Apenas alguns anos antes da Segunda Guerra Mundial, o DC-4 representou a vanguarda da aviação comercial e uma nova era de monstros aéreos.
No final da década de 1930, os motores das aeronaves melhoraram tão rapidamente que as profecias de transatlânticos gigantescos do céu foram rapidamente alcançando a realidade. O DC-4 representa a maior e melhor aeronave comercial de todos os tempos, ultrapassando o lendário DC-3 em quase todas as métricas - especialmente por suas enormes (para a época) dimensões. Em breve, outra guerra mundial mudaria a inovação da aviação para a velocidade de dobra, mas nos anos entre guerras, o DC-4 era o epítome da tecnologia de aviação comercial.
Durante anos, os engenheiros de aviação discutiram os aviões gigantes do futuro. Este ano eles alcançaram suas profecias e o dia dos monstros aéreos está aqui.
Uma coisa que ajudou a tornar o sonho realidade foi a perfeição dos motores de aviação muito mais potentes do que os do passado. Um motor de um avião com quatro motores de 1938 desenvolve mais potência do que a potência total de um transporte com três motores de dez anos atrás. Quatro desses motores fornecem até 6.000 cavalos de potência para decolagens, mais potência do que a exigida por um motor aerodinâmico para puxar doze vagões de trem.
Esses tremendos motores resfriados a ar, os últimos desenvolvimentos das empresas fabricantes de motores, estão na lista de "segredos militares" e não estão disponíveis para todos, nem podem ser exportados para o exterior. Eles são radiais de duas carreiras de design aprimorado, consistindo essencialmente em dois motores radiais, um colocado logo atrás do outro e conectado a um virabrequim comum. Eles desenvolvem um cavalo-vapor para cada libra e um quarto de peso.
Os novos aviões possibilitados por esses motores, na verdade, superam os atuais gigantes das vias aéreas. O novo DC-4, a ser lançado em breve pela Douglas Airplane Company, foi montado como um navio, em uma espécie de dique seco.
O DC-4 tem quase três vezes o peso bruto dos grandes transportes Douglas atualmente em serviço. O avião de quatro motores tem uma largura de asa de 139 pés. Sua fuselagem tem noventa e sete pés de comprimento e vinte e quatro pés de altura. Ele transportará quarenta e dois passageiros e uma tripulação de cinco pessoas, além de três toneladas e meia de correio e expresso. O avião terá uma velocidade máxima de cerca de 237 milhas por hora a 8.000 pés, um raio de cruzeiro de 2.200 milhas e um teto de serviço de cerca de 23.000 pés.
O avião pesa 65.000 libras totalmente carregado e será capaz de cruzar o continente com apenas uma parada. Os custos de pesquisa, engenharia e construção desse primeiro gigante chegam a um milhão e meio de dólares. O avião foi construído por encomenda das cinco principais companhias aéreas domésticas. A ideia desta ação conjunta é desenvolver um tipo de super transporte padrão.
Em vez de pousar em uma roda traseira no pouso, o DC-4 pousará no nível do solo com a cauda no ar. O avião usa um trem de pouso tipo triciclo retrátil que emprega uma roda do nariz em vez da roda da cauda. As duas enormes rodas principais de pouso estão separadas por vinte e seis pés.
Em vez de uma cauda convencional, o avião tem superfícies de cauda verticais triplas. O novo arranjo permite melhor controle com metade das usinas fora de operação. A superfície do aerofólio horizontal do grupo da cauda é aproximadamente do tamanho da asa de um pequeno bombardeiro. As superfícies de controle são tão grandes que o controle manual pelo piloto é aumentado por bombas hidráulicas de reforço. Alguns dos cabos de controle têm quase meia polegada de diâmetro. Pela primeira vez em um avião grande, rebites do tipo plano são usados na fixação da pele de metal externa, reduzindo materialmente a resistência.
Desenho do interior da versão da Consolidated de um transoceânico de linha. Observe a disposição de deck duplo e as acomodações luxuosas, muito semelhantes às dos transatlânticos |
Para garantir que seus cálculos forneçam os fatores de segurança necessários, os engenheiros da Douglas realizaram mais de 300 testes físicos principais e aproximadamente 1.000 testes menores antes do início da construção. Centenas de milhares de dólares foram gastos na construção de partes vitais do avião e depois testando-as até a destruição. O vidro laminado anticongelante especial para as janelas da cabine foi submetido a temperaturas de quarenta graus abaixo de zero para garantir que permanecesse transparente em condições extremas.
Aproximadamente 20.000 peças de metal, ferragens e chapas, exclusivas de rebites, foram usadas para construir o avião e os inspetores estacionados na doca seca aprovaram todas as peças antes que pudessem ser adicionadas à estrutura.
A iluminação e outros requisitos de energia secundária são tão pesados que motores auxiliares em vez de baterias são usados para os circuitos. Esses motores auxiliares refrigerados a ar acionam alternadores que fornecem corrente suficiente de 800 volts e 110 volts para iluminar um enorme prédio de escritórios. Eles também operam bombas de vácuo para vácuo operacional de instrumentos, fornecem pressão para os degeladores, acionam uma bomba hidráulica para o piloto automático e fornecem pressão para o sistema hidráulico principal que opera os flaps de ar, trem de pouso e as unidades hidráulicas menores.
Os sistemas de escapamento desses motores passam pelos escapes dos motores propulsores, sendo localizados de modo a passarem por caldeiras a vapor para aquecimento da cabine, disponibilizando calor para as caldeiras mesmo quando o avião está parado no solo e os motores propulsores principais não operativo.
Um modelo do DC-4, à esquerda, e uma maquete do compartimento de passageiros do DC-4 |
Dentro da enorme cabine, vários arranjos de poltronas confortáveis, poltronas reclináveis ou beliches devem ser instalados de acordo com os desejos das diferentes linhas de ar. Todos os planos diferentes incluem camarins e uma grande cozinha sob os cuidados de um administrador e uma aeromoça. Há trinta e duas janelas no espaço da cabine principal, dezesseis claraboias superiores e duas vigias. O espaço abaixo do piso da cabine é usado para bagagem e transporte expresso, proporcionando mais espaço do que o disponível em muitos caminhões de grande porte. Devem ser tomadas providências para a instalação de equipamentos de compressão de ar e para a vedação da cabine e do cockpit para voos subestratosfera.
Na cabine, o piloto e o copiloto ficam mais distantes do que nos transportes atuais, o espaço entre eles sendo ocupado por um amplo suporte de controle no qual estão montadas todas as alavancas de operação do motor. Os aceleradores são duplicados em cada lado desse pedestal, de modo que nenhum homem precisa alcançá-lo. Um terceiro assento atrás dos pilotos é fornecido para um engenheiro de vôo, que também tem acesso a todos os controles do motor e, assim, pode aliviar a tripulação de todos os problemas operacionais do motor.
Quatro sistemas de combustível de motor único são fornecidos, cada motor tendo seu próprio tanque de 100 galões de combustível de alta octanagem para decolagem e seu próprio tanque de 300 galões de combustível de cruzeiro. Uma chave seletora principal no pedestal do motor muda todos os tanques em um movimento. Além disso, as alavancas de desvio suplementares tornam possível direcionar o combustível de qualquer um dos tanques para qualquer um dos motores. As bombas de combustível acionadas pelo motor são complementadas por bombas manuais na cabine.
Para garantir que esse grande sistema de fornecimento de combustível seja à prova de falhas em todos os aspectos, os engenheiros realizaram testes abrangentes com um modelo em escala real. Eles até tiveram que fazer concessões para condições como a aceleração para trás do fluido nas tubulações de combustível à frente e à ré durante a decolagem, o que em alguns sistemas resulta em uma queda temporária na pressão do combustível nos carburadores.
Uma maquete do conceito de Martin de um avião transoceânico |
Um problema ampliado pelo tamanho do avião tinha a ver com o arranjo do sistema de controle do motor. Cada um dos motores de popa está a vinte metros de distância da cabine, mas deve responder aos ajustes de controle tão rápida e facilmente como se estivesse a apenas alguns metros de distância. Uma combinação de hastes push-pull em cada extremidade, conectadas por cabos que se estendem pela asa, foi a resposta. Nos casos em que controles automáticos são usados nos motores, controles manuais de cancelamento são acoplados para possível uso a partir da cabine em emergências.
A potência dos motores de aviação vem crescendo há anos. Em 1930, o Pratt & Whitney Wasp era avaliado em 420 cavalos de potência, mas hoje o mesmo motor oferece 600 cavalos de potência com quase nenhuma mudança no tamanho. O aumento da produção é devido a melhorias que incluem o refinamento do projeto do cilindro e maiores taxas de compressão e superalimentação. Essas duas últimas melhorias são possíveis devido aos melhores combustíveis que estão disponíveis hoje e, por sua vez, permitem um número maior de rotações do motor por minuto, o que resulta em maior potência.
Outras melhorias no motor incluem válvulas ocas preenchidas com sódio para promover o resfriamento, ligas mais resistentes que são mais capazes de suportar as velocidades de manivela mais altas e aletas redesenhadas nos cilindros resfriados a ar que, juntamente com defletores de pressão que forçam o ar a circular entre as aletas, resultam em um melhor controle das temperaturas do motor.
Vista de operários ocupados em uma fuselagem gigante e nas asas do transporte Douglas, DC-4. O andaime é uma espécie de dique seco no qual o avião foi montado como um navio |
A tendência no projeto do motor parece ser em direção a mais e menores cilindros, proporcionando um fluxo mais suave de potência com menos vibração. Os motores radiais de duas carreiras são um desenvolvimento dessa tendência, bem como uma resposta ao clamor por mais potência. O novo R-2180 Twin Hornet, fabricado pela Pratt & Whitney, é um radial de duas carreiras de catorze cilindros com um deslocamento de 2.180 polegadas cúbicas. Quatro deles estão instalados no novo Douglas DC-4.
Ainda mais potentes do que os Twin Hornets são os novos ciclones Wright de 1.500 cavalos de tipo radial semelhante que estão sendo usados para alimentar os novos barcos voadores Boeing com quatro motores que transportam setenta e dois passageiros.
Arranjo interno do DC-4, mostrando beliches profundos e confortáveis para viagens noturnas |
Hoje, os fabricantes de motores estão trabalhando em motores de potência ainda maior. O dia do motor da aeronave de 2.500 cavalos de potência está quase à vista e, quando essas usinas de energia estiverem disponíveis, aeronaves maiores do que nunca serão possíveis.
Via Popular Mechanics
Nenhum comentário:
Postar um comentário