As principais notícias sobre aviação e espaço você acompanha aqui. Acidentes, incidentes, negócios, tecnologia, novidades, curiosidades, fotos, vídeos e assuntos relacionados.
Visite o site Desastres Aéreos, o maior banco de dados de acidentes e incidentes aéreos do Brasil.
Além da Embraer que produz aviões comerciais, executivos e militares, o Brasil também conta com fabricantes de aeronaves de pequeno porte, drones, helicópteros e até dirigíveis.
Phenom300E, jato executivo da Embraer (Foto: Divulgação)
Pense rápido: diga o nome de uma fabricante brasileira de automóveis em atividade? Difícil, não é? Agora faça este mesmo exercício, mas com fabricantes de aviões. Você provavelmente deve ter se lembrado da Embraer. A empresa sediada em São José dos Campos (SP), uma das maiores joias da indústria nacional, é hoje a terceira maior fabricante de aeronaves comerciais do mundo.
Mas a Embraer não é a única fabricante do setor aeroespacial do Brasil. Por aqui existem diversas empresas que atuam nesse segmento e elas vão muito além da produção de aviões. Temos fabricantes que dominam o ciclo completo de desenvolvimento e fabricação de aeronaves experimentais, helicópteros, drones e até dirigíveis.
Conheça a seguir alguns dos principais fabricantes brasileiros de aeronaves.
Octans Aircraft
Avião Cygnus, da fabricante brasileira Octans (Foto: Divulgação)
Conhecida anteriormente com o nome Inpaer, a atual Octan Aircraft, baseada em São João da Boa Vista (SP), estreou no mercado de aviação geral em 2002 oferecendo aviões experimentais, que são aeronaves destinadas principalmente para atividades recreativas – mas proibidas de exercerem atividades comerciais e sobrevoarem áreas densamente povoadas.
O primeiro produto da empresa foi o monomotor ultra-leve Conquest 160 para dois ocupantes, que voou em 2001, antes mesmo de a empresa ser oficialmente fundada. Posteriormente, a fabricante lançou outros dois modelos experimentais:, o Conquest 180 e o Excel. Ao todo, quando ainda se chamava Inpaer, a fabricante entregou 240 aviões.
Em 2014, a Octans recebeu investimentos e mudou o foco de seus produtos, passando a desenvolver aeronaves mais avançadas. O primeiro modelo dessa nova safra é o Cygnus, um monomotor para cinco ocupantes e dono de uma das configurações mais avançadas do mundo na categoria de aviões utilitários leves. O aparelho ainda está em fase de desenvolvimento e certificação.
Helibras
Modelo H225M da Helibras (Foto: Divulgação)
Maior fabricante de helicópteros da América Latina, a Helibras, fundada em 1978, é uma subsidiária da Airbus Helicopters, divisão do grupo Airbus. Instalada em Itajubá (MG), a empresa é o principal fornecedor de aeronaves de asas rotativas das Forças Armadas brasileiras e também tem forte presença no mercado civil nacional, sobretudo no setor offshore.
Os produtos da Helibras são helicópteros da Airbus fabricados (ou montados) no Brasil com uma grande quantidade de componentes nacionais. O modelo mais avançado produzido pela fabricante é o H225 Super Puma, um helicóptero pesado de uso militar e hoje empregado pelas três forças militares do país.
ACS Aviation
Avião Sora-E, da ACS Aviation (Foto: Divulgação)
"Vizinha" da Embraer em São José dos Campos (SP), a ACS Aviation foi fundada em 2006. A especialidade da empresa são aviões experimentais com performance acrobática. Seu principal produto é o monomotor Sora-100, para dois ocupantes.
A ACS também presta serviços de engenharia e produz componentes para o setor aeroespacial, área em que mantém uma importante lista de clientes, entre eles a Embraer, Exército Brasileiro e a SIATT (ex-Mectron, fabricante brasileira de mísseis e dispositivos eletrônicos para aviões militares).
O momento de maior destaque da fabricante do Vale do Paraíba ocorreu em maio de 2015, quando voou o Sora-E, o primeiro avião com motor elétrico projetado e construído no Brasil.
Airship do Brasil
Modelo ADB-3, da Airship (Foto: Divulgação)
Máquina voadora comumente associada ao passado, os dirigíveis ainda existem. E, sim, em terras brasileiras também existe uma fábrica que produz esse tipo de aeronave: a Airship do Brasil (ADB). Fundada em 2005, a empresa fica em São Carlos (SP).
Os primeiros projetos da Airship foram dirigíveis não tripulados controlados remotamente, os modelos ADB-1 e ABD-2, que alçaram voo em 2009. A fabricante também produz balões cativos de vigilância, e atualmente trabalha na certificação do ABD-3, o primeiro dirigível tripulado projetado e construído no Brasil. O voo inaugural do protótipo foi realizado em 2017.
Principal meio de transporte aéreo de passageiros nas primeiras décadas do século 20, os dirigíveis hoje atuam em outras funções. O ABD-3, por exemplo, pode ser empregado para transportar cargas, voos de patrulha e publicidade - servindo como um “outdoor voador”. O modelo também pode ser equipado com variados equipamentos, como câmeras de vídeo, radares e holofotes.
Xmobots
Modelo Nauru 1000C, da Xmobots (Foto: Divulgação)
Outra empresa aeronáutica instalada em São Carlos (SP), a Xmobots é o maior fabricante de drones do Brasil e também uma das maiores do mundo nesse nicho. Criada em 2007, a empresa possui um variado menu de produtos para diferentes áreas - como agronegócio, logística, mapeamento topográfico e defesa.
O principal setor de atuação da Xmobots é o agronegócio, que responde por mais de 80% das vendas de drones da empresa. São aparelhos com motorização elétrica ou híbrida concebidos para pulverizar plantações, como o Dractor 25A, e mapeamento de terrenos, casos do Aractor 5C e o Nauru 500C VTOL.
Uma versão modificada do Nauru, o Nauru 1000C, está sendo desenvolvida para o setor militar. O drone pode ser equipado com sensores de busca térmica e câmeras de vigilância. A Xmobots também pretende armar o modelo. Para avançar nesse ponto, a empresa do interior de São Paulo assinou, em maio deste ano, um memorando de entendimento com a MBDA, multinacional europeia desenvolvedora e fabricante de mísseis.
Scoda Aeronáutica
Modelo Super Petrel, da Scoda (Foto: Divulgação)
Quer um avião anfíbio? Aqui no Brasil existe uma fábrica que produz esse tipo de aeronave: a Scoda Aeronáutica, localizada em Ipeúna (SP). O modelo da empresa capaz de pousar na água e em terra firme é o Super Petrel LS, uma versão nacional e otimizada do biplano Hydroplum II, desenvolvido na França nos anos 1980.
Com 400 unidades construídas, o Super Petrel tem boa aceitação no exterior. O avião anfíbio fabricado no Brasil já foi exportado para os Estados Unidos, Canadá, Austrália e diversos países na Europa.
Outro produto da Scoda é o monomotor experimental Dynamic WT-9, desenvolvido originalmente na Eslováquia pela Aerostoll.
Stella Tecnologia
Modelo Atobá, da Stella (Foto: Divulgação)
Empresa brasileira pioneira na produção de drones de grande porte, a Stella Tecnologia, fundada em 2015 em Duque de Caxias (RJ), é um dos nomes mais promissores da indústria aeroespacial nacional. A fabricante trabalha atualmente no desenvolvimento e certificação do veículo aéreo não tripulado Atobá, uma aeronave de múltiplos propósitos que fez seu voo inaugural em 2020.
Concebido principalmente para aplicações militares, o Atobá pode voar equipado com câmeras de vigilância, sensores infravermelho e outros equipamentos de busca, capazes de acompanhar objetos ou até pessoas a vários quilômetros de distância. O aparelho é comandado por uma estação de rádio em solo e pode alcançar até 5.000 metros de altitude e permanecer voando por 28 horas impulsionado por um motor a gasolina.
A Stella também oferece o drone Atobá no setor civil, onde ele pode servir como ferramenta de monitoramento aéreo para o agronegócio, exploração de gás e petróleo e no controle de crimes ambientais e incêndios florestais.
O uso de aviões na guerra começou no início do século 20, tendo se popularizado, de certa forma, na Primeira Guerra Mundial. Porém, a humanidade só veria o céu como um dos principais palcos de batalhas durante a Segunda Guerra, iniciada no fim da década de 30.
Na iminência da grande batalha e do uso massivo das aeronaves, é natural que as nações resolvessem conduzir alguns experimentos aeronáuticos. Eles permitiram, entre outras coisas, o uso em escala de aviões a jato e o desenvolvimento de novos materiais na construção dos veículos. Em outros casos, no entanto, as coisas não deram tão certo assim.
Listamos aqui 10 situações em que a engenharia aeroespacial não foi tão bem-sucedida, produzindo aviões um tanto quanto bizarros e desengonçados – por sorte, a maior parte deles nunca chegou a voar realmente. Confira:
10 – Kokusai Ki-105
Faltando pouco mais de um ano para o fim efetivo da Segunda Guerra, o Japão enfrentava maus bocados. O país não dispunha de combustível, já que o avanço dos aliados fez com que muitas instalações utilizadas para a produção de óleo tenham sido tomadas ou estavam desativadas por falta de recursos. Os japoneses até tentaram criar alguma coisa a partir de sementes de árvores, mas a experiência não deu certo.
Como fazer aviões voarem sem gasolina, então? Adaptando dois motores a uma aeronave do estilo "glider", um planador gigante que era rebocado por bombardeiros. Foi aí que surgiu o Kokusai Ki-2015: os japoneses pegariam esta aberração e voariam com ele até Sumatra para pegar combustível e trazer de volta para o país.
Só tinha um porém: por ser muito grande e ter motores muito fracos, ele acabaria utilizando muito combustível, sendo necessário reabastecê-lo para que pudesse voltar. Na prática, isso significava que o "avião" consumia 80% do combustível que ele deveria levar para o Japão. Se não bastasse a catástrofe logística, a aeronave era extremamente lenta e difícil de pilotar, tornando-a um alvo fácil para os caças aliados.
O programa, no entanto, nunca foi colocado em prática em grandes escalas – para a sorte dos pilotos japoneses.
9 – Henschel Hs-132
Os alemães foram pioneiros em produzir e utilizar caças a jato em combate durante a Segunda Guerra – com os temidos Messerschmitt Me 262 –, então não é surpresa que eles queriam expandir a tecnologia para outros tipos de aeronaves, como os bombardeiros.
A aplicação das turbinas, no entanto, era pouco convencional no caso do Hs-132: o motor ficava na parte superior do estreito avião, fazendo com que os pilotos tivessem que ficar de barriga para baixo dentro do cockpit que ficava diretamente no bico do veículo.
Apesar de estranha, a posição favorecia muito o piloto na hora dos mergulhos para bombardeio, pois ela ajudava a amenizar os efeitos da força G. A aeronave nunca chegou a voar, e, apesar do visual bizarro, o Henschel Hs-132 poderia ter sido uma pedra no sapato das forças aliadas caso tivesse sido colocado em produção.
8 – Blohm & Voss Bv 40
Criado pelo engenheiro Richard Vogt para ser extremamente simples de ser construído e montado, o Bv 40 deveria ter sido uma alternativa barata para os alemães combaterem os frequentes bombardeios vindos das forças aliadas.
Ele era um planador dotado de dois canhões de 30 milímetros, e o protótipo seria carregado por dois caças Bf 109 até uma altura superior à que voavam os bombardeiros, para só então ser solto. A partir daí começava um processo de, no máximo, duas passagens para tentar fazer o maior estrago possível.
Com a criação dos caças a jato, no entanto, o projeto do Bv 40 foi descartado e o planador nunca chegou a ser utilizado em combate.
7 – Hafner Rotabuggy
Este é um dos mais bizarros da lista, de longe: o Rotabuggy foi concebido para solucionar um problema logístico dos aliados, o de colocar veículos de combate no front. Os russos chegaram até a criar um tanque com asas (batizado de Antonov A-40), mas os britânicos resolveram colocar hélices de helicópteros em todo tipo de veículo – entre eles, um jipe.
Como se não bastasse, Raoul Hafner, o criativo engenheiro por trás da proposta, criou também uma "cauda" para que o Rotabuggy ficasse ainda mais parecido com a aeronave que lhe deu origem. Não é necessário dizer que ele mal conseguia voar e que logo o projeto foi descartado.
6 – Boeing YB-40
Um dos bombardeiros aliados mais conhecidos da Segunda Guerra foi o B-17, apelidado de "Fortaleza Voadora". Não é para menos: eram 13 metralhadoras espalhadas por toda a estrutura do avião.
Mas a Boeing e a Força Aérea norte-americana não estavam contentes, então resolveram criar uma nova aeronave, batizada de YB-40, com 16 metralhadoras. As bombas que o B-17 carregava foram descartadas e em seu lugar entrou mais munição – triplicando a quantidade original.
Contudo, o peso maior fez com que o YB-40 ficasse substancialmente mais lento que os demais bombardeiros, fazendo com que o novo avião mais atrapalhasse do que ajudasse de forma efetiva nas missões.
5 – Interstate TDR
Aviões não tripulados começaram a ser utilizados pra valer nas últimas duas décadas, mas alguns já foram lançados durante a Segunda Guerra. Enquanto os alemães fizeram uso massivo de mísseis guiados mas não pilotados, a Marinha norte-americana resolveu investir em bombas voadoras autoguiadas – uma delas foi o TDR, apelidado de "torpedo voador".
Ele era controlado com o auxílio de um transmissor de televisão que foi instalado na "aeronave". Como o intuito era de lançá-lo em navios, ele era feito de materiais baratos e sua construção era supersimples. Foram 50 missões com 31 bombardeios bem-sucedidos.
Os japoneses ficaram absolutamente chocados, achando que os americanos também estavam adotando táticas kamikaze para eliminar seus inimigos. De qualquer forma, o TDR deixou de ser utilizado nos idos de 1944, quando os Estados Unidos já detinham a superioridade aérea no Pacífico e não havia mais a necessidade de armas complexas como o torpedo voador.
4 – Douglas XB-42 Mixmaster
A Douglas decidiu, próximo do fim da guerra, colocar seu foco no desenvolvimento de novos tipos de bombardeiros: mais rápidos e ágeis, divergindo da premissa das "fortalezas voadoras" como um dos exemplos que mostramos acima.
Uma das criações da empresa foi o XB-42 Mixmaster, um bimotor que tinha suas hélices localizadas na parte de trás do avião. Embora não fosse exatamente uma novidade, já que esse esquema era utilizado em alguns modelos de caças, era a primeira vez que um bombardeiro era feito dessa forma.
E se o objetivo da Douglas era a velocidade, a nova aeronave fez isso muito bem: ela era capaz de atingir 660 km/h, mesmo carregando mais de 3 toneladas de bombas – o dobro do que levavam os B-17.
O protótipo, no entanto, chegou tarde: apesar de ser excelente, a guerra já havia terminado quando o projeto estava finalizado e pronto para ser produzido em grande escala.
3 – General Aircraft G.A.L. 38 Fleet Shadower
O G.A.L. 38 trouxe o desenho dos saudosos biplanos de volta para a Segunda Guerra. Ele foi criado para voar em altitudes altíssimas enquanto fazia pouco (ou nenhum) barulho e espiar a movimentação da frota marítima alemã – daí o nome "Fleet Shadower", ou "sombreador de frotas".
Pouco tempo depois de ser idealizada, com a criação dos radares, a aeronave acabou se tornando inútil, já que seu uso era extremamente específico. Com isso, ela nunca chegou a ser efetivamente colocada em serviço.
2 – Messerschmitt Me-328
Se alguns aviões sofriam por serem específicos demais, outros acabaram não sendo utilizados pelo motivo contrário: ninguém sabia o que fazer com eles. O Me-328 foi um deles: os alemães criaram uma base, mas não tinham ideia do que fazer com ela.
Os motores a jato eram fortes demais para a estrutura de madeira, o uso dele como planador de combate também não era o melhor e para todas as utilidades possíveis, havia uma opção melhor. Sendo assim, ele nunca chegou a sair efetivamente do papel.
1 – Caproni Campini N.1
Parece um avião a jato, soa como um avião a jato... Mas não é um avião a jato. Em 1940, a Alemanha já havia começado a testar aeronaves movidas por turbinas e a Itália resolveu ter uma para chamar de sua. Foi aí que o Caproni Campini N.1 nasceu.
Só havia um detalhe: ele não tinha uma turbina. O avião foi equipado com um motor de hélice convencional na parte da frente da fuselagem, que sugava o ar para dentro do duto e fazia com que ele fosse expelido na parte de trás por uma espécie de compressor. O princípio de funcionamento é bem parecido com o de uma turbina, mas os componentes não tinham absolutamente nenhuma relação.
Um item interessante, no entanto, é que havia um dispositivo na parte de trás da aeronave que permitia que o combustível fosse despejado e aceso – uma função muito parecida com o "pós-combustor" dos jatos atuais.
O peso do avião (devido ao sistema de propulsão), no entanto, fazia com que ele fosse extremamente lento e não chegasse a ser produzido para entrar em combate.
No "Senta que lá vem história" de hoje, Lito Sousa nos conta como o clima extremo gerado pelo entorno do Monte Fuji fez um avião se desintegrar no ar. Além disso, você vai entender como uma câmera Super 8 encontrada nos destroços cooperou com essa investigação aérea.
Em 2 de outubro de 2015, a aeronave de Havilland Canada DHC-6 Twin Otter 300, prefixo PK-BRM, da Aviastar (foto abaixo), operava o voo 7503, um voo voo regional de Masamba para Makassar , na Indonésia.
A aeronave decolou do Aeroporto de Masamba às 14h25 WITA (06h25 UTC) com 3 tripulantes e 7 passageiros a bordo. Esperava-se que ele pousasse em Makassar uma hora depois, às 15h25.
A aeronave envolvida no acidente
Todos a bordo da aeronave eram indonésios. Eram sete adultos, uma criança e dois bebês. Entre os passageiros estavam o chefe do Aeroporto Seko, no norte de Luwu, e cinco funcionários do Aeroporto Andi Djemma. Uma família também estava a bordo.O piloto e o co-piloto divulgados pela Aviastar eram o Capitão Iri Afriadi, com 2.900 horas de experiência de voo e Primeiro Oficial Yudhistira Febby com 4.350 horas de experiência de voo.
Porém, onze minutos após a decolagem, o avião perdeu contato com a torre de controle. Nesse momento, a aeronave estava a uma altitude de 8.000 pés. Segundo relatos locais, o tempo era citado como excelente, com visibilidade acima de 100 km e ventos de 5 nós.
A rota escolhida neste voo foi uma rota "muito segura" com altitude variando em torno de 10 a 100 pés, o que significa que não há montanhas ou grandes colinas na rota.
A rota real e a rota designada para o voo Aviastar 7503 (NTSC)
A comunicação entre as tripulações de voo e o controlador de tráfego aéreo da época também foi considerada muito boa. O combustível a bordo era suficiente para o voo e, segundo a Aviastar, a aeronave estava em muito boas condições. Isto foi apoiado por evidências do KNKT (Comitê Nacional de Segurança nos Transportes).
Imediatamente após o desaparecimento da aeronave, a Agência Nacional de Busca e Resgate da Indonésia (BASARNAS) criou um centro de crise em Makassar. Eles também enviaram 100 equipes de busca e resgate para a área.
O primeiro dia de busca foi a pé. O avião ainda não havia sido localizado naquele momento. Com a aproximação do anoitecer, as buscas foram suspensas, embora cidadãos da regência de Palopo afirmassem ter visto um avião voando "muito baixo" na área. Esses relatórios foram posteriormente confirmados como sendo farsas.
No segundo dia, o pessoal de busca e salvamento de Masamba e Makassar vasculhou a mesma área com um helicóptero e três aeronaves da Aviastar. A área de busca foi ampliada, de Palopo e arredores até a costa de Luwu.
Em conferência de imprensa, BASARNAS informou que a posição do avião desaparecido era de cerca de 14 milhas náuticas quadradas. Foi oficialmente ampliado para 24 milhas quadradas náuticas, o que levaria cerca de 2,5 horas por terra a partir da cidade mais próxima. Havia três coordenadas que BASARNAS suspeitava serem o local do acidente, que são 14 milhas náuticas, 24 milhas náuticas e 34 milhas náuticas.
A aeronave foi finalmente localizada pelo sinal do celular do engenheiro, que estava no Modo Avião. A operação de busca foi prejudicada devido às más condições climáticas na área. Ao anoitecer, algumas pessoas relataram que o avião foi encontrado na área de Sidrap. A alegação foi investigada posteriormente.
A BASARNAS enviou cerca de 125 efetivos no segundo dia de operações de busca, com assistência das Forças Armadas Nacionais . O chefe do BASARNAS, Bambang Soelistyo, disse em conferência de imprensa que o seu pessoal, juntamente com as Forças Armadas Nacionais e algum outro pessoal de Luwu, vasculhou quatro áreas principais, na regência de Luwu, na regência de Luwu do Norte e na regência de Palopo.
No terceiro dia da busca do incidente, a BASARNAS adicionou aeronaves. Eles também acrescentaram pessoal adicional de 125 para 299 pessoas. O vice-governador de Sulawesi do Sul , Agus Arifin Nu'mang juntou-se à busca pelo voo a partir do solo. À medida que a procura se alargava, também chegava assistência de várias organizações governamentais, incluindo a BPBD, a Cruz Vermelha Indonésia e o IRC. Parentes dos passageiros também aderiram às buscas, na esperança de sobreviventes.
Muitas pessoas afirmaram ter visto a queda do avião, mas todas forneceram localizações diferentes. Algumas pessoas alegaram que o avião caiu nas montanhas Palopo, enquanto outras alegaram que o avião caiu perto da cachoeira Sidrap.
Um jovem estudante afirmou que o avião estava voando muito baixo e tinha fumaça na asa, e então atingiu o mar na costa de Luwu. Alguns moradores também afirmaram que o avião voou para o mar de Barru e Pare-Pare. BASARNAS afirmou que há possibilidades de o avião ter saído do curso, seguindo uma rota diferente, e sobrevoado a costa devido às montanhas a oeste. Como resultado, a área de busca foi ampliada até o Estreito de Makassar.
No quarto dia, a área de busca foi oficialmente ampliada para o mar. À tarde, às 15h55 WITA, alguns funcionários da BASARNAS e da polícia indonésia encontraram destroços na montanha Latimojong. A BASARNAS confirmou posteriormente que os destroços pertenciam à aeronave desaparecida.
Fotos tiradas pela BASARNAS mostraram que os destroços da aeronave estavam em chamas mesmo dias após o desaparecimento. No momento da descoberta, havia três corpos queimados na área. Nenhum sobrevivente foi encontrado.
No dia 6 de outubro, as caixas pretas foram recuperadas, assim como os corpos. As caixas pretas foram encontradas em boas condições. BASARNAS levou os corpos para um hospital militar em Makassar. O Presidente Joko Widodo observou a recuperação. Estiveram 22 funcionários da DVI que ajudarão na identificação das vítimas.
O Comitê Nacional de Segurança nos Transportes afirmou que os destroços do avião não puderam ser localizados por dias porque a antena ELT (Transmissor Localizador de Emergência) se soltou durante o impacto com o terreno. A aeronave estava equipada com um ELT, porém a Agência de Busca e Resgate demorou dias para localizar os destroços.
A observação no local do acidente revelou que a aeronave atingiu várias copas de árvores e resultou em um corte limpo nas árvores. Esses cortes típicos de corte limpo foram causados por um impacto em alta velocidade com os cortes nas árvores considerados nivelados, indicando que a aeronave estava em voo reto e nivelado.
Quando os investigadores chegaram ao local do acidente, suspeitaram que o avião quicou duas vezes antes de explodir e queimar. Segundo relatos, o avião atingiu uma árvore do outro lado da montanha, pois foram encontrados galhos quebrados de árvores no local. O avião pegou fogo e bateu no topo da montanha, matando todos a bordo. Os investigadores também criaram a cronologia da descoberta dos destroços e explicaram como o avião caiu com imagens de drones.
Um relatório de investigação preliminar foi publicado em 21 de janeiro de 2016. Às 06h37 UTC, os pilotos concordaram em voar direto para Barru, pois tinham essa experiência. Poucos segundos depois, o segundo em comando sugeriu atrasar um pouco o vôo direto. Houve formação parcial de nuvens. Às 06h51 UTC, o piloto em comando disse que queria subir, então o CVR gravou os sons de impacto e parou de gravar. A aeronave colidiu com árvores e caiu a 7.734 pés.
Os investigadores recuperaram a rota de voo designada e compararam-na com a rota seguida pela tripulação do voo 7503. Foi revelado que o piloto havia se desviado de sua rota original. A rota prevista era do ponto Bua até Siwa e depois até Barru, porém, após a tripulação chegar ao ponto Bua, decidiram voar direto para Barru.
A rota que a tripulação tomou é montanhosa com várias montanhas à frente (alturas de terreno entre 9.600 e 11.000 pés), enquanto a rota designada estava perto da costa, sem altura significativa. Os dados meteorológicos do local do acidente revelaram ainda que havia nuvens no percurso “atalho”, o que limitaria a sua visibilidade. Com terreno montanhoso e visibilidade limitada, isso colocaria o voo em risco.
Os investigadores então se concentraram em por que os pilotos decidiram pilotar o avião direto para apontar Barru, em vez de apontar para Siwa. Os investigadores consideraram a Consciência Situacional e o processo de tomada de decisão para voar direto para Barru. Foi revelado que um dos tripulantes já havia feito a mesma coisa antes e durante o voo anterior nenhum incidente ocorreu.
Isso pode ter feito com que um dos tripulantes confiasse naquele que já havia feito isso no passado para cortar a rota e fazer um vôo direto para Barru. Durante o voo para Point Barru, nem o piloto nem o copiloto discutiram as condições ambientais à frente. A ausência de discussão sobre as condições futuras fez com que os pilotos não tivessem considerado adequadamente as implicações operacionais de voar na rota direta, levando a uma perda de consciência situacional.
A aeronave possuía Certificado de Aeronavegabilidade válido antes do acidente e foi operada dentro do envelope de peso e balanceamento.
Ambos os pilotos tinham licenças válidas e atestados médicos.
O voo acidental de Masamba (WAFM) para Makassar (WAAA) foi o 6º setor para a aeronave e a tripulação naquele dia. O Capitão atuou como Piloto Voador e o Primeiro Oficial atuou como Piloto Monitorador.
A imagem de satélite publicada pela BMKG às 07h00 UTC mostrou que havia formações de nuvens na área do acidente. Os moradores locais afirmaram que o tempo na área do acidente estava nublado no momento do acidente.
A aeronave partiu de Masamba às 06h25 UTC (14h25 LT), conduzida em VFR com altitude de cruzeiro de 8.000 pés e tempo estimado de chegada a Makassar de 07h39.
Após atingir a altitude de cruzeiro, a cerca de 22 Nm de Masamba, o voo desviou-se da rota visual e voou direto para BARRU na direção de 200° em direção à área com terreno elevado e formação de nuvens com base na imagem do satélite BMKG.
O processo de tomada de decisão dos pilotos não demonstrou qualquer evidência de que estivessem preocupados com as condições ambientais à frente, que apresentavam mais riscos e exigiam um julgamento de voo correto.
O CVR não registrou cautela e advertência auditiva do EGPWS antes do impacto. A investigação não conseguiu determinar o motivo da ausência do EGPWS.
Os dados do CVR e o corte nas árvores indicaram que a aeronave estava em voo reto e nivelado e não havia indicação de ação de evasão por subida ou curva.
A Agência SAR não recebeu nenhum sinal de colisão do ELT da aeronave, provavelmente devido ao desprendimento da antena do ELT durante o impacto.
Em relação à operação do EGPWS para a tripulação de voo, foi realizado um briefing especial, porém não houve treinamento especial.
O teste operacional do sistema TAWS não foi incluído na lista de verificação piloto.
A investigação não conseguiu determinar a instalação e a última revisão da base de dados de terrenos do TAWS.
A investigação não conseguiu encontrar o documento com o resultado do teste funcional após a instalação do TAWS.
Alguns dos pilotos do DHC-6 não foram informados sobre a operação do TAWS e EGPWS.
Fatores contribuintes: O desvio da rota visual da empresa sem considerar adequadamente os riscos elevados de altitude de cruzeiro inferior ao terreno mais alto e às condições meteorológicas dos instrumentos, além da ausência do aviso EGPWS, resultou na omissão de ações de evitação.
No dia 2 de outubro de 1996, os pilotos do voo 603 da Aeroperú se viram diante de um cenário de pesadelo: a falha simultânea de seus indicadores de velocidade e altitude, ao sobrevoar o Oceano Pacífico à noite. Incapazes de descobrir a que altura estavam ou a que velocidade estavam indo, eles lutaram às cegas para encontrar o caminho de volta ao aeroporto por quase 30 minutos, lutando contra avisos contraditórios e instrumentos não confiáveis enquanto os controladores tentavam em vão ajudá-los.
O avião atingido acabou voando para o mar, matando todas as 70 pessoas a bordo. Os investigadores logo descobriram que essa cadeia mortal de eventos foi posta em movimento não por alguma falha mecânica catastrófica, mas por uma única tira de fita adesiva.
A aeronave fotografada em Miami oito meses antes do acidente
O voo 603 da Aeroperú era um voo regular com a companhia aérea nacional do Peru a partir de Miami, nos Estados Unidos, com escala em Lima, no Peru, e destino final em Santiago, no Chile nas primeiras horas de 2 de outubro de 1996.
A aeronave em questão era o Boeing 757-23A, prefixo N52AW, que havia sido recentemente reparado e completamente limpo após um colisão de pássaros. Pouco depois da meia-noite, a tripulação realizou suas verificações pré-voo, incluindo uma caminhada pelo lado de fora do avião, e não encontrou nenhuma anormalidade.
Em seguida, 61 passageiros e nove tripulantes embarcaram na aeronave para o voo com destino a Santiago. Sem o conhecimento de ninguém na época, algo já estava terrivelmente errado com o avião.
Os pilotos perceberam um problema quase assim que as rodas saíram da pista: apesar do fato de que eles tinham claramente começado a subir, ambos os altímetros e o altímetro de reserva ainda marcavam zero. Já voando sobre o mar, a tripulação nivelou a uma altitude de apenas 100m e debateu se eles estavam realmente escalando ou não.
Eles logo continuaram com a subida, apenas para descobrir que ambos os indicadores de velocidade no ar também exibiam valores extremamente imprecisos que diferiam um do outro consideravelmente.
Os avisos de “ajuste da velocidade do ar Mach” e “relação do leme” apareceram na tela do computador. Eram avisos de advertência que chegavam em alta velocidade para alertar os pilotos de que movimentos bruscos do leme poderiam danificar o avião; no entanto, os avisos estavam errados porque, na verdade, estavam se movendo muito lentamente.
Os pilotos lutaram por um minuto para descobrir o que isso significava, pois aparentemente não estavam familiarizados com os avisos. Esses dois avisos logo foram acompanhados por um aviso de desconexão do autothrottle. Três minutos após a decolagem, agora bombardeado por avisos, o primeiro oficial declarou emergência.
Nesse ponto, os pilotos deveriam ter percebido que seus indicadores de velocidade e altitude não estavam funcionando. Havia dois instrumentos de backup que eles deveriam ter usado: o rádio-altímetro, que usa ondas de rádio para determinar a altura acima do solo (em oposição ao altímetro barométrico padrão, que dá a eles altitude acima do nível do mar) e o indicador de velocidade do solo a seguir para o horizonte artificial (A velocidade do solo e a velocidade do ar às vezes podem ser consideravelmente diferentes, mas teria sido melhor do que nada).
Ambos eram sistemas independentes e não foram afetados pela falha, mas os pilotos nunca tentaram usar nenhum deles. Em vez disso, eles erroneamente passaram a acreditar que seus altímetros haviam começado a funcionar novamente quando a altitude indicada aumentou rapidamente para 4.000 pés.
Eles perguntaram ao controlador a altitude deles e ele também deu a eles um número de 4.000 pés, mas ele estava obtendo esse número a partir dos dados enviados pelo transponder do avião, que dependia do mesmo sensor com defeito dos próprios altímetros dos pilotos. Nenhum deles parecia ter conhecimento de sistemas suficiente para entender isso.
Enquanto eles continuavam a subir, a comunicação na cabine foi interrompida completamente. O primeiro oficial ainda estava focado em resolver o alerta de proporção do leme, enquanto o capitão tentava conectar o piloto automático, o que era impossível porque ele não tinha dados confiáveis de velocidade e altitude para voar o avião.
Em um ponto, eles até discutiram se o piloto automático estava ligado ou desligado. Eles também tentaram mudar os dados de velocidade no ar do capitão para uma fonte secundária, mas a velocidade no ar indicada ainda estava muito baixa devido ao ajuste de potência dos motores.
Eles não entenderam que o problema estava nos dados de origem e não simplesmente no indicador, então pensaram que esse novo valor deveria estar correto de alguma forma. Neste ponto, a velocidade no ar começou espontaneamente a aumentar muito além dos níveis normais, então os pilotos tentaram desesperadamente abaixá-lo novamente, reduzindo a potência do motor para marcha lenta e acionando os freios de velocidade.
Embora isso tenha reduzido drasticamente sua velocidade real, a velocidade indicada continuou a aumentar até que disparou um aviso de velocidade excessiva, informando-os de que estavam voando muito rápido. Desesperadamente confuso, o primeiro oficial disse aos controladores de tráfego aéreo: “Temos todos os motores desligados e está acelerando ... acelerando!”
Só agora, 15 minutos após a decolagem, a tripulação considerou a possibilidade de que os dados-fonte estivessem errados e não apenas o indicador. Dois minutos depois, voando a uma velocidade perigosamente baixa, o alerta do stick shaker foi ativado para informar aos pilotos que eles estavam voando muito devagar e estavam prestes a estolar.
No entanto, o aviso de velocidade excessiva continuou a soar ao mesmo tempo que o aviso de estol. O avião estava simultaneamente dizendo a eles que eles estavam voando muito rápido e muito devagar.
Nesse momento, sem saber como levariam o avião para o aeroporto, eles solicitaram que outro avião os interceptasse e os guiasse para baixo. Os controladores disseram que um avião estaria pronto para recebê-los em 15 minutos.
Os pilotos então começaram a discutir se eles estavam ou não estolando. Seus altímetros mostraram que estavam mantendo a altitude a 9.500 pés, o que foi reforçado pela confirmação do controlador de sua altitude.
No entanto, também estava claro que o empuxo do motor era muito baixo para que a velocidade no ar indicada fosse real. O capitão chamou a barraca de “fictícia” e, ao se deparar com informações que contradiziam, chamou tudo de fictício.
Durante um período de cinco minutos, o avião estolou ou quase estolou várias vezes, fazendo com que perdessem uma quantidade considerável de altitude.
Descendo por uma altitude de 2.450 pés, com os altímetros mostrando 9.700, o sistema de alerta de proximidade do solo foi ativado e uma voz robótica repetiu as palavras "muito baixo, terreno", ao lado de uma voz semelhante repetindo continuamente "velocidade excessiva.
O copiloto verificou duas vezes com os controladores se eles estavam de fato sobre o mar e não voando em direção a uma montanha. O controlador então os informou que sua velocidade era muito baixa, momento em que os pilotos perceberam que estavam prestes a atingir o oceano, e eles aceleraram com sucesso para fora do estol e subiram para 4.000 pés. Os altímetros continuaram a mostrar valores superiores a 9.000 pés.
Agora que eles pareciam ter se orientado, eles iniciaram uma volta de 180 graus em direção a Lima a uma distância de 80 km. 24 minutos se passaram desde que o avião decolou. Eles planejavam interceptar o sistema de pouso por instrumentos e deixá-lo guiá-los até a pista.
No entanto, embora os controladores continuassem a confirmar que estavam a 9.700 pés, eles estavam realmente descendo 2.500 pés e a caminho de atingir a água antes de interceptar o sinal ILS.
Agora, 28 minutos após a decolagem, o alerta de proximidade do solo soou novamente. Certos de que estavam a 9.700 pés, os pilotos concluíram que o aviso era falso. Na verdade, dentre os muitos avisos estridentes na cabine do piloto, era o único que estava correto.
Um minuto depois, descendo a uma taxa lenta, mas constante, a ponta da asa esquerda e o motor repentinamente atingiram a superfície do Oceano Pacífico. O primeiro oficial gritou: “Estamos impactando a água! Puxe para cima! Puxe para cima! "
Eles conseguiram puxar o avião para fora da água e subir a uma altitude de 200 pés, mas o avião foi fatalmente danificado e inclinou-se fortemente para a esquerda, virando em um ângulo de 70 graus.
O capitão gritou: "Vamos inverter!" Voando quase de lado, o Boeing 757 caiu direto no oceano, desintegrando-se com o impacto e matando todas as 70 pessoas a bordo.
Quando as equipes de resgate chegaram ao local, mais de 7 horas após o acidente, tudo o que restou foi uma pequena quantidade de detritos leves e vários corpos flutuando na superfície.
A maioria das evidências e a maioria dos passageiros haviam afundado com o avião. Os investigadores se depararam com um enigma misterioso. O voo 603 havia oscilado ao largo da costa peruana por quase meia hora, aparentemente fora de controle. Mas, assim que um submersível alcançou os destroços, eles descobriram que a causa não era uma falha mecânica.
Em meio aos destroços no fundo do mar, os investigadores descobriram que fita adesiva havia sido colocada sobre as portas estáticas de pitot do avião. As portas pitot estáticas são um componente crítico do sistema que mede a velocidade do ar e a altitude.
Para entender o que são e o que aconteceu com eles, é necessário explicar como a velocidade e a altitude são calculadas. À medida que o avião voa para a frente, o ar é forçado a entrar em um tubo pitot, um tubo cilíndrico aberto em uma das extremidades. A pressão deste ar é medida e então comparada à pressão estática - isto é, a pressão do ar ambiente fora do avião.
A diferença é usada para determinar a velocidade com que o avião está voando. Uma leitura de pressão estática também é fornecida ao altímetro barométrico para determinar a altura do avião acima do nível do mar. As portas pitot estáticas, pequenas aberturas que não ficam de frente para a corrente de ar, detectar a pressão estática para este propósito.
Mas se algo bloquear as portas estáticas, eles não serão capazes de medir a pressão estática corretamente, e todos os cálculos que dependem desses dados serão descartados. Colocar fita adesiva sobre as portas estáticas tornou-as efetivamente inúteis porque não estavam mais expostas ao ar.
A fita adesiva foi colocada nas portas estáticas por um funcionário da manutenção que poliu o avião após seus reparos antes do vôo. As portas estáticas devem ser cobertas durante a limpeza da aeronave para evitar que água ou sujeira entrem nelas.
O 757 naquela época não vinha com tampas padronizadas para os tubos pitot e portas estáticas, então os funcionários da manutenção usaram fita adesiva, o que era contra o protocolo. Havia uma razão muito boa para isso: a fita adesiva de prata era difícil de localizar contra a superfície de metal do avião, especialmente à noite.
Depois de concluída a manutenção, os trabalhadores deveriam ter feito uma verificação para ter certeza de que o avião estava pronto para partir e que não havia anormalidades, mas esqueceram a fita adesiva.
O avião deveria ter passado por outra rodada de verificações, desta vez pelo supervisor de manutenção; isso também não aconteceu ou não foi feito corretamente, porque o avião foi liberado para voo com a fita ainda ligada. Ainda assim, havia outra camada de redundância: as verificações finais pré-voo. Mas quando o capitão deu a volta no avião pela última vez durante as verificações pré-voo, ele também não percebeu a fita adesiva.
Mesmo depois que o avião decolou, houve medidas que poderiam ter sido tomadas para garantir um resultado seguro. Como mencionado anteriormente, os pilotos poderiam ter pilotado o avião usando o rádio-altímetro e o indicador de velocidade de solo, que são independentes do sistema pitot estático, mas nunca lhes ocorreu fazer isso.
Isso ocorre porque os pilotos obtiveram visão de túnel: eles se fixaram em avisos como “relação do leme” e outros sintomas da falha e, portanto, nunca tentaram encontrar a causa raiz. Eles foram bombardeados por tantos avisos que nunca deram um passo para trás e perguntaram por que os estavam recebendo; suas ações eram reativas, não proativas.
Isso os levou a cometer os mesmos erros repetidamente, confiando repetidamente em instrumentos que deveriam saber que estavam com defeito. Se eles tivessem feito um balanço adequado da situação, eles teriam sido capazes de pensar criticamente e deduzir o que estava funcionando e o que não estava, e usar o primeiro para fazer o avião pousar em segurança. Infelizmente para todos a bordo, isso não aconteceu.
Consequências legais significativas ocorreram como resultado do acidente. O engenheiro de manutenção, que colocou fita adesiva nas portas estáticas e depois se esqueceu disso, foi condenado à prisão por homicídio negligente.
Paralelamente, as famílias das vítimas processaram a Boeing por perdas e danos, alegando que o fabricante deveria ter previsto o “uso indevido de seu produto” e ter um sistema melhor para lidar com portas estáticas bloqueadas.
Durante o caso, os advogados das vítimas levantaram a questão de saber se os passageiros morreram instantaneamente. Eles argumentaram que muitos passageiros sobreviveram ao impacto e subsequentemente se afogaram, aumentando seu sofrimento.
Embora os investigadores considerassem isso altamente improvável, as famílias receberam um acordo extrajudicial recorde de cerca de US$ 1.000.000 por vítima. A própria Aeroperú fechou as portas em 1999, em parte devido ao crash, que veio somar-se a problemas financeiros pré-existentes.
Alguns aspectos do acidente permanecem controversos. Além do debate sobre se alguém sobreviveu ao impacto, a sentença de dois anos dada ao trabalhador de manutenção foi criticada pelos investigadores, que acreditavam que a responsabilidade era da alta administração, que não fornecia treinamento e supervisão adequados.
Na época, a percepção pública do acidente foi influenciada pelo fato de que outro Boeing 757, o voo 301 da Birgenair, havia caído apenas sete meses antes, essencialmente pela mesma razão, matando todas as 189 pessoas a bordo. Nesse caso, as vespas bloquearam o próprio tubo pitot (em vez da porta estática), causando leituras incorretas de velocidade no ar que levaram os pilotos a estolar o avião por engano.
A Boeing foi criticada por esses dois acidentes sucessivos, mas o denominador comum na verdade estava no treinamento do piloto: os pilotos simplesmente não estavam equipados para diagnosticar e responder adequadamente a leituras incorretas do sistema pitot estático. Apesar dos esforços que foram feitos para resolver esse problema, reações ruins a dados errôneos de velocidade no ar ceifaram vidas até 2018.
No final, a queda do voo 603 da Aeroperú deve ser atribuída a erros humanos em várias áreas diferentes. Engenheiros de manutenção e supervisores mal treinados da Aeroperú que não faziam seus trabalhos.
Os pilotos também eram imperfeitos. Não esperando ter que olhar atentamente para as portas estáticas de pitot, eles não perceberam a única tira de fita adesiva que os derrubaria. Uma vez no ar, eles demonstraram uma gestão deficiente dos recursos da tripulação e nunca tentaram chegar à raiz da emergência. Aqui, o Relatório Final do acidente.
E então eles voaram às cegas noite adentro por 29 minutos aterrorizantes, sem perceber que as ferramentas que poderiam tê-los salvado estavam lá na cabine o tempo todo.
A seguir, os diálogos recuperados da caixa-preta de voz (CVR):
00:42:12 (01:55) Primeiro oficial: Os altímetros estão travados!
00.42:22 (02:05) Primeiro oficial: Veja! Os altímetros estão travados!
00:42:51 (02:34) Primeiro oficial: Estou subindo, mas a velocidade.
00:42:53 (02:36) Comandante: Espera. mantenha a velocidade!
00:43:00 (02:43) Comandante: (Falando ao Primeiro oficial): Mantenha dez graus! (ângulo de subida) Estamos baixando! Suba! Suba! Suba! Suba! Suba! Suba!
00:43:26 (03:09) Comandante: Suba! Você está descendo, David!
00:43:29 (03:12) Primeiro oficial: Estou subindo, mas a velocidade.
00:43:38 (03:21) Comandante: Suba! Suba! Suba! Suba! Suba! Mantenha rumo 100! Não, está bem, mantenha esta proa!
00:43:45 (03:28) Primeiro oficial: Piloto automático em climb thrust. não consigo acionar o automático! Não há comando.
00:44:16 (03:59) Comandante: A velocidade. Vamos aos instrumentos básicos, perdemos tudo.
00:44:32 (0415) Primeiro oficial: Torre Lima, declaramos emergência, não temos instrumentos básicos. Não temos altímetros nem velocimetros, declaramos emergência.
00:44:41 (04:24) Torre Lima: Entendido. Altitude?
00:44:44 (04:27) Primeiro oficial: Não temos. só até mil. mil e setecentos pés.
00:45:16 (04:59) Primeiro oficial: Indicando 500 pés, mas travado. Estes F.D.P da manutenção mexeram em tudo!
00:45:19 (05:02) Comandante: Que m... eles fizeram aqui! Passe o controle. Tenho o controle. Não, não estou controlando. Auto-pilot conectado!
00:45:38 (05:21) Primeiro oficial: Não, não está conectado.
00:45:39 (05:22) Comandante: Estão travados?
00:45:41 (05:24) Primeiro oficial: Travados e apagados. o Flight Director não funciona mais.
00:46:27 (06:10) Primeiro oficial: Realmente, estamos sem qualquer indicação.
00:46:30 (06:13) Comandante: Pois é, nem os básicos. Não importa, vamos prosseguir subindo. Mas. estamos sem velocidade e continuamos voando! Indicando zero. todos os velocimetros indicam zero!
00:49:00 (08:43) Primeiro oficial: Auto-pilots estão desligados.
00:51:58 (11:41) Primeiro oficial: Caralho! Estamos descendo! O autopilot está f...
00:52:27 (12:10) Comandante: Não pode ser! Olha a velocidade e a potência que temos! Não pode ser!
00:52:48 (12:31) Primeiro oficial: Caralho! Está pior... Seu altímetro foi pra m...
00:52:52 (12:35) Comandante: Caramba! Vamos voltar aos básicos, aos básicos, vamos voltar aos básicos!
00:54:41 (14:24) Primeiro oficial: Você está descendo!
00:54:42 (14:25) Comandante:Caralho! Sim, mas.
00:54:44 (14:27) Primeiro oficial: Agora está subindo muito! Melhor tentar voar apenas com os básicos, ok?
00:55:42 (15:25) Comandante: Então vamos! Vamos descer para 10 mil. e a velocidade continua subindo? Será a velocidade real?
00:56:21 (16:04) Primeiro oficial: Isso é o que me preocupa. não creio. Os motores estão reduzidos e a velocidade continua aumentando! Lima! Poderia indicar nossa velocidade?
00:56:49 (16:32) ATC Lima: Indicada em 320 nós.
00:56:53 (16:36) Primeiro oficial: Grato. Os motores estão reduzidos e continuamos acelerando!
00:59:10 (18:53) Primeiro oficial: Overspeed!
00:59:11 (18:54) Comandante: Puta merda! Estou com speedbrakes acionados! Foi tudo. todos os instrumentos foram pra merda, tudo foi, tudo foi.
00:59:29 (19:12) Primeiro oficial: Vamos cair!
00:59:32 (19:15) Comandante: Aaahhh!
01:00:19 (20:02) Primeiro oficial: Sim! Sim! Agora estamos em perda! (Caindo descontroladamente)
01:00:22 (20:05) Comandante: Não estamos em perda! É fictícia! É fictícia! É fictícia!
01:00:25 (20:08) Primeiro oficial: Temos o stick-shaker ativado, como é que não estamos caindo?
01:03:03 (22:46) Lima ATC: Afirmativo, mas aqui indica que vocês estão no nível uno uno zero, sobre o mar, e voando rumo noroeste.
01:03:12 (22:55) Primeiro oficial: Temos alerta de terreno e estamos a dez mil pés sobre o mar?
01:03:24 (23:07) Comandante: Merda, acontece de tudo aqui! Que merda fizeram essse mecânicos?
01:03:41 (23:24) Primeiro oficial: Afirmativo! Estamos com alarme de terreno, alarme de terreno! Estamos sobre o mar, certo?
01:03:57 (23:40) Lima ATC: Afirmativo, 42 milhas a oeste, sobre o mar.
Com Admiral Cloudberg, ASN, Wikipedia, baaa-acro, ricardoorlandini.net, fearoflanding.com, Canal Aviões e Músicas com Lito Sousa - Imagens:Wikipedia, AVweb, da Diretoria Geral de Transporte Aéreo (Peru), AP e Colson Hicks Eidson. Clipes de vídeo cortesia da Cineflix.