Quem foi Edméa Dezonne?
Brevê definitivo e carreira promissora
Náufragos do Ar
Irmã da autora de Sinhá Moça
Matéria publicada origialmente no site Memória Santista, em 13.12.2020
As principais notícias sobre aviação e espaço você acompanha aqui. Acidentes, incidentes, negócios, tecnologia, novidades, curiosidades, fotos, vídeos e assuntos relacionados. Visite o site Desastres Aéreos, o maior banco de dados de acidentes e incidentes aéreos do Brasil.
Matéria publicada origialmente no site Memória Santista, em 13.12.2020
O segredo é uma combinação complexa de revestimento especial com design inteligente. O objetivo de um avião invisível é entrar em território hostil, realizar sua missão e retornar em segurança sem ser detectado pelo inimigo.
Para conseguir isso, não basta apenas escapar das ondas de rádio dos radares. Ainda é preciso ser silencioso, difícil de enxergar a olho nu e capaz de driblar sensores de calor. O mais famoso avião avião é o bombardeiro americano B-2 Spirit.
Além da invisibilidade, o que mais impressiona no B-2 é sua grande autonomia para um avião de guerra, conseguindo voar 11 mil milhas sem reabastecer.
A estreia dele em combate aconteceu em 1999, durante os conflitos separatistas em Kosovo, província da antiga Iugoslávia. Enquanto outros aviões decolavam de porta-aviões e bases aéreas próximas da região, os B-2 vinham direto dos Estados Unidos, onde fica uma única base aérea capaz de cuidar de sua delicada manutenção.
Numa nova guerra é provável que os B-2 sejam os primeiros aviões na linha de ataque, destruindo como defesas antiaéreas e abrindo caminho para outras aeronaves.Em vez de ter asas e cauda, como os aviões comuns, o B-2 inteiro é uma espécie de asa voadora. Isso melhora muito sua sustentação no ar, economizando combustível e permitindo ao B-2 alcançar distâncias intercontinentais em curto tempo, mesmo com seu peso imenso de 150 toneladas
Antes de sair pelos exaustores, o jato de gerado ar gerado pelos motores e que impulsiona o avião à frente passa por dutos de refrigeração. Assim, o ar deixa a nave com temperatura quase igual à ambiente, despistando mísseis e radares que seguem os rastros de calor
As partes metálicas do B-2, como os trens de pouso e os quatro motores a jato, ficam enterrados no meio do avião, onde não refletem as ondas do radar. Esse esconderijo também serve para abafar o barulho do motor
O formato esquisito do B-2 foi planejado para desviar as ondas de rádio para longe do radar que adicionou, evitando que elas retornem ao equipamento e indiquem a posição do avião.
Além disso, um aeronave é recoberta por materiais não-metálicos e uma camada de tinta especial (de composição secreta) capaz de absorver uma parte dessas ondas de rádio, do mesmo modo que um objeto negro consegue absorver uma luz.
Graças à tintura misteriosa (que precisa ser renovada a cada voo) e ao seu formato, o B-2 é identificado pelos radares como um objeto menor que um pequeno pardal e por isso nem aparece na tela
As ondas de rádio emitidas por um radar batem em objetos sólidos e são refletidas de volta. Cada objeto aparece de um jeito na tela do equipamento. Como grandes chapas de metal (como da fuselagem dos aviões) são excelentes refletores de ondas, estas retornam em alta frequência ao radar e as imagens comuns aparecem na tela.
Fonte: Superinteressante - Imagens: Reprodução
O avião operava o voo comercial GW-5719 de Krasnodar para Gyumri para transportar dois carros VAZ-2121 Niva e bagagens. O peso total da carga era de 2.900 kg, e seis acompanhantes também estavam registrados para o voo.
A tripulação da aeronave era composta por cinco pessoas, o comandante (PIC) era Aristarkhov. O peso total estimado da aeronave foi de 23.988 kg, ou seja, próximo do máximo permitido de 24.000 kg.
De acordo com a previsão meteorológica recebida pela tripulação , esperava-se que Gyumri ficasse nublado com limite inferior de 90 metros, neblina, visibilidade vertical de até 90 metros, e também por vezes neblina espessa, em que a visibilidade diminuía para 200 metros, e vertical visibilidade para 60 metros. Com base nesses dados, o comandante Aristarkhov decidiu voar para Gyumri.
Às 17h30, horário de Moscou, o avião estava preparado para voar e às 17h44 a tripulação contatou o controlador de táxi e solicitou permissão para ligar os motores. Mas o controlador do táxi, atendendo a repetidos pedidos, proibiu por enquanto a partida dos motores, alegando que se tratava de uma ordem do diretor de voo.
Como foi posteriormente apurado, tal atraso foi causado por apenas um motivo - o despachante pretendia embarcar no avião os passageiros clandestinos que passavam pela fiscalização aduaneira no aeroporto.
Enquanto o avião estava parado no aeródromo, os despachantes, juntamente com os funcionários do VOHR, embarcaram primeiro quatro passageiros com bagagem e depois mais oito.
Às 18h27, a tripulação finalmente recebeu permissão para ligar os motores, e às 18h32 eles começaram avançando para o lançamento preliminar. Durante a movimentação, mais 13 passageiros embarcaram no avião na pista de táxi principal.
Além dos passageiros clandestinos, o voo 5719 transportava dois veículos VAZ-2121 Niva |
Vale ressaltar que no momento da decolagem do avião o tempo em Gyumri já estava ruim: o aeroporto estava coberto de neblina e a visibilidade caiu para 700 metros. Mas uma hora e meia antes e antes das 19h30, os despachantes em Gyumri e Krasnodar pararam de trocar informações meteorológicas.
Embora durante o voo a tripulação a bordo tenha sido avisada duas vezes pelas tripulações dos aviões que se aproximavam e retornavam de Gyumri de que havia neblina ali e a visibilidade havia caído para 300 metros.
Além disso, quando o avião estava na área de Stavropol, o despachante do Centro de Controle Automatizado de Tráfego Aéreo do Norte do Cáucaso (SCC AUTC) entrou em contato com ele e perguntou à tripulação se ele pretendia continuar o voo para Gyumri, ao qual recebeu uma resposta afirmativa.
Quando o avião se aproximou do limite do centro de controle de Gyumri, a tripulação estabeleceu contato com o despachante do aeroporto e informou ter entrado na zona a uma altitude de 5.700 metros.
O despachante informou que a visibilidade horizontal no aeroporto era de 600 metros, após o que questionou a tripulação sobre a decisão. O mínimo meteorológico do aeroporto para pouso de aeronaves An-26 utilizando sistema rumo-plano era de 60 por 800 metros, ou seja, neste caso, a tripulação deveria se dirigir a um aeródromo alternativo ou aguardar a melhora do tempo na área do aeroporto.
Mas o comandante anunciou que pretendia pousar e solicitou a descida até o nível de voo de 4.500 metros. Quando o avião atingiu a altitude de 4.500 metros, o despachante informou que a visibilidade no aeroporto havia caído para 400 metros, ao que o avião disse “Entendi”, mas continuou a descer até o nível de 3.600 metros, que era o nível de transição.
Atingida esta altitude, a tripulação passou a se comunicar com o controlador do círculo, que foi informado da descida e execução da aproximação de pouso por meio de atuadores (rádio balizas).
O controlador do círculo informou que a visibilidade no aeroporto era de 400 metros e a pressão do aeródromo era de 642 mm Hg., após o que nos permitiu descer para a aproximação de pouso, embora soubesse que o mínimo meteorológico durante a aproximação de pouso era de 200 por 2.500 metros.
A tripulação também sabia que as condições meteorológicas estavam abaixo do mínimo, mas mesmo assim começou a descer conforme o padrão de aproximação. O avião informou ainda que a pressão estava ajustada para 640 mmHg, embora esta fosse inferior à pressão indicada pelo controlador de 642 mmHg, razão pela qual os altímetros barométricos agora superestimaram as leituras em 26 metros, mas o controlador não corrigiu os pilotos.
Porém, mais tarde na investigação verifica-se que a tripulação controlava a altitude através de um rádio altímetro, que não está ligado à pressão do aeródromo, e portanto a configuração incorreta dos altímetros não afetou o resultado do voo.
Sabendo que as condições meteorológicas no aeroporto estavam abaixo do mínimo estabelecido para aeronaves An-26, o comandante Aristarkhov quis (ou foi forçado a) pousar em Gyumri, por isso estava muito nervoso e excitado, por isso começou cometer erros.
Em particular, a unidade de potência auxiliar não foi ligada, conforme exigido pelo manual de voo no caso de uma aeronave com peso igual ou superior a 20.100 kg se aproximar de um aeroporto de montanha.
Além disso, durante a terceira e quarta curvas, a tripulação liberou a mecanização e o trem de pouso com pressa. Mais adiante no planeio com curso de pouso de 19°, a velocidade de voo, em vez dos 230 km/h definidos, oscilou de 260 a 216 km/h, o modo de operação do motor variou de 13 a 47° de acordo com a alavanca de combustível indicadores de posição (UPRT), o curso flutuou de 10 a 20°, enquanto os giros para a direita e para a esquerda foram de 8 a 10°, sacudir o elevador para cima e para baixo criou sobrecargas verticais de 0,85 a 1,3 unidades, enquanto a velocidade vertical variou de 2 para 12 m/s, e o alcance das ações de controle do aileron aumentou bastante.
Às 20h54min15s, o despachante informou que a visibilidade no aeroporto já havia caído para 200 metros, após o que o avião passou pelo radiofarol de longo alcance (LDRM, ou seja, o ponto de entrada da planagem).
Depois de passar o DPRM, a tripulação estabilizou a velocidade de voo em 230 km/h, ou seja, conforme indicado no manual, mas a velocidade vertical foi de 4 m/s, em vez dos 3 m/s exigidos, razão pela qual a máquina começou a descer abaixo da trajetória normal de aproximação o pouso e o radiofarol de curto alcance (LRB) foram concluídos a uma altitude de cerca de 40-50 metros, ou seja, 20 metros abaixo do estabelecido pelas regras.
Provavelmente, os pilotos daquela época estavam tentando distinguir pontos de referência, já que o avião começou a rolar de 8 a 10°, seja para a direita ou para a esquerda, enquanto o curso flutuava de 10 a 25°.
Quatro a cinco segundos após o voo do BPRM, o avião estava a uma altitude de 10 a 20 metros, quando os pilotos puxaram o volante em sua direção, fazendo com que o nariz do avião subisse, causando uma sobrecarga de 1,2 unidades, e a velocidade vertical de descida diminuiu.
Além disso, o modo de operação do motor foi reduzido de 30 para 22° de acordo com UPRT, razão pela qual após 10 segundos, quando o avião passou pelo final da pista, a velocidade de voo diminuiu para 216 km/h. Além disso, no intervalo do BPRM até o final da pista, o avião encontrou-se em uma margem direita de 12°, mas no momento em que passou pelo final a rotação havia diminuído para 1-2°.
Voando em voo virtualmente horizontal, a aeronave passou pelo final da pista a uma altitude de 15 a 25 metros. A velocidade de voo continuou a cair, então o modo do motor foi aumentado para 48° de acordo com UPRT, o que apenas reduziu a taxa de redução de velocidade.
Ao voar sobre a pista, o ângulo de ataque e o ângulo de inclinação (elevação do nariz) aumentaram para 6-8°, apesar do fato de a trajetória de vôo naquele momento ter se tornado horizontal, razão pela qual o ângulo de visão mudou para mais alto, ou seja , os pilotos não conseguiam ver o terreno próximo e, como a visibilidade na pista era de apenas 200 metros, a própria pista agora era difícil de ver.
Voando a uma velocidade de 190 km/h, o avião já estava a 1000 metros da extremidade de entrada, quando às 20h56min25s o controlador comandou: "Suba oitocentos metros".
O comandante da aeronave também decidiu abortar o pouso e dar uma volta , então, ao assumir o comando bruscamente, inclinou o elevador 8° para cima e colocou os motores em modo de decolagem, após o que às 20h56min28s, ele se reportou a o despachante: "estou subindo oitocentos metros ... levantando o nariz".
O An-26 com os flaps estendidos para a posição de pouso (ângulo dos flaps - 38°) começou a ganhar altitude a uma velocidade vertical de 2-3 m/s, enquanto a tripulação retraía o trem de pouso durante a subida. Mas devido ao grande peso do forro, a força de empuxo dos motores não foi suficiente, e com isso a velocidade começou a diminuir. O avião subiu até 95 metros em cerca de 30 segundos, quando a velocidade caiu para um valor crítico – 165 km/h.
Tendo entrado em estol, a aeronave entrou na margem direita e desceu precipitadamente, e às 20h57min01s, com margem direita de 60° com velocidade vertical de aproximadamente 20 m/s e velocidade de voo de cerca de 150 km/h, colidiu com o solo à esquerda da pista e a 2.990 metros da extremidade de entrada.
Após o impacto com o solo, o An-26 foi completamente destruído e queimado. Um dos passageiros ficou gravemente ferido, mas sobreviveu. Todas as outras 35 pessoas a bordo (30 passageiros e 5 tripulantes) morreram.
Os seguintes fatores foram relatados:
Segundo a conclusão da comissão, a causa do desastre foi a perda de velocidade, que a tripulação permitiu ao realizar uma arremetida em um avião sobrecarregado, razão pela qual este atingiu um ângulo de ataque acima do crítico, perdeu velocidade, e então entrou em uma barraca e caiu no chão. O desastre em si foi causado pelos seguintes fatores:
Por Jorge Tadeu (Site Desastres Aéreos) com Wikipédia, ASN e baaa-acro.com
O voo 2415 da United Express era um voo regular de Seattle para Pasco, ambos no estado de Washington, operado com um BAe Jetstream 31. Em 26 de dezembro de 1989, o voo 2415 caiu ao tentar pousar no Aeroporto Tri-Cities de Pasco, matando os dois pilotos e todos os quatro passageiros a bordo.
Na noite do acidente, voo 2415 foi operado usando o British Aerospace 3101 Jetstream 31, prefixo N410UE (foto acima). A aeronave foi fabricada em outubro de 1987, e tinha acumulado aproximadamente 4.972 horas de voo no momento do acidente. A aeronave não estava equipada com um sistema de alerta de proximidade do solo e não tinha gravador de voz na cabine ou gravador de dados de voo.
O capitão era Barry W. Roberts, de 38 anos. Ele tinha 6.600 horas de voo, incluindo 670 horas no Jetstream. O primeiro oficial era Douglas K. McInroe, de 25 anos, que tinha 2.792 horas de voo, com 213 delas no Jetstream.
O agente da estação perguntou ao capitão Roberts se ele queria que seu avião fosse degelado, mas o capitão recusou. O agente da estação também perguntou se o capitão queria que a cauda do voo 2415 fosse descongelada, já que os primeiros oficiais descongelando as asas seriam incapazes de alcançar as superfícies da cauda. Roberts também recusou. O voo 2415 foi o único voo a partir de Yakima naquela tarde/noite que não foi descongelado antes da partida.
Às 21h59, os controladores de tráfego aéreo da torre Yakima anunciaram que o aeroporto de Yakima estava fechado devido às condições climáticas.
No entanto, às 22h00, o voo 2415 contatou os controladores de solo de Yakima e foram autorizados a prosseguir para a pista 27 de Yakima para a decolagem. Os controladores de solo aconselharam o voo 2415 sobre "formação de gelo misto leve a moderado" entre 4.000 e 18.000 pés, o que o voo 2415 reconheceu.
Às 22h01, o voo 2415 partiu de Yakima a caminho de Pasco, e subiu a uma altitude de cruzeiro de 11.000 pés. Às 22h26, o voo 2415 foi liberado para um sistema de pouso por instrumentos (ILS) aproximação à pista 21R no Aeroporto Tri-Cities de Pasco. As conversas entre o voo 2415 e os controladores foram normais nos minutos que antecederam o acidente, e nenhum pedido de socorro foi feito.
Às 22h30, enquanto o voo 2415 estava em aproximação final, o controlador da torre Pasco observou o voo 2415 voando "mais alto que o normal" para uma aproximação final, e também descendo mais rápido que o normal.
O controlador observou o voo 2415 descer até atingir o solo a 400 pés da pista 21R. O controlador alertou as equipes de resposta de emergência, que chegaram ao local do acidente às 22h34. A aeronave foi destruída e não houve sobreviventes.
O acidente foi investigado pelo National Transportation Safety Board. Os investigadores determinaram que o avião estava voando bem acima do glideslope para uma abordagem ILS.
Spokane Chronicle - 27 dez. 1989 |
Os investigadores também determinaram que provavelmente o gelo se acumulou nas asas do avião durante o voo, criando um risco maior de estol em baixas velocidades. De acordo com os dados do radar, o voo 2415 diminuiu a velocidade para 110 nós enquanto tentava descer. A combinação de uma descida excessivamente íngreme, baixa velocidade e congelamento da aeronave provavelmente resultou na perda de controle da aeronave.
Em 4 de novembro de 1991, o NTSB emitiu seu relatório final sobre o acidente, que continha as seguintes conclusões:
O National Transportation Safety Board determinou que a causa provável desse acidente foi a decisão da tripulação de continuar uma abordagem do sistema de pouso por instrumentos não estabilizado que levou a um estol, muito provavelmente do estabilizador horizontal, e perda de controle em baixa altitude.
Contribuíram para o acidente os vetores inadequados do controlador de tráfego aéreo que posicionaram o avião dentro do marcador externo enquanto ainda estava bem acima do glideslope. Contribuindo para o estol e a perda de controle estava o acúmulo de gelo na estrutura que degradou o desempenho aerodinâmico do avião.
Por Jorge Tadeu (Site Desastres Aéreos) com Wikipédia e ASN
O supersônico Aeroflot Tupolev Tu-144S, CCCP-77106, carregando carga em Demodovo antes de seu terceiro voo comercial, em 1976 (Foto: Valeriy A. Vladimirov) |
O 004-1 foi a primeira produção Tu-144S entregue à Aeroflot. Um protótipo e um Tu-144S de pré-produção foram construídos primeiro. Havia um total de 16 Tu-144s concluídos, com nove modelos Tu-144S de produção e cinco modelos Tu-144D.
O Tu-144S foi construído por Tupolev OKB na Voronezh Aviation Plant (VASO), Aeroporto de Pridacha, Voronezh. É uma grande aeronave de asa delta com um nariz “inclinado” para melhor visibilidade da cabine de baixa velocidade e canards retráteis montados no alto da fuselagem atrás da cabine. Era pilotado por uma tripulação de três pessoas e projetado para transportar até 120 passageiros.
Os passageiros embarcam no Tu-144S, CCCP-77106, da Aeroflot, em 1976 (Foto: Valeriy A. Vladimirov) |
No serviço comercial real, o Tu-144 era extremamente confiável. Foi retirado de serviço após um total de apenas 102 voos comerciais, incluindo 55 voos de passageiros.
O Tupolev Tu-144S 004-1, CCCP-77106, no Museu Central de Aviação Monino (Foto: Danner Gyde Poulsen) |
Os voos comerciais do Concorde começaram logo depois, em 21 de janeiro de 1976, e terminaram em 24 de outubro de 2003, tendo sido operado apenas pelas companhias British Airways e Air France.
Por Jorge Tadeu (Site Desastres Aéreos)
O Convair F-106A-1-CO Delta Dart 56-451 faz seu primeiro voo em Edwards AFB em 26 de dezembro de 1956 (Foto: Força Aérea dos EUA) |
O piloto de teste Richard Lowe Johnson (Foto: Neil Corbett) |
O avião foi um desenvolvimento do anterior F-102A Delta Dagger, e foi inicialmente designado F-102B. No entanto, tantas mudanças foram feitas que ele foi considerado uma nova aeronave.
Convair F-106A-1-CO Delta Dart 56-451 durante um voo de teste perto da Base da Força Aérea de Edwards, Califórnia. É marcado com tinta laranja de alta visibilidade (Foto: Força Aérea dos EUA) |
O Lavochkin La-176 |
Um engenheiro carrega um míssil Hellfire em um drone Predator (Foto: Serviço de Distribuição de Informações Visuais de Defesa) |
Um AGM-114 Hellfire e quatro foguetes Hydra 70 M261 em exposição na RIAT2007 (Foto: Usuário:Dammit/Wikimedia Commons) |
Um MQ-9 Reaper na linha de voo na Base Aérea de Creech, Nevada, em 17 de dezembro de 2019 (Foto: Serviço de Distribuição de Informações Visuais de Defesa) |
Um B-21 Raider é revelado com uma bandeira dos EUA ao fundo (Foto: Serviço de Distribuição de Informações Visuais de Defesa) |