Uma série de etapas devem ser seguidas para o processo de partida do motor.
Um close de um motor a jato (Foto: KLM) |
Os motores a jato são máquinas complexas e caras que exigem manuseio seguro, cuidados adequados e manutenção de rotina. Embora os motores das aeronaves possam servir a um propósito semelhante ao de uma máquina automotiva - fornecer energia, ligar um motor não é tão simples quanto ligar a ignição do carro. Os pilotos devem realizar uma série de etapas necessárias para realizar o processo de partida do motor a jato.
Os pilotos carregam listas de verificação especializadas para partidas de motores. O motor usa ar de uma das três fontes primárias para partida: uma unidade auxiliar de energia (APU) a bordo, uma unidade de energia terrestre (GPU) da rampa ou sangramento cruzado (ar de outro motor quando funcional). Este artigo se aprofunda no princípio geral dos motores a jato, sua funcionalidade e as etapas necessárias para realizar a partida do motor.
Os componentes de um motor a jato envolvidos na partida
Para resumir, um motor a jato típico consiste em uma admissão, um estágio de compressor, um combustor e um estágio de turbina. Funciona de forma muito semelhante ao motor de um carro. Primeiramente, o ar é aspirado para a entrada, que é então comprimido. Do estágio do compressor, o ar passa para a câmara de combustão, onde são introduzidos o combustível e a ignição, que então queima o ar.
Esse ar é então passado para as turbinas, onde pode se expandir. Esta expansão aumenta a energia cinética do fluxo e, à medida que sai do motor, uma força igual e oposta é aplicada à aeronave. Isso é chamado de impulso.
Esquema do turbofan (Imagem: K. Aainsqatsi via Wikimedia Commons) |
Para extrair ar para a partida, primeiro o estágio do compressor precisa ser girado a uma determinada velocidade. Este é o primeiro requisito para dar partida em um motor a jato. Em sua forma mais básica, um motor a jato com alta taxa de bypass possui dois estágios de compressor. O estágio de baixa pressão do compressor é conhecido como N1, e o estágio de alta pressão é conhecido como N2. Durante o processo de partida, o compressor de N2 é aquele que precisa ser girado, pois a maioria dos acessórios do motor (bombas de óleo e hidráulicas, etc) estão conectados a este compressor.
Existem dois métodos pelos quais o compressor N2 pode ser girado. Uma delas é usar eletricidade. Este método é usado principalmente para dar partida em motores a jato de menor porte, como os encontrados em turboélices. Aqui, um dos geradores elétricos do motor atua como motor de partida. Quando energizado, ele gira e, como está engrenado no compressor de N2, faz com que o compressor de N2 gire.
O segundo método é usado por motores a jato maiores. Aqui, um motor de partida separado é usado para acionar o compressor N2. O motor é chamado de partida pneumática e funciona exclusivamente com ar. Este ar pode ser alimentado por uma Unidade Auxiliar de Energia (APU) ou uma Unidade de Partida no Solo.
O procedimento de início
Air starter GE J79-11A da BMW (Foto: Sovxx via Wikimedia Commons) |
Conforme discutido acima, o compressor de N2 precisa ser girado para dar partida em um motor a jato. Para fazer isso, o ar precisa ser enviado ao motor de partida pneumático. Se a aeronave estiver equipada com uma APU, esse ar, denominado ar de sangria, poderá ser fornecido pela APU. Durante as operações terrestres, a APU fornece ar para as unidades de ar condicionado. Porém, durante a partida, o ar dessas unidades é desligado para que o ar fique disponível para a partida do motor.
Quando o piloto aciona o motor de partida, a válvula de partida se abre, o que permite que o ar sangrado passe para a turbina do motor de partida. O motor de partida então gira o N2. À medida que o N2 aumenta, o piloto monitora isso a partir dos instrumentos da cabine. A cerca de 20% da rotação de N2, o combustível é introduzido na câmara de combustão pelo piloto usando os interruptores de combustível. Os ignidores então acendem a mistura de combustível e ar, o que faz com que a temperatura do motor suba. Na maioria dos motores a jato, essa temperatura é detectada nos estágios da turbina ou no escapamento e é chamada de Temperatura dos Gases de Escape (EGT).
À medida que o combustível é introduzido pela primeira vez, há um aumento acentuado no EGT devido à presença de excesso de combustível na câmara de combustão em comparação com o ar. Menos ar significa menos resfriamento. À medida que o motor acelera, mais combustível é introduzido, o que aumenta progressivamente o EGT. Em algum ponto, o motor atinge uma velocidade autossustentável na qual o motor pode continuar a acelerar sem a ajuda do motor de partida.
Quando este ponto é alcançado, o motor de partida é automaticamente desengatado do compressor N2 e os dispositivos de ignição são desligados. O EGT então atinge um valor máximo e depois cai à medida que o combustível e o ar ficam equilibrados na câmara de combustão. Isso encerra o procedimento de inicialização.
(Imagem: Airbus) |
O pico EGT é um valor importante. Um EGT de pico alto mostra possível degradação do motor. Isso também pode ser devido a um motor de partida com defeito. De qualquer forma, picos anormalmente elevados de EGT durante a partida devem ser discutidos com a manutenção antes que se tornem um problema maior. O próprio EGT mostra a temperatura das turbinas e, como são sensíveis ao calor, existe um limite de partida do EGT que nunca deve ser ultrapassado. Se ultrapassado, o motor deverá ser desligado imediatamente e a aeronave entregue para manutenção.
Quando a APU está inoperante ou indisponível, uma unidade de partida em solo pode ser conectada à aeronave. Um longo tubo da unidade de partida é conectado ao adaptador, que fornece o ar da unidade aos motores. Os pilotos ligam um de seus motores no portão com a unidade de partida quando este método é usado. Assim que o motor estiver funcionando, ele será desconectado da aeronave. Então, o ar do motor ligado pode ser desviado através de uma válvula de sangria cruzada para dar partida no(s) motor(es) restante(s). Este tipo de partida é chamado de partida com sangramento cruzado.
Equipe conectando um motor de arranque de um bombardeiro B-52 para dar partida nos motores (Foto: USAF) |
Para os motores acionados com gerador elétrico ou motor, aplica-se o mesmo processo, exceto que não há necessidade de fornecer ar para a partida. O Boeing 787 é a única aeronave de grande porte que utiliza eletricidade para dar partida no motor. Isso requer muita energia e, sem uma APU, é necessário conectar duas unidades externas de energia terrestre à aeronave para dar partida no motor.
Mau funcionamento de inicialização
Existem dois problemas principais de partida em um motor a jato. Um é chamado de partida a quente e o outro é chamado de partida suspensa. Em uma partida a quente, à medida que o combustível é introduzido, o EGT aumenta conforme esperado, mas a temperatura acelera rapidamente até o limite inicial do EGT. Se isso acontecer, os pilotos deverão desligar imediatamente o combustível e a ignição. Atrasar isso pode fazer com que o limite EGT seja excedido e isso pode inutilizar o motor em questão de segundos.
A razão para uma inicialização a quente é simples. Fluxo de ar insuficiente. Um motor de partida fraco pode causar isso, a incapacidade da APU ou da unidade de partida no solo de fornecer ar suficiente ou um problema com a unidade de controle eletrônico do motor. Ligar o motor com vento forte também pode causar uma partida a quente, pois o vento se opõe à rotação do motor.
Um motor Airbus A350-900 com as capotas abertas (Foto: Airbus) |
A rotação do compressor do motor não acelera até o valor esperado ou a velocidade autossustentável em uma partida travada. Está ‘travado’ em um valor inaceitavelmente baixo, com o EGT sendo maior do que o esperado para as baixas RPM. A ação piloto em uma partida suspensa é desligar o motor fechando as válvulas de combustível. Um motor de partida com defeito causa principalmente uma partida travada.
Sempre que um motor não liga, antes de tentar uma nova partida, os pilotos devem realizar algo chamado ciclo de 'explosão'. Isso ocorre porque, na maioria das partidas malsucedidas, o combustível não queimado inundava a câmara de combustão. Se for tentada uma partida com este combustível na câmara, isso pode causar a ignição do combustível inundado e chamas podem sair do escapamento do motor. Isso é chamado de incêndio no escapamento ou incendiamento.
Esquema de queima (Imagem: Airbus) |
A queima raramente danifica os componentes do motor. Porém, pode danificar as estruturas da aeronave que estão diretamente expostas a ele, como componentes de asas e flaps. Para realizar o ciclo de blowout, os pilotos devem desligar a ignição e simplesmente ligar o motor de partida sem introduzir combustível. Isso envia ar através da câmara de combustão e expele o excesso de combustível nela contido.
Motor em voo reinicia
Os motores a jato são altamente confiáveis. Mesmo assim, há uma chance de falha no ar. Se um motor falhar durante o voo, os pilotos poderão reiniciar durante o voo. A partida de um motor a jato no ar é semelhante à de um motor no solo. Uma diferença significativa é que, durante o vôo, a velocidade de avanço da aeronave aciona o compressor automaticamente. Isso é chamado de moinho de vento.
Quanto mais rápido a aeronave viaja, mais rápida é a rotação. Assim, o motor pode dar partida no ar sem a ajuda do motor de partida se ele voar a uma velocidade de rotação estável. Abaixo desta velocidade, o ar do motor ativo ou o ar de uma APU operacional pode ser necessário para colocar o compressor de N2 em uma velocidade aceitável.
Com informações de Simple Flying