sábado, 22 de abril de 2023

Boeing 787 x Airbus A350: qual é o melhor avião?

Os emblemáticos widebodies  têm tido muito sucesso com os clientes.

Boeing 787 da Turkish Airlines e Airbus A350 da Singapore Airlines (Foto: Bill Abbott via Flickr)
Este século foi dominado por dois widebodies emblemáticos, o Boeing 787 e o Airbus A350. Construídas com novos componentes, equipadas com os motores mais eficientes e com autonomia excepcional, representam o que há de melhor em inovação de ambas as fabricantes. Então, qual avião é o melhor?

Ao compararmos os dois jatos, é notável que eles não foram construídos como rivais diretos. O 787 procurou redefinir as viagens ponto a ponto de longa distância, oferecendo uma aeronave de médio alcance e longo alcance, enquanto o A350 está posicionado como uma aeronave de maior capacidade, destinada a desafiar os widebodies bimotores existentes. No entanto, a dupla já é rival há algum tempo, então vamos nos aprofundar.

Como vamos comparar os aviões?


Classificaremos os dois aviões em vários fatores-chave diferentes, como capacidade, alcance, consumo de combustível, custo e assim por diante. Pensaremos a partir da mentalidade de uma companhia aérea, onde os negócios e o lucro são fundamentais. Embora um dos aviões possa ter um recurso interessante, a menos que faça uma melhoria financeira, ele será ignorado. Isso inclui itens como iluminação ambiente, que é fantástica para os passageiros, mas não afeta realmente os resultados (tanto o 787 quanto o A350 têm ótima iluminação ambiente a bordo).

Também estaremos comparando as versões mais recentes, o 787-10 vs A350-1000. O 787-8 menor é mais competitivo com o A330neo e não seria adequado contra o A350. Alguns podem sugerir que é melhor comparar o Boeing 777X e o Airbus A350-1000 , pois é uma correspondência mais precisa, mas como o 777X ainda não entrou em serviço, não seria um teste justo.

Boeing 787-10 Dreamliner, N13013, da United Airlines (Foto: Vincenzo Pace)

Airbus A350-1000 x Boeing 787-10


Vamos compará-los frente a frente com os números brutos:

Vamos detalhar cada item:

Assentos: Em uma configuração de duas classes, o Airbus A350 pode transportar mais passageiros do que o Boeing. Isso se deve à sua fuselagem mais larga e longa. No entanto, o layout fica a critério da companhia aérea, portanto, essas lacunas de tamanho podem ser redundantes, dependendo da operadora.

Capacidade de combustível: O Airbus possui tanques de combustível maiores que o Boeing, devido ao seu maior alcance.

Capacidade de carga: Apesar do Airbus ser maior que o Boeing, ambos têm aproximadamente a mesma capacidade de carga.

Alcance: O A350-1000 tem um alcance maior que o Boeing 787-10. De fato, a faixa de -10 sacrifícios para capacidade, uma grande desvantagem para a aeronave. O A350 claramente se destaca aqui e ainda nem atingiu seu potencial de alcance máximo!

Comprimento de decolagem da pista: Acontece que o avião maior pode fornecer mais impulso de decolagem e, assim, decolar de uma pista mais curta.

E o preço?


Apenas lendo acima, você perceberia que o Airbus A350 supera o 787 em número de passageiros, alcance e capacidade de combustível, o que faz sentido, pois é uma aeronave maior. No entanto, esta é uma última área que não comparamos
  • Boeing 787-10: US$ 338,4 milhões
  • Airbus A350-1000: US$ 355,7 milhões
Como você pode ver, o Boeing 787 é mais barato. Se você é uma companhia aérea que não está voando mais do que a distância máxima do 787, entre destinos menores que não têm demanda de passageiros para suportar um avião maior (como um Boeing 777), então tudo o que resta é se preocupar com o preço .

É notável que as companhias aéreas nunca pagam os preços de tabela acima mencionados para aeronaves. Em vez disso, eles obtêm grandes descontos dependendo do tamanho do pedido. Além disso, as companhias aéreas também precisam avaliar os prazos de entrega. Tanto o A350 quanto o 787 estão em pedidos atrasados, o que significa que os negócios podem depender das datas de entrega.

O aspecto final a pesar é a comunalidade da frota. O A350 compartilha um cockpit comum e classificação de tipo com o A330, portanto, para qualquer companhia aérea que já opera o widebody menor, o 350 é um ajuste natural.

Airbus A350-1000 da Singapore Airlines (Foto: Airbus)

Qual tem sido mais popular?


Os números de vendas são o indicador mais forte do sucesso de um tipo no mercado. Ao olhar para os números, o 787-10 não foi a variante Dreamliner de maior sucesso, vendendo 182 unidades. Enquanto isso, o A350-1000 também obteve sucesso limitado, com apenas 140 unidades encomendadas pelas companhias aéreas.

No entanto, os programas Dreamliner e A350 tiveram muito mais sucesso em todas as variantes, vendendo impressionantes 1.600 787s no trio (787-8, -9 e -10) e 925 A350s (A350-900, -1000 e cargueiros combinados). É claro que as variantes de maior capacidade não são as mais bem-sucedidas, mas fazem parte de um ecossistema maior.

Boeing 787 da ANA (Foto: Boeing)
Obviamente, o programa A350 é mais novo no mercado do que o 787, que agora chega a duas décadas desde que foi anunciado. Portanto, o jato da Boeing tem mais tempo para conquistar clientes à medida que eles aposentam seus widebodies antigos e procuram novos. No entanto, não há dúvida de que a capacidade e a versatilidade do 787 o tornaram um dos pilares das frotas globais, e é provável que continue sendo o principal em termos de pedidos por um tempo.

Conclusão


Então, quem é o verdadeiro vencedor? Depende do que você precisa e de quanto está disposto a gastar. Se você deseja uma aeronave de longo alcance com o máximo de passageiros, o A350-1000 é perfeito para você. Mas se você tiver uma rota mais curta em sete horas, o Boeing 787-10 lhe dará mais economia.

Olhando para as maiores operadoras, a Qatar Airways voa com seu A350-1000 nas rotas de longa distância de maior demanda para maximizar os lucros. Enquanto isso, a United Airlines usa seus 787-10 de diversas maneiras, incluindo rotações domésticas diárias e alguns trechos de longa distância para a Europa também.

Com informações do Simple Flying

Tipos de gelo de aeronave e seu efeito em sua aeronave


Um dos maiores riscos de voar em climas frios é a formação de gelo de aeronaves. Congelamento de aeronaves refere-se ao revestimento ou depósito de gelo em qualquer objeto da aeronave, causado pelo congelamento e impacto de hidrômetros líquidos. Isso pode ter um efeito prejudicial na aeronave e dificultar a pilotagem do avião.

Os fatores significativos que afetam a ameaça de congelamento da aeronave incluem temperaturas ambientais, velocidade da aeronave, temperatura da superfície da aeronave, o formato da superfície da aeronave, concentração de partículas e tamanho das partículas.

A taxa de captura é afetada pelo tamanho das gotas. Pequenas gotas seguem o fluxo de ar e se formam ao redor da asa, enquanto gotas grandes e pesadas atingem a asa de uma aeronave.


Quando uma pequena gota atinge, ela só se espalhará de volta sobre a asa da aeronave uma pequena distância, enquanto a grande gota se espalhará mais longe. À medida que a velocidade no ar de um avião aumenta, o número de gotas que atingem a aeronave também aumenta.

A taxa de captura de gelo da aeronave também é afetada pela curvatura da borda de ataque da asa. As asas grossas tendem a capturar menos gotas do que as asas finas. É por isso que uma aeronave com asas finas que voa em alta velocidade através de grandes gotas tem a maior taxa de captura de gelo de aeronave.

Como uma aeronave é afetada pelo gelo


O gelo pode se acumular na superfície do avião e prejudicar o funcionamento das asas, hélices e superfície de controle, bem como dos velames e para-brisas, tubos pitot, respiradouros estáticos, entradas de ar, carburadores e antenas de rádio .

Os motores de turbina do plano são extremamente vulneráveis. O gelo que se forma na carenagem da admissão pode restringir a admissão de ar. Quando o gelo se forma nas lâminas de partida e no rotor, ele degrada sua eficiência e desempenho e pode até mesmo causar o incêndio. Quando pedaços de gelo se partem, o motor pode sugá-los. Isso pode causar danos estruturais.

Na superfície de uma aeronave com pequenas bordas de ataque - como antenas, estabilizadores horizontais, hélices, amortecedores do trem de pouso e leme - são os primeiros a acumular gelo.

Efeitos adversos ao brilho causado pelo glacê
O primeiro local de uma aeronave onde o gelo geralmente se forma primeiro é o fino medidor de temperatura do ar externo. O gelo geralmente assume as asas no final. Ocasionalmente, uma fina camada de gelo pode se formar no para-brisa da aeronave. Isso pode ocorrer na aterrissagem e na decolagem.

Quando o gelo se forma na hélice, o piloto pode notar uma perda de potência e aspereza do motor. O gelo se forma primeiro na cúpula da hélice ou girador. Em seguida, ele segue seu caminho até as lâminas.

O gelo pode se acumular de maneira desigual nas lâminas e, como resultado, elas podem ficar desequilibradas. Isso resultará em vibrações que colocarão pressão indevida nas lâminas, bem como nos suportes do motor, o que pode causar sua falha.

Se a hélice do motor está acumulando gelo, a mesma coisa estará acontecendo nas superfícies da cauda, ​​asas e outras projeções. O peso do gelo acumulado não é tão sério quanto a interrupção do fluxo de ar que causa ao redor da superfície da cauda e das asas.

Descongelando um De Havilland DHC-3
O gelo acumulado destrói a sustentação e altera a seção transversal do aerofólio. Também aumenta o arrasto e a velocidade de estol. Por outro lado, o empuxo da aeronave se degrada por causa do gelo que se acumula nas pás da hélice.

Nesse cenário, o piloto é forçado a usar um ângulo de ataque alto e potência total para manter a altitude. Quando o ângulo de ataque é alto, o gelo começa a se formar na parte inferior da asa, adicionando mais resistência e peso.

Sob condições de gelo, as abordagens de pouso, bem como a aterrissagem, podem ser perigosas. Ao pousar uma aeronave congelada, os pilotos devem usar mais velocidade e potência do que o normal.

Os instrumentos de voo podem não operar se o gelo se acumular nas portas de pressão estática do avião e no tubo piloto. A taxa de subida, a velocidade do ar e o altímetro podem ser afetados. Os instrumentos de giroscópio dentro da aeronave que são movidos por um empreendimento também podem ser afetados quando o gelo se acumula na garganta do venturi.

Gelo no casco da aeronave

Tipos de gelo de aeronave


Geralmente reconhecemos 4 tipos principais de formação de gelo em aeronaves. Gelo gélido, gelo claro, gelo misto e geada. Continue lendo para saber mais sobre cada um desses tipos de gelo.

1. Gelo Glaceado (Rime Ice)



Um gelo opaco ou branco leitoso que se deposita na superfície da aeronave quando ela está voando através de nuvens transparentes é classificado como gelo de geada. Geralmente é formado por causa de pequenas gotículas super-resfriadas quando a taxa de captura é baixa.

Gelo de geada (glaceado) se acumula nas bordas de ataque das asas e nas cabeças dos pilotos, antenas, etc. Para que o gelo de geada se forme na aeronave, a temperatura do revestimento da aeronave deve estar abaixo de 0° C. Devido à baixa temperatura, as gotas congelam rápida e completamente. Mesmo após o congelamento, as gotas não perdem sua forma esférica.

Efeitos de gelo glaciado
Os depósitos de gelo cremoso não têm muito peso, mas ainda assim é perigoso porque altera a aerodinâmica da curvatura da asa e afeta os instrumentos. Normalmente, o gelo do gelo é quebradiço e pode ser desalojado facilmente com fluido e equipamento de descongelamento . Ocasionalmente, gelo claro (discutido abaixo) e gelo geado se formarão simultaneamente.

2. Gelo transparente



A espessa camada de gelo que se forma quando uma aeronave voa através de nuvens que contêm grandes quantidades de grandes gotas super-resfriadas é chamada de gelo glaceado ou gelo transparente.

O gelo transparente geralmente se espalha de forma desigual sobre as superfícies da cauda, ​​antenas, pás da hélice e asas. Ela se forma quando uma pequena parte da gota congela ao entrar em contato com a superfície de uma aeronave.

A temperatura da aeronave sobe para 0° C quando o calor é liberado durante o impacto inicial da gota. Isso permite que uma grande parte das gotas de água se espalhe e se misture com outras gotas antes de congelar. Assim, uma camada firme de gelo se forma na aeronave sem qualquer ar embutido.

À medida que mais gelo transparente se acumula na aeronave, ele começa a se formar em forma de chifre, projetando-se à frente da superfície da cauda, ​​asa, antena e outras estruturas.


O fluxo de ar é severamente interrompido por esta formação única de gelo e aumenta o arrasto no vôo em cerca de 300 a 500 por cento. O gelo claro é extremamente perigoso porque faz com que a aeronave perca sustentação, pois altera a curvatura da asa e interrompe o fluxo de ar sobre a superfície da cauda e as asas da aeronave. Além disso, aumenta o arrasto, o que é perigoso para o avião.

As vibrações decorrentes do carregamento desigual nas pás e asas da hélice também são perigosas para o voo. Quando grandes blocos de gelo transparente se quebram, as vibrações podem se tornar tão fortes que podem prejudicar a estrutura da aeronave. Quando o gelo transparente se mistura com granizo ou neve, pode parecer esbranquiçado.

3. Gelo misturado



Como o nome sugere, gelo misturado é o tipo de gelo que carrega as propriedades de gelo de gelo e gelo transparente. Ele se forma quando pequenas e grandes gotas super-resfriadas estão presentes.

O aspecto do gelo misto é irregular, áspero e esbranquiçado. As condições favoráveis ​​para a formação desse tipo de gelo de aeronave incluem partículas congeladas e líquidas presentes nos flocos de neve úmidos e na porção mais fria da nuvem cumuliforme.


O processo de formação desse tipo de gelo para aeronaves inclui o gelo do gelo e do gelo transparente. O gelo misturado pode se acumular rapidamente e não é facilmente removido.

4. Frost



O gelo semicristalino pode se formar no ar puro por meio de deposição. Isso não tem um grande efeito no vôo, mas pode obscurecer a visão do piloto revestindo o para-brisa da aeronave.

Ele também pode interferir com os sinais de rádio formando-se na antena. A geada geralmente se forma no ar limpo quando uma aeronave fria entra no ar mais úmido e quente.

As aeronaves que ficam estacionadas do lado de fora nas noites frias podem ficar cobertas por esse tipo de gelo pela manhã. A geada se forma quando a superfície superior da aeronave esfria abaixo da temperatura do ar circundante.

O gelo que se forma nas superfícies de controle, cauda e asas deve ser removido antes da decolagem; pode alterar as características aerodinâmicas da asa o suficiente para interferir na decolagem, reduzindo a sustentação e aumentando a velocidade de estol.

O orvalho congelado também pode se formar na aeronave que está estacionada do lado de fora em uma noite fria, quando as temperaturas estão abaixo de 0° C. Esse orvalho é geralmente cristalino e claro, enquanto a geada é branca e fina.

Assim como a geada, o orvalho congelado também deve ser removido adequadamente antes da decolagem. Na verdade, é imperativo remover qualquer tipo de umidade antes da decolagem, pois ela pode congelar enquanto o avião está taxando.

Aeronave movida a hidrogênio não precisa de pista para pousar e percorre até 1.300 km

O VTOL ARC Linx P9 estará pronto para decolar em 2028.

(Imagem: ARC Aero Systems/Divulgação)
A aposta da vez para atender a demanda do futuro por táxi aéreo sustentável é projetar aeronaves mais espaçosas e não necessariamente totalmente elétricas como os eVTOLs. Considerando os protótipos vistos até aqui, de fato a maioria pode levar poucos passageiros, sem contar com alcance ainda limitado das baterias.

A startup britânica ARC Aero Systems quer mudar o jogo trazendo modelos com mais capacidade, emissão zero e custos de manutenção mais baixos. Um deles é o VTOL ARC Linx P9, um híbrido de avião e helicóptero capaz de decolar e pousar na vertical.

(Imagem: ARC Aero Systems/ Divulgação)
A novidade foi revelada oficialmente no Airfinance Journal 2023 em Dublin, na Irlanda, e apresenta vantagens interessantes.

Logo de cara, o modelo é bem maior. Sua cabine foi projetada para levar até nove pessoas e suporta em média o dobro de carga útil dos eVTOLs modernos. A fabricante compara a capacidade com a de um helicóptero, só que bem mais acessível de operar, diz a ARC.

Segundo a empresa, os custos gerais são até 40% mais baixos se comparado a um helicóptero tradicional. Um dos segredos para isso é o sistema de propulsão mais simples, composto por um único rotor e motores turboélice adaptados para funcionar com hidrogênio ou combustível de aviação sustentável (geralmente feito de óleo orgânico, como óleo de cozinha usado ou resíduos agrícolas).

A fuselagem também é construída com materiais leves, o que contribui para mais eficiência
no consumo de combustível (Imagem: ARC Aero Systems/ Divulgação)
Para ter uma ideia, o modelo pode percorrer 860 km ou até 1.300 km com um tanque extra de combustível. Sua velocidade de cruzeiro é de cerca de 300 km/h e a capacidade de decolar e pousar na vertical também dispensa pistas dedicadas, posicionando a aeronave como uma nova concorrente no ramo de transporte aéreo urbano.

No fim, por enquanto o Linx P9 ainda é apenas um conceito. Segundo o cronograma da ARC, o rival dos eVTOLs estará pronto para voar comercialmente em 2028.

Aconteceu em 22 de abril de 1974: Tragédia com voo 812 da Pan Am em Bali, na Indonésia


O voo 812 da Pan Am (PA812), operado pelo Boeing 707-321B, prefixo 
N446PAda Pan American World Airways, batizado como "Clipper Climax", era um voo internacional regular de Hong Kong para Los Angeles, na Califórnia, nos EUA, com escalas intermediárias em Denpasar (Indonésia), Sydney (Austrália), Nadi (Ilhas Fiji), e Honolulu (Havaí, EUA). 


Em 22 de abril de 1974, ele colidiu com um terreno montanhoso acidentado enquanto se preparava para uma aproximação da pista 09 para Denpasar após um voo de 4 horas e 20 minutos de Hong Kong. Todas as 107 pessoas a bordo morreram. 

O local do acidente foi cerca de 78,7 km (48,9 milhas) a noroeste do Aeroporto Internacional Ngurah Rai. O 'Clipper Climax' foi o jato usado no filme "Willy Wonka e a Fábrica de Chocolate", de 1971, que entregava a remessa protegida de barras de chocolate Wonka.

O voo e o acidente


O Boeing 707-321B, prefixo N446PA, da Pan Am, envolvido no acidente
O voo 812 era um voo regular regular de Hong Kong para Los Angeles via Bali, Sydney, Nadi e Honolulu, partiu de Hong Kong em 22 de abril de 1974, às 11h08 UTC (19h08, horário de Hong Kong). O tempo estimado de voo para Bali era de 4 horas e 23 minutos. A bordo estavam 96 passageiros e 11 tripulantes.

Às 15:23 UTC (12h23, horário de Bali em 1974), o voo 812 estava na aproximação final para Bali. A aeronave informou ter atingido 2.500 pés. A Torre de Bali deu instruções para continuar a abordagem e informar quando a pista estava à vista. O reconhecimento foi feito pelo voo 812 dizendo, "Check inbound". Às 15h26 o piloto em comando solicitou a visibilidade chamando, "Ei - Torre, qual é a sua visibilidade aí agora?"

Porém, de acordo com a transcrição do gravador de voz do Controle de Tráfego Aéreo, esta mensagem nunca foi recebida pela Torre de Bali. Aparentemente, esta foi a última mensagem transmitida pela aeronave. 

A Torre de Bali continuou tentando entrar em contato com a aeronave chamando, "Clipper oito um dois, Bali Tower", e "Clipper oito um dois, Bali Tower, como você lê", várias vezes. No entanto, nenhuma resposta foi recebida da aeronave. Posteriormente, foi descoberto que a aeronave havia atingido a Montanha Mesehe, em Buleleng, a aproximadamente 37 milhas a noroeste do aeroporto de Bali.


Busca e salvamento


A torre de controle de Bali imediatamente perdeu todo o contato com o avião e declarou que o avião estava desaparecido. Paraquedistas e autoridades indonésias foram imediatamente enviados para a área onde o último contato foi estabelecido pelo voo 812. O último contato foi estabelecido pelo voo 812 na montanha Mesehe, um vulcão adormecido localizado perto do aeroporto.

Os destroços foram encontrados um dia depois por 2 moradores locais. Eles relataram que não houve sobreviventes. A retirada dos corpos foi dificultada devido ao terreno do local do acidente, que se localizava numa zona montanhosa. 


Por causa da localização, os socorristas tiveram que cancelar o processo de resgate dos corpos por via aérea. Oficiais do exército indonésio afirmaram que a operação de resgate demoraria quatro ou cinco dias. 

Em 25 de abril, cerca de 300 equipes de resgate foram posicionadas no local do acidente. O Exército indonésio afirmou que o processo de evacuação teria início em 26 de abril. Posteriormente, acrescentaram que haviam recuperado cerca de 43 corpos.

Passageiros e tripulação


Havia 96 passageiros de 9 países a bordo. 70 passageiros com destino a Bali. 24 estavam com destino a Sydney. 2 iam para Nadi. A Pan Am informou que cerca de setenta passageiros eram turistas com destino a Bali.


Várias placas memoriais podem ser encontradas para este acidente em Jl. Padang Galak, próximo à praia Temple, Kesiman, Denpasar East, Indonésia.

O piloto em comando era o capitão Donald Zinke, de 52 anos. Ele voou um total de 18.247 horas, incluindo 7.192 horas em aeronaves Boeing 707/720. Ele tinha uma classificação de aeronave DC-4 e uma classificação de aeronave Boeing 707. 

O copiloto era o primeiro oficial John Schroeder. Ele tinha uma classificação válida de Boeing 707 e tinha um total de horas de voo de 6.312 horas, incluindo 4.776 horas em aeronaves Boeing 707/720. 

O outro piloto era o terceiro oficial Melvin Pratt, tinha uma licença válida de piloto comercial e uma qualificação atual de instrumentos. No momento do acidente, ele havia voado um total de 4.255 horas, incluindo 3.964 horas em aeronaves Boeing 707/720. 

A tripulação do voo 812 da Pan Am
Os outros membros da tripulação da cabine eram o engenheiro de voo Timothy Crowley e o engenheiro de voo Edward Keating.

Investigação


Várias testemunhas afirmaram que o avião estava pegando fogo antes de atingir a montanha Mesehe. Outros afirmaram que o Capitão Zinke estava tentando pousar pelo noroeste, onde as montanhas estavam localizadas, ao invés da rota usual (do leste). O lado leste não tinha nenhum terreno íngreme. 

Eles também afirmaram que o avião explodiu logo depois de atingir a montanha. Também houve relatos de que o avião estava circulando durante o acidente. A Pan American Airways declarou então que se recusou a comentar a causa do acidente. Afirmaram que aguardariam o resultado da investigação.

Como a aeronave estava registrada nos EUA, o NTSB foi convocado para a investigação do acidente. Representantes das vítimas de seus países de origem também foram convocados pelo governo indonésio. O FBI também foi chamado para a identificação das vítimas.


O FBI montou um campo de crise em um hangar em Denpasar. Na época, apenas 10% dos americanos tinham suas impressões digitais. A identificação foi posteriormente dificultada pela decisão do governo indonésio de interromper a identificação das vítimas e a investigação do acidente.

O gravador de dados de voo foi recuperado em 16 de julho e o gravador de voz da cabine foi encontrado em 18 de julho de 1974. O CVR foi recuperado em boas condições, enquanto o FDR teve alguns danos em sua caixa externa devido ao acidente.

O exame dos destroços do voo 812 concluiu que o avião não se partiu durante o voo, pois os destroços do avião estavam concentrados em uma área específica, ao invés de dispersos. O NTSB não encontrou avarias no motor e acrescentou que não encontrou evidências que poderiam indicar que o avião não estava em condições de aeronavegabilidade.

Sequência de eventos com base no relatório final


A seguinte sequência de eventos foi baseada no relatório final: A tripulação estava tentando entrar em contato com o Controle de Tráfego Aéreo da Bali, porém encontrou várias dificuldades para estabelecer contato com o Controle de Tráfego Aéreo da Bali. 

O primeiro contato entre a aeronave e a Bali Tower foi estabelecido às 15h06 UTC, quando a Bali Tower instruiu o voo 812 a entrar em contato com o Bali Control na frequência de 128,3 MHz, porque a aeronave ainda estava dentro da área de jurisdição do Bali Control. Isso foi reconhecido pelo voo 812 em conformidade. Posteriormente, a comunicação entre a aeronave e o solo foi normal.


O Capitão Zinke não encontrou nenhuma dificuldade no procedimento de aproximação ao Aeroporto Ngurah Rai de Denpasar. O procedimento estabelecia que antes que eles pudessem pousar no aeroporto, o voo deveria manter 12.000 pés e então eles deveriam executar o procedimento completo de descida do ADF. 

Os pilotos sabiam que havia terreno montanhoso ao norte do aeroporto e que o nível de voo 120 os tiraria das montanhas. A tripulação então informou aos controladores do ETA do vôo 812, e declarou sua intenção de fazer uma curva à direita dentro de 25 milhas do farol para uma trilha de 261 graus, descendo para 1.500 pés seguido de um procedimento para virar a água por aproximação final na pista 09.

Exemplo de um localizador automático de direção (ADF).
O ponteiro ADF aponta para a direção de um NDB (farol não direcional).
Às 15h18 UTC, a tripulação notou que o ADF número um estava "balançando" enquanto o ADF número dois permanecia estável. Poucos segundos depois, a tripulação do voo 812 relatou ao controle de Bali que ele estava sobre a estação, virando para fora, descendo para o nível de voo 120. 

Isso foi reconhecido pelo controle de Bali e o voo 812 foi então instruído a mudar para a Torre de Bali. Após estabelecer contato com a Bali Tower, o voo 812 informou que estavam fazendo procedimento de ida no nível 110 e solicitou altitude inferior. Posteriormente, foram liberados para baixas altitudes.

A tripulação do voo 812 decidiu então executar uma curva à direita de 263 graus. A execução antecipada da curva à direita foi causada pelo mau funcionamento do ADF número um, que balançou. A entrada foi feita porque a tripulação presumiu que estava se aproximando do NDB (farol não direcional). Os investigadores afirmaram que a curva para a direita foi feita a uma posição de aproximadamente 30 NM ao norte do farol.

Várias tentativas foram feitas para recuperar a indicação adequada nos ADFs após a curva, porém isso não pôde acontecer porque o avião estava "protegido" pela montanha. A tripulação então continuou sua abordagem e o avião posteriormente impactou o terreno.

Conclusão


Foi determinado que a execução prematura de uma curva à direita para entrar na pista de saída de 263 graus, que foi baseada na indicação dada por apenas um dos localizadores de direção de rádio enquanto o outro ainda estava em condição estável, é o máximo causa provável do acidente.

Consequências


A queda do voo 812 foi um alerta para a Pan Am. O voo 812 foi o terceiro 707 que a companhia aérea perdeu no Pacífico em menos de um ano após o voo 806 da Pan Am em Pago Pago em 30 de janeiro de 1974 e o voo 816 da Pan Am em Papeete em 22 de julho de 1973. 

Após o acidente, a Pan Am se dirigiu ao questão e encorajou uma forma inicial de gerenciamento de recursos da tripulação. O voo 812 foi o último 707 perdido após as melhorias de segurança.

Devido à queda do voo 812, a Federal Aviation Administration ordenou uma inspeção detalhada das operações de voo da companhia aérea em todo o mundo, incluindo treinamento do piloto, qualificação da área, procedimentos operacionais, supervisão e programação do piloto, procedimentos de verificação de linha e outros assuntos relacionados à segurança. 


A FAA não criticou a Pan American Airways nem insinuou operações inseguras. Eles estimaram o tempo de investigação de cerca de 3 meses.

Em 8 de maio de 1974, a Pan American Airways ordenou a instalação de um novo dispositivo de alerta na cabine projetado para evitar acidentes como o incidente de 22 de abril. Toda a frota de 140 aviões da Pan Am recebeu o dispositivo. O aparelho foi projetado e fabricado pela Sundstrand Data Control, Inc. 

O sistema de alerta de proximidade do solo forneceu indicações adicionais, por exemplo, se um avião estava se dirigindo para uma encosta de montanha ou se estava muito baixo para um pouso. Este foi um suplemento automático para sistemas de alerta de altitude mais convencionais, já instalados na maioria das aeronaves Pan Am. Logo após o acidente, a Pan Am interrompeu seus voos de Hong Kong a Sydney via Bali. 

Um monumento foi erguido pelo regente de Badung Regency Wayan Dana e pelo governador de Bali Soekarmen, com os nomes de 107 vítimas inscritos no monumento.

O avião 'Cliper Climax' no filme "A fantástica fábrica de chocolates"



O Boeing 707, N446PA,  'Clipper Climax', da Pan American World Airways,  desempenhou um papel fundamental no filme de 1971 ′′Willie Wonka and the Chocolate Factory′ ("A Fantástica Fábrica de Chocolate", no Brasil) entregando as famosas barras de chocolate.


Por Jorge Tadeu (Site Desastres Aéreos) com Wikipedia, ASN e baaa-acro

Aconteceu em 22 de abril de 1966: Ataque cardíaco do piloto provoca a queda do voo 280 da American Flyers

Em 22 de abril de 1966 o voo 280 da American Flyers Airline (N183H) era um voo operado em um contrato do Comando Aéreo Militar dos EUA do Aeroporto Regional de Monterey, na Califórnia, para o Aeroporto de Columbus na Geórgia, via o Aeroporto Municipal Ardmore, em Oklahoma.


A aeronave que operava a rota era o Lockheed L-188C Electra, prefixo N183HA, da American Flyers Airline (foto acima), que transportava 93 passageiros e 5 tripulantes. Esse avião voou pela primeira vez em janeiro de 1961 e foi adquirido pela American Flyers Airline em janeiro de 1963.

O piloto de voos no comando era o capitão Reed W. Pigman, de 59 anos. Pigman também foi o presidente da American Flyers. O primeiro oficial era Wilbur Marr.

O voo 280 da American Flyers Airline partiu do aeroporto da Península de Monterey às 16h32. A maioria dos 93 passageiros a bordo eram recrutas adolescentes do exército. O voo estava operando como um MAC charter transportando novas tropas de Fort Ord, Califórnia para Fort Benning, Geórgia e deveria pousar em Ardmore para reabastecer.


Sob mau tempo, a tripulação perdeu a abordagem por instrumentos da pista 08 para Ardmore, então eles tentaram uma abordagem circular visual para a pista 30.

O avião ultrapassou a pista e bateu em um lado de uma colina próxima a uma altitude de 963 pés (elevação do aeroporto sendo 762 feed msl). A aeronave foi destruída pelo impacto e subsequente incêndio. Oitenta e três pessoas morreram e 15 sobreviveram.


Testemunhas disseram que os destroços estavam espalhados por 400 metros. As equipes de resgate vasculharam os destroços e corpos quebrados espalhados entre as árvores de blackjack e ravinas em uma das regiões mais violentas do sul de Oklahoma.

James Gorman, 20, um soldado de Bellerose NY, relembrou o acidente de sua cama de hospital na noite do acidente. “Todos nós tínhamos nossos cintos de segurança colocados, eu acho. Meu cinto de segurança ficou preso, mas alguns deles não. Havia fogo à minha volta, tirei o cinto de segurança e saí. Mas não precisei descer. Não havia mais avião. Eu tive que correr através de uma parede de fogo para sair de lá."


Uma autópsia revelou que Reed Pigman sofreu um ataque cardíaco fulminante nos controles. A investigação do Civil Aerial Board (CAB) concluiu que ele não estava usando o cinto de segurança ao pousar o avião e provavelmente caiu para frente nos controles em uma baixa altitude, tornando impossível para o copiloto assumir o controle do avião.

Também foi descoberto que Reed Pigman estava sob tratamento de arteriosclerose e Pigman falsificou seu pedido de um atestado médico de primeira classe e que ele também sofria de diabetes. Ambas as condições teriam sido fatores desqualificantes para a emissão do certificado. 


O piloto havia havia "deliberadamente" ocultado sua condição cardíaca por 18 anos. As descobertas levaram o conselho a melhorar a qualidade das informações médicas sobre os pilotos.

O acidente resultou em quase duas dezenas de ações judiciais por homicídio culposo, totalizando US$ 14 milhões, contra a companhia aérea com sede em Ardmore. O caso final foi resolvido fora do tribunal em 1971.


O ex-piloto da American Flyers, James Hamilton, de Ardmore, disse que a companhia aérea se fundiu com uma empresa de navegação com sede na Pensilvânia cerca de um ano após o acidente e deixou Ardmore.

O Dr. Warren Silberman, gerente de certificação aeromédica da Federal Aviation Administration, disse que o processo de certificação atual é mais rigoroso do que em 1966. "Há muito mais alternativas do que antes", disse ele.

A FAA exige eletrocardiogramas de todos os pilotos de avião aos 35 anos. Os testes devem ser realizados anualmente depois que os pilotos completam 40 anos, disse Silberman, que trabalha no Centro Aeronáutico Mike Monroney, em Oklahoma City.

Por Jorge Tadeu (Site Desastres Aéreos) com ASN, Wikipedia, baaa-acro e Airlive.net

Hoje na História: 22 de abril - Antigo comercial da Varig celebrando o Descobrimento do Brasil

22 de abril - Dia da Aviação de Caça


A formação do Oficial Aviador da Força Aérea Brasileira começa na Academia da Força Aérea (AFA), localizada em Pirassununga (SP), onde o cadete recebe diversas instruções durante quatro anos, entre elas as de pilotagem nas aeronaves de treinamento T-25 Universal e T-27 Tucano.

Após a conclusão do curso na AFA, o cadete se torna Aspirante a Oficial e segue para Parnamirim, região metropolitana de Natal (RN), onde permanece recebendo instruções por um ano. Durante dois meses, o piloto passa pelo Curso de Preparação de Oficiais de Esquadrão (CPROE), realizado no Grupo de Instrução Tática e Especializada (GITE), quando aprende os princípios teóricos para atuar em combate e recebe orientações que o preparam para assumir as responsabilidades como Oficial da FAB.

Em seguida, os futuros caçadores são direcionados para o Esquadrão Joker (2°/5° GAV), também em Parnamirim (RN), para receberem instruções no Curso de Especialização Operacional na Aviação de Caça (CEO-CA). É nesta etapa que eles aprendem a operar o A-29 Super Tucano.

Com a conclusão do CEO-CA, os oficiais se tornam pilotos de combate da FAB e prosseguem para os três Esquadrões operacionais de A-29, localizados em Boa Vista (RR), Porto Velho (RO) e Campo Grande (MS). Nesse período, além de defender o espaço aéreo brasileiro e as fronteiras do País, o caçador recebe instruções importantes de Liderança de Elemento, Esquadrilha e Esquadrão.

Na sequência, o piloto pode ser transferido para os Esquadrões de primeira linha, localizados em Anápolis (GO), Santa Cruz (RJ), Manaus (AM), Santa Maria (RS) e Canoas (RS), onde irão operar as aeronaves F-5M, A-1M e, futuramente, o F-39 Gripen, - uma unidade já chegou ao Brasil em setembro de 2020 e, foi apresentada para a sociedade brasileira no Dia do Aviador, em Brasília (DF), em 23 de outubro de 2020. Também poderão ser movimentados para o Esquadrão Joker ou para a Academia da Força Aérea, assumindo a função de instrutor de voo. A última etapa de progressão operacional ocorre nos Esquadrões de primeira linha da Aviação de Caça, sendo eles:
  • 1° GDA - Esquadrão Jaguar – Anápolis/GO
  • 1° GAVCA - Esquadrão Jambock e Esquadrão Pif-Paf - Santa Cruz/RJ
  • 1°/4° GAV - Esquadrão Pacau - Manaus/AM
  • 1°/10° GAV - Esquadrão Poker - Santa Maria/RS
  • 1°/14° GAV - Esquadrão Pampa - Canoas/RS
  • 3°/10° GAV - Esquadrão Centauro - Santa Maria/RS
A Força Aérea Brasileira (FAB) produziu um vídeo ano passado em homenagem ao Dia da Aviação de Caça, celebrado no dia 22 de abril. A data relembra o esforço e a audácia dos militares do Primeiro Grupo de Aviação de Caça (1º GAVCA) que, no auge da Segunda Guerra Mundial, a bordo dos caças P-47 Thunderbolt, cumpriam missões no norte da Itália.

Este vídeo destaca, ainda, a campanha institucional 'FAB 80 Anos – Nossa Jornada Continua Rumo ao Futuro', trazendo imagens da evolução da aviação e dos caças da FAB, com foco especial no F-39 Gripen.


Continue lendo sobre a aviação de caça brasileira clicando AQUI.

Via FAB e Defesanet

China desenvolve drone supersônico para possível ataque a Taiwan, dizem documentos secretos dos EUA

Aeronaves não tripuladas voam numa velocidade 3 vezes maior que o som e são capazes de obter dados em tempo real em missões de espionagem, além de executar ataques com mísseis.

Pequim deixou clara sua ambição de implantar drones avançados em 2019, quando dois drones pretos desfilaram pela Praça da Paz Celestial. Poucos analistas consideraram os drones totalmente operacionais na época (Foto: Greg Baker/AFP/Getty Images)
As Forças Armadas da China desenvolveram um esquadrão de drones supersônicos preparados para voar em altitudes altas, de olho em um possível ataque aéreo a Taiwan, indicam documentos ultrassecretos do Pentágono vazados no aplicativo Discord pelo piloto da Guarda Nacional de Massachusetts Jack Teixeira.

Um desses documentos, da Agência Nacional de Inteligência Geoespacial dos Estados Unidos, mostra que os chineses já desenvolveram uma tecnologia militar capaz de atingir navios de guerra americanos ao redor de Taiwan, bem como bases militares na região.

Imagens de satélite gravadas em 9 de agosto mostram dois drones WZ-8, movidos por propulsão de foguetes, numa base aérea na China a 350 km de Xangai. Essas aeronaves não tripuladas voam numa velocidade 3 vezes maior que o som e são capazes de obter dados em tempo real em missões de espionagem, além de executar ataques com mísseis.

Os papéis secretos também descrevem possíveis rotas de voo para o drone, bem como para o bombardeiro bimotor H6-M Badger usado para lançá-lo. Depois de decolar de sua base aérea, o avião de guerra voaria para a costa leste da China antes de liberar o drone furtivo, que poderia então entrar no espaço aéreo taiwanês ou sul-coreano a uma altitude de 100.000 pés (30 mil metros) , em velocidade supersônica. O documento não detalha como o drone é impulsionado, mas diz que “os recursos do motor estão associados principalmente a combustível de foguete”.

Esta imagem faz parte do material classificado vazado que circulou em uma sala de bate-papo do Discord e foi obtido pelo The Washington Post. O Post informou ao Departamento de Defesa que essas imagens seriam publicadas com esta história. Um documento, marcado como segredo, destaca as capacidades e rotas de voo nocionais do drone de reconhecimento supersônico da China, juntamente com imagens de satélite de sua base no aeródromo de Liuan. (Obtido pelo Washington Post)
Um mapa de rotas possíveis do drone, rotulado como “não necessariamente confiável”, sugere maneiras pelas quais as câmeras e sensores eletro-ópticos do avião podem coletar informações sobre a ilha de Taiwan e a Coreia do Sul, incluindo Seul. O uso de radar de abertura sintética também permitiria mapear o território à noite e com neblina.

Tensão militar no Pacífico


A descoberta do drone supersônico dá uma nova dimensão às ambições militares chinesas e à corrida armamentista no Pacífico. No mês passado, o líder chinêsXi Jinping afirmou em um discurso aos comandantes militares chineses na semana passada que a modernização das Forças Armadas do país é uma das principais estratégias do governo nos próximos anos. A meta é que as Forças Armadas se modernizem até 2035para se tornarem uma potência militar “capaz de lutar e vencer guerras” até 2049, disse Xi.

Também em março, Taiwan apresentou novos modelos de drones militares, usados para fortalecer as suas defesas para caso sejam invadidos pela China. O plano é inspirado no sucesso da Ucrânia no uso de drones em ataques contra a Rússia e conta com a experiência de ponta de Taiwan na produção de semicondutores para controlar essas armas.

Os Estados Unidos, por sua vez, realizaram neste mês exercícios militares nas Filipinas, como parte de sua expansão militar no Pacíficopara conter a expansão chinesa na região. Desde então, os EUA instalaram quatro novas bases militares no Pacífico, intensificaram treinamentos, criaram novas alianças e convenceram países da região a aumentarem seus gastos de defesa.

Uma imagem de satélite feita em 17 de abril mostra a expansão de uma base aérea
na cidade chinesa de Lu'an (Planet Labs)
Outros papéis do Pentágono mostram ainda que os americanos sabem que o nível das habilidades militares e de espionagem da cima estão em um grau de desenvolvimento muito avançado e o programa que usa balões espiões já era conhecido antes de vir a público. Além disso, a inteligência americana trabalha com a hipótese de Taiwan estar mal preparado para suportar um ataque aéreo chinês em uma eventual invasão.

Recentemente, o diretor da CIA, William J. Burns, disse que Xi Jinping quer que a China seja capaz de tomar Taiwan até 2027, embora tenha acrescentado que isso não significa que o líder chinês ordenará um ataque naquele momento.

Uma ameaça cada vez maior


Para analistas, a aeronave representa um novo risco no já complicado teatro do Indo-Pacífico. O uso principal do drone não será contra Taiwan, mas contra os Estados Unidos e suas bases militares no Pacífico, disse Chi Li-pin, diretor da divisão de pesquisa de sistemas aeronáuticos do Instituto Nacional Chung-Shan de Ciência e Tecnologia, que pertencem ao exército de Taiwan. “São drones difíceis detectar e interceptar. As armas ar-ar existentes dos EUA não são boas o suficiente”, disse.

Dean Cheng, do Potomac Institute for Policy Studies, disse que a divulgação mostra que a China está desenvolvendo uma capacidade de monitorar toda a região indo-pacífica.

“Isso não visa apenas os Estados Unidos ou a Coreia do Sul”, disse Cheng. “O Japão tem que se preocupar com isso. A Índia tem que se preocupar com isso. Todo o Sudeste Asiático tem que se preocupar com isso.”

A China, observou ele, está criando uma variedade de sistemas de alta tecnologia para uso militar – desde armas hipersônicas até armas antissatélite que eles poderiam usar para tentar cegar a capacidade de monitoramento dos Estados Unidos. “Individualmente, nenhuma dessas coisas muda o jogo”, disse ele. “Juntos, estamos olhando para um Exército chinês que está desenvolvendo um complexo de ataque de reconhecimento: encontre o inimigo, acerte o inimigo, mate o inimigo.”

Dezenas de documentos altamente confidenciais vazaram online, revelando informações confidenciais destinadas a líderes militares e de inteligência. Em uma investigação exclusiva, o Washington Post também revisou dezenas de documentos secretos adicionais, a maioria dos quais não foi tornada pública.

O Washington Post obteve a avaliação do programa WZ-8 a partir de um tesouro de imagens de arquivos classificados publicados no Discord, um serviço de bate-papo em grupo popular entre os jogadores de videogame. O Ministério da Defesa Nacional da China não respondeu a um pedido de comentário enviado por fax.

Novo helicóptero pode explorar Marte

O helicóptero vai ser responsável por resgatar as amostras marcianas coletadas pelo Perseverance.


O Ingenuity Mars completou no dia 14 deste mês seu 50° voo, o que ajudou os pesquisadores da NASA a compreenderem melhor o funcionamento de veículos aéreos em Marte e planejar um novo helicóptero para o planeta vermelho.

O rover da missão Perseverance da NASA vem coletando amostras do solo marciano desde que chegou ao planeta e devem ser recolhidas em 2033, numa campanha em parceria com a ESA chamada Retorno das Amostras de Marte ou Mars Samples Return, e que envolverá o resgate usando helicópteros.

O novo veículo aéreo está sendo projetado pelo Laboratório de Propulsão a Jato da NASA e é semelhante ao Ingenuity, de acordo com Håvard Fjær Grip, engenheiro-chefe de autonomia e voo aéreo da divisão.

Atualizações no helicóptero


O design geral do helicóptero Mars Sample Return vai ser o mesmo do Ingenuity, mas serão necessárias atualizações para dar suporte a recuperação das amostras, principalmente nas questões de orientação, navegação e controle do veículo.

Os detalhes do projeto ainda são incertos e muita coisa pode mudar nos próximos anos. É especulado, por exemplo, que o helicóptero conte com rodas ou um braço robótico, mas por enquanto tudo é conceitual, segundo Grip.

Um dos principais desafio de como os novos acomodar novos ajustes e elementos é a massa que do veículo. Marte tem pouquíssimo ar, o que limita a quantidade de massa que o Mars Sample Return poderá carregar.

"O que está bastante claro é que a configuração fundamental do helicóptero e como o controlamos foi elaborado e é uma herança na qual podemos confiar. As novas peças exigirão muito trabalho e é provável que isso mude à medida que avançamos com o design", declarou Håvard Fjær Grip, em conferência da American Astronautical Society (AAS)

Futuro dos veículos aéreos em Marte


O desenvolvimento de novos helicópteros para Marte tem um papel importante no futuro da exploração espacial. Esses veículos poderão ser utilizados como ferramentas em futuras expedições tripuladas ao planeta para realizar missões de reconhecimento longe dos locais de pouso.

É até onde sua imaginação vai. O principal é que agora temos um novo sistema de mobilidade que está pronto e comprovado em Marte… e agora é como usá-lo?", disse Håvard Fjær Grip.

Por Mateus Dias, editado por Lucas Soares (Olhar Digital) - Imagem: NASA

Não aperte o botão! O que mais irrita os comissários de bordo durante voo


O famoso botãozinho para chamar um tripulante está ali na cabine sempre à mão — e é para ser usado. No entanto, nem sempre nas ocasiões que todo passageiro imagina.

Não à toa, é comum atualmente ver vídeos e publicações de comissárias de bordo desabafando nas redes sociais ou até à plataformas especializadas sobre os comportamentos mais inconvenientes com que lidam durante o voo.

A ex-comissária da Delta Air Lines, Kat Kamalani, já reclamou do problema no TikTok. "Isso deixa as comissárias totalmente loucas: quando você aperta o botão se nós estamos na pista ou durante a subida ou descida da aeronave. E a razão para isso é que uma enorme questão de segurança para nós porque podemos nos machucar", explicou.

Ela ainda avisou que, caso não seja uma emergência, a comissária deve voltar imediatamente para o assento dela nestas circunstâncias. O vídeo já teve 213 mil curtidas. Assista:


Em um fórum no Reddit também da Delta, o usuário ianisboss123 fez então a "pergunta de um milhão": quando deve-se apertar o botão? Uma comissária identificada apenas como juneballoon na plataforma elencou então as situações que mais detesta.

Entre elas está uma mostra de egoísmo: quando os comissários estão atendendo a uma emergência médica e outro passageiro aperta o botão para pedir um lanche ou bebida. "Sério? Você está redirecionando a atenção de um dos membros da tripulação para si mesmo porque quer um refrigerante?".

O botão deve ser usado para chamar os comissários em situações em que o passageiro realmente precisa de ajuda ou enfrenta emergência, salientaram as tripulantes (Imagem: Getty Images)
Ela ainda considera rude quando viajantes usam o botão simplesmente para lhe entregar lixo. "Faz com que eu me sinta uma lata de lixo humana". Ela pede então que os passageiros coloquem o material no bolso que fica na porção de trás da poltrona à sua frente e espere até que a tripulação passe com a lixeira para recolher as embalagens, guardanapos e outros descartes.

Para ela, é desnecessário também o chamado para pedir um item — como, por exemplo, fones de ouvidos — que ela acabou de passar oferecendo, "deliberadamente tentando fazer contato visual com todo mundo".

O dilema da ida ao banheiro


A comissária ainda reclama de passageiros que recorrem ao botão emergencial para perguntar se podem ir ao banheiro pouco depois da aterrissagem ou decolagem.

"Apenas vá se você não consegue segurar. Você não precisa da minha permissão". Apesar disso, ela salienta que o uso do banheiro deve ser evitado após o acender das luzes para a descida, por exemplo, porque o piloto não poderá pousar — ele terá que se manter no ar e perder sua posição, o que acarretará em atrasos e relatórios da equipe de bordo.

Não é preciso avisar os comissários que vai ao banheiro, mas é preciso respeitar as
 normas de segurança (Imagem: Getty Images)
No entanto, se for inevitável a necessidade de usar o banheiro, o passageiro deve ir — exceto quando o procedimento de descida já tiver sido iniciado, o que representa um perigo também para o viajante. A comissária juneballoon ainda reclama de passageiros que usam o botão repetidas vezes, apenas para reclamar de diversos serviços (e até roubar itens do carrinho).

Annette Long, comissária da United Airlines, reforçou ao Insider que passageiros que usam o botão apenas para conseguir que o comissário retorne para pedir algo que ele acabou de oferecer são considerados rudes e irritam os tripulantes. No entanto, ela salientou que os viajantes devem, sim, recorrer ao botão quando houver mesmo uma necessidade premente.

Uma boa regra, segundo experts, é chamar os tripulantes apenas quando não puder
fazer algo você mesmo (Imagem: Getty Images)
"Se você é diabético e está em uma situação de emergência, precisa apertá-lo — duas ou três vezes até. Nos avise. Nós estaremos com você. E às vezes quando as pessoas ficam 'presas' no assento da janela com as duas pessoas ao lado deles dormindo, e tudo o que querem é um copo de água, não tem problema".

Mas a última situação deve ser a exceção, de acordo com Sara Nelson, presidente internacional da Association of Flight Attendants (Associação de Comissários de Bordo), porque você pode estar redirecionando a atenção de comissários que poderiam estar auxiliando uma mãe com um bebê, por exemplo, ou lidando com o procedimento técnico de segurança.

As profissionais concordam: quando o passageiro chama para pedir o que acabaram de oferecer, geralmente não contará com a boa vontade da tripulação (Imagem: Getty Images)
"Como regra geral, não pense nele como o seu botão de vodca tônica. Não é para pedir bebidas. Ele é realmente para uso emergencial, em primeiro lugar", disse ao site especializado The Points Guy. O botão ainda pode ter usos operacionais, segundo Sara.

"Já pedi para pessoas que farão conexão para apertarem o botão". Assim, todos os passageiros podem ver facilmente quem está com pressa para desembarcar e facilitar para que eles desçam primeiro, mantendo a saída do avião organizada.

Via Nossa/UOL