As principais notícias sobre aviação e espaço você acompanha aqui. Acidentes, incidentes, negócios, tecnologia, novidades, curiosidades, fotos, vídeos e assuntos relacionados.
Visite o site Desastres Aéreos, o maior banco de dados de acidentes e incidentes aéreos do Brasil.
Além de fazer os aviões parecerem legais, os designers também querem que eles voem bem. Para fazer isso, eles trabalham duro para fazer aviões que sejam estáveis. Muitas pequenas coisas mantêm um avião apontado na direção em que você deseja que ele siga, algumas das quais você pode nunca ter pensado ou notado. O efeito quilha é uma das pequenas coisas.
O efeito quilha é uma característica do projeto da aeronave que lhe confere estabilidade lateral. Em outras palavras, o efeito quilha do formato de uma aeronave a impedirá de rolar. O efeito quilha ajuda a manter o avião voando em linha reta em vez de entrar em uma curva toda vez que atinge um pouco de turbulência.
O que é estabilidade da aeronave?
A estabilidade de um avião pode ser descrita como sua tendência de permanecer voando reto e nivelado. Existem dois tipos de estabilidade - estática e dinâmica .
A estabilidade estática é a resistência de uma aeronave a ser perturbada em sua trajetória de voo. Pense em um avião voando em altitude. Se tiver estabilidade estática positiva e atingir um ponto acidentado de turbulência , o avião não se moverá muito. Se tiver estabilidade estática negativa, a turbulência pode fazer o avião virar , subir ou descer.
A estabilidade dinâmica é o que acontece com sua trajetória de voo se for perturbada. Se nosso avião se chocasse contra um solavanco e começasse a subir, voltaria sozinho ao voo nivelado? Se assim fosse, teria estabilidade dinâmica positiva. Se continuar a subir, mas em uma taxa constante, terá estabilidade dinâmica neutra. Se continuasse a subir e subir cada vez mais rápido até estagnar, teria estabilidade estática negativa.
Você pode pensar que os projetistas de aeronaves desejam que seus aviões sejam estáveis de forma positiva estática e dinamicamente positiva o tempo todo, certo? Mas, na verdade, cada plano possui uma mistura de diferentes características para diferentes propósitos.
Avião de demonstração acrobática Staudacher S-300 da Guarda Aérea Nacional
Quanto mais estável for um avião, mais difícil será para o piloto manobrá-lo. A estabilidade está ligada à controlabilidade. Um avião muito estável requer muito trabalho por parte do piloto para subir, virar ou descer.
Portanto, ao projetar um avião acrobático de acrobacias, a estabilidade positiva pode não ser desejável. Ao projetar um avião de treinamento, alguma estabilidade é boa. Se estiver projetando uma grande aeronave de transporte , ainda mais estabilidade pode ser desejada.
Aeronave de transporte RAF A400M Atlas
O que é estabilidade lateral?
Uma aeronave pode ser estável ou instável (ou negativamente estável, se você preferir) em torno de cada um de seus três eixos de voo.
Os três eixos de voo são:
Lateral, que vai da ponta da asa à ponta da asa
Longitudinal, que vai do cone do nariz ao cone da cauda
Vertical, que sobe e desce através do CG
Direções de movimento e eixo de voo
Os nomes de cada tipo de estabilidade não se referem ao eixo de movimento, entretanto. Em vez disso, seus nomes se referem à direção do movimento que controlam.
A estabilidade longitudinal trata do controle da inclinação do avião - o movimento do nariz para cima e do nariz para baixo.
A estabilidade direcional consiste em controlar a guinada do avião - seu movimento nariz para a esquerda e nariz para a direita.
A estabilidade lateral consiste em controlar o movimento do avião - a tendência das asas de se inclinarem para um lado ou para o outro.
Para cada um desses tipos de estabilidade, os projetistas de aeronaves empregam recursos que podem ajudar a aumentar a estabilidade. Se um plano em teste demonstrar estabilidade ruim em uma área, os designers podem adicionar ajustes ao design para torná-lo melhor.
A estabilidade longitudinal é normalmente controlada pelo peso e equilíbrio da aeronave e pelo estabilizador horizontal .
A estabilidade direcional é controlada pela fuselagem e pelo estabilizador vertical , os quais mantêm o avião apontado na direção em que está viajando.
A estabilidade lateral é uma combinação de fatores de design, incluindo efeito quilha e diedro.
O que é o efeito de quilha na aeronáutica?
O efeito quilha é uma daquelas características de design que mantém um avião estável. O efeito quilha é um tipo de estabilidade lateral.
Um avião com estabilidade estática positiva graças a um forte efeito de quilha seria difícil de rolar para a esquerda e para a direita.
A “quilha” no efeito quilha é como a quilha de um navio, o que mantém o navio apontado para a direção que está tentando seguir.
Como funciona o efeito Keel?
Nos aviões, a fuselagem atua como uma quilha. Ele mantém o plano apontado na direção desejada.
Os aviões de asa alta têm um efeito de quilha maior do que os aviões de asa baixa. Se o avião for perturbado e uma das asas afundar, a fuselagem atua como um pêndulo. Basicamente, ele puxa o avião de volta ao voo nivelado.
Efeito Quilha
De que outras maneiras um avião pode ter estabilidade lateral?
Além do efeito quilha, três outras características do projeto da aeronave contribuem para a estabilidade lateral positiva. Eles são diedros, de varredura e de distribuição de peso.
Diédrico
Se você ficar bem na frente da maioria dos aviões, perceberá que suas asas não são retas. Eles geralmente apontam um pouco para cima, de forma que as pontas das asas são mais altas do que as raízes das asas. O ângulo em que as asas encontram a fuselagem é chamado de diedro.
Diédrico
Quando um avião com diedro é desviado para o lado e uma asa cai, a asa inferior obtém um ângulo de ataque mais alto. Isso leva a um aumento na sustentação, o que ajuda a rolar o voo nivelado do avião novamente.
Sweepback
Sweepback é um projeto de aeronave que apresenta asas cujas bordas de ataque recuam à medida que se afastam do avião. Aeronaves de alta velocidade costumam ter muito mais sweepback do que as de baixa velocidade.
Sweepback
O sweepback melhora a estabilidade lateral? Sim, mas não tanto quanto o diedro.
Como o diedro, quando um avião com varredura é perturbado e solta uma asa em um rolo, a asa baixa apresenta sua borda de ataque mais perpendicular ao fluxo de ar. Isso aumenta a sustentação produzida, levantando a asa e retornando o avião ao voo nivelado novamente.
A operação do Aeroporto de Dubai (DXB), nos Emirados Árabes Unidos, foi suspensa por 25 minutos nesta terça-feira (16) devido a alagamentos. Vídeo mostra um avião "navegando" na pista.
Pelo menos 21 voos de ida e 24 de volta cancelados durante o dia. Outros três voos foram desviados para outros aeroportos, segundo o site europeu Sky News.
Mais voos podem sofrer alterações. O DXB recomendou que os passageiros se programem para ir ao aeroporto com antecedência e que confiram os status dos voos com as companhias aéreas.
A pista e o saguão ficaram completamente alagados. Um vídeo publicado nas redes sociais mostra um avião da FlyDubai "navegando" pela pista, que parecia um lago. Na área do saguão, a água subiu até a altura da canela dos passageiros.
Choveu 120mm em 24 horas. O volume é equivalente à chuva esperada para o ano todo em Dubai. O vento chegou a alcançar 101 km/h, de acordo com o site Aeroin.
Dubai está em alerta para as chuvas. Estradas, casas, shoppings e estações de metrô também sofreram com as inundações. As escolas foram fechadas nos Emirados Árabes Unidos e deverão permanecer fechadas na quarta-feira, quando estão previstas novas tempestades, incluindo granizo. A semifinal da Liga dos Campeões Asiáticos, que seria sediada em Al Ain, foi adiada por 24 horas por causa do clima. As informações são da televisão francesa France 24.
No dia 17 de abril de 2018, o voo 1380 da Southwest Airlines estava subindo em direção à altitude de cruzeiro sobre a Pensilvânia quando seu motor esquerdo explodiu de repente, arremessando pedaços da capota em todas as direções. Um fragmento bateu em uma janela, causando uma descompressão explosiva que sugou metade de um passageiro para fora do avião.
Enquanto os pilotos lutavam para recuperar o controle, os comissários de bordo e os passageiros lutaram para puxar Jennifer Riordan, de 43 anos, de volta para dentro do avião antes que ela fosse completamente ejetada.
Apesar dos sérios danos à aeronave, os pilotos conseguiram fazer um pouso de emergência seguro na Filadélfia, salvando 148 vidas. Mas era tarde demais para salvar a Sra. Riordan, que logo morreu devido aos ferimentos, tornando o voo 1380 da Southwest o primeiro acidente fatal envolvendo um avião dos Estados Unidos desde 2009.
Enquanto os investigadores tentavam descobrir a causa, eles enfrentaram uma questão crítica: por que um motor certificado para conter detritos no caso de uma falha acabou cuspindo pedaços que causaram uma descompressão explosiva e mataram um passageiro?
A resposta estaria no próprio design da nacele do motor do 737, revelando uma falha fatal que passou despercebida por mais de duas décadas.
O voo 1380 da Southwest Airlines era um voo regular do Aeroporto LaGuardia de Nova York para o Dallas Love Field, em Dallas, no Texas. O Boeing 737-7H4 (WL), prefixo N772SW (foto acima), que operava este voo era um dos nada menos que 741 Boeing 737 da frota da Southwest Airlines na época, incluindo mais de 500 da terceira geração do modelo -700.
Este avião em particular saiu da linha de montagem em 2000 e estava voando pela Southwest desde então. Seus dois motores a jato CFM-56-7B eram ainda mais antigos; o motor esquerdo, por exemplo, foi construído em 1997 e foi instalado neste 737 em 2012. Ninguém sabia que esse motor em particular escondia uma pequena, mas perigosa falha.
O disco do ventilador principal de um motor turbojato CFM-56 é composto de 24 pás do ventilador acopladas a um cubo central, que gira em alta velocidade para puxar o ar para o motor. As forças centrífugas que atuam nas pás do ventilador os submetem a altas cargas em uma direção radial - ou seja, para fora do eixo de rotação.
Para manter as lâminas firmemente no lugar, a raiz de cada lâmina é moldada em uma chamada cauda de andorinha: uma seção flangeada mais larga que se encaixa na borda do cubo do ventilador, aproveitando as forças de rotação para manter a lâmina firmemente na posição.
Mas a CFM, a fabricante do motor, havia subestimado a magnitude da carga suportada pelas cauda de andorinha. À medida que os motores ligavam e paravam repetidamente em milhares de voos, rachaduras de fadiga começaram a se formar na cauda de andorinha de algumas pás do ventilador CFM-56 em um ponto anterior em seu ciclo de vida do que o previsto.
Acima: as consequências da falha do motor em 2016 no voo 3472 da Southwest
No dia 27 de agosto de 2016, uma dessas “rachaduras de fadiga de baixo ciclo” causou a falha de uma pá do ventilador em um Boeing 737 da Southwest Airlines quando ele se aproximava de sua altitude de cruzeiro no Mississippi.
A lâmina separou-se de sua cauda de andorinha, atingiu o interior da caixa do ventilador e desalojou a entrada do motor, enviando pedaços da entrada através da fuselagem e nas bordas dianteiras das asas. Felizmente, ninguém morreu ou ficou ferido, e o avião logo fez um pouso de emergência bem-sucedido em Pensacola, Flórida.
Como resultado do incidente, o fabricante do motor emitiu um boletim de serviço pedindo inspeções de ultrassom para detectar rachaduras nas pás do ventilador que haviam acumulado mais de 15.000 ciclos de voo desde a última revisão.
Várias outras rachaduras foram encontradas, incluindo algumas no mesmo motor, embora nenhum fosse tão profundo quanto a rachadura que causou a falha. Além disso, o CFM criou diretrizes para o uso de uma técnica de inspeção de “corrente parasita” mais rigorosa, que usa uma corrente elétrica para detectar rachaduras, para uso durante revisões de motor.
Acima: estrias na superfície de fratura na cauda mostram a progressão da trinca por fadiga ao longo do tempo
Mas essas pás de ventilador mais antigas não foram as únicas a apresentar rachaduras. Outra lâmina da frota da Southwest, que na época tinha menos de 15.000 ciclos, continha uma rachadura no topo da cauda de andorinha que vinha crescendo desde antes da última revisão do motor em 2012.
Durante a revisão, inspeções usando uma técnica de penetrante fluorescente (FPI ) não conseguiu detectá-lo, possivelmente porque a rachadura ainda não era profunda o suficiente para ser vista usando esse método. Inspeções visuais de rotina da lâmina nos anos seguintes não detectaram a rachadura porque ela estava escondida sob o revestimento de cobre-níquel-índio da lâmina.
A inspeção por corrente parasita na próxima revisão da lâmina provavelmente teria encontrado a rachadura, mas isso estava muito longe.
No portão de LaGuardia em 17 de abril de 2018, 144 passageiros e cinco tripulantes embarcaram no voo 1380 da Southwest, com destino a Dallas. Desconhecido para qualquer um deles, a rachadura havia crescido a uma profundidade de 1,23 centímetros e a pá do ventilador estava perto de seu ponto de ruptura.
No comando do voo estava a veterana Capitã Tammie Jo Shults, uma ex-piloto de caça da Marinha dos EUA com mais de 10.000 horas no Boeing 737. Ela foi uma piloto excepcional em todos os aspectos. Quando jovem, ela foi informada de que ela não poderia ser uma piloto profissional por causa de seu sexo, e a Força Aérea a rejeitou pelo mesmo motivo, então ela se alistou na Marinha.
Depois de 16 anos como piloto da Marinha dos Estados Unidos, durante os quais foi enviada ao Iraque na Operação Tempestade no Deserto, ela se aposentou e começou a voar com passageiros para a Southwest Airlines em 2001 - o mesmo trabalho que uma vez lhe disseram que nunca poderia ter. Nos 17 anos que se seguiram desde então, ela manteve um registro impecável.
Naquele dia se juntou a ela na cabine do piloto o primeiro oficial Darren Ellisor, que também não era novato: ele já havia voado na Força Aérea e tinha quase 7.000 horas no 737. Os passageiros sob seus cuidados não poderiam ter pedido um par melhor de pilotos.
Às 10h43, o voo 1380 da Southwest decolou normalmente de LaGuardia e começou a subir em direção à altitude de cruzeiro atribuída de 38.000 pés. Por 20 minutos, não houve sinais de que este seria qualquer coisa além de um voo normal.
Mas então, às 11h03, quando o 737 subiu 32.000 pés, a pá do ventilador quebrada no motor esquerdo falhou catastroficamente. A rachadura atravessou a lâmina, separando-a de sua cauda de andorinha e ejetando-a do cubo do ventilador.
O disco do ventilador é cercado por uma caixa de ventilador protetora, projetada para absorver o impacto de alta energia de uma pá de ventilador ejetada. Presa à caixa do ventilador está a tampa do ventilador, o painel visível na parte externa do motor.
O capô do ventilador consiste em duas seções semicirculares, articuladas na parte superior do motor e presas por uma trava no lado externo da parte inferior do motor. Como a metade interna da tampa do ventilador é maior do que a metade externa, um encaixe de restrição radial no centro inferior conecta a tampa interna à parte inferior da caixa do ventilador, aumentando a integridade estrutural da tampa. Presa à borda dianteira da caixa do ventilador está a entrada, que se estende além da frente do motor e ajuda a canalizar o ar para o disco do ventilador.
Quando a lâmina se separou do disco da ventoinha que girava rapidamente, ela saiu aproximadamente na posição das seis horas, acertando um golpe quase direto no local onde a caixa da ventoinha se conecta ao encaixe de restrição radial.
A enorme força de impacto foi transmitida através do encaixe de restrição radial e para a tampa do ventilador, que não foi projetada para resistir a tal colisão. A carga de impacto ondulou através da tampa do ventilador e para a trava, que cortou a parte inferior do motor. A trava se abriu e as duas metades da tampa do ventilador se separaram, fazendo com que grandes pedaços da tampa rasgassem o avião sob as cargas aerodinâmicas resultantes.
Simultaneamente, o impacto da pá do ventilador enviou uma onda de deformação viajando pela caixa protetora do ventilador. A onda de deslocamento cortou os prendedores que prendiam a antepara traseira da entrada à caixa do ventilador, enquanto pedaços da pá do ventilador deslizaram para frente e danificaram a estrutura da própria entrada. Essa combinação de fontes de danos fez com que a entrada partisse do avião em uma fração de segundo.
Conforme pedaços da tampa do ventilador em desintegração e da trava explodiram para trás sobre a asa, um pedaço do tamanho de uma bandeja de biscoitos voou e ricocheteou no lado esquerdo da cabine de passageiros na fileira 14.
O impacto penetrou em ambos os painéis externos de carga do janela, causando uma descompressão explosiva que explodiu os restos da janela para fora do avião. O ar pressurizado dentro da cabine saiu pelo buraco, levando consigo qualquer coisa que não estivesse pregada.
A explosão de ar empurrou a passageira do assento 14A de cabeça para fora da janela, onde ela ficou presa metade dentro e metade fora do avião, retida apenas pelo cinto de segurança.
Na cabine, os pilotos ouviram um grande estrondo, seguido por uma súbita corrente de ar associada a uma descompressão explosiva.
Um aviso de altitude da cabine começou a soar, informando que a pressão da cabine havia sido perdida. Abalado por fortes vibrações, o avião inclinou-se fortemente para a esquerda, arrastado para baixo pelo motor seriamente danificado.
Dentro do avião, um tornado de destroços voadores encheu a cabine enquanto objetos soltos eram sugados para a janela aberta. Máscaras de oxigênio caíram do teto e os passageiros correram para colocá-las.
Após 11 segundos, a margem esquerda do avião atingiu 41,3 graus, muito mais íngreme do que em qualquer ponto durante o voo normal. Nesse ponto, o primeiro oficial Ellisor, que era o piloto voando na época, recobrou a razão e nivelou o avião.
Ambos os pilotos correram para colocar suas máscaras de oxigênio para que pudessem respirar o ar rarefeito a 32.000 pés, mas, na confusão e no caos, eles lutaram para ativar os microfones embutidos nas máscaras que lhes permitiriam se comunicar.
Incapaz de falar com seu capitão e com a cabine cheia com o rugido do barulho do vento, o primeiro oficial Ellisor fez o que foi necessário: reduziu a potência de ambos os motores e iniciou uma descida de emergência.
Segundos depois, os pilotos cortaram o fluxo de combustível para o motor esquerdo, completando sua sequência de desligamento. Durante esse tempo, um controlador de tráfego aéreo tentou duas vezes entrar em contato com o voo, mas não obteve resposta.
Com 80 segundos em emergência e o avião descendo rapidamente, o controlador disse: "Southwest 1380, se você está tentando me contatar, tudo que ouço é estática".
Desta vez, a capitã Shults respondeu, sua voz calma e firme. “Southwest 1380 tem um incêndio no motor, descendo”, disse ela. Ela então solicitou uma rota para a Filadélfia, que eles já haviam determinado ser o aeroporto principal mais próximo.
Enquanto isso, na cabine de passageiros, o caos reinava. Os três comissários de bordo, armados com garrafas de oxigênio portáteis, caminharam pelo corredor até a fileira 14 e encontraram a passageira Jennifer Riordan presa no meio do caminho para fora da janela.
Eles retiraram os passageiros dos assentos 14B e 14C e tentaram puxá-la de volta para dentro, mas os ventos extremos que passavam pela janela a haviam prendido com força na lateral do avião.
Dois passageiros de uma fileira próxima correram para ajudar, e por meio de um feito heróico de força, eles conseguiram superar a força do vento e arrastaram a Sra. Riordan de volta para dentro do avião.
Os comissários de bordo a colocaram na fileira de assentos e começaram a administrar os primeiros socorros. Ela estava em péssimo estado, tendo sofrido ferimentos graves e contundentes no rosto, pescoço e torso.
Um dos comissários de bordo foi ao sistema de alto-falantes e perguntou se havia um médico a bordo, solicitando que um paramédico e uma enfermeira registrada assumissem os esforços para ressuscitar a Sra. Riordan.
Na frente, os pilotos colocaram o avião sob controle, mas não sem dificuldade. Manter o voo controlado exigia insumos contínuos no manche para conter o arrasto do motor destruído, que havia perdido quase toda a sua nacela aerodinâmica.
O controlador os liberou para descer a 11.000 pés, onde poderiam respirar o ar, e certamente não demoraram muito para chegar lá. O voo 1380 desceu a uma taxa de pico de mais de 5.000 pés por minuto, rápido o suficiente para convencer os passageiros não familiarizados com os procedimentos de emergência de que o avião estava fora de controle.
Algumas pessoas oraram; outros compraram WiFi a bordo para enviar mensagens a seus entes queridos. Um homem começou a transmitir o vídeo da cabine ao vivo no Facebook.
Mas, na verdade, os pilotos estavam totalmente no comando da situação, empurrando o avião para baixo o mais rápido que podiam enquanto passavam por várias listas de verificação de emergência.
Durante a descida, a capitã Shults falou repetidamente com o controle de tráfego aéreo. Ela declarou emergência, recebeu autorização até 8.000 pés, informou ao controlador que havia 149 almas a bordo e solicitou que caminhões de bombeiros encontrassem o avião após o pouso.
Descendo 13.600 pés cerca de seis minutos após a falha do motor, a capitã Shults assumiu o controle do primeiro oficial Ellisor e eles começaram a lista de verificação de “danos graves ao motor”.
Dois minutos depois, os pilotos tomaram uma decisão: deveriam tentar colocar o avião no solo o mais rápido possível ou deveriam deixar tempo para finalizar os checklists? Os gritos se decidiram rapidamente: “Não, continue em frente”, disse ela, antes de retornar à conversa com o controle de tráfego aéreo.
Ao passarem por 10.000 pés, os dois pilotos removeram as máscaras de oxigênio para facilitar a comunicação e tentaram relatar o que havia acontecido.
Quando o avião se aproximou de 6.000 pés, o controlador de aproximação perguntou: "Southwest 1380, você vai entrar imediatamente ou precisa de uma final prolongada?"
Shults queria muito tempo para se alinhar com a pista e controlar a taxa de descida antes do toque. “Final prolongado”, respondeu ela.
O primeiro oficial Ellisor tentou entrar em contato com os comissários de bordo, mas não obteve resposta. “Não recebi resposta da parte de trás”, disse ele.
Porém, menos de 30 segundos depois, um comissário conseguiu atender o interfone da cabine e disse: "Ei, abrimos uma janela e alguém está fora da janela!"
“Ok, nós ... estamos descendo”, disse Ellisor.
"Todos os outros estão em seus assentos amarrados?"
“Sim, todos ainda estão em seus assentos”, disse o comissário.
“Temos gente ajudando-a a entrar, não sei qual é a condição dela, mas a janela está completamente fechada.”
“Ok, vamos desacelerar”, respondeu Ellisor.
Saber que havia danos estruturais ao avião fez com que a tripulação reduzisse a velocidade.
Quando os comissários de bordo informaram aos passageiros que eles estariam pousando em breve, Ellisor disse a Shults: "Ok, temos alguém que voou para fora do ..."
À luz dessas novas informações, a Capitã Shults decidiu interromper a final prolongada, virando direto para começar a abordagem o mais rápido possível. Ela também decidiu por uma configuração de flap mais baixa porque não tinha certeza se um dano à asa esquerda poderia impedir que os flaps desse lado se estendessem, criando um sério desequilíbrio de sustentação.
Pegando o rádio para ligar para o controlador de aproximação, ela disse: “Ok, você poderia pedir ao médico que nos encontre lá na pista também? Temos, passageiros feridos.”
“Passageiros feridos, tudo bem”, disse o controlador. "E você - seu avião está pegando fogo fisicamente?"
“Não, não está pegando fogo, mas parte está faltando”, disse Shults. Com uma voz calma e controlada, ela acrescentou: "Eles disseram que há um buraco e alguém saiu" - uma transmissão lendária que talvez rivalizasse com o infame.
"Estaremos no Hudson" do capitão Sully.
O controlador não tinha certeza do que fazer com essa informação. Perplexidade evidente em sua voz, ele disse: "Hum, desculpe, você disse que havia um buraco e alguém saiu?"
"Sim."
“Southwest 1380, não importa, vamos resolver isso lá. Então, o aeroporto está à sua direita, informe à vista, por favor.”
Shults relatou o aeroporto à vista e recebeu autorização para pousar. O voo 1380 estava agora na reta final em segurança.
Na cabine, os comissários enfrentaram um problema: precisavam recolocar os passageiros que estavam nos assentos 14B e 14C, mas este era um voo lotado e não havia assentos vazios.
Uma comissária de bordo permitiu que um dos passageiros sentasse em seu assento auxiliar na cozinha de popa enquanto ela se sentava no chão, pressionada por passageiros próximos.
O outro passageiro deslocado e um segundo comissário de bordo também se sentaram no chão, o último porque ela ainda estava ajudando nas tentativas de reanimar Riordan usando um DEA.
Enquanto o avião se alinhava para pousar, a capitã Shults podia ser ouvida sussurrando uma oração rápida antes de retornar às suas funções de voo. Enquanto os passageiros prendiam a respiração, sem saber se conseguiriam sobreviver,
Depois de 17 minutos angustiantes, o voo 1380 da Southwest finalmente pousou firmemente no solo no Aeroporto Internacional da Filadélfia. Como não havia perigo imediato, a tripulação optou por não evacuar os passageiros, solicitando escadas aéreas para que os paramédicos pudessem entrar no avião e retirar os passageiros feridos primeiro.
Enquanto as equipes de emergência corriam para ajudar Jennifer Riordan, os pilotos silenciosamente reconheceram sua suspeita de que ela já estava morta - mas ao falar em voz alta, por medo de que outros ouvissem, eles ainda se referiam a ela como "a passageira ferida".
Pouco tempo depois, quando passageiros em estado de choque, mas gratos, saíram do avião, Riordan foi declarada morta em um hospital da Filadélfia. Ela foi a primeira passageira a morrer em um acidente envolvendo um avião dos Estados Unidos em mais de nove anos, e a única fatalidade de passageiro devido a um acidente na história da Southwest Airlines.
Enquanto o povo de Albuquerque, no Novo México, lamentava a perda de um membro proeminente de sua comunidade, os investigadores do National Transportation Safety Board começaram a encontrar a causa do acidente.
Ficou imediatamente claro que a pá do ventilador do motor havia se soltado durante o voo. Mas havia um problema: como todos os motores a jato, o CFM-56 foi projetado de forma que uma falha nas pás do ventilador fosse contida dentro do motor. Então, por que essa proteção falhou?
Após uma inspeção mais detalhada dos destroços do motor, recuperados do interior da Pensilvânia, os investigadores ficaram surpresos ao descobrir que o escudo protetor tecnicamente não havia falhado.
Conforme projetado, a pá do ventilador quebrada nunca rompeu as paredes de liga de alumínio da caixa do ventilador. Em vez disso, o motor falhou em atender a um requisito diferente: que a estrutura da nacela permaneça intacta em um evento denominado fan blade out, ou FBO.
Quando o motor CFM-56 foi certificado em 1996, o CFM conduziu um teste demonstrando que uma pá do ventilador ejetada estaria contida dentro da caixa do ventilador, provando que ela atendia aos requisitos regulamentares.
Os dados do teste foram enviados à Boeing, que projetou a tampa do ventilador e a entrada, as duas peças que juntas compõem a nacele. Em 1997, a Boeing usou simulações de computador de última geração para mostrar que um evento FBO ocorrendo em vários pontos no disco do ventilador não comprometeria a integridade estrutural da nacele.
Mas nenhum desses cenários envolveu uma pá do ventilador atingindo a caixa do ventilador nas proximidades do encaixe de restrição radial que mantinha a tampa do ventilador no lugar. Isso permitiu que a carga de impacto fosse transferida para a tampa do ventilador, o cenário exato que a caixa do ventilador deveria evitar.
Foi um pedaço da tampa do ventilador em desintegração que causou a descompressão explosiva, transformando o que poderia ter sido uma falha de motor relativamente normal em um acidente fatal.
Um descuido semelhante também causou a separação da entrada do motor. A entrada é conectada à caixa do ventilador por um anel de fixação que se conecta ao anteparo traseiro da entrada e ao “cilindro interno” da entrada, que é feito de um material acústico em forma de colmeia.
Enquanto os testes do CFM previram que uma onda de deslocamento na caixa do ventilador poderia cortar as conexões entre o anel de fixação e a antepara, a conexão com o cilindro interno deveria ter permanecido intacta, mantendo a entrada conectada ao motor.
No entanto, a pá do ventilador ejetada viajou mais para frente na entrada do que o esperado, causando maiores danos ao cilindro interno e comprometendo sua integridade estrutural. Como resultado, ele também falhou, permitindo que a entrada saísse do avião, embora partes do cilindro interno permanecessem presas à caixa do ventilador.
A liberação da entrada também ocorreu na falha anterior do motor da Southwest Airlines em 2016, mas o mecanismo por trás dela não havia sido identificado.
O modo de falha em ambos os casos foi essencialmente idêntico e demonstrou, sem sombra de dúvida, que um evento FBO no local certo poderia contornar todo o trabalho cuidadoso de design que foi feito para garantir que o motor permanecesse intacto.
Pedaços da nacela do motor encontrados num campo na Pensilvânia
O NTSB duvidou que a Boeing pudesse ter previsto esse comportamento com a tecnologia e os regulamentos em vigor na época em que a nacele foi certificada.
O acidente Southwest 1380, portanto, representou um raro exemplo de falha mecânica não causada por qualquer forma de negligência, mas por um caso inesperado que nunca havia sido considerado anteriormente.
O NTSB encontrou outra área onde seriam necessárias melhorias de segurança. De acordo com o manual da tripulação de cabine da Southwest, todos os comissários de bordo deveriam estar sentados em seus assentos auxiliares durante o pouso, para o caso de uma evacuação de emergência ser necessária, mas dois deles estavam sentados no chão.
Se o pouso tivesse dado errado, eles poderiam ter se ferido gravemente, impedindo-os de coordenar a evacuação dos passageiros. Mas, ao mesmo tempo, os comissários de bordo deveriam recolocar os passageiros deslocados, que também não deveriam estar sentados no chão.
Essas duas regras criaram um paradoxo porque não levaram em consideração uma situação em que houve uma perda de capacidade de assentos durante o voo. Como três assentos na fila 14 estavam inutilizáveis, havia mais pessoas no avião do que assentos para eles se sentarem, criando uma condição insegura no pouso.
Isso nunca foi um problema no passado - apenas recentemente as ferramentas de otimização permitiram que as companhias aéreas despachassem aeronaves rotineiramente com todos os assentos ocupados, uma situação que costumava ser rara.
Acima: um serviço memorial para Jennifer Riordan
Como resultado de suas descobertas, o NTSB emitiu sete recomendações, incluindo que a Boeing redesenhe a tampa do ventilador do motor CFM-56 para garantir que permaneça intacta durante um evento FBO, mesmo se a lâmina do ventilador bater em um local crítico; que fabricantes nos EUA e na Europa avaliem outros motores para descobrir se eles têm pontos fracos semelhantes; que a Southwest Airlines enfatize para sua tripulação de cabine a importância de se sentar no assento auxiliar apropriado durante um pouso de emergência; e que a FAA desenvolva orientações sobre o que fazer em caso de perda de capacidade de assentos durante o voo.
Embora também existam esforços para evitar falhas nas pás do ventilador, os inspetores não podem ser contados para descobrir 100% das rachaduras 100% do tempo. De vez em quando, uma lâmina rachada passa despercebida pelo radar.
É por isso que é tão importante que os motores sejam capazes de conter os danos de uma pá do ventilador ejetada, para que uma falha difícil de prevenir nunca coloque em risco a segurança de uma aeronave.
O voo 1380 serviu como um lembrete da importância de testes completos para encontrar as deficiências do projeto que podem permitir que tal evento saia do controle.
A capitã Tammie Jo Shults
Após o acidente, a FAA ordenou inspeções ultrassônicas de todas as pás do ventilador CFM-56 de alto ciclo. A Southwest foi ainda mais longe, anunciando inspeções extras das pás do ventilador em todos os seus motores CFM-56.
Desde o voo 1380, não houve outra falha de motor semelhante. Quanto ao avião em si, ele não transporta passageiros desde o acidente e permanece armazenado em Victorville, Califórnia, até hoje.
Os pilotos tiveram um resultado um tanto mais feliz: o capitão Shults recebeu uma recomendação oficial do Congresso e todos os tripulantes foram elogiados por seu heroísmo em uma recepção na Casa Branca.
Por um momento, eles foram celebridades - e dois anos depois, muitos ainda se lembram com carinho da capitã Tammie Jo Shults e seus nervos de aço que ajudaram a trazer o voo 1380 da Southwest de volta da beira do desastre.
Com Admiral Cloudberg, ASN e Wikipedia - Imagens: CNN, Aeroprints, NTSB, ABC News, Tammie Jo Shults, Kristopher Johnson, The Flight Channel, Matt Tranchin, Marty Martinez, Cory Draper, David Maialetti, The Philadelphia Inquirer, news.com.au, Adolphe Pierre- Louis e The Daily Beast
Em 17 de abril de 2009, o avião Pilatus PC-6 Porter, prefixo PK-LTJ, da Mimika Air (foto acima), operava o voo 514, um voo fretado de passageiros de Ilaga para Mulia, uma cidade próxima, ambas na Papua, na Indonésia.
A rota Ilaga-Mulia está em uma altitude elevada entre vários picos de montanhas. Pilotos familiarizados com a rota e o tipo de aeronave relataram que era impossível para um Pilatus Porter partir de Ilaga e escalar o Monte Gergaji sem fazer uma série de círculos em voo. Tais manobras necessariamente aumentam o tempo necessário para o percurso além dos 18 minutos planejados.
A bordo do voo estavam um piloto, um observador e nove passageiros: oito adultos e uma criança. A aeronave também carregava uma urna e papéis para as próximas eleições legislativas nacionais do país.
O piloto que operou o voo registrou 2.664 horas de experiência de voo, das quais 1.412 no Porter. Ele possuía uma licença atual de piloto comercial de Mianmar. Um certificado de validação também foi recebido pela Direção Geral de Aviação Civil da Indonésia (DGCA) em 12 de fevereiro de 2009.
O avião partiu do Aeroporto de Ilaga às 10h00, horário local, sob regras de voo visual. Segundo os registros, não houve contato de rádio entre o voo 514 e a torre. Vinte e três minutos após a decolagem, a torre de controle tentou fazer contato com o avião, mas não houve resposta e foi iniciada uma operação de busca. Mais tarde, a operação de busca foi ampliada quando um sinal do transmissor localizador eletrônico da aeronave acidentada foi captado pela aeronave de busca.
As equipes de busca indonésias descobriram o local do acidente no dia seguinte, durante uma busca aérea. O local do acidente não estava na rota normalmente percorrida pelo voo. Os destroços, que mostravam que o avião havia caído invertido, ainda fumegavam quando foram encontrados. O motor, ambas as hélices, cabine e asas foram destruídos pelo incêndio pós-impacto. A fuselagem dianteira também foi incendiada, juntamente com o trem de pouso principal.
O Porter caiu cerca de 12.000 pés (3.658 m) no Monte Gergaji, perto do local da queda de uma aeronave da Trigana Air Service em 2006, que matou nove pessoas. Nenhuma das onze pessoas a bordo do Porter sobreviveu.
No momento do acidente, o tempo na área, conforme observado pela Agência Indonésia de Meteorologia, Climatologia e Geofísica, estava geralmente limpo, com algumas nuvens perto da área de impacto.
As descobertas do NTSC concluíram que o voo 514 caiu devido a um erro do piloto. O piloto ingressou na Mimika Air no dia 12 de fevereiro e não tinha conhecimento da rota. O piloto tentou voar em uma rota direta para Mulia usando GPS, e tentou voar sobre o Monte Gergaji sem nenhuma tentativa de circular. Quando o voo entrou nas nuvens, o piloto ficou desorientado espacialmente e perdeu o controle da aeronave.
O acidente aéreo da Mimika foi o segundo acidente aéreo fatal em Papua e o terceiro na Indonésia, em menos de duas semanas. Um avião de carga também caiu em Papua em 9 de abril, matando seis pessoas, e um avião da Força Aérea Indonésia caiu em Java Ocidental em 6 de abril, matando 24 pessoas.
Um Sud Aviation SE-210 Caravelle III da MEA similar ao acidentado
Em 17 de abril de 1964, o avião Sud Aviation SE-210 Caravelle III, prefixo OD-AEM, da Middle East Airlines (MEA), realizando o voo ME 444, partiu de Beirute, no Líbano às 17h09 UTC, em direção a Dhahran, na Aábia Saudita, levando a bordo 42 passageiros e sete tripulantes.
Após a decolagem, a aeronave subiu à altitude de cruzeiro FL300. Às 19h04, a aeronave informou ao Controle do Bahrein que estava estimando chegar a Dhahran às 19h28, e foi autorizada a descer para alcançar o FL50 sobre o farol de Dhahran.
Às 19h06, informações meteorológicas foram relatadas para o voo 444, que leu um vento NNE de 10 nós, rajadas para 16, e visibilidade de 0,5 nm (em uma tempestade de areia). Às 19h26, o piloto relatou estimar o Dhahran NDB em dois minutos.
Às 19h28, ele contatou Dhahran e relatou "5 000 pés descendo" e foi liberado para uma abordagem ADF. O controlador solicitou à tripulação um relatório a 4.000 pés e a saída a 2.000 pés. Um minuto depois, ele relatou ter saído de 4000 pés e às 19h30 estar passando por 2.500 pés e virando para dentro.
Foi então liberado para a aproximação final e solicitado a relatar o alcance do mínimo e a pista à vista. Aproximadamente às 19h32, um curto ruído de transmissão alto foi gravado pela Torre. Nenhuma outra mensagem foi recebida do voo.
Posteriormente, foi descoberto que a aeronave atingiu o mar na conclusão do procedimento, virando 4 NM ao largo da costa e 10 NM ao sul do Aeroporto de Dhahran. Todas as 49 pessoas a bordo morreram no acidente.
A equipe de investigação concluiu que não houve falha mecânica que pudesse ter causado o acidente. Várias teorias foram investigadas, entre elas indicações errôneas de rádio-altímetro como resultado da tempestade de areia (esses efeitos foram comprovados em testes feitos pela Air France), mas a equipe não foi capaz de provar nenhuma dessas teorias. A causa provável deste acidente nunca pode ser determinada.
McDonnell Douglas MD-83 Crossair, prefixo HB-IUH, com as cores do Mcdonald’s (Foto: Ken Fielding)
— Você já desejou um Big Mac enquanto voava, em vez da refeição padrão da companhia aérea? Há 28 anos, aconteceu, não apenas o Big Mac, mas um jato inteiro do McDonald's.
Em abril de 1996, uma transportadora suíça, a Crossair (LX), entregou seu Mcdonnell Douglas MD-83 a uma operadora de turismo local que operava com a Hotelplan, destinada a levar famílias em férias. As duas empresas fizeram parceria com a icônica rede de fast food e trabalharam juntas em um projeto especial naquele ano, e assim nasceu o McPlane.
“Aqui é o seu capitão falando no voo McPlane de Zurique para Palma. Big Macs e milkshakes agora serão servidos”, relatou o The Independent na época.
O McPlane
O tipo era originalmente um MD-81 e ingressou na Swiss em 1991, com o registro HB-IUH. Mais tarde, depois de modificado e convertido no MD-83, foi para o Crossair.
A conversão ocorreu em Shannon, na Irlanda, assim como a atraente pintura que apresentava o icônico “M” do rei do fast food na cauda. Os assentos padrão estavam fora e no lugar havia 161 assentos vermelho-ketchup brilhante. Cada encosto de cabeça também tinha o “M”.
Dito e feito, o primeiro voo do McPlane decolou de Basel, Suíça (BSL) para Heraklion, Grécia (HER), em abril daquele ano. O McPlane estaria em voo ativo para pontos turísticos em todo o Mediterrâneo europeu.
Yes, there really was a McDonald’s airplane called “McPlane”. They served chicken McNuggets and Big Macs inflight. It was a MD-83 flown by Crossair back in the 90’s. 😎 pic.twitter.com/imaJuT754r
Além do Mc Nuggets, uma variedade de hambúrgueres do McDonald's estava disponível como parte da experiência geral. Mas nenhuma refeição do McDonald's está completa sem batatas fritas!
Conforme declarado pelo The Independent, “No entanto, batatas fritas grandes estarão fora de questão no Flying McDonald's. A empresa está ansiosa para evitar um incêndio no chip pan a 30.000 pés, e o serviço de balcão será substituído por refeições convencionais em um prato.”
A experiência foi uma delícia para qualquer criança que voou; um monte de brinquedos e materiais foram distribuídos em cada voo, e a melhor parte foi que as crianças puderam entrar na cabine para uma visita.
Edição de texto e imagens por Jorge Tadeu com informações da Airways Magazine
Radar é, na verdade, a sigla para Radio Detecting And Ranging (Detecção e determinação de distância por rádio, em inglês). Ele foi inventado em 1904 pelo alemão Christian Hülsmeyer, mas só começou a ser usado em 1935, em um navio. Sua função era de detectar possíveis obstáculos.
O sistema passou a ter uso militar durante a Segunda Guerra Mundial, em 1939, para a detecção de aeronaves —em especial pelos ingleses, que utilizavam a tecnologia para avisar com antecedência a população em caso de bombardeios nazistas.
Os radares são, de forma resumida, antenas emissoras e receptoras que funcionam ao emitir ondas eletromagnéticas de super alta frequência (SHF) em uma determinada direção. Caso essas ondas encontrem um objeto — um avião, por exemplo —, o sistema é capaz de ler e interpretar o padrão de reflexo dessas ondas e determinar variáveis como tamanho do objeto, velocidade e mudanças de altitude.
Isso ocorre pelo chamado Efeito Doppler, a defasagem de frequência entre o sinal emitido e o recebido de volta.
Esse é o conceito básico dos radares, mas, dependendo da aplicação, a antena pode ser giratória, para cobrir 360 graus, ou fixa. Em alguns casos, há uma combinação desses dois sistemas.
Os radares militares para controle aéreo têm funções específicas, como rastreamento, cálculo de trajetória e ainda para auxiliar na mira para disparo de armas guiadas por radar.
Além da finalidade militar, os radares têm sido utilizados em outras situações, como o controle de velocidade dos carros em uma rodovia e até como ferramenta para análise meteorológica.
Os radares podem ser fixos ou portáteis e serem carregados, por exemplo, por aviões. Vale salientar que, caso um avião militar esteja com o radar ativo, ele se torna, automaticamente, um alvo mais fácil de ser localizado por outros radares, presentes tanto em terra quanto instalados em veículos e aeronaves.
Dúvidas comuns
Como um radar é capaz de identificar se um avião é aliado ou inimigo?
A identificação de aeronaves se dá, principalmente, pelos protocolos de detecção e comunicação. O alvo recebe o sinal, decodifica e responde de forma também codificada, identificando-se. Se não rolar essa "conversa", a aeronave pode ser considerada hostil.
Sendo assim, o mesmo modelo de aeronave pode ter protocolos de detecção e identificação distintos, o que faria um Su-27 ucraniano, por exemplo, ser identificado como tal, não com uma aeronave russa.
No caso da aviação civil, há ainda um equipamento chamado transponder, que calcula sua posição por meio de GPS e a transmite para outras aeronaves e sistemas de monitoramento do trafego aéreo. Com isso, é possível saber onde cada aeronave está e, assim, traçar planos de voo e evitar situações de risco que possam culminar em colisões.
Qual é o alcance de um radar?
Radares de boa qualidade são capazes de detectar objetos a centenas de quilômetros. Há, porém, algumas limitações.
Considerando o método de funcionamento de um radar, que precisa que as ondas emitidas alcancem um objeto e retornem com uma clareza mínima, sem que ruídos eletromagnéticos causem detecções falsas, a curvatura da Terra pode atrapalhar. Especialmente se o objeto a ser detectado esteja próximo ao chão, como um avião voando em altitude baixa.
Nesse caso, essa aeronave só seria detectada quando estivesse muito próxima da origem do sinal de radar do solo.
Uma solução usada por forças aéreas é ter aviões — que podem, inclusive, ser jatos comerciais — transformados em "radares aéreos". Com isso, elimina-se essa limitação dos equipamentos instalados no solo.
O que são aviões "invisíveis"?
O F-117 em ação: primeiro caça stealth teria participado de ataque na Síria em 2017 (Foto: USAF)
Durante os anos 1970, a força aérea norte-americana começou a desenvolver um avião capaz de ser quase indetectável por radares — o que popularmente ficou conhecido por "avião invisível". Tratava-se do F-117, que ganhou notoriedade durante a Guerra do Golfo, em 1991.
Para diminuir ao máximo a sua detecção e identificação em radares, o avião usa uma combinação de superfícies geométricas planas, capazes de refletir as ondas de radar em poucas direções, dificultando o trabalho dos radares.
Além disso, a fuselagem é coberta por materiais capazes de absorver, e não refletir, as ondas eletromagnéticas. Esse combo de tecnologias é complementado por sistemas ativos que geram interferência eletromagnética e, assim, "embaralham" o sinal emitido por radares inimigos.
É importante notar que esses aviões não são completamente invisíveis aos radares, apenas têm uma assinatura muito pequena. Assim, em determinadas condições, essas aeronaves podem ser detectadas.
Via Rodrigo Lara (Tilt/UOL) - Fonte: Renato Giacomini, coordenador e professor do departamento de engenharia elétrica do Centro Universitário FEI
A Lei do Correio Aéreo de 1934 fez a American Airways mudar seu nome para American Airlines.
(Foto: Flugkerl2 via Wikimedia Commons)
Você sabia que antigamente a maior companhia aérea do mundo, a American Airlines, costumava se chamar American Airways? A companhia aérea com sede em Fort Worth, Texas, pode traçar suas raízes até os primeiros dias de aeronaves sendo usadas para transportar correspondência entre as regiões dos Estados Unidos.
Os Correios dos Estados Unidos perceberam como a entrega de correio aéreo poderia revolucionar seus negócios e, em 1925, começou a contratar companhias aéreas privadas para transportar correspondências. No verão de 1927, aeronaves eram usadas para entregar correspondência em quase todos os cantos do país.
Várias companhias aéreas se fundiram para formar a American Airways
Baseado em Lambert-St. Louis Flying Field, a Robertson Aircraft Corporation começou a entregar correspondência entre St. Louis e Chicago, com paradas em Springfield e Peoria, Illinois. Na época, o piloto-chefe da companhia aérea era Charles Lindbergh, o mesmo homem que mais tarde se tornaria o primeiro aviador a voar sozinho pelo Oceano Atlântico.
Ao mesmo tempo, a Bee Line, como foi chamada pela primeira vez, entregava correspondência entre Boston e Nova York. Mais tarde, sob a liderança de Juan Trippe, o homem que viria a criar a Pan American World Airways , a companhia aérea mudou seu nome para Colonial Air Transport.
Embora ambas as companhias aéreas pudessem obter um bom lucro transportando apenas correspondência, o governo queria incentivá-las a transportar passageiros. Para manter os custos mínimos, as companhias aéreas preferiram usar aviões monomotores e não as aeronaves multimotores maiores necessárias para o transporte de passageiros.
O Postmaster General queria incentivar as companhias aéreas a transportar mais passageiros
Para incentivar as companhias aéreas a transportar mais passageiros, o Postmaster General Walter Brown elaborou uma legislação para mudar a forma como as companhias aéreas eram pagas. Chamada de "Lei McNary-Watres", essa legislação acrescentou incentivos para o transporte de passageiros nas rotas postais. Além disso, para evitar que as companhias aéreas falissem durante a Grande Depressão, Brown as encorajou a se fundirem enquanto criava mais duas rotas transcontinentais de correio aéreo.
(Foto: Flugkerl2 via Wikimedia Commons)
Ao fazer isso, ele salvou muitas companhias aéreas de falir. Depois de receber a promessa da rota transcontinental do sul, a Robertson Aircraft Corporation e a Colonial Air Transport, juntamente com outras companhias aéreas, se fundiram para formar o que seria chamado de American Airways em 1930.
Vários anos depois, os críticos começaram a reclamar sobre como os lucrativos contratos de correio eram concedidos, dizendo que as pequenas companhias aéreas eram tratadas injustamente. A verdade é que grandes holdings aéreas como a American Airways tiveram preferência sobre companhias aéreas independentes menores.
Em resposta ao que seria conhecido como a "Crise do Correio Aéreo" em 1934, o presidente Franklin Roosevelt cancelou todos os contratos de correio aéreo e deu a tarefa de entregar o correio do país ao Corpo Aéreo do Exército. Os militares começaram a entregar a correspondência em fevereiro de 1934, durante o pior inverno que o país viu em anos. Mal preparados para o trabalho e prejudicados pelo clima, muitos aviões caíram e vários pilotos morreram.
Um avião de correio aéreo bimotor do Corpo de Ar do Exército de Havilland em tempestade de neve (Foto via Wikimedia Commons)
Entre os críticos da decisão do presidente Roosevelt de cancelar os contratos de correio estava o chefe da American Airways e herói de guerra da Primeira Guerra Mundial, Eddie Rickenbacker, que chamou a decisão de "assassinato legalizado". Charles Lindbergh, considerado um herói nacional após cruzar o Atlântico, testemunhou perante o Congresso criticando a decisão de Roosevelt.
American Airways torna-se American Airlines
O clamor público de testemunhos de Rickenbacker, Lindbergh e outros levou Roosevelt a cancelar a entrega de correspondência do Corpo Aéreo do Exército até que melhorias fossem feitas. Isso levou à Lei do Correio Aéreo de 1934 e ao retorno dos contratos de correio às companhias aéreas privadas. Uma das estipulações da lei era que as empresas que contêm tanto a fabricação de aeronaves quanto as transportadoras aéreas devem se dividir em entidades separadas. Para recuperar seus antigos contratos de correio, a American Airways mudou seu nome para American Airlines.