altitude máxima que ele consegue alcançar. Para bater um recorde de altitude, ou pelo menos chegar ao teto operacional do avião, o piloto decola usando 80% ou 90% da capacidade máxima. Na cabine, ele fica de olho em dois indicadores do painel: um mostra a velocidade de subida, e outro define a altitude do avião naquele momento.

Quanto mais alto está o avião, mais rarefeito é o ar, e mais difícil fica para ele continuar subindo naquelas condições. Afinal, a densidade do ar ajuda o avião a subir. Se ele está rarefeito, é preciso usar o motor para continuar. Se o motor não é potente o suficiente, o avião vai perdendo velocidade e fica mais difícil avançar para o alto. Invariavelmente, chega um momento em que o painel mostra que o avião parou de subir. É neste momento que o piloto aumenta gradualmente a potência do motor até chegar a 100%. Depois de dois minutos na capacidade máxima, a aeronave atinge o seu teto operacional e a potência tem de ser reduzida, ou senão o motor pode pifar - aí, só um paraquedas salva.

Via Til (UOL) - Consultoria: Mauricio Pazini Brandão, engenheiro aeronáutico do Instituto Tecnológico de Aeronáutica (ITA), de São José do Campos (SP) - Imagem: Getty Images/iStockphoto

Tudo o que você precisa saber sobre o Northrop Grumman B-2 Spirit

Apenas 21 bombardeiros stealth B-2 foram construídos.


A maior arma já criada para a Força Aérea dos EUA espreita silenciosamente nos céus. Indetectável pelo radar inimigo, o B-2 Spirit é o único bombardeiro conhecido por ser capaz de transportar armas nucleares em configuração furtiva. Em qualquer lugar, a qualquer momento, o B-2 poderia estar à espreita, preparando-se para lançar a carga útil final.

Construir uma arma tão incrível e única certamente não foi uma tarefa fácil. Até hoje, apenas 21 aeronaves icônicas foram construídas, e as que permanecem são um testemunho dos engenheiros da década de 1970 que foram pioneiros na tecnologia que permitiu às aeronaves absorver ou desviar sinais de radar.

A história do B-2 Spirit é simplesmente notável. Neste artigo, daremos uma olhada mais profunda no icônico B-2 Spirit de Northrup Grumman e contaremos tudo o que você precisa saber sobre este terrível bombardeiro.

Processo de desenvolvimento


Embora a empreiteira rival Lockheed tivesse experiência na construção de aeronaves com características furtivas, como o SR-71 Blackbird, o Departamento de Defesa americano também pediu à Northrop para trabalhar no projeto. Durante a campanha presidencial de 1980, Ronald Reagan acusou Jimmy Carter de ser fraco em termos de defesa. A administração Carter respondeu que os Estados Unidos estavam ocupados a trabalhar num bombardeiro stealth ultra-secreto, que poderia, em última análise, inclinar a balança de poder na Guerra Fria a favor da América.

Em 20 de outubro de 1981, a Northrop recebeu o contrato para construir o que se tornaria o B-2 Spirit. Enquanto estava sendo desenvolvido, o projeto da aeronave foi alterado de um bombardeiro de alta altitude para um avião que pudesse voar no terreno em baixas altitudes. A mudança de planos atrasou o voo inaugural da aeronave em dois anos e acrescentou US$ 1 bilhão aos custos de desenvolvimento.

O produto


O que a Northrop Grumman finalmente produziu foi nada menos que surpreendente. Projetado como uma asa voadora, o B-2 poderia penetrar profundamente no território soviético e entregar cargas nucleares completamente sem ser detectado, um feito que nunca havia sido alcançado antes.

O B-2 é tão impressionante que a Força Aérea mantém esses bombardeiros nos céus até hoje. Em todo o mundo, a engenharia de Northrup da década de 1970 continua a ser o eixo da força de bombardeio estratégico da América hoje .

As especificações do B-2 Spirit são tão impressionantes quanto o próprio jato. Com uma combinação inédita de alcance, potência e versatilidade, o avião poderia completar quase qualquer missão que a Força Aérea precisasse. As seguintes especificações foram disponibilizadas publicamente no site da Força Aérea:
  • Tripulação: Dois
  • Comprimento: 69 pés
  • Envergadura: 172 pés
  • Altura: 17 pés
  • Área da asa: 5.140 pés quadrados
  • Peso vazio: 158.000 libras
  • Peso bruto: 336.500 libras
  • Peso máximo de decolagem: 376.000 libras
  • Capacidade de combustível: 167.000 libras
  • Usina: 4 × turbofans sem pós-combustão General Electric F118-GE-100
  • Velocidade máxima: 630 mph
  • Velocidade de cruzeiro: 560 mph
  • Alcance: 6.900 milhas
  • Teto de serviço: 50.000 pés
Segredo


Envolta em segredo, a Northrop construiu o B-2 em uma antiga fábrica da Ford Motor Company em Pico Rivera, Califórnia. Para evitar suspeitas, o governo criou muitas empresas falsas para comprar componentes para a aeronave. As peças da aeronave eram sempre entregues à noite, em caminhões sem identificação, e quando os militares visitavam, nunca usavam uniforme. Todos os funcionários da fábrica juraram sigilo e tiveram que passar por testes de polígrafo de tempos em tempos. O desenvolvimento do B-2 esteve entre os projetos militares mais secretos desde o Projeto Manhattan da Segunda Guerra Mundial.

O B-2 foi apresentado pela primeira vez em 22 de novembro de 1988, na Planta 42 da Força Aérea dos Estados Unidos em Palmdale, Califórnia. O primeiro voo registrado do B-2 ocorreu em 17 de julho de 1989, quando um B-2 voou de Palmdale para a Base Aérea de Edwards. O primeiro B-2 denominado "Spirit of Missouri" entrou em serviço com o 509th Bomb Wing da USAF estacionado na Base Aérea de Whiteman, no Missouri, em 17 de dezembro de 1993.

O fim da Guerra Fria e a queda da Cortina de Ferro em Dezembro de 1991 forçaram o Congresso a repensar o propósito do B-2 Spirit. Embora incrivelmente inovador, o bombardeiro furtivo custou muito mais do que qualquer plano anterior. Eventualmente, um projeto de lei seria aprovado reduzindo o pedido da Força Aérea de 132 para apenas 20, uma medida que deixou Northrup Grumman muito infeliz. Mais tarde, o presidente Clinton autorizaria a configuração de um protótipo, elevando para 21 o número total de aviões encomendados pela Força Aérea.

Histórico operacional e de acidentes


A primeira vez que o B-2 foi usado em combate foi durante a Guerra do Kosovo de 1998-1999. Durante o conflito, os B-2 realizaram 50 missões para a Iugoslávia. Após os ataques terroristas de setembro de 2001 em Nova York e Washington, os B-2 foram usados ​​novamente durante a invasão americana do Afeganistão. Durante a década de 2000 e a Guerra do Iraque, os B-2 realizaram missões na ilha de Diego Garcia, no Oceano Índico, e em uma base operacional avançada secreta.

Apesar de um histórico de serviço quase impecável, há uma falha no histórico do B-2. Em 23 de fevereiro de 2008, um B-2 caiu logo após a decolagem da Base Aérea de Andersen, em Guam. Embora ambos os pilotos tenham conseguido ejetar com segurança, a aeronave foi tristemente destruída, deixando apenas 20 jatos operacionais no inventário da Força Aérea.

Numa era de drones, alguns questionam a necessidade de um bombardeiro stealth tão avançado e extenso. No entanto, o sucessor do B-2 está em conctrução, com o B-21 Raider de Northrup Grumman definido para substituir o bombardeiro em 2032 .

Com informações de Simple Flying - Fotos: USAF

quinta-feira, 11 de dezembro de 2025

Aviões furtivos ainda têm um problema muito visível: trilhas de condensação

Os cientistas ainda não descobriram como impedir que as aeronaves produzam essas trilhas de vapor d'água em alta altitude.



Fóruns militares online como o SecretProjects enlouqueceram no ano passado por causa de uma imagem granulada e indistinta de uma aeronave. O aprimoramento digital básico mostrou uma nave com asas de morcego diferente de qualquer avião militar conhecido dos EUA, em silhueta contra o céu azul.

O consenso entre a mídia de defesa era que essa nave misteriosa deveria ser um drone furtivo RQ-180 ultrassecreto, usado para missões de espionagem nas áreas mais sensíveis – como o Irã, outras partes do Oriente Médio e áreas próximas à China.

Foi a segunda de três dessas fotografias a surgir nos últimos anos. Todas as três aeronaves foram descobertas pelo mesmo recurso decididamente não furtivo.


“Ouvi um leve ruído de aeronave e notei um rastro de fumaça bem acima de nós”, disse Joerg Arnu, que testemunhou a terceira aeronave misteriosa, ao The Drive, um site focado em cultura automotiva e assuntos militares.

Esse rastro – uma trilha de vapor d’água semelhante a uma nuvem produzida por aeronaves em alta altitude – os levou direto ao avião misterioso, como uma longa flecha branca dizendo “aqui estou”.


“É o equivalente furtivo de sair do banheiro, arrastando papel higiênico atrás do sapato”, diz Scott Lowe, um fotógrafo que capturou uma imagem rara de um avião espião U-2 depois de perceber seu rastro no início do ano passado.

A tecnologia furtiva reduziu drasticamente as assinaturas de radar e infravermelho de aeronaves que alertavam as defesas aéreas sobre sua presença. Anteriormente, as aeronaves eram frequentemente detectadas por radar a longo alcance. Os engenheiros também desenvolveram uma variedade de técnicas para eliminar completamente os rastros. Então, por que algumas aeronaves supostamente “secretas” ainda os deixam para trás?

Prepare-se para mergulhar no mundo das artes das trevas da aviação – de fumaça e espelhos, ácido e lasers.

De Metal e Espelhos


Trilhas de condensação (ou rastros de condensação) são visíveis pelo mesmo motivo que a respiração ou o escapamento do carro em um dia frio. O ar quente e úmido se mistura com o ar frio e seco e cria condensação. No caso dos rastros, a condensação assume a forma de minúsculos cristais de gelo. Eles se formam em torno de minúsculas partículas, principalmente fuligem, no escapamento do motor.

Os rastros se tornaram um problema pela primeira vez durante a Segunda Guerra Mundial, quando as formações de bombardeiros em massa das Forças Aéreas do Exército dos EUA deixaram grandes faixas de rastros no céu. Os caças alemães podiam ver os rastros a quilômetros de distância, muito antes de os próprios aviões serem visíveis, e aprenderam a se concentrar neles para fazer interceptações.


Os magos técnicos desenvolveram o chaff (palha), feito de minúsculas tiras metálicas, para os aviões se posicionarem atrás deles como nuvens reflexivas. Ajudou a cegar o radar alemão, mas os rastros ainda permaneceram visíveis. Isso fez dos ataques noturnos a opção preferida. Após a guerra, os jatos substituíram os motores a pistão; infelizmente, eles deixaram rastros ainda mais distintos.

Os pilotos logo descobriram que os rastros podiam ser eliminados mudando ligeiramente a altitude, embora a ciência por trás disso não fosse totalmente compreendida até a década de 1950.

Uma aeronave AC-130 Gunship da Força Aérea dos EUA executa uma manobra evasiva e lança chaff e sinalizadores durante uma demonstração de poder de fogo no Nevada Test and Training Range em Nevada.
“Em teoria, sempre haverá ar mais seco alguns milhares de pés acima de você”, diz Adam Durant, CEO da SATAVIA, que produz modelagem de trilha de condensação e software de previsão. Isso geralmente facilita a localização de um nível em que os rastros não se formem.

O problema era que os pilotos às vezes não percebiam que estavam deixando um rastro até que fosse tarde demais e devido à visibilidade limitada atrás deles. Isso foi literalmente uma questão de vida ou morte para os pilotos dos aviões espiões U-2 da CIA sobrevoando o território soviético. Os pilotos logo descobriram uma solução simples: equipar a aeronave com um espelho retrovisor fora do cockpit para dar uma visão por trás da aeronave.


Os testes foram realizados com o “Artigo 349”, um U-2 especialmente modificado (abaixo) para testar uma variedade de tecnologias furtivas, incluindo tinta anti-radar conhecida como “veludo preto” e um espelho retrovisor. Os detalhes do projeto de 1958 só foram divulgados em 2003 e, mesmo assim, os relatórios foram redigidos, mas é evidente que os fabricantes de U-2 Lockheed e a Força Aérea dos EUA estiveram envolvidos na avaliação.


“É opinião da Operação que esta instalação é um ativo valioso”, de acordo com a avaliação da CIA em ‘Rear View Mirror’. “A necessidade aumentará com o passar do tempo, com base em estimativas das futuras capacidades russas de interceptação.”


Os testes mostraram que o piloto podia ver um rastro quando ele tinha menos de um quilômetro de comprimento; esperava-se que também pudesse ser útil para localizar caças interceptadores. O espelho retrovisor externo tornou-se equipamento padrão e foi instalado em muitas versões subsequentes do U-2.

Uma cortina de fumaça sulfúrica


Enquanto isso, os engenheiros da USAF procuravam soluções que não exigissem que a aeronave mudasse sua rota de voo. Eles se concentraram nas partículas do escapamento em torno das quais as gotas de água se formam.

“O número de cristais de gelo depende muito do número de partículas de fuligem. Se fôssemos reduzi-los, isso reduziria o rastro”, diz o Dr. Marc Stettler, especialista em emissões de transporte da University College, em Londres.

Os pesquisadores descobriram que um dos principais contribuintes era o trióxido de enxofre, que resultou da combustão do enxofre no combustível, então eles tentaram misturas de combustível com baixo teor de enxofre. Em última análise, o efeito não foi suficiente, mas a pesquisa continuou por alguns anos.


A mesma pesquisa revelou que pode haver outra maneira de lidar com rastros alterando o combustível. Em vez de impedir a formação de um rastro reduzindo o enxofre, eles aumentaram a quantidade de enxofre para que houvesse ainda mais partículas no escapamento. A ideia era que isso mudaria o tamanho das gotas no rastro para torná-lo invisível.

De acordo com um estudo da Força Aérea dos Estados Unidos de 1962, se o tamanho da partícula pudesse ser reduzido para menos de meio mícron, o rastro apareceria como uma névoa azul em vez de uma trilha branca: “De qualquer distância, essa névoa azul seria substancialmente invisível por causa de a falta de contraste com a atmosfera.”

Os pesquisadores passaram a soprar dióxido de enxofre diretamente na entrada de ar, mas mesmo isso não foi suficiente. O Dr. Roger Teoh, que está explorando o impacto da aviação nas mudanças climáticas no Imperial College, em Londres, diz que mesmo grandes aumentos no teor de enxofre falharam em surtir o efeito desejado. “A adição de grandes quantidades de enxofre levou apenas a uma redução muito pequena na formação do rastro; e pode haver consequências não intencionais”, diz Teoh.

Injeções de ácido eficazes, mas prejudiciais


Em 1961, a Força Aérea dos EUA havia conseguido algo incrível. Fotografias de uma demonstração com um bombardeiro B-47 Stratojet quadrimotor mostram os motores de um lado deixando um rastro normal como de costume, mas nada visível do outro lado. O bombardeiro havia sido equipado com um novo sistema que injetava ácido clorossulfônico no escapamento. Isso conseguiu o que os experimentos com enxofre não conseguiram: produzir um rastro com partículas minúsculas demais para serem vistas.


A técnica foi altamente eficaz, mas o equipamento de supressão de rastro adicionou 400 libras ao bombardeiro, reduzindo a carga de bombas. Além disso, o avião precisava de um suprimento de produtos químicos de supressão de rastro igual a cerca de dois por cento do combustível, adicionando potencialmente mais 2.000 libras.

Embora não haja registro da tecnologia sendo implantada em bombardeiros, o sistema ‘no-con’ foi instalado em drones Ryan Firebee voando em missões de reconhecimento sobre o Vietnã e a China. Esses pequenos e rápidos drones movidos a jato geralmente evitavam a observação, mas às vezes eram denunciados por seus rastros.

Drones Firebee
O sistema de injeção de ácido conseguiu manter os pequenos drones invisíveis, mas era impopular por outros motivos. O ácido clorossulfônico é extremamente corrosivo e danifica os motores, encurtando sua vida útil. Também é altamente tóxico e perigoso para as equipes de terra.

Detectando rastros com lasers


Quando o bombardeiro B-2 Spirit estava sendo desenvolvido no final dos anos 80, ele foi inicialmente equipado com um sistema de injeção de ácido clorossulfônico semelhante ao dos Firebees. No entanto, por razões que nunca foram divulgadas, isso nunca foi usado.

O motivo pode ter sido ambiental; havia uma consciência crescente de que a pulverização secreta de produtos químicos altamente tóxicos de aeronaves poderia atrair críticas. Isso foi antes mesmo do surgimento das teorias da conspiração do “chemtrail” dos anos 90, que acusavam o governo dos EUA de pulverizar substâncias químicas misteriosas de aeronaves que deixavam rastros duradouros. Não há evidências de que essa teoria esteja conectada com a pesquisa real de rastros – cujo objetivo era impedir a formação de tais rastros.


O secretário da Força Aérea dos EUA, Edward Aldridge, revelou que uma solução alternativa havia sido encontrada em uma coletiva de imprensa de 1989 sobre o B-2, mas manteve os jornalistas tentando adivinhar qual era a nova tecnologia. “O problema do rastro foi resolvido, mas não vou dizer como”, disse Aldridge.

Houve muita especulação de que a solução seria um novo aditivo de combustível ou um sistema de defletores para misturar o ar frio com o escapamento (veja abaixo).

O Espião da Trilha de Condensação Furtiva

Noshir Gowadia era um engenheiro que trabalhava no complexo sistema de exaustão do furtivo B-2. Seu projeto ajudou a garantir que o ar frio fosse misturado com o escapamento do jato quente antes de deixar o avião, para diluir o traço térmico do avião e torná-lo mais difícil de detectar com imagens infravermelhas.


Gowadia usou sua experiência para redesenhar bicos de jato com o objetivo de eliminar rastros visíveis. Isso envolvia um “campo de fluxo não uniforme” – uma região de mistura turbulenta – que espalharia tanto as gotas de água que qualquer rastro seria invisível ao olho humano e a outros sensores. A USAF achou que havia encontrado uma solução para o problema do rastro e concedeu a Gowadia um contrato para desenvolver seu conceito em um produto acabado.

No entanto, em 2011, Gowadia foi condenado por espionagem – especificamente, passar detalhes de escapamentos furtivos para a China – e sentenciado a 32 anos. O projeto de redesenho do bocal foi descontinuado e não está claro se essa técnica pode efetivamente eliminar rastros.

Foi apenas anos depois que o verdadeiro segredo foi revelado como sendo o PAS, ou Pilot Alert System. Desenvolvido pela empresa de sensores Ophir, o PAS usa uma forma de lidar: ele dispara um feixe de laser de volta ao escapamento do jato e mede a dispersão da luz nas partículas de gelo. Isso pode detectar imediatamente quando um rastro começa a se formar, avisando o piloto para mudar de altitude antes que se torne visível.


O PAS foi certamente uma melhoria em relação ao espelho retrovisor do U-2, mas o que os planejadores da Força Aérea dos EUA realmente queriam era poder voar sem qualquer risco de formação de rastros em primeiro lugar.

Voltar ao básico


Mudar a altitude funciona porque os rastros só se formam em condições particulares de temperatura e umidade. O cientista alemão Ernst Schmidt deu os primeiros passos para uma compreensão científica do processo em 1941 e, em 1953, Herbert Appleman, da American Meteorological Society, desenvolveu uma fórmula precisa para a formação do rastro. Conhecido como critério de Schmidt-Appleman, isso pode ser claramente expresso como um gráfico de temperatura e umidade: para evitar a formação de rastros, apenas evite a área mapeada no meio do gráfico.


Os planejadores da Força Aérea dos EUA usaram o Critério Schmidt-Appleman para desenvolver modelos de software cada vez mais sofisticados para prever onde os rastros se formarão. Em 1998, a USAF avaliou seu software JETRAX como 84% confiável para determinar se rastros apareceriam em uma trajetória de voo. Os planejadores podem redirecionar missões furtivas para evitar deixar rastros no céu.

Embora o software de previsão militar sempre tenha sido mantido em sigilo, houve um aumento nos desenvolvimentos no setor comercial. O motivo: as mudanças climáticas.

Uma razão mais ecológica para evitar trilhas de condensação


Enquanto alguns rastros desaparecem rapidamente, outros se espalham para formar nuvens cirrus de alta altitude, que têm um efeito de aquecimento significativo. Na verdade, o efeito de aquecimento dos rastros de cirrus é realmente maior do que o do CO2 da queima de combustível de aviação. A remoção dos rastros tornaria o voo menos prejudicial ao planeta.


“Os rastros representam 59% do impacto climático das viagens aéreas. Isso equivale a 1,8 bilhão de toneladas de CO2 por ano”, diz Durant. DECISIONX:NETZERO é o modelo de atmosfera planetária da SATAVIA, conduzido por Inteligência Artificial e alimentado com dados meteorológicos comerciais. A chave, apropriadamente, é a computação em nuvem, que torna o cálculo intensivo acessível. Isso permite que o sistema divida o globo em células de cinco quilômetros quadrados, empilhadas com sessenta de profundidade.

“Utilizamos os conjuntos de dados climáticos em escala global para conduzir um modelo baseado em física da dinâmica atmosférica que nos mostra a probabilidade de gerar um rastro em qualquer rota”, diz Durant.

Enquanto a maioria dos modelos meteorológicos se concentra no que está acontecendo no nível do solo, o SATAVIA analisa a altitude de cruzeiro da aeronave e aplica algoritmos de formação de rastros. Crucialmente, ao mostrar as condições em sessenta altitudes diferentes, permite que o plano de voo evite o risco de trilhas de condensação.


Durant observa que, embora isso exija alguns esforços no gerenciamento do tráfego aéreo, um pequeno número de voos produz os rastros mais prejudiciais e duradouros. Ele diz que a maior parte do benefício poderia ser obtida com o redirecionamento de apenas 5% dos voos.

Depois de um esquema piloto bem-sucedido com a companhia aérea Etihad para testar o software na prática, a empresa está refinando seu modelo em um produto comercial. Durant não tem conhecimento de nada parecido no mundo comercial, mas os militares, com seu enorme poder de computação, podem muito bem ter algo comparável.

Tecnologia furtiva ainda sob sigilo


Pode haver outros desenvolvimentos neste campo que não são públicos. Uma patente de 2014 da fabricante de motores Rolls Royce vincula um sensor semelhante ao PALS a um sistema de controle do motor. A patente afirma que, ao alterar a eficiência do motor, o escapamento pode ser alterado para evitar a formação de rastros. A Rolls Royce recusou-se a discutir este ou outro trabalho nesta área, como um plano bizarro para zapear o escapamento com micro-ondas para evitar a formação de cristais de gelo.

“Geralmente, um motor mais eficiente pode aumentar ligeiramente a formação de rastro porque o ar no escapamento deixa o motor em temperatura mais baixa”, diz Teoh. “Portanto, a redução da formação de rastro só pode ser alcançada diminuindo a eficiência do motor, o que provavelmente tem o custo de aumentar o consumo de combustível.”


Teoh também observa que novos tipos de combustores de motor também podem diminuir drasticamente a quantidade de fuligem no escapamento, garantindo que o combustível seja totalmente queimado antes de chegar ao escapamento. “O último banco de dados de emissões de aeronaves da ICAO, um conjunto de dados disponível ao público, mostra que diferentes tipos de combustor podem reduzir significativamente o número de partículas de fuligem em até quatro ordens de magnitude”, diz Teoh. Isso representaria um fator de dez mil, o que poderia ser suficiente para eliminar rastros visíveis.

Os aviões espiões ainda podem deixar rastros em lugares onde não estão tentando ficar escondidos – daí a foto da sorte de Lowe daquele U-2. “Sem um rastro ou luz perfeita, o U-2 é invisível”, diz Lowe. “Eu nunca teria notado isso de outra forma.”

O suposto RQ-180 sobrevoando as Filipinas (Foto: Michael Fugnit)
Mas no caso das fotos do RQ-180, você deve se perguntar por que a mesma aeronave supostamente supersecreta deixou rastros altamente visíveis três vezes seguidas, sempre em plena luz do dia sobre uma área povoada? Uma vez pode ser explicado por acidente, duas vezes sugeriria uma falha no aprendizado, mas três vezes começa a parecer deliberado.

O ponto principal é que estamos vendo os rastros, que estão nos levando à aeronave, porque eles querem que o façamos. Essa linha no céu é um ponteiro deliberado. Por que isso deveria acontecer e o que realmente está sendo mantido oculto – esse é outro mistério.

Via Fernando Valduga (Cavok) com Popular Mechanics

quarta-feira, 3 de dezembro de 2025

Por que não existe avião nuclear? Entenda se é possível e desafios

Até hoje a tecnologia não conseguiu desenvolver um modelo viável de avião nuclear, apesar de dezenas de testes.

Sky Cruise, modelo futurista de avião movido à energia nuclear (Imagem: Divulgação)
Uma ideia que pareceu boa na teoria, mas, na prática, não funcionou. Esse é o resumo do histórico do avião nuclear. Não é impossível, mas o modelo de aeronave não foi implementado até hoje por conta de vários entraves. Entenda como projetos de aviões movidos à propulsão nuclear não viraram realidade.

Embora um reator de fissão nuclear possa ocupar um submarino, por exemplo, e ser transportado em um porta-aviões, poderíamos pensar, por que não em um avião?

Voar por longos períodos sem precisar parar seria um grande atrativo para concretizar a ideia, mas carregar um reator nuclear a bordo desagradaria a maioria das pessoas, que não se sentiriam seguras. E outra, seria grande e pesado demais para um avião.

Guerras impulsionaram testes


Durante a Guerra Fria, EUA e União Soviética desenvolveram programas que tentaram criar um avião nuclear. Vários modelos foram estudados para essa finalidade.

Um deles foi o modelo de teste NB-36H. Ele usava como base um bombardeiro Convair B-36 em que a cabine foi reforçada com chumbo para evitar que a radiação atingisse os pilotos. O avião realizou 47 voos de teste, mas sem acionar o reator nuclear, apenas para simular a viabilidade desse tipo de equipamento dentro de um avião.

Aeronave de teste nuclear NB-36H (Imagem: Wikimedia Commons)
Uma das alternativas seria o avião com um motor movido por meio de um reator nuclear portátil. O interesse nesse tipo de propulsão aumentou após o Projeto Manhattan, programa de pesquisa e desenvolvimento das bombas atômicas na Segunda Guerra Mundial.

A Marinha dos EUA, nos anos 1950, calculou que um reator compacto o suficiente para um avião liberaria 500% mais calor que o reator pioneiro do submarino USS Nautilus, de 1955, e acabaria derretendo.

Além do peso do próprio reator, ainda tem o peso da blindagem, para proteger os tripulantes da radiação. Se o avião caísse, então, imagine o risco de contaminação do solo.

Uma das vantagens mais atrativas para o desenvolvimento desse tipo de aeronave seria a autonomia. Em casos de guerras, permitiria sucessivos ataques sem precisar reabastecer, além da capacidade de se manter no ar 24 horas por dia, sem precisar pousar (uma estratégia em casos de espionagem e reconhecimento de território, por exemplo)

Após os períodos da Segunda Guerra e Guerra Fria, a crescente preocupação com o meio ambiente também esfriou a ideia de novos projetos para a criação de um modelo possível de avião nuclear.

Avião nuclear em voos comerciais?


Sim, na teoria o conceito já existe. A criação é do designer industrial Oscar Viñals e foi concebida em 2018. Segundo ele, o seu avião nuclear, de nome, Magnavem, poderia levar 500 pessoas em velocidade supersônica.

Magnavem, projeto de avião nuclear (Imagem: Divulgação/Oscar Viñals)
O modelo se assemelha a uma nave espacial, que poderia decolar e pousar verticalmente, produziria zero emissão de carbono e atingiria velocidade de Mach 1.5 (medida adimensional de velocidade), equivalente a a 1.852 km/h

A ideia seria usar um reator de fusão compacto (CFR) para impulsionar a aeronave e reduzir o tempo das viagens. Por exemplo, o avião iria de Nova York para Londres em apenas 3 horas. Hoje o voo entre as cidades dura, em média, 7 horas.

Hotel voador


Outra ideia que promete ser realidade no futuro, é o Sky Cruise, chamado de ‘hotel voador’ por seu criador, o cientista Hashem Al-Ghaili. O modelo teria capacidade para cinco mil pessoas e seria movido a energia nuclear. O conceito foi apresentado pelo cientista Hashem Al-Ghaili e pelo designer Tony Holmsten em 2022.

De acordo com o vídeo de apresentação no YouTube, o Sky Cruise conta com 20 motores elétricos alimentados por “um pequeno reator nuclear” e os tripulantes chegariam ao super avião por via de jatos particulares.

O Sky Cruise seria pilotado por via de Inteligência Artificial, com capacidade de traçar as rotas, prever turbulências e detectar problemas técnicos, que seriam resolvidos em pleno voo. De acordo com os criadores, é possível que seja possível concretizar o projeto entre 2030 e 2040.

Via Renata Mendes Gonçalves, editado por Bruno Ignacio de Lima (Olhar Digital)

quinta-feira, 27 de novembro de 2025

Os perigos da radiação na aviação comercial

Examinamos os efeitos da radiação na aviação comercial e as medidas tomadas para limitar seu efeito sobre passageiros, tripulações de voo e aeronaves.

Boeing 737-8 MAX (Foto: Michal Mendyk/Airways)
As radiações são ondas de energia que viajam através de um meio em várias frequências e energias. Pode ser classificado como ionizante ou não ionizante.

A radiação não ionizante é encontrada na extremidade inferior do espectro eletromagnético, incluindo ondas de rádio, micro-ondas, infravermelho, ondas visíveis e a parte inferior das ondas ultravioleta e possuem baixas frequências e energias, portanto não são prejudiciais.

A radiação ionizante, que inclui raios-x, raios gama e ondas ultravioleta, é caracterizada por altas frequências e energias fortes o suficiente para arrancar elétrons de seus átomos [1].

Uma vez interagindo com o corpo humano, a radiação ionizante pode alterar a arquitetura molecular das células e tecidos humanos, resultando em distúrbios com risco de vida. Além disso, os aviônicos da aeronave e os dispositivos de comunicação também podem ser afetados.

Efeito da radiação na altitude e latitude


A grande maioria das fontes de radiação na superfície da Terra não são ionizantes, e mesmo aquelas que são ionizantes emitem muito pouca radiação não perigosa.

No entanto, a tripulação e os passageiros que voam em altitudes de cruzeiro acima de 30.000 pés também estão expostos à radiação solar e galáctica ou cósmica, que são tipos adicionais de radiação ionizante. A 35.000 pés acima da superfície da Terra, o nível de radiação pode ser até 10 vezes maior do que ao nível do mar.

A blindagem magnetosférica da Terra, que protege contra a radiação solar, é mais forte no equador e enfraquece com o aumento da latitude antes de enfraquecer nos pólos; portanto, os efeitos da radiação também pioram com o aumento da latitude.

Por causa dessas implicações, as Nações Unidas estimaram em 2000 que trabalhar em uma companhia aérea produzia mais exposição à radiação do que trabalhar em uma usina nuclear.

Ao voar em grandes altitudes, não apenas passageiros e tripulantes, mas também sistemas de aeronaves e outros equipamentos correm risco de exposição à radiação. Vamos dar uma olhada em detalhes.

(Foto: KLM)

Riscos Humanos


De acordo com a Agência Internacional de Pesquisa sobre o Câncer (IARC) da Organização Mundial da Saúde (OMS), a exposição à radiação ionizante leva ao câncer e a problemas reprodutivos, incluindo abortos espontâneos. Também pode produzir distúrbios genéticos e defeitos oculares como catarata.

A chance de morrer de câncer é estimada em 200 por 1.000 pessoas apenas nos EUA, mas entre os tripulantes de companhias aéreas, a exposição à radiação de 20 anos de vôo em grandes altitudes aumenta o risco para 225 por 1.000.

Além disso, de acordo com pesquisas publicadas pelo US NLM e ARPANSA, pilotos de companhias aéreas e pessoal de cabine tinham quase o dobro do risco de melanoma e outros cânceres de pele do que a população em geral, com os pilotos tendo um risco maior de morrer de melanoma.

Aviônicos


A radiação cósmica pode induzir erros suaves em dispositivos semicondutores que compõem os sistemas aviônicos das aeronaves. Eles podem inverter bits digitais e criar sinais indesejáveis ​​para operar a aeronave.

Como exemplo, em 7 de outubro de 2008, o voo 72 da Qantas (QF) fez um pouso de emergência no aeroporto de Learmonth, perto da cidade de Exmouth, Austrália Ocidental, após um acidente a bordo que incluiu um par de manobras repentinas e não comandadas que causaram graves ferimentos - incluindo fraturas, lacerações e lesões na coluna - em vários passageiros e tripulantes.

Vários tipos de gatilhos potenciais foram investigados, incluindo bugs de software, falhas de hardware e interferência eletromagnética. Partículas secundárias de alta energia geradas por raios cósmicos, que podem causar um bit flip, também foram investigadas.

Posteriormente, foi dito que esses gatilhos provavelmente não estavam envolvidos, embora uma conclusão definitiva não pudesse ser alcançada. Um cenário muito mais provável era que uma fraqueza marginal de hardware de alguma forma tornasse as unidades suscetíveis aos efeitos de algum tipo de fator ambiental, que acionava o modo de falha.

O relatório final do ATSB, emitido em 19 de dezembro de 2011, concluiu que o incidente devido a limitações de projeto e “em uma situação muito rara e específica, vários picos nos dados do ângulo de ataque (AOA) de um dos ADIRUs podem resultar no FCPCs comandando a aeronave para cair.”

(Foto: Daniel Gorun/Airways)

Comunicações de alta frequência


As comunicações de rádio de alta frequência (HF) podem ser prejudicadas ou mesmo totalmente interrompidas pela radiação solar. A ionização da atmosfera superior (ionosfera), que absorve as comunicações de rádio de ondas curtas, aumenta quando os raios X das explosões solares entram na magnetosfera sem serem desviados e atingem a atmosfera da Terra no lado voltado para o sol.

A magnetosfera desvia as partículas solares incidentes e as direciona para os pólos do planeta, aumentando a taxa de ionização na atmosfera superior e causando absorção ionosférica, interrompendo assim as comunicações de rádio HF com efeitos comparáveis.

Durante as tempestades de Halloween de outubro-novembro de 2003, uma série de tempestades solares envolvendo erupções solares e ejeções de massa coronal que geraram a maior erupção solar já registrada pelo sistema GOES, as comunicações HF com aviões encontraram interrupções e, posteriormente, uma falha completa dos serviços HF que durou por horas.

(Foto: Quang Nguyen Vinh / Pexels.com)

Estratégias de Mitigação


Passageiros e tripulação de voo

A Comissão Internacional de Proteção Radiológica (ICRP) é o principal órgão encarregado de proteger contra a radiação ionizante e recomenda o limite de dose efetiva de um indivíduo de 20 mSv por ano, em média em períodos definidos de 5 anos (100 mSv em 5 anos), com o restrição adicional de que a dose efetiva não deve exceder 50 mSv em um único ano.

Além disso, a dose recomendada para tripulantes grávidas é de 1 mSv desde a descoberta da gravidez até o nascimento, com um máximo mensal de 0,5 mSv. O limite anual para o público em geral (passageiros) é de 1 mSv [6].

Recomenda-se que as passageiras grávidas e os membros da tripulação de voo pensem em trocar a viagem ou atrasar uma viagem para diminuir o risco de aborto espontâneo. De acordo com um estudo do Instituto Nacional de Segurança e Saúde Ocupacional (NIOSH), o risco de aborto espontâneo aumenta quando as mulheres são expostas à radiação cósmica de pelo menos 0,36 mSv durante o primeiro trimestre.

Além disso, o Regulamento de Licenciamento de Pessoal, Parte 138, determina que as pilotos grávidas e tripulantes de cabine sejam avaliadas e excluídas das funções de voo entre o momento da descoberta da gravidez e o final da 12ª semana de gestação, bem como entre o final da 26ª semana de gestação e entrega, a fim de protegê-los dos efeitos da exposição à radiação e outros efeitos {4}.

(Foto: Piedmont Airlines)
Companhias Aéreas

As companhias aéreas escolhem uma rota e altitude que reduzam a exposição à radiação depois de receber um alerta de radiação solar durante eventos moderados, fortes e severos de radiação solar transitória (20 uSv/hr e acima).

Um alerta de radiação solar é transmitido em todo o mundo e é acompanhado por uma mensagem com estimativas dos níveis de radiação em altitudes de 20.000 pés a 80.000 pés em latitudes específicas.

Além disso, um indivíduo pode descobrir a dose efetiva de radiação ionizante recebida em cada voo usando um programa de computador para download chamado CARI-6 ou CARI-6M, desenvolvido no Instituto Médico Aeroespacial Civil da FAA.

Aeronaves

Todas as aeronaves projetadas para operar acima de 15.000 m (49.000 pés) devem possuir tecnologia que possa monitorar e exibir continuamente a taxa de dose de toda a radiação cósmica recebida, bem como a dose cumulativa para cada voo, de acordo com o Anexo 6, Provisão 6.12 da ICAO .

De acordo com o regulamento 4.2.11.5 do Anexo 6 da ICAO, o operador deve acompanhar todos os voos superiores a 15.000 metros (49.000 pés) para calcular a dose cumulativa de radiação cósmica que cada tripulante recebeu durante um período de 12 meses. [5]

Edição de texto e imagens por Jorge Tadeu (Site Desastres Aéreos) com Airways Magazine

Referências: [1] International Civil Aviation Organization-ICAO, Manual of Civil Aviation Medicine-Doc 8984, page II-1-13. [2] Matthias M. Meier , Kyle Copeland, Klara E. J. Klöble, Daniel Matthiä,Mona C. Plettenberg,Kai Schennetten,Michael Wirtz, and Christine E. Hellweg, Radiation in the Atmosphere—A Hazard to Aviation Safety?, Page 14. [3] International Civil Aviation Organization-ICAO, Manual of Civil Aviation Medicine-Doc 8984, page II-1-14. [4] Tanzania Civil Aviation Authority-TCAA, The Civil Aviation Personnel Licencing Regulations, 2017 part 138, page 230. [5] International Civil Aviation Academy-ICAO, Annex 6 Operation of Aircraft, Part I – International Commercial Air Transport – Aeroplanes, Ninth edition, July 2010, pages 6-13. [6] International Civil Aviation Organization-ICAO, Manual of Civil Aviation Medicine-Doc 8984, page II-1-15.

quarta-feira, 26 de novembro de 2025

iPhone tem função secreta que todo mundo que voa de avião deveria conhecer

Técnica ainda desconhecida por muitos pode ajudar aqueles que tem um certo hábito de viajar por esse meio de transporte.


Uma função secreta disponível para quem tem celulares no modelo iPhone pode ser bastante benéfica principalmente para quem tem a prática de voar de avião.

Por meio dessa técnica contida no aparelho, é possível trafegar de forma mais tranquila durante o trajeto e, de quebra, ter mais tranquilidade caso um ente querido seu esteja viajando.

Leia até o final e descubra qual é a função secreta do iPhone que todo mundo que possui o costume de viajar de avião deveria conhecer.

Embora esteja difundido em todo mundo, alguns atalhos e funcionalidades presentes no iPhone ainda seguem sendo uma incógnita até mesmo para os portadores do aparelho.

Por exemplo, você sabia que existe uma função secreta contida na plataforma que pode ser uma espécie de ‘mão na roda’ para aqueles que têm o costume de viajar de avião? Pois saiba que sim.

A modalidade pode ser ativada de forma simples, rápida e não requer a instalação de nenhum outro aplicativo. Ao utilizá-la, você poderá acompanhar o trajeto da aeronave em que você está ou que alguma outra pessoa, seja ela um ente querido ou colega, esteja.

Para que a função seja ativada, é necessário, primeiramente, ir até o aplicativo de mensagens, clicar na opção “Nova Mensagem” e, logo em seguida, colocar o seu próprio número como destinatário do conteúdo.

Depois disso, no local onde a mensagem é escrita, no chat, basta você colocar o número do seu voo ou o número do voo da pessoa que você quer acompanhar.

Após escrever o conteúdo basta enviá-lo. Você pode notar que, alguns segundo depois desse processo, você receberá uma mensagem e é nesse momento que você deve selecionar a opção “Pré visualizar o voo”.

Dessa maneira, você conseguirá acompanhar o voo, ou qualquer voo, diretamente do seu telefone. Além disso, também é possível ver a hora de partida, hora de chegada e até mesmo se o voo está atrasado.

Veja o passo a passo:


Via Gabriella PinheiroGabriella Pinheiro (Portal 6) - Foto: Reprodução