quinta-feira, 24 de abril de 2025

"Queda do Helderberg": O acidente com o voo South African Airways 295


No dia 28 de novembro de 1987, um Boeing 747 da South African Airways com 159 pessoas a bordo desapareceu no Oceano Índico a meio da noite. Só uma coisa era certa: houve um incêndio a bordo do avião antes de ele desaparecer. Com apenas alguns corpos, uma pequena quantidade de destroços e 100 segundos de fitas da cabine gravemente danificadas, os investigadores se depararam com uma tarefa quase impossível. O que iniciou o incêndio? 

O que aconteceu com os passageiros e tripulantes? Por que o avião não pousou? Muitas destas questões não puderam ser totalmente respondidas. Mas o acidente misterioso, envolto na intriga do apartheid na África do Sul, não foi esquecido. Esta é a história do que pensamos que aconteceu a bordo do voo 295 da South African Airways, e a história das lacunas nas evidências que geraram décadas de teorização por parte de amadores e especialistas.

Exemplos de trajetórias de voo bizarras da era do apartheid da
South African Airways (Gregory Maxwell)
Em 1987, a África do Sul era governada por um governo extremamente racista que mantinha uma sociedade opressiva e segregada, na qual os negros africanos eram privados de direitos. Isto fez da África do Sul um pária internacional, especialmente entre outros países africanos, com os quais mantinha relações altamente hostis. 

Como resultado, muitos países proibiram a South African Airways, a companhia aérea estatal, de sobrevoar o seu território. Isto forçou a South African Airways a voar em rotas por vezes tortuosas de e para o número limitado de países onde estava autorizada a operar. Uma dessas rotas foi o voo 295, um serviço regular entre Taipei, Taiwan e Joanesburgo, na África do Sul, com escala para reabastecimento na ilha de Maurício, no Oceano Índico. Esta trajetória de voo incomum levou-o a uma parte do Oceano Índico raramente visitada por aviões comerciais.

Diagrama de um Boeing 747 combi (Gregory Maxwell)
Operando o voo noturno nos dias 26 e 27 de novembro de 1987 estava um Boeing 747 combi apelidado de “Helderberg”. Ao contrário de um 747 normal, o Helderberg tinha um design de “combinação” modificado que lhe permitia transportar carga e passageiros no convés principal. A cabine foi dividida em uma área de assentos para passageiros nos dois terços dianteiros do avião e um compartimento de carga no terço traseiro.

No comando do voo estavam o capitão Dawie Uys, o primeiro oficial David Atwell e o engenheiro de voo Giuseppe Bellagarda; também a bordo estavam um primeiro oficial substituto, Geoffrey Birchall, e um engenheiro de vôo substituto, Alan Daniel. Quatorze comissários de bordo e 140 passageiros totalizaram 159 pessoas a bordo. 

Em Taipei, a equipe de terra carregou seis paletes de carga no porão do convés principal, supostamente consistindo de peças de computador e outros eletrônicos, papel, têxteis, remédios e equipamentos esportivos. A tripulação assinou o manifesto de carga e o voo decolou do Aeroporto Internacional Chiang Kai-shek de Taiwan às 14h23 UTC.

Trajetória de voo do SAA 295, com anotação da localização do pedido de socorro (Mapa do Google)
Cerca de nove horas após o início do voo, enquanto o voo 295 navegava bem acima de um trecho remoto do oceano, os controladores de tráfego aéreo do Aeroporto Plaisance, nas Maurícias, receberam um pedido de socorro do Helderberg. Eram 3h49, horário local.

“Mauritius, Mauritius, Springbok dois-nove-cinco!”

O controlador respondeu: “Springbok dois-nove-cinco, Maurício, vá em frente”.

“Bom dia, temos um problema de fumaça e estamos fazendo uma descida de emergência para o nível um cinco, um quatro zero.” O nível de vôo um quatro zero refere-se a 14.000 pés.

“Confirme que deseja descer para o nível de voo um quatro zero?”

“Sim, já começamos, devido a um problema de fumaça no avião”, disse o voo 295.

“Uh, entendido, você está autorizado a descer imediatamente para o nível de vôo um quatro zero”, disse o controlador.

“Roger”, respondeu o voo 295. “Agradeceremos se [você] puder alertar, uh, disparar…”

“Você deseja, uh, solicitar uma emergência completa?”

Alguém acidentalmente digitou o microfone errado, transmitindo para Plaisance um trecho de conversa dentro da cabine em africâner. “Ok Joe, você pode fazer… [ininteligível] por nós?”

O controlador tentou novamente entrar em contato com o avião. “Springbok dois-nove-cinco, Plaisance.”

“Desculpe, vá em frente”, disse o voo 295.

“Você solicita uma emergência total, por favor, uma emergência total?”

“Afirmativo”, respondeu o Helderberg.


Cerca de 35 segundos depois, o controlador ligou novamente. “Springbok dois-nove-cinco, Plaisance.”

"Vá em frente."

“Solicite sua posição real e sua distância DME.” DME significa Equipamento de Medição de Distância e é aqui usado para se referir à distância da aeronave ao farol localizador do aeroporto.

“Uh, ainda não temos DME”, disse o voo 295. Eles ainda estavam muito longe para captar o sinal.

“Roger”, disse o controlador. “E sua posição real, por favor?”

“Agora perdemos muita parte elétrica”, disse o voo 295. “Não temos nada na aeronave agora!”

“Roger, declaro emergência total imediatamente”, respondeu o controlador. Alguns segundos depois, ele acrescentou: “Springbok dois-nove-cinco, Plaisance?”

“Sim, Plaisance?”

“Você tem um horário estimado de chegada, Plaisance, por favor?” O controlador perguntou.

“Sim, uh, zero zero três zero”, disse o voo 295, relatando seu horário estimado de chegada como 00h30 UTC, ou 4h30, horário local. Isso colocou o Helderberg a 38 minutos de Plaisance – muito tempo com um incêndio a bordo.

Alguém no voo 295 transmitiu acidentalmente novamente um trecho de conversa na cabine. “Ei Joe, desligue o oxigênio restante…”

“Desculpe, diga novamente, por favor”, disse o controlador.

"Plaisance, Springbok dois-nove-cinco, abrimos a porta para ver se podemos... devemos ficar bem." A voz do piloto parecia mais calma agora. Alguém gritou “Olha aí!” durante o segundo final desta transmissão, seguido por mais transmissões inadvertidas.

“Feche a maldita porta”, gritou alguém em africâner.

“Joe, mude rapidamente e feche o buraco do seu lado”, disse alguém em inglês.

“Pressão… doze mil!”

“…é o suficiente… caso contrário, nosso voo poderá estar com problemas”, disse outra voz, voltando para o africâner.

Finalmente voltando sua atenção para o controlador, o voo 295 perguntou: “Plaisance, Springbok dois-nove-cinco, você copiou?”

“Negativo, dois-nove-cinco, diga novamente, por favor.”

“Estamos agora a sessenta e cinco milhas”, disse o Helderberg.

“Confirmar sessenta e cinco milhas?”

“Afirmativo.”

“Roger, Springbok dois-nove-cinco, você foi liberado novamente para voo nível cinco zero.”

O voo 295 reconheceu e o controlador repassou as informações meteorológicas. O Helderberg também reconheceu isso e o controlador disse: “Ambas as pistas estão disponíveis, se desejar. E, duas nove e cinco, solicito a intenção do piloto.”

“Uh, gostaríamos de rastrear, uh, um três.”

O controlador confirmou o pedido e disse: “Afirmativo e você está autorizado diretamente para a Foxtrot Foxtrot. Você relata que está se aproximando de cinco zero.

O voo 295 respondeu: “Tudo bem”. Esta foi a última transmissão recebida do Helderberg. Nos minutos seguintes, o controlador em Plaisance tentou repetidamente entrar em contato com o avião, mas nunca mais houve notícias dele.

Simulação dos últimos minutos do voo 295 antes do seu desaparecimento
Quando a notícia do desaparecimento do 747 chegou à África do Sul, as autoridades lutaram para montar uma operação de busca e salvamento. Aviões e barcos das Ilhas Maurício, da África do Sul e dos Estados Unidos começaram a vasculhar o mar às primeiras luzes do amanhecer, em busca de destroços flutuantes ou possíveis sobreviventes. 

Durante doze horas, nada foi encontrado. Acontece que a transmissão do Helderberg relativamente à sua localização era imprecisa; o número de 65 milhas (105 km) fornecido pela tripulação era uma medida para o próximo ponto de passagem, não para o aeroporto, e o voo 295 estava na verdade voando muito mais longe no mar quando caiu do que os pesquisadores inicialmente acreditavam.

Na tarde de 28 de Novembro, um avião de busca voluntário avistou uma mancha de óleo e leves detritos flutuantes. Os navios chegaram ao local nove horas depois, mas encontraram apenas bagagens espalhadas, um escorregador de fuga inflável e alguns corpos mutilados. Nas horas seguintes, as equipes de busca recuperaram vários restos humanos, mas apenas oito corpos foram encontrados intactos. Ficou claro que nenhuma das 159 pessoas a bordo poderia ter sobrevivido.

Primeira página de um jornal sul-africano dois dias após o acidente (The Sunday Times)
Os investigadores já sabiam, com base na transcrição do controle de tráfego aéreo, que houve um incêndio a bordo do Helderberg antes de ele cair. Lenta mas seguramente, outras pistas começaram a surgir. Algumas das peças encontradas flutuando no Oceano Índico foram expostas ao fogo. Um relógio na bagagem de um passageiro parou às 4h07, horário local, revelando a hora do acidente – apenas três minutos após a última transmissão do Helderberg. 

Uma autópsia das oito vítimas intactas descobriu que todas inalaram fumaça antes de morrer e pelo menos duas morreram por envenenamento por monóxido de carbono, e não por forças de impacto. Combinado com os assentos atribuídos a estes passageiros, pode-se deduzir que a fumaça tóxica estava presente na maior parte da cabine de passageiros antes do acidente.

Como seria o compartimento de carga totalmente carregado do Helderberg -
certamente um lugar de pesadelo para tentar combater um incêndio (FAA)
Talvez a descoberta mais convincente tenha sido um extintor de incêndio, encontrado flutuando na superfície do oceano com seu suprimento de halon não utilizado. O extintor de incêndio estava montado na cabine de passageiros, mas estava salpicado com uma rede de náilon derretida dos paletes do compartimento de carga. Alguém o levou da cabine para a área de carga do convés principal, onde ficou exposto ao fogo, mas nunca descarregou seu conteúdo.

A única outra pista disponível para os investigadores foi uma série de conversas de rádio entre o Helderberg e a base operacional da South African Airways no Aeroporto Internacional Jan Smuts, em Joanesburgo. Todas essas transmissões eram atualizações de rotina sobre a posição do avião, mas a fita contendo as conversas ocorridas após as primeiras duas horas de voo desapareceu e não foi encontrada. Os operadores de rádio de plantão na época afirmaram que não haviam falado com o avião depois das 16h34 UTC e que não houve conversas com o Helderberg na fita desaparecida.

Mais respostas teriam que esperar até que os investigadores pudessem ver os destroços e, mais importante, o gravador de voz da cabine e o gravador de dados de voo. Para encontrar o avião no fundo do oceano, o governo sul-africano lançou a Operação Resolve, um enorme esforço internacional para recuperar o avião ao custo de milhões de dólares. Enquanto uma busca aérea e marítima continuava para recuperar detritos flutuantes, navios especialmente equipados vasculharam a região em busca do sinal dos faróis localizadores nas duas caixas pretas. Infelizmente, a duração de 30 dias da bateria dos beacons passou sem nenhum sinal.

Um pedaço dos destroços do Helderberg é visto no fundo do oceano (FAA)
Em Janeiro de 1988, exames de sonar revelaram a presença de dois campos de detritos distintos no fundo do oceano, a cerca de 225 quilómetros a nordeste das Maurícias. Esses destroços, que se acredita serem do Helderberg, jaziam a uma profundidade de mais de 4.400 metros – mais profundo que o Titanic. Enviar um submersível até lá exigiria um cabo mais longo do que qualquer outro que já existiu. 

Os preparativos para o esforço de recuperação, incluindo a construção de um cabo recorde de 6.000 metros de comprimento, duraram vários meses. Finalmente, mais de um ano após o acidente, todas as despesas foram recompensadas: o submersível chegou ao campo de destroços e foi capaz de transmitir o vídeo ao vivo dos restos do Helderberg de volta à superfície.

Um pedaço da fuselagem do Helderberg é trazido para a superfície da embarcação de recuperação
(Mauritius Times)
Um exame dos destroços trazidos de volta à superfície revelou mais sobre a sequência de eventos a bordo do 747 naquela noite fatídica. A distribuição dos componentes queimados e derretidos da aeronave mostrou conclusivamente que o incêndio estava localizado no porão de carga do convés principal, atrás da cabine de passageiros, e provavelmente começou no palete dianteiro direito. 

Além disso, a natureza dos danos nos motores revelou que estes não estavam a gerar potência no momento do impacto e que o avião provavelmente tinha atingido a água enquanto se inclinava 90 graus para a esquerda. Os investigadores esperavam que as caixas negras pudessem lançar alguma luz sobre estas descobertas curiosas.

Finalmente, cerca de 14 meses após o acidente, o submersível remoto encontrou o gravador de voz da cabine caído no fundo do mar. Equipes de resgate trouxeram-no à superfície e levaram-no às pressas para Washington DC, onde investigadores sul-africanos ouviram a gravação junto com representantes do Conselho Nacional de Segurança nos Transportes dos EUA. 

Outras pesquisas não conseguiram encontrar nenhum sinal do gravador de dados de voo, então os investigadores foram forçados a depositar suas esperanças no CVR. Mas o estado da caixa negra era mau: depois de passar mais de um ano no fundo do Oceano Índico, os primeiros 28 minutos da fita tornaram-se ininteligíveis. No entanto, num golpe de sorte inacreditável, não só os 100 segundos finais passaram em alto e bom som, como também capturaram o momento exato em que a emergência começou.

Os investigadores começaram a reconstruir a fuselagem usando as peças recuperadas (BEELD)
Primeiro, um alarme de incêndio soou na cabine, levando a tripulação a tomar medidas imediatas. Após silenciar o aviso, um sinal sonoro informou aos pilotos que alguém na cabine queria falar com eles pelo interfone, mas eles ignoraram enquanto corriam para encontrar a origem do problema. 

Eles rapidamente identificaram a área de carga do convés principal como a origem do incêndio, e o capitão Uys ordenou que o primeiro oficial Atwell iniciasse a lista de verificação para incêndio na carga. Ao fazer isso, o engenheiro de vôo Giuseppe Bellagarda – a quem eles chamavam de “Joe” – observou que vários disjuntores estavam disparando em sua estação de controle, provavelmente porque o fogo consumia a fiação de vários sistemas.

Seguiram-se vários sons de movimento, e então o capitão Uys pôde ser ouvido dizendo, em africâner: “Porra, é o fato de os dois terem aparecido, é perturbador”.

Um som eletrônico alto perfurou a gravação. Sob esse som, Uys disse: “Aagh, merda” e depois: “Que diabos está acontecendo agora?” Então houve um barulho alto e a gravação terminou abruptamente.

A falha do CVR só poderia significar que o incêndio já havia destruído a fiação que o conectava aos microfones da cabine. Esforços meticulosos de recuperação de áudio acabaram revelando cerca de 60% das conversas nos primeiros 28 minutos, mas incluíram apenas a discussão de tópicos pessoais irrelevantes para a emergência que se seguiu. 

Citando a privacidade dos pilotos, os investigadores não divulgaram a transcrição desse período. A gravação também não tinha carimbo de data/hora integrado e, como não incluía nenhuma das chamadas de rádio conhecidas do voo, não foi possível identificar sua posição na linha do tempo dos eventos com precisão.

Nesta vista interior, torna-se evidente quão poucos destroços foram realmente recuperados (IOL)
Combinando as evidências obtidas do CVR com as evidências das fitas do ATC e dos destroços, os investigadores conseguiram traçar um esboço básico do que aconteceu a bordo do Helderberg. 

Primeiro, ocorreu um incêndio no palete frontal direito, que continha computadores. O fogo logo se espalhou para as embalagens de papelão e poliestireno, gerando fumaça que acionou o alarme de incêndio de carga do convés principal. 

Quando um membro da tripulação voltou para apagar o fogo, ou ele já estava queimando fora de controle ou a fumaça era densa demais para se aproximar. O tripulante fugiu ou ficou incapacitado sem nunca ter descarregado o extintor. Enquanto isso, os pilotos revisaram as listas de verificação de fogo e fumaça, que envolviam desligar os ventiladores de recirculação para evitar a propagação de fumaça tóxica.

Os investigadores notaram que os ventiladores recirculantes estavam ligados no momento do acidente. Em combinação com a transmissão para Plaisance sobre a abertura de uma porta, eles concluíram que quando a fumaça começou a penetrar na cabine de passageiros, os pilotos começaram a executar a lista de verificação de “fumaça na cabine”, que incluía etapas para ativar a recirculação e abrir uma porta. porta em voo se a fumaça não se dissipasse. 

No entanto, esta lista de verificação baseou-se no pressuposto de que o incêndio tinha sido apagado e poderia, na verdade, piorar a situação se ainda estivesse ardendo. Seguindo a lista de verificação e ligando novamente os ventiladores de recirculação, eles ajudaram a tirar mais fumaça do porão de carga para a cabine de passageiros. Abrir uma porta para limpar o ar também teria sido inútil se o fogo continuasse a produzir fumaça. 

À luz da descoberta de que algumas vítimas morreram de envenenamento por monóxido de carbono, os investigadores teorizaram que a fumaça poderia ter matado muitos dos passageiros muito antes da queda do Helderberg.

Localização da origem do incêndio. A cabine de passageiros começa no lado esquerdo da imagem
 (Gregory Maxwell)
Permaneceu uma grande desconexão entre os últimos eventos conhecidos a bordo do voo e o acidente em si. Nos últimos três minutos do voo após a transmissão final de rádio, o voo 295 caiu rapidamente milhares de pés e impactou a água de forma descontrolada. Os investigadores não conseguiram determinar como isso aconteceu, mas levantaram várias teorias. 

Embora não tenham encontrado nenhuma evidência disso, não puderam descartar a possibilidade de o fogo simplesmente ter queimado os cabos de controle do avião, fazendo com que os pilotos perdessem o controle. Alternativamente, se os pilotos tivessem tirado as máscaras de oxigénio, mesmo que por um curto período, poderiam ter ficado incapacitados, causando também uma perda de controlo. 

Os investigadores chegaram a considerar a possibilidade de o capitão Uys ter removido momentaneamente a máscara devido ao desconforto de uma doença crônica da pele que o fazia sofrer de coceira constante. E havia também a possibilidade de falhas elétricas e fumaça na cabine impossibilitarem a visualização dos instrumentos, fazendo com que os pilotos sofressem de desorientação espacial.

A questão mais urgente era o que iniciou o incêndio. Também aqui os investigadores não conseguiram encontrar nenhuma resposta. Embora os computadores no palete frontal direito contivessem baterias de lítio, elas eram muito pequenas e não eram de um tipo conhecido por entrar em combustão espontânea. 

O outro conteúdo do porão de carga – têxteis, papel e equipamento desportivo – poderia ter queimado razoavelmente bem, mas não apresentava qualquer fonte óbvia de ignição. No final, os investigadores concluíram apenas que algo iniciou um incêndio no palete dianteiro direito que se espalhou para o material de embalagem de poliestireno, causando um acúmulo de gases combustíveis no porão de carga que acabou levando a um incêndio repentino e à destruição dos sistemas da aeronave. Quando o alarme de fumaça disparou e a tripulação voltou para combater o incêndio, já era tarde demais. O Helderberg estava condenado.

A história do voo 295 da South African Airways não terminou com a divulgação do relatório final. Na ausência de quaisquer conclusões firmes, as teorias da conspiração rapidamente se tornaram populares. O fio condutor de todas as explicações populares era a afirmação de que a verdadeira origem do incêndio era algo que não estava no manifesto de carga. Na verdade, isso é perfeitamente possível.

A perda de Heldberberg foi discutida nas audiências de Verdade e Reconciliação pós-apartheid
  (Institute for Justice and reconciliation)
Após a queda do governo do apartheid na África do Sul em 1994, foi criada uma comissão de verdade e reconciliação para investigar os seus crimes. Entre os tópicos reexaminados pela TRC estava a queda do voo 295 da South African Airways. Numa série de audiências, foi revelado que a Armscor, a empresa que fornece grande parte do seu equipamento aos militares sul-africanos, por vezes contrabandeava armamento para fins comerciais. 

Isto deveu-se ao fato de a África do Sul ter sido colocada sob um embargo de armas, forçando os militares a importar armas secretamente, a fim de sustentar a guerra em curso em Angola. A certa altura, um agente de solo em Tel Aviv relatou ter visto foguetes sendo carregados em um voo da South African Airways. 

E a viúva do capitão Uys alegou que ele já havia reclamado de ter sido forçado a assinar carregamentos de mercadorias perigosas. Poderiam as armas contrabandeadas ilegalmente ter causado o incêndio no Helderberg? A TRC determinou que isso quase certamente aconteceu.

Um jornal divulga novas evidências em apoio à teoria de que armas ilegais derrubaram o avião,
uma das muitas revelações desse tipo. (The Sunday Times)
Outros levaram a teoria da conspiração ainda mais longe. David Klatzow, que foi contratado pela Boeing para trabalhar na investigação do acidente, apresentou pela primeira vez o que é hoje uma das teorias alternativas mais populares. Sua interpretação dos acontecimentos originou-se originalmente de um trecho de conversa supostamente capturado na gravação de voz da cabine antes do alarme de incêndio, na qual os pilotos pareciam estar discutindo o jantar. Mas o jantar foi servido apenas algumas horas depois de deixar Taipei. 

Sem carimbo de data e hora e sem chamadas de rádio que pudessem ser usadas para fazer a gravação, Klatzow acreditava que essa discussão a localizava não perto do final do vôo, mas perto do início. Ele argumentou que os produtos químicos no porão de carga, talvez combustível de foguete de perclorato de amônio, iniciaram um pequeno incêndio nas primeiras horas após deixar Taipei. 

Os membros da tripulação conseguiram apagá-lo rapidamente. A tripulação contatou então a base da South African Airways em Joanesburgo para denunciar o incêndio e foi orientada a seguir para as Maurícios para não revelar as armas ilegais a bordo da aeronave. Antes que o Helderberg chegasse às Ilhas Maurício, o fogo reacendeu, ficou fora de controle e derrubou o avião. 

O desaparecimento das fitas de rádio relevantes do Aeroporto Internacional Jan Smuts não foi, portanto, coincidência – as fitas foram deliberadamente escondidas ou destruídas como parte de um encobrimento. Na verdade, várias testemunhas na base da South African Airways relataram que a gravação foi removida e entregue à cadeia de comando, em algum lugar acima do seu nível salarial. Nenhum deles afirmou saber o que havia nele e nunca foi encontrado.

Um pedaço dos destroços do Helderberg é visto no fundo do oceano (Bureau of Aircraft Accidents Archives)
Apesar de sua popularidade, existem vários problemas com a chamada teoria do “primeiro fogo”. Por um lado, a primeira reação de todo piloto ao saber de um incêndio deveria ser declarar uma emergência e iniciar um desvio para o aeroporto adequado mais próximo – e não ligar para a base de operações da companhia aérea. 

E ainda assim não há evidências de que a tripulação tenha feito isso nas primeiras horas fora de Taipei. Klatzow argumentou que os pilotos sabiam que as armas ilegais eram a origem do incêndio e não queriam que isso fosse descoberto, porque corriam o risco de perder o emprego. Mas mesmo que assim fosse, isto não pode explicar por que razão não hesitaram em declarar uma emergência ao controlo de tráfego aéreo quando o incêndio principal eclodiu a 45 minutos das Maurícias. 

Faz muito mais sentido acreditar que houve apenas um incêndio, que a discussão sobre o jantar foi mal ouvida ou não ocorreu na hora do jantar e que a gravação desapareceu por outros motivos. Isto certamente não exclui a possibilidade de que o perclorato de amônio contrabandeado ilegalmente tenha causado o incêndio.

Existem propostas adicionais além das aqui apresentadas, mas quase todas são baseadas em especulações e boatos. Embora algumas teorias da conspiração sejam mais prováveis ​​do que outras, a verdade é que provavelmente nunca saberemos exactamente o que derrubou o voo 295 da South African Airways.

Um monumento numa praia nas Maurícios comemora as vidas perdidas no acidente
(Embaixada do Japão nas Maurícios)
Embora muito sobre o acidente permaneça desconhecido, os investigadores ainda conseguiram fazer várias recomendações importantes com base nas suas descobertas. Mais significativamente, questionaram a segurança do próprio design do Boeing 747 combi. 

Embora os compartimentos de carga normais geralmente tivessem firewalls e extintores embutidos, a área de carga do convés principal do 747 combi dependia da intervenção da tripulação para apagar incêndios e evitar que se propagassem. Mas quando os alarmes de incêndio alertaram os tripulantes sobre a presença do fogo, ele já poderia ser grande demais para ser apagado. 

Este problema foi agravado pela dificuldade de movimentação na área de carga quando os paletes estavam empilhados de parede a parede. Os investigadores desafiaram a suposição de que os tripulantes poderiam combater eficazmente um incêndio nestas condições, recomendando que os 747 Combis fossem proibidos de voar até que uma solução para este problema pudesse ser encontrada. 

A Administração Federal de Aviação dos EUA concordou, emitindo uma diretriz de aeronavegabilidade exigindo grandes mudanças no projeto, aterrando efetivamente o 747 combi em todo o mundo. A maioria das operadoras simplesmente desistiu do tipo, em vez de adaptar seus aviões para atender às novas diretrizes.

Os investigadores também recomendaram que os gravadores de voz da cabine retivessem uma hora de conversa em vez de 30 minutos (hoje duas horas é o padrão), e que deveriam ter microfones na estação do engenheiro de voo; que a fiação das caixas pretas seja protegida contra fogo; e que as listas de verificação devem deixar claro o que fazer quando houver um incêndio descontrolado na área de carga concomitante com fumaça na cabine.

Ao fazer estas mudanças prudentes, os investigadores conseguiram recuperar alguns benefícios de um acidente que, de outra forma, deixou muitas das questões mais básicas sem resposta.

Edição de texto e imagens por Jorge Tadeu (Site Desastres Aéreos) com Admiral Cloudberg

Vídeo: Aeroporto Área Restrita - Lito Lounge

No episódio 04 da segunda temporada do Lito Lounge, recebemos os integrantes do canal Aeroporto Área Restrita para um bate-papo exclusivo sobre o dia a dia no aeroporto.

Via Canal Aviões e Músicas com Lito Sousa

'Cobras no avião! Precisamos pousar!': Passageiro alucina e força pouso emergencial de voo da EasyJet

De acordo com uma pessoa ouvida pelo jornal britânico The Sun, o homem estaria sob efeito de álcool e ficou agressivo.


Um passageiro teve alucinações enquanto um voo da EasyJet, que seguia de Londres, capital da Inglaterra, para Marrocos, estava a mais de 9 mil metros de altura, e provocou um pouso de emergência. O homem vestia uma camiseta com uma estampa de cobra e, de repente, temeu que os répteis estivessem rastejando pela cabine.

De acordo com uma pessoa ouvida pelo jornal britânico The Sun, o homem estaria sob efeito de álcool e ficou agressivo. “Parece engraçado ouvir um passageiro gritando ‘cobras no avião’, mas foi incrivelmente assustador para as famílias no voo. Ninguém sabia ao certo o que estava acontecendo ou se o passageiro realmente tinha visto uma cobra solta na cabine”, contou a fonte.

O voo tinha 180 passageiros e tripulantes a bordo.

Com a agressividade do homem, os pilotos foram forçados a fazer um pouso de emergência em Faro, em Portugal. A polícia foi acionada e escoltou o passageiro para fora da aeronave.

O voo EZY8705 teve continuidade e foi concluído oito horas depois — mais do que o dobro da duração original do voo. O desvio causou atrasos de até quatro horas na rede da EasyJet no último sábado (19/4), em meio às viagens do feriado de Páscoa.

Via Metrópoles e The Sun

Curiosidade: Por que a abordagem ao aeroporto Kai Tak de Hong Kong era tão desafiadora?

O primeiro aeroporto de Hong Kong, Kai Tak, estava localizado na área urbana da cidade, com um caminho de aproximação incomumente complexo e dramático.


O aeroporto Kai Tak de Hong Kong tem um lugar especial na história e nas memórias da aviação. Ele estava localizado na área central da cidade, com grandes aeronaves de fuselagem larga fazendo uma abordagem dramática e desafiadora para o pouso. Fechou em 1998, mas a memória dos 747 e outras aeronaves de grande porte voando baixo sobre a cidade permanece.

Aeroporto de Hong Kong Kai Tak - uma breve história

O primeiro aeroporto de Hong Kong foi inaugurado em 1924, então abrigando uma escola de aviação chamada The Abbot School of Aviation. Ele se expandiu nas duas décadas seguintes, com mais escolas de voo e presença da RAF. Uma torre de controle e hangar de aeronaves foram adicionados em 1935, e um serviço aéreo regular foi introduzido em 1936.

Durante a Segunda Guerra Mundial, o aeroporto ficou sob controle japonês e duas pistas de concreto foram adicionadas. Um plano de redesenvolvimento foi lançado em 1954, com as pistas estendidas para receber aeronaves maiores e um novo terminal de passageiros adicionado. O ILS foi adicionado em 1974, e o aeroporto entrou em seus anos de pico.

O aeroporto de Kai Tak foi cercado por um desenvolvimento denso e alto (Foto: Christian Hanuise)

Localização no centro da cidade e abordagem dramática

À medida que a cidade se desenvolveu, o aeroporto foi cercado por desenvolvimento de arranha-céus. Isso deu uma localização dramática, mas a abordagem sobre a cidade densamente desenvolvida e as colinas de Hong Kong foi ainda mais dramática.

A aproximação para pouso na pista 13 foi a mais desafiadora, conhecida pelos pilotos como Aproximação Tabuleiro de Damas. Começava a sudoeste do aeroporto, perto da ilha periférica de Cheung Chau e perto da localização atual do aeroporto.


A aeronave interceptaria o localizador para a pista neste ponto e viraria à direita em direção a Kai Tak. Os pilotos então voariam em direção a um grande tabuleiro de xadrez laranja e branco localizado em uma colina no Parque Kowloon Tsai (ainda conhecido como Chequerboard Hill). Este é o local onde a aeronave faria uma curva de 47 graus à direita para se alinhar com a pista, com menos de duas milhas náuticas para voar e começar a uma altura de apenas cerca de 650 pés. Escusado será dizer que esta foi uma manobra difícil, e algo para o qual os pilotos treinariam especificamente.

Um tabuleiro de xadrez na colina marcava o ponto de virada final (Foto: Tksteven)
A aproximação final após a curva à direita voou apenas dezenas de metros sobre o prédio de apartamentos ao redor do aeroporto. Tão perto que os passageiros muitas vezes comentavam que podiam ver os apartamentos.

A maior parte da aproximação (certamente de cerca de 2.500 pés) foi feita manualmente, sem piloto automático e usando um sistema ILS fortemente modificado. A curva final à direita complexa e apertada significava que a aproximação só poderia ser feita sob condições visuais.

A fase final da aproximação viu as aeronaves voarem muito perto dos edifícios
(Foto: Konstantin von Wedelstaedt via Wikimedia)

Fim de uma era

O aeroporto de Kai Tak fechou em julho de 1998. Já ultrapassou a capacidade planejada por muitos anos, e era necessário um novo aeroporto. O novo Aeroporto Internacional de Hong Kong , construído na ilha de Chek Lap Kok, foi inaugurado assim que Kai Tak fechou. O último voo programado para fora do aeroporto foi um voo da Cathay Pacific para Londres Heathrow. O local do aeroporto foi agora remodelado e abriga o desenvolvimento de apartamentos e um terminal de navios de cruzeiro.

O novo aeroporto de Hong Kong foi construído em uma ilha artificial (Foto: Getty Images)
Edição de texto e imagens por Jorge Tadeu com informações do Simple Flying

Vídeo: O Mergulho do Voo 841 da TWA


O Mergulho do Voo 841 da TWA. Nesse vídeo, Lito Sousa mergulha de cabeça em uma investigação meticulosa sobre o enigmático mergulho do voo 841 da TWA.

Aconteceu em 24 de abril de 1994: Falha do motor após a decolagem leva DC-3 a pouso no mar ao largo de Sidney


Em 24 de abril de 1994, a aeronave Douglas C-47A-20-DK (DC-3), prefixo VH-EDC, da South Pacific Airmotive (foto abaixo), foi fretada para transportar estudantes universitários e seus equipamentos de banda de Sydney para o Aeroporto da Ilha de Norfolk, na Austrália, para participarem das celebrações do Dia de Anzac na ilha. 


A aeronave seguiria do Aeroporto de Sydney (Kingsford-Smith) para a Ilha de Norfolk, com um pouso intermediário no Aeroporto da Ilha Lord Howe, NSW, para reabastecimento. O voo deveria ser conduzido de acordo com os procedimentos IFR. 

A aeronave, que transportava 21 passageiros, era tripulada por dois pilotos, um piloto supranumerário e um comissário de bordo. Os preparativos para a decolagem foram concluídos pouco antes das 09h00, e a aeronave foi liberada para taxiar para a pista 16 via taxiway Bravo Three. 

O copiloto foi o piloto de manuseio para a decolagem. A aeronave foi liberada para decolagem às 09h07min53s. Todas as indicações do motor estavam normais durante a rolagem de decolagem e a aeronave saiu da pista a 81 nós. 

Durante a subida inicial, a aproximadamente 200 pés, com os flaps levantados e o trem de pouso se retraindo, a tripulação ouviu uma série de estalos acima do ruído do motor. Quase imediatamente, a aeronave começou a guinar para a esquerda e às 09h09h04 o piloto em comando avisou à Torre que a aeronave estava com problemas. 

O copiloto determinou que o motor esquerdo estava com defeito. A velocidade da aeronave neste momento havia aumentado para pelo menos 100 nós. O piloto em comando, tendo verificado o mau funcionamento do motor esquerdo, fechou o acelerador esquerdo e iniciou o embandeiramento da hélice. 

Durante este período, a potência total (48 polegadas Hg e 2.700 RPM) foi mantida no motor direito. No entanto, a velocidade no ar começou a diminuir. O copiloto relatou que tentou manter 81 KIAS, mas não conseguiu. 

A aeronave divergiu para a esquerda da linha central da pista. Quase todo o aileron direito foi usado para controlar a aeronave. O copiloto relatou que ele tinha leme direito completo ou leme direito quase totalmente aplicado. 

Quando ficou sabendo do mau funcionamento do motor, o piloto em comando avaliou que, embora um pouso de volta na pista poderia ter sido possível, a aeronave era capaz de subir com segurança em um motor. 

Porém, ao determinar que a aeronave não subia e que a velocidade no ar havia caído para menos de 81 nós, o piloto em comando assumiu o controle e às 09h09min38s avisou à Torre que estava pousando de emergência com a aeronave. 

Ele manobrou a aeronave o mais próximo possível da extremidade sul da pista 16L parcialmente construída. A aeronave pousou aproximadamente 46 segundos depois que o piloto em comando avisou a Torre sobre o problema, sob as águas próximas ao aeroporto de Sidney. 


Os quatro tripulantes e 21 passageiros evacuaram com sucesso da amerrissagem da aeronave antes que ela afundasse. Eles foram levados a bordo de embarcações de recreio e transferidos para a costa.

Após a avaliação inicial, eles foram transportados para vários hospitais. Todos tiveram alta por volta das 14h30 daquela tarde, com exceção do comissário de bordo, que havia sofrido ferimentos graves.


A investigação concluiu que as circunstâncias do acidente eram consistentes com o motor esquerdo tendo sofrido uma perda de potência substancial quando uma válvula de admissão travou na posição aberta. A incapacidade do piloto de manuseio (copiloto) de obter um ótimo desempenho assimétrico da aeronave foi o fator culminante em uma combinação de fatores locais e organizacionais que levaram a este acidente. 


Os fatores contribuintes incluíram a condição de excesso de peso da aeronave, revisão do motor ou erro de manutenção, não adesão aos procedimentos operacionais e falta de habilidade do piloto de manuseio. 


Os fatores organizacionais relacionados à empresa incluíram: 1) comunicações inadequadas entre a South Pacific Airmotive Pty Ltd, que possuía e operava o DC-3 e estava baseada em Camden, NSW, e o titular do AOC, Groupair, que estava baseado em Moorabbin, Vic .; 2) gerenciamento de manutenção inadequado; 3) procedimentos operacionais inadequados; e 4) treinamento inadequado. 


Os fatores organizacionais relacionados ao regulador incluem: 1) comunicações inadequadas entre os escritórios da Autoridade de Aviação Civil e entre a Autoridade de Aviação Civil e a Groupair/South Pacific Airmotive; 2) procedimentos de controle operacional e de aeronavegabilidade deficientes; 3) controle e monitoramento inadequados da aeronave do Pacífico Sul; 4) regulamentação inadequada; e 5) treinamento deficiente da equipe.


Por Jorge Tadeu (Site Desastres Aéreos) com Wikipedia, ASN e baaa-acro

Aconteceu em 24 de abril de 1993: O sequestro do voo 427 da Indian Airlines


O voo IC427 da Indian Airlines estava envolvido em um sequestro de aeronave ocorrido na Índia entre 24 e 25 de abril de 1993. Comandos da Guarda de Segurança Nacional (NSG) resgataram todos os 141 reféns do Boeing 737 da Indian Airlines, no aeroporto de Amritsar. O sequestrador solitário, Mohammed Yousuf Shah, foi morto 5 minutos após a entrada dos comandos no avião, antes que pudesse reagir e ferir qualquer um dos reféns. O resgate foi batizado de 'Operação Ashwamedh'.

Sequestro


Um Boeing 737 da Indian Airlines, similar ao envolvido no sequestro
O Boeing 737-2A8, da Indian Airlines partiu de Delhi às 13h57 para Srinagar realizando o voo IC427 com 6 membros da tripulação e 135 passageiros a bordo. Durante o voo, um passageiro, que primeiro se identificou como Syed Salauddin, alegou que estava carregando pistolas e uma granada de mão e pediu que o avião fosse levado para Cabul. 

Às 14h43, o Controle de Tráfego Aéreo de Delhi recebeu uma mensagem de que o avião havia sido sequestrado e se dirigia a Cabul, no Afeganistão.

O Controle de Tráfego Aéreo de Lahore se recusou a permitir que o avião entrasse no espaço aéreo do Paquistão, e o voo voltou para a Índia depois de sobrevoar Lahore.

O avião pousou em Amritsar, na Índia, às 15h20. O sequestrador exigiu reabastecimento e novamente pediu que o avião fosse levado para Cabul. O Crisis Management Group (CMG) no Gabinete do Secretariado da Índia e o Comitê Central no Aeroporto de Delhi responderam à situação. 

O Vice-Comissário e o Superintendente Sênior de Polícia do distrito de Amritsar foram enviados ao aeroporto para negociar com o sequestrador. Às 18 horas, o Diretor-Geral da Polícia de Punjab chegou a Amrtisar e assumiu o processo de negociação. No entanto, o sequestrador permaneceu inflexível em sua demanda e até disparou um tiro de advertência que perfurou o corpo da aeronave.

Operação NSG


As negociações com o sequestrador foram feitas por um membro do GMC, um ex-DGCA e atual secretário de receita da Índia do secretariado do Gabinete. As negociações continuaram o dia inteiro e o sequestrador insistiu que a aeronave fosse enviada ao Paquistão. O negociador falou com a DGCA do Paquistão e eles recusaram a entrada na aeronave. O pedido do sequestrador de que a aeronave voltasse para Delhi também foi rejeitado. 

Nesse ínterim, o CMG transferiu uma equipe NSG de elite de Delhi para Amritsar e a posicionou estrategicamente. Depois que o sequestrador disparou um tiro, o negociador avisou o sequestrador sobre as terríveis consequências e pediu-lhe que se rendesse, o que ele recusou. 

O CMG então informou ao PM que a aeronave seria invadida. O negociador então emitiu a ordem para o crack 52 Special Action Group do NSG para invadir a aeronave e derrubar o sequestrador. 

O sequestrador foi surpreendido pela entrada repentina dos comandos no avião. Antes que ele pudesse reagir, ele foi derrubado. A operação terminou em cinco minutos, às 01h05, sem qualquer acidente ou ferimento a qualquer refém ou maiores danos à aeronave.

Resultado


O sequestrador, mais tarde identificado como Jalaluddin, apelido de Mohammed Yunus Shah, que foi entregue à polícia local. Ele sucumbiu ao tiro de pistola ao ser transferido para um hospital. Duas pistolas 9 mm carregadas foram recuperadas dele. 

As autoridades indianas alegaram que o sequestrador era membro do Hizbul Mujahideen, mas o grupo negou a responsabilidade.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipedia

Hoje na História: 24 de abril de 1990 - Ônibus Espacial Discovery decola levando o telescópio Hubble

Ônibus Espacial Discovery (STS-31) decola Pad 39B com o Telescópio Espacial Hubble.
O ônibus irmão Columbia aguarda no Pad 39A (Foto: NASA)
Em 24 de abril de 1990, às 12h33min51s (UTC), o Ônibus Espacial Discovery, em sua missão STS-31, decolou do Complexo de Lançamento 39B no Centro Espacial Kennedy, em Cabo Canaveral, na Flórida, em uma missão para colocar o Telescópio Espacial Hubble na órbita da Terra.

A tripulação de voo STS-31 era Loren J. Shriver, Comandante; Charles F. Bolden, Jr., Pilot; Steven A. Hawley, Especialista da Missão; Kathryn D. Sullivan, Especialista da Missão; Bruce McCandless II, Especialista da Missão.

Tripulação de voo do Discovery (STS-31): Sentados, da esquerda para a direita: Coronel Charles F. Bolden, Jr., Corpo de Fuzileiros Navais dos EUA; Coronel Loren J. Shriver, Força Aérea dos EUA; Tenente Comandante Kathryn D. Sullivan, Marinha dos EUA. De pé, da esquerda para a direita: Capitão Bruce McCandless II, Marinha dos EUA; Sr. Steven A. Hawley (Foto: NASA)
O telescópio espacial Hubble tem o nome de Edwin Hubble, um astrônomo do início do século 20 que descobriu galáxias além de nossa própria galáxia, a Via Láctea. É um telescópio óptico Ritchey-Chrétien (um refletor Cassegrain aprimorado). 

A luz da estrela entra no telescópio e é coletada por um grande espelho hiperbólico de 7 pés e 10,5 polegadas (2.400 metros) de diâmetro na extremidade posterior. A luz é refletida para frente em um espelho hiperbólico menor, que focaliza a luz e a projeta de volta através de uma abertura no refletor principal. A luz é então recolhida pelos sensores eletrônicos do telescópio espacial. Esses espelhos estão entre os objetos mais precisos já feitos, tendo sido polidos com uma precisão de 10 nanômetros.

O Telescópio Espacial Hubble sendo implantado do compartimento de carga do Discovery (Foto: NASA)
O Telescópio Espacial Hubble, que foi colocaco em órbita no dia 25 de abril de 1990, tem 43,5 pés (13,259 metros de comprimento. O tubo de luz tem um diâmetro de 10 pés (3,048 metros) e a seção do equipamento de ré tem 14 pés (4,267 metros) de diâmetro. A espaçonave pesa 27.000 libras (12,247 quilogramas).

O HST orbita a Terra a cada 97 minutos a uma altitude de 320 milhas náuticas (593 quilômetros). O telescópio teve sua última manutenção em 2009. Originalmente projetado para operar por 15 anos, o HST está agora em seu 26º.

O telescópio espacial Hubble em órbita terrestre (Foto: NASA)
O coronel Bolden alcançou o posto de Major General do Corpo de Fuzileiros Navais dos Estados Unidos, antes de se aposentar em 2003. Ele foi Administrador, Aeronáutica Nacional e Administração do Espaço, 17 de julho de 2009-20 de janeiro de 2017

A Tenente Comandante Sullivan deixou a NASA em 1993 e se aposentou da Marinha dos EUA com o posto de Capitão, em 2006. Ela serviu como Subsecretária de Comércio para Oceanos e Atmosfera/Administradora da Administração Nacional Oceânica e Atmosférica (NOAA), 28 de fevereiro de 2013 –20 de janeiro de 2017.

Edição de texto e imagens por Jorge Tadeu

Qual é a altitude máxima que uma aeronave de passageiros pode voar?


A maioria dos jatos comerciais opera em altitudes máximas semelhantes. Níveis máximos são definidos para cada tipo de aeronave, com base em considerações de desempenho e segurança. Quais são esses limites e como eles são determinados?

Qual aeronave voa mais alto?


Antes de entrarmos nas razões, veremos os limites para aeronaves comerciais hoje. Todas as aeronaves têm um "teto de serviço" especificado que define a altura máxima na qual devem ser operadas. Para a maioria dos jatos comerciais modernos hoje, isso é em torno de 41.000 pés. O nível exato dependerá principalmente do desempenho dos motores (ele é projetado para ser o máximo que ainda permite uma operação eficiente).

O A380 tem um teto de 43.100 pés (Foto: Curimedia Photography via Wikimedia Commons)
Muitos widebodies grandes têm um teto de até cerca de 43.000 pés (12.500 metros). O Airbus A380, por exemplo, tem 43.100 pés e o A350 e o Boeing 787 são os mesmos (embora os maiores 787-10 e A350-1000 sejam mais baixos, com 41.100 pés e 41.450 pés).

Para narrowbodys, o mais novo Boeing 737 MAX é certificado para 41.000 pés (embora as séries Original e Classic 737s sejam classificadas apenas para 37.000 pés). A família A320 é classificada um pouco mais baixa, de 39.100 a 39.800 pés para a série neo, por exemplo.

Boeing 737 MAX 7 em voo (Foto: Getty Images)
Existem alguns limites mais altos, no entanto, fora das especificações atuais de aeronaves comerciais. O Concorde (claro, não mais operacional) foi classificado para voar até 60.000 pés. E muitos jatos particulares operam até cerca de 45.000 a 51.000 pés. E se você introduzir jatos militares, o SR71 detém o recorde (para voo normal) a 85.000 pés.

Por que voar tão alto?


Isso levanta a questão de por que as aeronaves voam a 35.000 a 40.000 pés na maior parte do tempo. A principal razão para isso é o desempenho. O ar é menos denso em altitudes mais altas, produzindo menos resistência (e, por sua vez, queimando menos combustível). Os motores a jato também operam com mais eficiência nessas altitudes.

Há um limite para isso, no entanto. Se a altitude for aumentada muito, os motores a jato produzirão menos empuxo, e a sustentação das asas diminuirá. Obviamente, isso precisa ser suficiente para manter o voo. O estresse na fuselagem também é uma consideração. Com uma cabine pressurizada, o estresse na fuselagem aumenta com a altitude (conforme a densidade do ar externo diminui e a pressão interna permanece a mesma).

A altitude exata escolhida no voo (até o máximo para o tipo) dependerá de vários fatores. O vento é um fator importante, e levar em conta as correntes de jato de alta altitude é muito importante para um voo ideal. Turbulência, clima e outras restrições de tráfego aéreo também afetam os níveis de voo.

Os limites para voar alto comercialmente


Há outra razão pela qual limites são definidos para aeronaves comerciais e por que motores são otimizados para voar naquela altitude. Isso está relacionado à segurança.

No caso de descompressão da cabine, a aeronave descerá rapidamente para uma altitude mais baixa. Obviamente, isso leva mais tempo de uma altitude mais alta e, criticamente, os passageiros perderiam a consciência muito mais rápido em uma altitude mais alta. É vital dar tempo suficiente para que os passageiros e a tripulação reajam e ajustem as máscaras de oxigênio antes de perder a consciência.

Em caso de despressurização da cabine em altitude, ter tempo suficiente para reagir é crítico (Foto: Getty Images)
Como, então, jatos particulares e Concorde podem voar mais alto? Aeronaves particulares não estão sujeitas aos mesmos limites de 'Tempo de Consciência Útil' e frequentemente têm motores maiores em relação ao peso da aeronave.

O Concorde era diferente. Ele se destacava em altitudes mais elevadas, com a remoção do arrasto permitindo maior velocidade e, com isso, mais sustentação. Ele também minimizava o risco de descompressão por ter um sistema para auxiliar na rápida descida de emergência. Com uma asa delta, ele podia descer muito mais rápido. Suas pequenas janelas também diminuiriam a taxa de despressurização em caso de falha.

Concorde da British Airways (Foto: Getty Images)
Com informações do Simple Flying

Por dentro do Electra da Varig - O único que sobrou da frota

Via Aero Por Trás da Aviação

Teoria do Aeroporto: trend arriscada do TikTok pode fazer você perder o voo

Fila do raio-x no aeroporto: É importante chegar com antecedência para evitar transtornos ou
correr o risco de perder o voo (Imagem: AzmanJaka/Getty Images)
Uma nova tendência batizada de Teoria do Aeroporto, que viralizou no TikTok, defende que é possível chegar ao aeroporto faltando apenas 15 minutos para o fechamento do embarque.

Criadores de conteúdo argumentam que não há razão para chegar cedo e acusam os aeroportos de “enganarem” os passageiros ao avisarem uma antecedência considerada exagerada por eles.

No entanto, os aeroportos são ambientes complexos e regulados, onde o improviso quase nunca é bem-vindo.

Para quem se arrisca, muitas vezes o resultado é o oposto do prometido pela tendência: atrasos, correria, estresse e perda de voo. Além disso, a pressão dos passageiros também afeta funcionários dos terminais, que precisam lidar com confusões no embarque e usuários irritados por não conseguirem mais acesso à aeronave.

A reportagem de Nossa foi abordada por equipes de duas empresas aéreas relatando supostos influenciadores tentando descobrir esse tipo de conteúdo para provar essa teoria.

No entanto, após perderem os seus voos, esses influenciadores causaram problemas e transtornos para profissionais e demais passageiros, já que não há previsão de remarcação em casos como esse.

O que é a teoria do aeroporto?


Na prática, a Teoria do Aeroporto sugere que basta o passageiro chegar um pouco antes do portão de embarque fechar, já que a maior parte dos processos pode ser antecipada digitalmente. O tempo recomendado pelos defensores da ideia é de apenas 15 minutos. Alguns ainda especulam que o tempo de espera ampliado seria uma estratégia dos aeroportos para lucrar com a permanência dos passageiros nos terminais.

Eles mostram vídeos cronometrando a chegada ao aeroporto, muitas vezes passando direto para o embarque sem sequer correr, indicando que todo o tempo recomendado pelos aeroportos é um exagero. Contudo, uma tentativa de driblar o sistema nem sempre funciona como o esperado. Com a popularização da ideia, funcionários de companhias aéreas e aeroportos têm notado mais pessoas tentando embarcar no limite do tempo — e ficando para trás.

“Em diversos aeroportos, se todos chegam praticamente no mesmo horário, isso aumenta as filas e causa gargalos operacionais”, explica Flávia Maciel Silva, gerente de Gestão da Latam no Aeroporto de Guarulhos (SP).

“Começamos o processo de encerramento do voo uma hora antes da decolagem. Depois disso, não há mais acessíveis no sistema”, diz a gestora. Ou seja, é preciso estar com o check-in feito com pelo menos uma hora de antecedência em voos domésticos ou mais em voos internacionais.

Após esse procedimento, as malas precisam ser encaminhadas para os aviões e a lista de passageiros precisa ser confeccionada, lembra Flávia. Por isso, chegar em cima da hora pode não ser uma boa ideia.

Antes de ler o bilhete


As empresas aéreas já oferecem diversas facilidades para agilizar as viagens dos passageiros. Na Latam, por exemplo, existe o check-in automático, realizado em todas as compras feitas no site da empresa, diminuindo o tempo de espera nos balcões dos aeroportos.

Na prática, o viajante recebe o cartão de embarque faltando 48 horas no celular e, caso precise despachar a bagagem, pode enviar imprimir uma etiqueta de identificação e entregar a mala.

No Aeroporto


A infraestrutura dos aeroportos nem sempre colabora para planos de última hora. Em São Paulo, por exemplo, o Aeroporto de Congonhas é conhecido pelo acesso complicado em horários de pico, segundo Raphael Ferreira Hernandez, gerente de segurança da Aena Brasil, que fornece o gerenciamento local.

“Mesmo um trajeto de 5 km pode demorar 40 minutos de carro dependendo do horário e da região da cidade”, afirma Hernandez. Segundo ele, há passageiros que chegam com tempo ajustado e não conseguem entrar no aeroporto a tempo por conta do trânsito.

Além disso, nem todos os passageiros podem evitar o check-in presencial. Quem precisa despachar bagagem deve comparecer ao balcão da companhia aérea com antecedência. Mesmo com tons de autoatendimento e sistemas automatizados, o despacho de malas exige tempo, especialmente em horários de grande fluxo.

“O tempo de chegada não é apenas uma recomendação. É o mínimo necessário para garantir que todo o processo funcione”, reforça Raphael.

Segurança


Mesmo com o check-in feito e sem bagagem, o passageiro ainda precisa passar pela inspeção de segurança, uma das etapas mais imprevisíveis e importantes antes do embarque. É nessa fase que ocorrem as filas mais longas.

Parte dos atrasos se dá por conta de objetos indevidos na mala de mão (como canivetes) ou pela necessidade de revistas adicionais e esperadas, que podem acontecer com qualquer um, inclusive quem está com o horário apertado.

“A leitura do cartão de embarque, a conferência de documentos, o rastreamento dos itens levados a bordo e os protocolos de segurança não podem ser reduzidos em nome da conveniência”, diz Hernandez.

O próprio desenho dos aeroportos prevê tempo para essa fase. Se houver acúmulo de passageiros — algo comum em picos de operação ou quando há voos de companhias com horários próximos — o tempo de espera na inspeção pode ser dobrado.

“São procedimentos inegociáveis, que envolvem segurança nacional e proteção de todos os ocupantes da aeronave. Não há como pular ou acelerar essa parte”, completou o gerente da Aena.

Em Congonhas, houve uma ampliação na quantidade de aparelhos de raio X disponibilizados, passando de 9 para 16 no total. Ao mesmo tempo, os funcionários começaram a passar pela inspeção em outro local, deixando mais equipamentos disponíveis para os passageiros.

Chegando ao portão de embarque


Mesmo após a inspeção de segurança, o passageiro ainda precisa caminhar até o portão de embarque, um trajeto que pode ser muito longo dependendo do aeroporto. Em Guarulhos, por exemplo, dependendo do terminal e do portão designado, esse deslocamento leva facilmente 20 a 30 minutos após a inspeção de segurança.

“A estrutura do aeroporto exige que o passageiro percorra distâncias consideráveis. E, se houver atrasos na inspeção ou se o portão mudar de última hora, o risco de perder o voo aumenta muito”, diz Flávia, da Latam.

Nos aeroportos administrados pela Aena, como Congonhas, essa logística também é levada em conta na orientação de chegada antecipada. “Há passageiros com mobilidade reduzida, pessoas com crianças pequenas ou viajantes que não conhecem o terminal. Considerar esse tempo extra é fundamental para garantir uma viagem tranquila”, ressalta Hernandez.

O gerente ainda destaca que passar por esses gargalos é revelado. "Fila você vai ter. Não é que não tenha, você vai ter. Só que a antecedência de chegada vai te permitir fazer os processos com tranquilidade. Se você tiver algum conflito equívoco, você consegue resolver com tranquilidade", conclui Hernandez.

Quanto tempo na prática?


Em Congonhas, o tempo médio para chegar até o portão de embarque pode ultrapassar os 15 minutos relatados na tendência. Contando a partir da área de desembarque de carros, temos os seguintes tempos:
  • 2 a 5 minutos até o ponto de leitura do cartão de embarque
  • 5 minutos, aproximadamente, na fila da inspeção de segurança
  • 3 a 5 minutos de caminhada até o portão de embarque
Ou seja, de cara, já são os 15 minutos caso não haja nenhuma intercorrência. Após a inspeção de segurança, por exemplo, os passageiros saem na frente dos obstáculos 3 e 4 de embarque. Entretanto, o terminal vai até o portão 12, além dos embarques remotos, que podem levar mais tempo para serem acessados.

Depende do aeroporto


Os tempos relatados são estimados e variam de acordo com o horário. Em Congonhas, o pico de entrega na inspeção de segurança ocorre entre 5h e 5h59min, quando cerca de 3.000 pessoas passam pelos aparelhos de raio X.

Nos aeroportos menores, como Jericoacoara (CE), há menos aparelhos para realizar as inspeções de segurança. Se todos os 180 passageiros de um mesmo voo tiverem a ideia de chegar faltando apenas 15 minutos para o fechamento do portão de embarque, com certeza irão ficar para trás, já que os aviões não esperam os passageiros.

E se atrasarem?


A recomendação das companhias e operadores segue sendo a mesma: para voos domésticos, chegar com pelo menos 2 horas de antecedência; para voos internacionais, 3 horas. Segundo Flávia, os passageiros que, por qualquer motivo, não conseguem chegar a tempo têm alternativas para minimizar o prejuízo.

Ela afirma ser importante buscar ajuda pelos canais digitais da companhia antes mesmo de chegar ao aeroporto. “Se uma pessoa já tiver certeza de que vai perder o voo, ela pode entrar em contato com a empresa pelo WhatsApp ou pelo chat do site e tentar remarcar”, orienta.

A agilidade no contato pode fazer a diferença entre conseguir um novo embarque com menos custos ou perder completamente a viagem. “Quanto mais cedo o passageiro aciona os canais de atendimento, maiores as chances de resolver com alguma flexibilidade, dentro das políticas da tarifa adquirida”, afirma Flávia.

Em resumo, a ideia de chegar em cima da hora pode até render curtidas nas redes sociais, mas na vida real, costuma terminar com portas fechadas e malas ainda no saguão. Se o objetivo é embarcar sem sustos, vale mais confiar nos ponteiros do relógio do que em vídeos do TikTok.

Via Nossa/UOL

quarta-feira, 23 de abril de 2025

Tipos de gelo e seu efeitos nas aeronaves


Um dos maiores riscos de voar em climas frios é a formação de gelo de aeronaves. Congelamento de aeronaves refere-se ao revestimento ou depósito de gelo em qualquer objeto da aeronave, causado pelo congelamento e impacto de hidrômetros líquidos. Isso pode ter um efeito prejudicial na aeronave e dificultar a pilotagem do avião.

Os fatores significativos que afetam a ameaça de congelamento da aeronave incluem temperaturas ambientais, velocidade da aeronave, temperatura da superfície da aeronave, o formato da superfície da aeronave, concentração de partículas e tamanho das partículas.

A taxa de captura é afetada pelo tamanho das gotas. Pequenas gotas seguem o fluxo de ar e se formam ao redor da asa, enquanto gotas grandes e pesadas atingem a asa de uma aeronave.


Quando uma pequena gota atinge, ela só se espalhará de volta sobre a asa da aeronave uma pequena distância, enquanto a grande gota se espalhará mais longe. À medida que a velocidade no ar de um avião aumenta, o número de gotas que atingem a aeronave também aumenta.

A taxa de captura de gelo da aeronave também é afetada pela curvatura da borda de ataque da asa. As asas grossas tendem a capturar menos gotas do que as asas finas. É por isso que uma aeronave com asas finas que voa em alta velocidade através de grandes gotas tem a maior taxa de captura de gelo de aeronave.

Como uma aeronave é afetada pelo gelo


O gelo pode se acumular na superfície do avião e prejudicar o funcionamento das asas, hélices e superfície de controle, bem como dos velames e para-brisas, tubos pitot, respiradouros estáticos, entradas de ar, carburadores e antenas de rádio .

Os motores de turbina do plano são extremamente vulneráveis. O gelo que se forma na carenagem da admissão pode restringir a admissão de ar. Quando o gelo se forma nas lâminas de partida e no rotor, ele degrada sua eficiência e desempenho e pode até mesmo causar o incêndio. Quando pedaços de gelo se partem, o motor pode sugá-los. Isso pode causar danos estruturais.

Na superfície de uma aeronave com pequenas bordas de ataque - como antenas, estabilizadores horizontais, hélices, amortecedores do trem de pouso e leme - são os primeiros a acumular gelo.

Efeitos adversos ao brilho causado pelo glacê
O primeiro local de uma aeronave onde o gelo geralmente se forma primeiro é o fino medidor de temperatura do ar externo. O gelo geralmente assume as asas no final. Ocasionalmente, uma fina camada de gelo pode se formar no para-brisa da aeronave. Isso pode ocorrer na aterrissagem e na decolagem.

Quando o gelo se forma na hélice, o piloto pode notar uma perda de potência e aspereza do motor. O gelo se forma primeiro na cúpula da hélice ou girador. Em seguida, ele segue seu caminho até as lâminas.

O gelo pode se acumular de maneira desigual nas lâminas e, como resultado, elas podem ficar desequilibradas. Isso resultará em vibrações que colocarão pressão indevida nas lâminas, bem como nos suportes do motor, o que pode causar sua falha.

Se a hélice do motor está acumulando gelo, a mesma coisa estará acontecendo nas superfícies da cauda, ​​asas e outras projeções. O peso do gelo acumulado não é tão sério quanto a interrupção do fluxo de ar que causa ao redor da superfície da cauda e das asas.

Descongelando um De Havilland DHC-3
O gelo acumulado destrói a sustentação e altera a seção transversal do aerofólio. Também aumenta o arrasto e a velocidade de estol. Por outro lado, o empuxo da aeronave se degrada por causa do gelo que se acumula nas pás da hélice.

Nesse cenário, o piloto é forçado a usar um ângulo de ataque alto e potência total para manter a altitude. Quando o ângulo de ataque é alto, o gelo começa a se formar na parte inferior da asa, adicionando mais resistência e peso.

Sob condições de gelo, as abordagens de pouso, bem como a aterrissagem, podem ser perigosas. Ao pousar uma aeronave congelada, os pilotos devem usar mais velocidade e potência do que o normal.

Os instrumentos de voo podem não operar se o gelo se acumular nas portas de pressão estática do avião e no tubo piloto. A taxa de subida, a velocidade do ar e o altímetro podem ser afetados. Os instrumentos de giroscópio dentro da aeronave que são movidos por um empreendimento também podem ser afetados quando o gelo se acumula na garganta do venturi.

Gelo no casco da aeronave

Tipos de gelo de aeronave


Geralmente reconhecemos 4 tipos principais de formação de gelo em aeronaves. Gelo gélido, gelo claro, gelo misto e geada. Continue lendo para saber mais sobre cada um desses tipos de gelo.

1. Gelo Glaceado (Rime Ice)



Um gelo opaco ou branco leitoso que se deposita na superfície da aeronave quando ela está voando através de nuvens transparentes é classificado como gelo de geada. Geralmente é formado por causa de pequenas gotículas super-resfriadas quando a taxa de captura é baixa.

Gelo de geada (glaceado) se acumula nas bordas de ataque das asas e nas cabeças dos pilotos, antenas, etc. Para que o gelo de geada se forme na aeronave, a temperatura do revestimento da aeronave deve estar abaixo de 0° C. Devido à baixa temperatura, as gotas congelam rápida e completamente. Mesmo após o congelamento, as gotas não perdem sua forma esférica.

Efeitos de gelo glaciado
Os depósitos de gelo cremoso não têm muito peso, mas ainda assim é perigoso porque altera a aerodinâmica da curvatura da asa e afeta os instrumentos. Normalmente, o gelo do gelo é quebradiço e pode ser desalojado facilmente com fluido e equipamento de descongelamento . Ocasionalmente, gelo claro (discutido abaixo) e gelo geado se formarão simultaneamente.

2. Gelo transparente



A espessa camada de gelo que se forma quando uma aeronave voa através de nuvens que contêm grandes quantidades de grandes gotas super-resfriadas é chamada de gelo glaceado ou gelo transparente.

O gelo transparente geralmente se espalha de forma desigual sobre as superfícies da cauda, ​​antenas, pás da hélice e asas. Ela se forma quando uma pequena parte da gota congela ao entrar em contato com a superfície de uma aeronave.

A temperatura da aeronave sobe para 0° C quando o calor é liberado durante o impacto inicial da gota. Isso permite que uma grande parte das gotas de água se espalhe e se misture com outras gotas antes de congelar. Assim, uma camada firme de gelo se forma na aeronave sem qualquer ar embutido.

À medida que mais gelo transparente se acumula na aeronave, ele começa a se formar em forma de chifre, projetando-se à frente da superfície da cauda, ​​asa, antena e outras estruturas.


O fluxo de ar é severamente interrompido por esta formação única de gelo e aumenta o arrasto no vôo em cerca de 300 a 500 por cento. O gelo claro é extremamente perigoso porque faz com que a aeronave perca sustentação, pois altera a curvatura da asa e interrompe o fluxo de ar sobre a superfície da cauda e as asas da aeronave. Além disso, aumenta o arrasto, o que é perigoso para o avião.

As vibrações decorrentes do carregamento desigual nas pás e asas da hélice também são perigosas para o voo. Quando grandes blocos de gelo transparente se quebram, as vibrações podem se tornar tão fortes que podem prejudicar a estrutura da aeronave. Quando o gelo transparente se mistura com granizo ou neve, pode parecer esbranquiçado.

3. Gelo misturado



Como o nome sugere, gelo misturado é o tipo de gelo que carrega as propriedades de gelo de gelo e gelo transparente. Ele se forma quando pequenas e grandes gotas super-resfriadas estão presentes.

O aspecto do gelo misto é irregular, áspero e esbranquiçado. As condições favoráveis ​​para a formação desse tipo de gelo de aeronave incluem partículas congeladas e líquidas presentes nos flocos de neve úmidos e na porção mais fria da nuvem cumuliforme.


O processo de formação desse tipo de gelo para aeronaves inclui o gelo do gelo e do gelo transparente. O gelo misturado pode se acumular rapidamente e não é facilmente removido.

4. Frost



O gelo semicristalino pode se formar no ar puro por meio de deposição. Isso não tem um grande efeito no vôo, mas pode obscurecer a visão do piloto revestindo o para-brisa da aeronave.

Ele também pode interferir com os sinais de rádio formando-se na antena. A geada geralmente se forma no ar limpo quando uma aeronave fria entra no ar mais úmido e quente.

As aeronaves que ficam estacionadas do lado de fora nas noites frias podem ficar cobertas por esse tipo de gelo pela manhã. A geada se forma quando a superfície superior da aeronave esfria abaixo da temperatura do ar circundante.

O gelo que se forma nas superfícies de controle, cauda e asas deve ser removido antes da decolagem; pode alterar as características aerodinâmicas da asa o suficiente para interferir na decolagem, reduzindo a sustentação e aumentando a velocidade de estol.

O orvalho congelado também pode se formar na aeronave que está estacionada do lado de fora em uma noite fria, quando as temperaturas estão abaixo de 0° C. Esse orvalho é geralmente cristalino e claro, enquanto a geada é branca e fina.

Assim como a geada, o orvalho congelado também deve ser removido adequadamente antes da decolagem. Na verdade, é imperativo remover qualquer tipo de umidade antes da decolagem, pois ela pode congelar enquanto o avião está taxando.

Vídeo: Como os aviões não se batem no ar voando no mesmo lugar?