quarta-feira, 22 de novembro de 2023

Conheça cinco dos maiores cemitérios de aviões do mundo

Um cemitério de aeronaves ou cemitério é onde os aviões vão para serem armazenados ou sucateados.

Aeroporto Logístico do Sul da Califórnia (SCLA)(Foto: Aero Icarus/Flickr)
Uma visão abrangente de cinco dos maiores cemitérios de aeronaves do mundo e por que sua localização foi considerada ideal para o trabalho. Antes de entrarmos nisso, porém, o que exatamente é um cemitério de aeronaves? Quase sempre localizados em desertos ou locais com pouca umidade, os cemitérios de aeronaves ou cemitérios, como também são conhecidos, são para onde os aviões vão para armazenamento por longo prazo ou para serem sucateados.

A proporção mais significativa de cemitérios de aeronaves pode ser encontrada no sudoeste dos Estados Unidos. Ainda assim, existem outras partes do mundo, como o Médio Oriente e a Austrália, que têm condições meteorológicas semelhantes. Armazenar aeronaves em locais com pouca umidade ajuda a prevenir a corrosão, e o solo duro e sólido não precisa ser pavimentado, economizando milhares de dólares. Antes de as aeronaves serem sucateadas, seus metais, motores, instrumentos e qualquer coisa que possa ser reutilizada são removidos, deixando apenas uma carcaça de metal.

1. Base Aérea Davis-Monthan dos Estados Unidos


Tamanho: 10.633 acres (16,5 milhas quadradas)

Base Aérea Davis-Monthan dos Estados Unidos (Foto: Stuart Rankin/Flickr)
Localizados perto de Tucson, Arizona, na South Kolb Road, os bairros residenciais desaparecem, deixando fileiras e mais fileiras de aeronaves estacionadas que variam em tamanho, desde caças a aviões de transporte maciço.

Após a rendição do Japão em setembro de 1945, a Força Aérea dos Estados Unidos tinha um enorme excedente de aeronaves e precisava de um local para armazená-las. Na época, o Campo Aéreo do Exército Davis-Monthan, como era conhecido na época, era uma base de treinamento de bombardeiros que tinha muito espaço para armazenar aeronaves.

Somando-se ao seu apelo como instalação de armazenamento de aeronaves, Tucson tem um clima desértico quente que recebe menos de 11 polegadas de chuva por ano - armazenar aeronaves não utilizadas em ambientes áridos e desérticos é preferível a climas úmidos ou úmidos. Na primavera de 1946, a Força Aérea havia enviado mais de 600 aeronaves Boeing B-29 Superfortress e 200 aeronaves C-47 Skytrain para o local.

Por um tempo, Davis-Monthan foi a casa do Enola Gay , até que o avião foi enviado para ser exposto no Museu Smithsonian, em Washington DC. Em 1965, o Departamento de Defesa decidiu fechar as instalações de armazenamento de aeronaves da Marinha dos Estados Unidos em Phoenix e consolidar todas as aeronaves militares excedentes em Davis-Monthan.

Hoje, a Base Aérea Davis-Monthan dos Estados Unidos é o maior cemitério de aeronaves do mundo e abriga o 309º Grupo de Manutenção e Regeneração Aeroespacial (AMARG). Segundo a AMARG, a instalação armazena, em média, 3.200 aeronaves, 6.100 motores e quase 300 mil itens de linha de ferramentais e equipamentos de teste.

2. Porto Aéreo e Espacial de Mojave (MHV)


Tamanho: 2.998 acres (4,7 milhas quadradas)

Porto Aéreo e Espacial de Mojave (MHV) (Foto: Aero Icarus/Flickr)
Localizado no deserto de Mojave, na Califórnia, perto da Base Aérea de Edwards, 150 quilômetros ao norte de Los Angeles, o aeroporto começou a funcionar na década de 1930 como um campo de aviação rural. Após o ataque surpresa japonês a Pearl Harbor em 7 de dezembro de 1941, o Departamento de Defesa assumiu o controle do aeroporto e construiu a Estação Aérea Auxiliar do Corpo de Fuzileiros Navais (MCAAS) em Mojave.

Quartéis foram construídos para abrigar 3.000 militares e mulheres, e uma terceira pista foi adicionada. No seu auge, o campo de aviação contava com 145 aeronaves operacionais. Após a Guerra da Coréia, o campo de aviação foi entregue à cidade de Mojave, que decidiu que seria um local ideal para armazenar ou sucatear aeronaves.

Hoje, é um centro de inovação na aviação, com mais de 60 empresas trabalhando no parque industrial realizando pesquisas, testes, engenharia de voo e muito mais, segundo a Aeroclass. Mas o seu cemitério de aeronaves é um dos maiores do mundo, com alguns dos últimos residentes a se mudarem para as instalações, incluindo os Boeing 747 da Lufthansa e os A380 da China Southern .

3. Aeroporto Logístico do Sul da Califórnia (SCLA)


Tamanho: 2.300 acres (3,6 milhas quadradas)

Aeroporto Logístico do Sul da Califórnia (SCLA) (Foto: Aero Icarus/Flickr)
O Aeroporto Logístico do Sul da Califórnia (SCLA) é um dos maiores cemitérios de aeronaves comerciais do mundo e um local favorito para aeronaves aposentadas que aguardam para serem desmanteladas. Localizado na orla do deserto de Mojave, perto de Victorville, Califórnia, a uma hora e meia de carro de Los Angeles, o SCLA pode acomodar até 500 aeronaves de grande porte.

A instalação começou como Base Aérea George em 1941, quando o Corpo Aéreo do Exército dos Estados Unidos a usou como Escola de Voo Avançada. Após o fim da guerra, a base foi fechada apenas para ser reaberta no início da Guerra da Coréia, cinco anos depois. No início da década de 1990, a Força Aérea decidiu fechar a base. SCLA viu seu potencial como um aeroporto logístico significativo para o sudoeste dos Estados Unidos. Victorville não estava apenas conectada à rede de rodovias interestaduais, mas também tinha uma estação ferroviária no aeroporto.

Hoje, o Aeroporto Logístico do Sul da Califórnia tem duas pistas e abriga Cargolux, Lufthansa, Volga-Dnepr Airlines e Federal Express. As duas pistas são:
  • Pista 17/35: 15.050 pés × 150 pés (4.587 m × 46 m), superfície: asfalto/concreto
  • Pista 21/03: 9.138 pés × 150 pés (2.785 m × 46 m), superfície: asfalto/concreto
O SCLA também oferece rampa e hangar que podem acomodar mais de 20 aeronaves para manutenção transitória e uma oficina de pintura grande o suficiente para Boeing 787 Dreamliners. De acordo com a Airplane Boneyards, a instalação tem espaço para acomodar mais de 500 aeronaves armazenadas. Durante a pandemia, o campo de aviação provou ser um lar temporário para os Boeing 777 da Air New Zealand, que já foram reativados, e até mesmo para um Boeing 787-10 totalmente novo para a British Airways .

4. Parque Aéreo do Condado de Pinal (MZJ)


Tamanho: 1.508 acres (2,4 milhas quadradas)

Parque Aéreo do Condado de Pinal (MZJ) (Foto: Alan Wilson/Flickr)
Localizado no condado de Pinal, perto da cidade de Marana, Arizona, o Pinal County Airpark (MZJ) começou como Campo Aéreo do Exército de Marana. Quando a base foi inaugurada em 1943, foi usada como centro de treinamento de pilotos. Após a guerra, a base foi entregue ao Condado de Pinal, que mais tarde a alugou à Intermountain Airlines, uma empresa de fachada da Agência Central de Inteligência (CIA). A CIA usou o MZJ como base para as suas operações secretas durante a Guerra do Vietnã.

Cobrindo uma área de 1.508 acres, o Pinal Airpark tem uma única pista de asfalto de 6.893 pés de comprimento e quatro helipontos. Devido à sua localização no deserto de Sonora, o deserto mais quente dos Estados Unidos e do México, o Pinal County Airpark (MZJ) tornou-se um destino popular de armazenamento para aeronaves que se aposentam das companhias aéreas. De acordo com a ABC, a instalação pode acomodar mais de 400 aeronaves no local, que atualmente inclui alguns dos antigos Boeing 747 da Virgin America e um Boeing 747SP de um televangelista encalhado.

5. Aeroporto de Teruel (TEV)


Tamanho: 1.359 acres (2,1 milhas quadradas)

Aeroporto de Teruel (Foto: Teruel Airport)
Localizado na província de Aragão, a igual distância de Madrid, Barcelona, ​​Valência e Saragoça, o Aeroporto de Teruel tem um clima árido. O Aeroporto de Teruel começou como Aeródromo Caudé e foi usado pela Força Aérea Republicana Espanhola durante a Guerra Civil Espanhola (1936-1939). Após a vitória dos nacionalistas, o campo de aviação foi usado pelos militares como campo de tiro de artilharia.

Propriedade hoje de um consórcio formado pelo Governo de Aragão e pela Câmara Municipal de Teruel, o Aeroporto de Teruel é a maior instalação de armazenamento e manutenção de aeronaves da Europa. Possui uma única pista de asfalto de 9.268 pés de comprimento e pode acomodar até 250 aviões estacionados. Durante a pandemia de COVID-19, o Aeroporto de Teruel acolheu 100 aeronaves estacionadas, principalmente de companhias aéreas europeias.

Com informações do Simple Flying

Por que as aeronaves não utilizadas são normalmente armazenadas no deserto?

Os desertos têm um clima favorável para armazenamento a longo prazo.

Aeroporto de Teruel (Foto: Purplexsu)
O súbito e generalizado encalhe de aeronaves devido à pandemia de COVID enfatizou a importância das grandes instalações de armazenamento de aeronaves. Os maiores locais de armazenamento do mundo estão frequentemente localizados em ambientes desérticos, o que oferece muitas vantagens únicas em relação a outros locais. Vejamos por que isso acontece.

O clima


A temperatura e a umidade dos locais de armazenamento no deserto são ideais para que as aeronaves fiquem paradas por longos períodos de tempo - ou pelo menos as condições não são tão ruins quanto em outros ambientes. A falta de chuva e umidade oferece as melhores condições para o armazenamento das aeronaves , reduzindo o risco de danos por corrosão da fuselagem e de outros componentes da aeronave.

Aeronaves armazenadas no aeroporto de Teruel durante a pandemia (Foto: Aitor Serra Martin) 
Isto não quer dizer que as instalações de armazenamento no deserto sejam completamente imunes a eventos climáticos adversos. Por exemplo, a Lufthansa foi forçada a baixar o preço de venda de seis Airbus A380 depois de terem sofrido danos causados ​​por uma tempestade em Teruel (TEV), um dos locais de armazenamento no deserto mais conhecidos do mundo.

Ambientes desérticos tendem a ter menos insetos e vida selvagem. Embora também existam pequenas criaturas nestes climas áridos, a falta de vegetação e água torna isso menos provável. Este é um fator porque pássaros e insetos podem ver as aeronaves como locais ideais para nidificar.

A Asia Pacific Storage, uma instalação de aeronaves localizada em Alice Springs, Austrália, observou: "Alice Springs oferece o ambiente perfeito para a preservação de aeronaves e seu valor de capital inerente. A instalação se beneficia de um ambiente árido desértico caracterizado por uma umidade média durante todo o ano de aproximadamente 25%, fora da zona de ciclones da Austrália, baixa pluviosidade e com baixa altitude vegetação in situ proporcionando qualidades adicionais de supressão de poeira."

O espaço e o terreno


Um grande fator para locais de armazenamento localizados em desertos é que eles oferecem uma grande quantidade de espaço. Embora os aeroportos tenham parques de estacionamento, o seu espaço é certamente mais limitado do que os encontrados em locais dedicados de armazenamento de longo prazo.

Porto Aéreo e Espacial de Mojave (MHV) (Foto: Aero Ícaro/Flickr)
Os aeroportos prefeririam utilizar o pouco espaço de que dispõem, sejam portões ou hangares, para aeronaves mais ativas. Portanto, as oportunidades de armazenamento a longo prazo nos aeroportos são geralmente limitadas. Por outro lado, não há muita concorrência por terrenos no deserto – o que torna os custos de aquisição de terrenos baixos para os operadores de instalações de armazenamento e o aluguer barato para as companhias aéreas e fabricantes de aviões.

Alguns locais desérticos também possuem terreno ideal, seco, duro e que não precisa de pavimentação. Em outros ambientes, o peso de uma grande aeronave comercial pode fazer com que o terreno abaixo dela afunde durante um longo período de tempo.

Locais populares do deserto


Quer as transportadoras queiram aterrar temporariamente as suas frotas ou enviar aeronaves indesejadas para o seu desaparecimento, provavelmente acabarão num “cemitério” de aeronaves, provavelmente localizado num deserto. A procura de espaço disparou subitamente com a eclosão da pandemia da COVID, com aeronaves em todo o mundo a aterrarem imediatamente uma parte significativa, se não toda, da sua frota.

Aqui estão alguns dos locais de armazenamento no deserto mais conhecidos em todo o mundo:
  • Armazenamento de aeronaves na Ásia-Pacífico em Alice Springs, Austrália
  • Aeroporto logístico do sul da Califórnia em Victorville, Califórnia
  • Parque aéreo do condado de Pinal no Arizona
  • Base Aérea Davis-Monthan e Pinal Air Park fora de Tucson, Arizona
  • Aeroporto de Teruel, na Espanha.
  • Porto Aéreo e Espacial de Mojave, na Califórnia
  • Roswell International Air Center no Novo México
Aeroporto Logístico do Sul da Califórnia (SCLA) (Foto: Aero Ícaro/Flickr)
Os cemitérios de aeronaves podem ser lugares fascinantes, contendo uma mistura de aviões históricos abandonados e jatos usados ​​a caminho de um novo operador.

Com informações de Simple Flying

Aconteceu em 22 de novembro de 2015: Voo Avia Traffic Company 768 - Pouso duro em meio a baixa visibilidade


Em 22 de novembro de 2015, o 
Boeing 737-3Y0, prefixo EX-37005, da Avia Traffic Company (foto acima), operava o voo 768, um voo doméstico regular de passageiros de Bishkek para Osh, no Quirguistão.
 
A aeronave Boeing 737-3YO, matrícula EX-37005, originalmente havia sido entregue à Philippine Airlines em 1990. Posteriormente foi vendida para Garuda Indonesia, Citilink e Sama Airlines, antes de ser vendida para Avia Traffic Company em 2011. A aeronave tinha 25 anos na época do acidente.

Levando 148 passageiros e cinco tripulantes a bordo, a aeronave havia originalmente partido do Aeroporto de Krasnoyarsk, na Rússia, para Osh, mas foi desviada para Bishkek devido ao nevoeiro em Osh. Depois que o tempo melhorou, a tripulação partiu para Osh. Observadores terrestres relataram que a visibilidade deteriorou-se para cerca de 150 m (490 pés).

A aeronave estava realizando uma aproximação ILS para a pista 12 de Osh por volta das 07h56L (01h56Z), mas pousou com força, fazendo com que o trem de pouso colapsasse e se separasse da aeronave. 

A aeronave saiu da pista e passou por terreno acidentado. O motor esquerdo CFM International CFM56 se separou, sendo arrancado do suporte, e o motor direito sofreu danos substanciais antes de a aeronave parar a cerca de 1.500 m (4.900 pés) do toque. 

Não houve vítimas fatais no acidente, mas quatro ocupantes sofreram ferimentos graves e dez ocupantes sofreram ferimentos leves.


A Autoridade de Aviação Civil da Rússia abriu uma investigação sobre o acidente. Relatórios preliminares sugeriram que a aeronave estava realizando uma aproximação ILS para a pista 12 de Osh, com visibilidade de 50 m (160 pés) no nevoeiro. 


A tripulação deu uma volta após um toque forte e entrou no padrão de tráfego, mas durante o padrão de tráfego a tripulação decidiu desviar para seu alternativo e retornar a Bishkek, mas logo depois recebeu avisos de duas falhas no sistema hidráulico, também como falha do motor nº 2, causada pelo colapso do trem de pouso direito. 


A tripulação desligou o motor nº 2 e decidiu realizar um pouso de emergência em Osh, apesar do tempo estar abaixo do mínimo seguro. A aeronave pousou com força e derrapou para fora da pista.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipédia, ASN e baaa-acro

Vídeo: Mayday Desastres Aéreos - Voo DHL Express - Ataque sobre Bagdá


Aconteceu em 22 de novembro de 2003: A tentativa de abate de um Airbus A300 da DHL Express em Bagdá


Em 22 de novembro de 2003, a aeronave de carga Airbus A300B4-203 (F), prefixo OO-DLL, da European Air Transport, operando para a DHL Express, estava programada para realizar um voo internacional de carga do Aeroporto Internacional de Bagdá com destino ao Aeroporto Internacional do Bahrein.


A aeronave possuía 24 anos de operações. Ela voou pela primeira vez em 18 de outubro de 1979 e foi entregue à Malaysia Airlines como uma aeronave de passageiros registrada 9M-MHB em 28 de dezembro de 1979. A aeronave foi vendida a seguir para a Carnival Air Lines registrada N225KW em junho de 1995. O avião foi convertido para configuração de carga em março de 1999, e foi entregue à divisão belga da European Air Transport, sob a qual operava como DHL Express, desde 22 de setembro de 2000.

O voo contava com uma tripulação experiente de três pessoas - dois belgas, o capitão Éric Gennotte, de 38 anos, e o primeiro oficial Steeve Michielsen, de 29 anos, e um escocês, o engenheiro de voo Mario Rofail, de 54 anos. O capitão tinha um total de 3.300 horas de voo, mais da metade delas registradas no A300. O primeiro oficial tinha 1.275 horas de experiência de voo e o engenheiro de voo tinha 13.400 horas de experiência de voo.

A rota prevista para o voo de carga
A aeronave decolou do Aeroporto Internacional de Bagdá com destino ao Aeroporto Internacional do Bahrein às 06h30 UTC. Para reduzir a exposição ao ataque ao solo, a aeronave estava executando uma subida rápida. 

A cerca de 8.000 pés (2.400 m) de altitude, um míssil terra-ar 9K34 Strela-3 (SA-14 Gremlin) atingiu a parte traseira da asa esquerda entre o motor e a ponta da asa. A ogiva danificou as superfícies do bordo de fuga da estrutura da asa e causou um incêndio. 

A repórter do Paris Match, Claudine Vernier-Palliez, acompanhava uma unidade Fedayeen dissolvida em sua missão de ataque contra a aeronave EAT. Sara Daniel, jornalista de um semanário francês, alegou ter recebido, de uma fonte desconhecida, um vídeo que mostrava insurgentes iraquianos (pertencentes ao IAI), com os rostos escondidos, disparando um míssil contra o Airbus A300. Sara Daniel estava pesquisando um artigo sobre grupos de resistência iraquianos, mas negou qualquer conhecimento específico das pessoas que realizaram o ataque, apesar de estar presente no momento do ataque.

Veja abaixo o vídeo real do disparo do míssil contra o avião:


Todos os três sistemas hidráulicos perderam pressão e os controles de voo foram desativados. A aeronave balançou rapidamente para cima e para baixo em um fugóide de montanha-russa , oscilando entre uma posição de nariz para cima e de nariz para baixo.

Como no caso do desastre do voo 232 da United Airlines em 1989 nos Estados Unidos, o capitão Genotte só poderia usar o empuxo para modificar a inclinação, a velocidade e a altitude e variar os aceleradores de forma assimétrica para controlar a guinada e virar a aeronave. 

O engenheiro de voo Mario Rofail executou uma descida por gravidade para estender o trem de pouso, procedimento normalmente realizado com energia hidráulica. A implantação precoce do equipamento foi crítica para um resultado seguro porque o aumento do arrasto ajudou a reduzir a velocidade e estabilizar a aeronave.

Visualização de Circuitos Hidráulicos (Via TheFlightChannel)
Em cerca de 10 minutos de experimentação, a tripulação aprendeu a fazer curvas, subidas e descidas. Após uma trajetória sinuosa, eles viraram à direita e iniciaram uma descida para o Aeroporto Internacional de Bagdá.

Devido aos danos na asa esquerda e à perda de combustível, Rofail teve que monitorar o motor de perto; se o fluxo de combustível fosse perdido no lado esquerdo, ele teria que alimentar o combustível de um tanque direito para manter o empuxo. A sobrevivência dependia do controle preciso da potência de cada motor a jato.

Genotte e Michielsen se preparam para uma aproximação final à pista 33R. A aeronave desviou para a direita do curso pretendido, então Genotte escolheu a pista 33L mais curta. A visibilidade era excelente e os pilotos conseguiram uma descida controlada. Eles sabiam, contra-intuitivamente, que não poderiam reduzir a aceleração antes do pouso sem correr o risco de o nariz ou a asa baterem no chão.

Cerca de 400 pés (120 m) acima do solo, a turbulência perturbou o equilíbrio da aeronave e a asa direita afundou. Com ajustes de empuxo, o rolamento foi controlado, mas a aeronave pousou fora da linha central da pista. Rofail imediatamente implantou impulso reverso total , mas a aeronave saiu da pista pavimentada. 

A aeronave correu por solo áspero e macio, levantando uma nuvem de areia e arrastando uma barreira de arame farpado, e parou após cerca de 3.300 pés (1.000 m).


Veja no vídeo abaixo as imagens reais do pouso de emergência do Airbus após ser atingido por míssil:

Ative a legenda em português nas configurações do vídeo
Apesar do perigo iminente representado pelo ataque inicial com mísseis, todos os três tripulantes sobreviveram ao ataque sem ferimentos. Este foi o primeiro caso de um avião comercial pousando sem sistema hidráulico e sem perda de vidas.

Os três membro da tripulação: Mario, Eric e Steve
A Honorável Companhia de Pilotos Aéreos homenageou conjuntamente todos os três tripulantes com o Prêmio Memorial Hugh Gordon-Burge. Este prémio é concedido à tripulação de voo cujas ações contribuíram de forma notável para salvar as suas aeronaves ou passageiros, ou que contribuíram significativamente para a segurança aérea futura. O prêmio anual é concedido somente se a indicação for considerada de mérito significativo.


O Prêmio de Profissionalismo FSF em Segurança de Voo da Flight Safety Foundation foi concedido aos tripulantes por suas "extraordinárias habilidades de pilotagem em pilotar suas aeronaves para um pouso seguro após um ataque de míssil após a decolagem de Bagdá, Iraque".


Em maio de 2006, o capitão Éric Genotte, junto com Armand Jacob, um piloto de testes experimentais da Airbus, fez uma apresentação para a filial de Toulouse da Royal Aeronautical Society intitulada "Landing an A300 Successful Without Flight Controls".


Além de graves danos nas asas e no material rodante, ambos os motores a jato sofreram abusos desastrosos ao ingerir detritos . Em novembro de 2004, a aeronave foi reparada e registrada novamente como N1452, depois colocada à venda, mas não foi vendida. O registro N1452 expirou em 2018. A aeronave antiga não voou novamente e desde então foi desmantelada.


O incidente foi apresentado em "Attack over Baghdad", um episódio da terceira temporada (2005) da série de TV canadense Mayday.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipédia, Simple Flying e ASN

Aconteceu em 22 de novembro de 1994: Voo TWA 427 Colisão com Cessna 441 no Aeroporto de Denver


Em 22 de novembro de 1994, o avião McDonnell Douglas DC-9-82 (MD-82), prefixo N954U, da Trans World Airlines - TWA (foto abaixo), estava programado para realizar o voo 427, um voo regular de passageiros com partida do Aeroporto Internacional St. Louis Lambert (STL) em Bridgeton, no Missouri, para o Aeroporto Internacional Denver-Stapleton (DEN/KDEN), no Colorado.


Havia 132 passageiros e 8 tripulantes a bordo. O capitão do voo 427 era o capitão Rick Carr (57 anos), o primeiro oficial era Randy Speed ​​(38) e Randy Richardson era um membro da tripulação fora de serviço ocupando o assento auxiliar da cabine.

Em 22 de novembro de 1994, a Superior Aviation, Inc., uma companhia aérea charter, operou um voo charter do Aeroporto Ford em Iron Mountain, no Michigan para o Aeroporto Internacional de St. Louis, utilizando o Cessna 441 Conquest II, prefixo N441KM.

Um Cessna 441 Conquest II similar ao envolvido na colisão
O Cessna chegou ao STL e, por volta das 21h40, taxiou até o terminal de aviação fretada para deixar seu passageiro. Depois que o passageiro fretado desembarcou em St. Louis, o Cessna foi programado para partir de St. Louis retornando a caminho de outra coleta fretada em Iron Mountain, em Michigan.

O voo 427 estava programado para partir do aeroporto às 21h34, horário padrão central, mas recuou do portão com cerca de 15 minutos de atraso. Apesar do atraso, as operações terrestres eram rotineiras. 

A rota prevista para o voo TWA 427
O voo 427 recebeu instruções para taxiar até a pista 30R. Às 22h01, o primeiro oficial informou aos controladores locais que o voo 427 estava pronto para decolar da pista 30R.

Às 21h58, o piloto do Cessna informou ao controle de solo que estava pronto para taxiar de volta à pista para decolagem. O controlador de solo instruiu o Cessna a "taxiar de volta para a posição" e manter a pista 31, e então avisar o controlador quando estiver em posição para a partida.

Embora não seja um termo de aviação formalmente definido, "back-taxing" geralmente se refere ao uso de uma pista para taxiar em uma direção oposta à direção do tráfego de partida ou pouso, a fim de alcançar a posição de decolagem mais adiante na pista.

Embora o controlador de solo tenha declarado especificamente a pista 31, o piloto do Cessna não repetiu o número da pista ao reconhecer suas instruções. Depois de ser autorizado a fazer o 'back-taxing' na Pista 31, o piloto do Cessna taxiou na Pista 30R, de onde o Voo 427 estava se preparando para partir.

Às 22h01min23s, o voo 427 foi liberado para decolagem da pista 30R, e o MD-82 taxiou na pista 30R, com o primeiro-oficial Randy Speed ​​nos controles. O voo 427 começou a acelerar na pista às 22h02min:27s.

Dois segundos depois, o piloto do Cessna avisou ao controlador local que estava "pronto para ir para o lado direito".

Às 22h02min40s, o Comandante Carr, do MD-82, avisou que haviam atingindo a velocidade de 80 nós. Dois a três segundos depois, Richardson, o membro da tripulação fora de serviço, gritou: "Há um avião!"

Simultaneamente, Speed ​​​​e Carr viram o Cessna e aplicaram a frenagem, e Carr aplicou o leme esquerdo com força na tentativa de direcionar sua aeronave ao redor do Cessna. 

Cerca de 2 a 3 segundos depois de verem o Cessna pela primeira vez, a tripulação do voo 427 sentiu o impacto do Cessna no lado direito do avião. A tripulação do voo 427 abortou a decolagem e parou o avião no lado esquerdo da pista 30R. 


A asa direita do MD-82 arrancou os estabilizadores horizontais e verticais da fuselagem do Cessna e arrancou a parte superior da fuselagem e da cabine do Cessna. Ambos os ocupantes do Cessna morreram.

O cokpit e a cabine de passageiros do MD-82 não foram danificadas e ninguém a bordo do MD-82 morreu na colisão. 

Carr desligou os motores do MD-82 e chamou imediatamente veículos de emergência. Carr então pediu ajuda à torre para determinar se havia um incêndio. 

O controlador afirmou que não viu chamas e, depois, afirmou que o Cessna não deveria estar na pista 30R, dizendo a Carr: "Ele deveria estar na pista três um. Não vi a aeronave naquela pista." 

Carr respondeu: “Tudo isso mais tarde, só quero ter certeza de que tudo está seguro aqui”. Devido à grande quantidade de combustível de aviação derramado, existia risco de incêndio e era necessária uma evacuação imediata. 

Oito passageiros sofreram ferimentos leves na evacuação da aeronave. A autoridade aeroportuária não fechou oficialmente o aeroporto após o acidente. As aeronaves continuaram pousando na pista 30L e taxiando nas proximidades durante a evacuação dos passageiros.

Um diagrama do Aeroporto Internacional Denver-Stapleton
A investigação resultante do NTSB determinou que o Cessna havia chegado recentemente de Iron Mountain, no Michigan. Ele pousou na pista 30R e deixou um passageiro antes de se preparar para o voo de retorno. Um piloto com qualificação comercial e um passageiro com qualificação de piloto, casado com um funcionário da Superior Aviation, estavam a bordo quando saiu da rampa.

O NTSB não conseguiu determinar o motivo pelo qual o piloto do Cessna taxiou na pista errada, mas considerou várias teorias, incluindo fadiga por causa da hora tardia e ansiedade para evitar a deterioração do tempo no destino do Cessna.

No final das contas, o NTSB concluiu que o piloto provavelmente havia formado uma noção preconcebida de que usaria a pista 30R, que ele usou na chegada, em vez da pista 31.


A informação ATIS transmitida a todos os pilotos informava que as pistas 30L e 30R estavam em utilização para chegadas e partidas. Embora a pista 31 fosse usada rotineiramente nessas condições para aeronaves de aviação geral, esta informação não foi incluída na transmissão horária do ATIS.

O NTSB acreditava que se as transmissões ATIS mencionassem a Pista 31 como uma pista ativa, o piloto do Cessna poderia ter estado mais atento à menção da Pista 31 nas instruções de táxi do controlador de solo. Além disso, o NTSB criticou o uso de frases não padronizadas pelo controlador de solo e a falha em exigir que o piloto do Cessna repetisse a pista para a qual foi autorizado. 

De acordo com um porta-voz do NTSB, os pilotos do voo 427 evitaram um grande desastre puxando a aeronave para a esquerda antes do impacto, uma manobra que “evitou o que teria sido um acidente muito pior”.

Um diagrama do local de parada das aeronaves após a colisão
Os pilotos recomendados pelo NTSB devem ser obrigados a ler as atribuições da pista e os controladores verificar a leitura. Em resposta, a FAA modificou o manual do controlador de tráfego aéreo para exigir que os controladores obtenham a confirmação da atribuição da pista dos pilotos após emitirem instruções de táxi. 

O NTSB endossou a ação da FAA e expressou a sua opinião de que se este procedimento estivesse em vigor no dia do acidente, o acidente poderia não ter ocorrido. O NTSB também recomendou que a FAA formalizasse uma definição de "táxi de volta" para que seu uso pudesse ser padronizado.

Além disso, o NTSB recomendou a instalação de radar terrestre no STL e reiterou a sua recomendação permanente de que todos os aeroportos deveriam fechar imediatamente após qualquer incidente, até que a situação fosse avaliada.

O N954U foi reparado e voltou ao serviço com a TWA. A aeronave foi posteriormente transferida para a American Airlines depois que a TWA encerrou as operações em 2001 e foi colocada em armazenamento em 2017.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipédia, ASN, flightsafety.org e NTSB 

Aconteceu em 22 de novembro de 1968: Voo Japan Airlines 2 - Pouso nas águas da Baia de São Francisco

O voo 2 da Japan Airlines foi pilotado pelo capitão Kohei Asoh em 22 de novembro de 1968. O avião era o novo McDonnell Douglas DC-8-62, prefixo JA8032, da JAL - Japan Air Lines, batizado "Shiga" (foto abaixo), voando do Aeroporto Internacional de Tóquio (Haneda), no Japão, para o Aeroporto Internacional de São Francisco, na Califórnia (EUA). Devido à forte neblina e outros fatores, Asoh por engano pousou o avião perto de Coyote Point, nas águas rasas da Baía de São Francisco , duas milhas e meia antes da pista. Nenhum dos 96 passageiros ou 11 tripulantes ficaram feridos no pouso.


O voo e o acidente 

O voo 2 estava programado para partir de Tóquio às 17h (08h00 UTC) na sexta-feira, 22 de novembro, e pousar em São Francisco às 10h15 (17h15 UTC). A partida real foi adiada para 17h36 (08h36 UTC) devido à manutenção necessária no painel de instrumentos do piloto, que fornecia leituras de altitude inconsistentes.

O comando do voo coube ao capitão Kohei Asoh (46), acompanhado na cabine pelo primeiro oficial capitão Joseph Hazen (34), pelo engenheiro de voo Richard Fahning (40) e pelo navegador Ichiryo Suzuki (27). 

O voo foi conduzido sem incidentes nas oito horas seguintes. O número de série da aeronave era 45954, construída em 18 de maio de 1962 e entregue em 27 de maio. Era equipada com quatro motores Pratt & Whitney JT3D -3B, que tiveram um tempo total de operação de 1707:54 horas. 

Ao se aproximar de seu destino, o JAL002 foi captado pelo radar local em Oakland às 8h54 (1654 UTC) quando 169 milhas náuticas (313 km; 194 mi) na 257ª radial do Oakland Vortac e a aeronave foi liberada para pouso em SFO através de um waypoint 21 mi (34 km) a oeste da estação Woodside Vortac a uma altitude de 8.000 pés (2.400 m).

O Oakland TRACON informou aos pilotos que a visibilidade local no SFO era de 3 ⁄ 4  mi (1,2 km) e o alcance visual da pista excedia 6.000 pés (1.800 m), recomendando que o voo fosse mantido. 

O piloto comandante Capitão Kohei Asoh tentou uma aproximação do Sistema de Pouso por Instrumentos (ILS) acoplado automaticamente devido ao forte nevoeiro, o que ele nunca havia feito antes em um voo DC-8-62 registrado. 

O voo JAL002 começou a descer de sua altitude de cruzeiro de 37.000 pés (11.000 m) às 8h59 (1659 UTC), passando por 13.000 pés (4.000 m) aproximadamente onze minutos depois, quando Oakland TRACON forneceu uma atualização sobre alcance visual da pista no SFO, que caiu para 3.500 pés (1.100 m).

O voo  JAL002 continuou sua descida enquanto o controle de tráfego aéreo era entregue ao Bay TRACON enquanto estava perto do Woodside Vortac; o piloto relatou uma altitude de 8.000 pés (2.400 m) às 9h12:54,3 (1712:54,3 UTC), depois 6.500 pés (2.000 m) às 9h14:11,3 am (17h14:11,3 UTC).

Menos de um minuto depois, o capitão Asoh solicitou que "devido ao clima em São Francisco, gostaríamos de uma [abordagem] final longa, em vez de direta para o marcador externo", o que colocaria a aeronave a 6 mi (9,7 km) a leste do marcador da trajetória de pouso original e fornecer uma aproximação mais direta à pista. Na abordagem ILS, o piloto automático e o diretor de voo seriam usados ​​para controlar o rumo e a altitude da aeronave.

Às 9h16 (17h16 UTC), Bay TRACON instruiu o Capitão Asoh a descer e manter 4.000 pés (1.200 m) de altitude e virar à esquerda para um rumo de 040° enquanto se mantém a uma velocidade de 180 kn (330 km/h; 210 mph). Atualizações foram feitas no rumo e altitude do voo em resposta ao controle de tráfego aéreo, e a aproximação final foi comandada às 9h20min44, quando o Bay TRACON instruiu JAL002 a fazer uma curva à esquerda e assumir o rumo 280 ° à medida que passavam pelo localizador de acordo com a abordagem ILS.

 Assim que o localizador foi capturado, o Capitão Asoh moveu o seletor do piloto automático de VOR LOC para ILS e desacelerou o avião para 160 kn (300 km/h; 180 mph) de acordo com as instruções do solo; ele usou o indicador de direção do rádio como instrumento principal para a aproximação, em vez do indicador de desvio da rampa de planeio, que estava flutuando na época.

 Além disso, como seu altímetro de pressão havia sido substituído antes do início do voo, o Capitão Asoh não confiava em suas leituras, principalmente porque continuava a discordar do instrumento do copiloto, indicando uma breve subida cada vez que a aeronave havia se estabilizado durante o voo.

O teto das nuvens tinha 300 pés (91 m)  e havia pouco contraste entre o céu e as águas calmas da baía. Como resultado, durante a descida final, a altitude muito baixa não foi reconhecida a tempo de corrigi-la antes de atingir a água. 

O capitão Asoh definiu seu alerta de altitude mínima de descida para 211 pés (64 m); o alerta foi acionado pelo rádio altímetro, pois o altímetro de pressão marcava 300 pés (91 m) naquele momento. Enquanto o capitão Asoh verificava as luzes da pista, o copiloto capitão Hazen anunciou atualizações visuais: "[estamos] saindo do nublado - não consigo ver a luz da pista - estamos muito baixos - suba, suba". O capitão Asoh afirmou mais tarde que percebeu que o avião estava muito baixo quando avistou a água depois que o avião rompeu o nevoeiro com uma velocidade de ar de 177 mi/h (285 km/h). 

Ele agarrou a alavanca de controle para ganhar altitude e avançou os aceleradores na expectativa de ter que abortar o pouso e dar uma volta , mas o trem de pouso principal do avião já havia atingido a água, primeiro à direita e depois à esquerda, aproximadamente 2+1 ⁄ 2  mi (4,0 km) antes da pista 28L. 

O avião pousou na água aproximadamente às 9h24h25 (17h24h25 UTC). O passageiro Walter Dunbar relembrou "Chegamos ao lado das montanhas e entramos em meio a uma névoa espessa. A próxima coisa que percebi foi que estávamos a cerca de trinta centímetros fora da água. Ela bateu, pulou duas vezes e depois levantou o nariz." 

Um relatório inicial da Guarda Costeira afirmou que a aeronave parou de cabeça para baixo. Na verdade, o avião parou no fundo da baía em águas rasas de aproximadamente 7 pés (2,1 m) de profundidade, deixando as saídas dianteiras acima da linha d'água. 

O comissário-chefe, Kazuo Hashimoto, sentiu que não houve pânico entre os passageiros após o pouso e tentou fazer um anúncio através do sistema de endereço público (PA). Como o sistema de PA falhou após o pouso, ele acabou gritando da cabine dianteira para os passageiros: "Fiquem quietos, o avião chegou ao fundo do mar. Não vai afundar. Não se preocupem, estamos bem preparados para evacuação." 

Todos os passageiros e tripulantes evacuaram o avião em botes salva-vidas, que foram rebocados pela polícia e barcos da Guarda Costeira para o vizinho Coyote Point Yacht Harbor. O capitão Asoh foi o último a sair. [6] Asoh retornou ao avião depois de garantir que todos estavam em segurança em terra para recolher e devolver os pertences pessoais dos passageiros.

Após o incidente, o Conselho Nacional de Segurança nos Transportes dos EUA (NTSB) declarou que foi o primeiro abandono bem-sucedido de um jato desde a inauguração do serviço a jato. O pouso pode ter sido auxiliado pela maré excepcionalmente alta de 7 pés (2,1 m), em comparação com o nível típico da água de 4 pés (1,2 m), levando o chefe dos bombeiros de South San Francisco, John Marchi, a declarar o fosso "um tiro de um em um milhão", já que o aumento da profundidade proporcionava amortecimento suficiente, ao mesmo tempo em que era raso o suficiente para que as portas de saída permanecessem acima da água.

Além de algumas crianças chorando, as notícias dos jornais indicavam que não havia pânico a bordo. Entre os 96 passageiros, havia sete crianças. Peter Covert foi um dos dois fotógrafos amadores a contribuir com imagens para o Chronicle. 

Peter Covert, um nova-iorquino, disse ao Chronicle que 70 a 80 por cento dos passageiros eram japoneses, e pelo menos 80 por cento tiraram fotos da evacuação. “As pessoas estavam muito calmas”, disse Covert. “Eles continuaram tirando fotos.”

Os passageiros e a tripulação evacuaram o avião em botes salva-vidas, que foram rebocados pela polícia e pelos barcos da Guarda Costeira para o porto de iates Coyote Point, nas proximidades. O capitão Asoh foi o último a sair. Asoh voltou ao avião depois de garantir que todos estivessem em segurança em terra para recolher e devolver os pertences pessoais dos passageiros.

Após o incidente, o US National Transportation Safety Board (NTSB) afirmou que foi a primeira amaragem bem-sucedida de um avião desde a inauguração do serviço a jato.

O pouso pode ter sido auxiliado pela maré invulgarmente alta de 7 pés (2,1 m), em comparação com o nível de água típico de 4 pés (1,2 m), levando o chefe dos bombeiros de South San Francisco, John Marchi, a declarar o fosso "one-in", pois a profundidade aumentada proporcionou amortecimento suficiente, sendo rasa o suficiente para que as portas de saída permanecessem acima da água.

A investigação e a causa do acidente 

O capitão Asoh era um piloto veterano que voou com a Japan Airlines por 14 anos em 1968, com cerca de 10.000 horas de voo, 1.000 delas em DC-8s. Durante a Segunda Guerra Mundial, ele serviu como instrutor de voo para os militares japoneses. 

Seu primeiro oficial, o capitão Joseph Hazen, tinha tempo de voo semelhante, mas pouca experiência com o DC-8. O capitão Asoh tentou uma aproximação do sistema de pouso por instrumentos (ILS) acoplado automaticamente, algo que nenhum dos dois havia feito antes em um voo DC-8 registrado.

O teto da nuvem tinha 300 pés, com visibilidade de 3/4 de milha, e havia pouco contraste entre o céu e as águas calmas da baía. Como resultado, uma vez que o avião desceu abaixo das nuvens, o erro não foi reconhecido a tempo de corrigi-lo antes de cair na água. O capitão Asoh afirmou que percebeu que o avião estava muito baixo, uma vez que avistou a água depois que o avião rompeu a névoa a uma altitude de 211 pés (64 m) com uma velocidade de ar de 177 mi/h (285 km/h). Ele agarrou o manche para ganhar altitude, mas o avião já havia atingido a água.

O capitão Asoh afirmou (por meio de um tradutor) que "o avião era totalmente automático" e ele não poderia "dizer o que havia de errado [para causar a aterrissagem na água]" porque esteve em contato com a torre de controle durante toda a aproximação e estava nunca informou que havia se desviado da rota de voo.

A revisão do incidente pelo NTSB concluiu que:

A causa provável deste acidente foi a aplicação indevida dos procedimentos prescritos para executar uma abordagem ILS de acoplamento automático. Este desvio dos procedimentos prescritos foi, em parte, devido à falta de familiarização e operação infrequente do diretor de voo e sistema de piloto automático instalados.

A "Defesa de Asoh" 

Asoh, quando questionado pelo NTSB sobre o pouso, supostamente respondeu: "Como vocês americanos dizem, eu estraguei tudo." Em seu livro de 1988, "The Abilene Paradox" , o autor Jerry B. Harvey denominou essa aceitação franca da culpa de "defesa de Asoh", e a história e o termo foram retomados por vários outros teóricos da administração.

Resultado 

A aeronave foi posteriormente reparada e voou para a Okada Air. A aeronave não foi gravemente danificada e foi recuperada 55 horas após o incidente na maré alta, após várias tentativas fracassadas de içá-la para fora da água. Depois de ser pulverizado com 20.000 galões americanos (76.000 litros) de água doce, ele foi transportado para o aeroporto em uma barcaça de 150 pés (46 m). 

O dano externo foi extremamente pequeno, pois foi notado que a única parte do equipamento externo danificado na aeronave foi o truque de engrenagem direito, com uma roda sendo cortada quando o avião afundou por acidente. Outras inspeções revelaram apenas leves danos estruturais, com reparos estimados em menos de seis meses.

A United Airlines ofereceu US$ 4.000.000 (equivalente a US$ 27.890.000 em 2019) para reformar e consertar a aeronave para a JAL, com o que a Japan Airlines concordou e a aeronave foi consertada e reformada por um período de meio ano. 

A aeronave foi devolvida à JAL em 31 de março de 1969, e passou por um voo de teste bem-sucedido em 11 de abril de 1969 de San Francisco para Honolulu. Posteriormente, foi renomeado para "Hidaka" e continuou em serviço para a JAL até 1983.

Asoh foi temporariamente proibido de embarcar em aviões de passageiros, rebaixado a Primeiro Oficial, passou por mais treinamento em solo e continuou a voar para a JAL até sua aposentadoria. Hazen também voltou a voar alguns meses depois.

Em 1973, a Japan Airlines estava usando aeronaves Boeing 747 na rota de Tóquio a São Francisco. Hoje, a Japan Airlines ainda opera uma rota chamada Voo 2 (JAL002) de Haneda a San Francisco, atualmente usando o Boeing 777-300ER .

A história posterior da aeronave

O avião envolvido no acidente, recuperado, em operação pela Okada Air

O JA8032 foi vendido para a Air ABC (registro TF-BBF), depois para Okada Air (registro 5N-AON) e, finalmente, voou como um cargueiro expresso para a Airborne Express (registro N808AX) antes de ser desativado e desmantelado no Wilmington Air Park (ILN) em dezembro de 2001.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipédia, ASN, check-six.com, blog.sfgate.com e bayareaplanespotters.weebly.com