sábado, 5 de novembro de 2022

A definição do fator de carga na aviação e efeitos no voo

A maior parte do tempo do aluno-piloto na escola terrestre é gasta aprendendo como os aviões voam. Apenas dominar o básico do voo direto e nivelado, não acelerado, é bastante confuso. Mas compreender as nuances das forças de voo requer entender que as coisas críticas acontecem quando as coisas mudam. Hoje, vamos dar uma olhada no fator de carga.

Quando uma aeronave entra em uma curva, as forças aerodinâmicas na aeronave mudam de uma forma que todo piloto deve entender. O fator de carga é um dos resultados mais relevantes - a ideia de que, à medida que o ângulo de inclinação aumenta, também aumenta a carga imposta à aeronave.

Foto de rastros de avião em tons de cinza

O que é fator de carga?


O fator de carga pode ser considerado o quanto o peso da aeronave aumenta. Não, não é possível ganhar peso no ar. Mas outras forças além da gravidade estão agindo em uma aeronave em voo, e essas forças aumentam às vezes. Quando isso acontece, o resultado é uma carga colocada na aeronave maior do que apenas o peso do avião e seu conteúdo.

Uma vez que é expressa como um “fator”, a carga é mostrada como uma proporção da quantidade de sustentação gerada sobre o peso aparente. Está diretamente relacionado à quantidade de sustentação que as asas precisam produzir. Um avião que está puxando 2 Gs precisará fazer duas vezes mais sustentação do que um avião que está puxando apenas 1 G. Se o fator de carga for 1 G, nenhuma carga extra está sendo imposta e a quantidade de sustentação é igual ao peso calculado da aeronave.

A maneira mais comum de aumentar o fator de carga em um avião é colocá-lo em um banco. Mas essa não é a única maneira. Manobras repentinas também aumentam ou até diminuem o fator de carga. A imagem está voando, e o piloto puxa os controles de volta repentinamente. Todos se sentem pressionados em seus assentos à medida que a taxa de ocupação aumenta. Da mesma forma, se você empurrar o manche repentinamente para frente, a carga será repentina e drasticamente reduzida. Quando o fator de carga cai abaixo de 1 G, as coisas parecem sem peso, mesmo que apenas temporariamente.

Perceba também que essas sensações estão sendo sentidas por tudo na aeronave, até mesmo pela própria aeronave. E se muita força for aplicada, as coisas podem quebrar.

Entender o que pode fazer com que o fator de carga mude é de vital importância por alguns motivos. Por um lado, um piloto deve saber que conforme o fator de carga aumenta, o avião deve fazer mais sustentação para permanecer no ar. Portanto, esse piloto precisa agir corretamente para garantir a trajetória de voo desejada. Isso significa que eles precisam voar mais rápido ou aumentar o ângulo de ataque .

Além disso, os pilotos devem entender que os engenheiros que projetaram o avião esperavam apenas que ele tivesse quantidades específicas e previsíveis de carga aplicada. Aeronaves não podem ser feitas infinitamente fortes, pois a força extra criará excesso de peso na estrutura e menos carga útil que o avião pode carregar. Designers e engenheiros devem fazer concessões em seu design. Assim, eles projetam cada avião para ser capaz de suportar uma quantidade limitada de fator de carga.

A FAA certifica aeronaves da mesma forma que certifica aviadores. As categorias para aeronaves incluem normal, utilitário, acrobático, transporte, entre outros tipos de aviões . Como seria de se esperar, para obter a certificação de um projeto, ele deve atender aos requisitos de limite mínimo de fator de carga.

A aerodinâmica de uma curva


Para entender por que o fator de carga aumenta em uma curva, alguns princípios básicos aerodinâmicos precisam ser cobertos primeiro.

F22 Raptor em uma curva acentuada
Uma vez que o avião é colocado em uma inclinação, as asas não produzem mais apenas sustentação vertical. A sustentação é dividida entre a sustentação vertical que mantém a aeronave no ar e a sustentação horizontal que puxa o avião para uma curva. A sustentação total permanece perpendicular à envergadura.

De acordo com a Terceira Lei do Movimento de Newton, para cada ação há uma reação igual e oposta. Portanto, deve haver uma força igual e oposta à sustentação horizontal que as asas criam. Essa força é a força centrífuga, um efeito que puxa a aeronave para fora e para longe da curva.

Supondo que a aeronave esteja em uma curva nivelada e não subindo ou descendo, as forças opostas à sustentação serão iguais e opostas. O peso, ou gravidade, é oposto à elevação vertical. A força centrífuga é a elevação horizontal igual e oposta. Quando somadas juntas, essas duas forças são maiores do que o peso sozinho. A soma total dessas cargas é igual e oposta ao levantamento total.

A quantidade desse aumento é o fator de carga. É expresso como um fator acima do peso normal de 1 G. Um avião de 2.400 libras que está em uma curva inclinada de 60 graus experimenta 2 Gs. Portanto, tem uma carga total de 4.800 libras.

Forças aerodinâmicas durante uma curva

Mudanças na velocidade de estol


Como as asas devem suportar um peso maior, elas devem fazer isso de duas maneiras. Eles devem se mover no ar mais rápido ou devem aumentar seu ângulo de ataque. Para este exercício, presumiremos que a velocidade no ar permanece constante. Com isso em mente, uma aeronave voando a 90 nós precisará de um ângulo de ataque maior em uma curva inclinada de 60 graus do que uma que esteja voando em linha reta e nivelada.

Um estol ocorre quando a asa excede o ângulo de ataque crítico. Portanto, o avião em uma curva está muito mais próximo do ângulo de ataque crítico do que o avião em voo direto e nivelado.

Isso demonstra duas coisas importantes. Em primeiro lugar, mostra que uma aeronave pode estolar a uma velocidade no ar muito mais alta do que aquelas indicadas no indicador de velocidade no ar. Isso mostra que um avião não estola em uma velocidade no ar específica, mas em um ângulo de ataque específico.

Em segundo lugar, ele demonstra que a velocidade de estol sempre aumentará em uma curva. Quanto mais íngreme o ângulo de inclinação, mais aumenta a velocidade de estol.

Fatores de carga limite no projeto


Embora os projetistas possam construir uma aeronave da maneira que quiserem, a FAA estabelece padrões mínimos nos Estados Unidos. Se uma aeronave possui um certificado de aeronavegabilidade da FAA, o piloto pode saber que o projeto da aeronave atende aos padrões mínimos listados para o tipo de certificado.
  • Categoria normal -1,52 a + 3,8 Gs
  • Categoria de Utilidade -1,76 a +4,4 Gs
  • Categoria acrobática -3,0 a +6,0 Gs
  • Categoria de transporte -1,0 a +2,5 Gs
Esses são os requisitos mínimos estabelecidos pela FAA para projetistas de aeronaves. Alguns aviões, especialmente aviões acrobáticos , podem tolerar forças G muito mais altas. Para obter as especificações exatas de uma aeronave específica, consulte o Aircraft Flight Manual (AFM) ou o Pilot's Operating Handbook (POH).

Mantendo o avião seguro


Outro conceito crítico e intimamente relacionado é a velocidade de manobra ou Va. A velocidade de manobra pega a ideia bastante abstrata de fatores de carga limite projetados e os torna aplicáveis ​​na cabine de um avião.

Na prática, o Va calculado para um voo pode ser considerado como a velocidade de segurança. Abaixo dessa velocidade, a aeronave irá estolar antes que qualquer força possa quebrá-la. Ou seja, quando uma quantidade perigosa de carga é adicionada ao peso da aeronave, então as asas não serão capazes de fazer essa quantidade de sustentação e irão estolar.

Embora os estol não sejam geralmente considerados coisas boas, neste caso, o estol alivia a carga da fuselagem. Com efeito, ao estolar a aeronave evita-se qualquer dano. Em contraste, se o avião estava voando rápido o suficiente para poder continuar o voo e aceitar uma carga imposta maior do que o fator de carga limite projetado, alguma forma de dano resultará.

Danos causados ​​por excesso de tensão na fuselagem podem variar de algo que não é percebido durante o voo até uma falha catastrófica da superfície da fuselagem durante o voo. Infelizmente, o metal cansa de maneiras difíceis de detectar. A estrutura cristalina de metais como o alumínio os torna muito fortes, mas uma vez que suas ligações sejam quebradas, é muito mais provável que falhem no futuro.

As tensões que ocorrem nas células como resultado de exceder o fator de carga limite podem enfraquecer o metal e causar uma falha catastrófica em algum outro momento no futuro, de forma imprevisível.

A velocidade de manobra é uma velocidade V vital de uma aeronave, mas ela não é mostrada nas marcações do indicador de velocidade no ar. Por que não? Conforme demonstrado acima, a velocidade de estol de uma aeronave mudará conforme ela se inclina para uma curva. Como o avião estolará em uma velocidade no ar mais alta, Va mudará.

Diagrama Va
Outro fator que faz o Va mudar é o peso da aeronave. Conforme o peso aumenta, Va aumenta porque fará com que a asa alcance o ângulo de ataque crítico mais cedo.

O fator de carga é abordado em detalhes no Manual do Piloto de Conhecimento Aeronáutico da FAA, Capítulo 5.

Nenhum comentário: