segunda-feira, 6 de maio de 2024

Aconteceu em 6 de maio de 1988: Acidente de Torghatten A queda do voo Widerøe 710 na Noruega


O acidente no voo Widerøe 710, comumente conhecido como "Acidente de Torghatten", foi uma colisão contra a montanha de Torghatten em Brønnøy, na Noruega. O de Havilland Canada Dash 7, operado pela Widerøe, caiu em 6 de maio de 1988, às 20h29, durante a aproximação ao Aeroporto de Brønnøysund, em Brønnøy. Todas as 36 pessoas a bordo do avião morreram.

Voo e o acidente


A aeronave acidentada era o quadrimotor de Havilland Canada DHC-7-102 (Dash 7), prefixo LN-WFN, da Widerøe, construído em 1980. Foi comprado usado por Widerøe em 1985 e seu Certificado de Aeronavegabilidade foi renovado pela última vez em 4 de novembro de 1987, com validade até 30 de novembro de 1988. A aeronave havia operado 16.934 horas e 32.347 ciclos antes de seu último voo. A última manutenção havia ocorrido em 15 de abril de 1988, após o qual a aeronave voou 147 horas e 30 ciclos.

O avião envolvido no acidente
O capitão era Bjørn Hanssen, 58 anos de Bodø. Ele possuía um certificado D emitido em 8 de abril de 1981 e foi renovado pela última vez em 11 de dezembro de 1987. Ele tirou sua licença inicial em 1949 e trabalhava como piloto em Widerøe desde 1 de abril de 1960. Na época de sua última renovação, ele havia voado 19.886 horas, das quais 2.849 horas foram com o Dash 7. Ele completou o treinamento de vôo periódico com o Dash 7 em 8 de março de 1988. Ele tinha acabado de voltar de uma férias de seis semanas na Espanha.

O primeiro oficial foi Johannes Andal, 31 anos de Florø. Ele possuía um certificado C que o limitava a ser primeiro oficial no Dash 7. O certificado foi emitido em 5 de janeiro de 1987 e era válido para o Dash 7 desde 23 de fevereiro de 1988. Ele havia começado seu treinamento de voo em 1977 e havia concluído nos Estados Unidos em 1979. Ele foi contratado como piloto de Widerøe em 6 de fevereiro de 1986, onde havia servido originalmente no de Havilland Canada DHC-6 Twin Otter . Ele foi verificado como primeiro oficial no Dash 7 em fevereiro de 1988. Ele tinha um tempo total de voo de 6.458 horas, das quais 85 no Dash 7. O comissário de bordo tinha 28 anos e trabalhava para a Widerøe desde então 1983.

A aeronave foi usada durante a manhã de 6 de maio em um voo de várias etapas do aeroporto de Bodø para o aeroporto de Trondheim, Værnes e vice-versa. Em seguida, voou de volta para Trondheim, onde mudou de tripulação. Eles chegaram a Trondheim com um vôo às 18h50 do dia 5 de maio e deixaram o hotel em Trondheim às 16h15 do dia 6 de maio. 

O voo 710 estava programado para voar de Trondheim via Aeroporto de Namsos, Høknesøra; Aeroporto de Brønnøysund, Brønnøy; e Aeroporto Sandnessjøen, Stokka. Partiu de Værnes às 19h23, uma hora e meia depois do previsto, devido a problemas técnicos com outra aeronave. 

O voo 710 tinha uma tripulação de três pessoas: um capitão, um primeiro oficial e um comissário de bordo. A aeronave estava lotada e, portanto, um assento auxiliar na cabine foi usado por um passageiro, elevando o número de pessoas a bordo para 52.

A aeronave fez escala em Namsos, onde desembarcaram dezesseis passageiros. Isso reduziu o número de passageiros a bordo para trinta e três, mas o passageiro que ocupava o assento auxiliar continuou sentado na perna seguinte. O capitão era o piloto voador do segmento. 

A aeronave partiu de Namsos às 20h07 e contatou o Centro de Controle de Tráfego Aéreo de Trondheim (ATCC) às 20h13 para receber permissão para subir ao nível de voo 90 (FL 90), que foi recebido. 

Durante o voo, o passageiro da poltrona conversou com o comandante e fez várias perguntas sobre as operações. O primeiro oficial não participou das discussões e foi ele quem fez contato por rádio com o controle de tráfego aéreo e o centro de operações da companhia aérea.

O primeiro oficial entrou em contato com a companhia aérea às 20h16 e informou que esperava chegar às 20h32. Às 20h20min29s, a aeronave pediu permissão ao Trondheim ATCC para mudar para o Brønnøysund Aerodrome Flight Information Service (AFIS), que foi concedida. 

Aeroporto Brønnøysund
A tripulação anunciou às 20h20min42s, que iniciaria a descida e mudaria para Brønnøysund AFIS. O contato foi feito às 20h22min34s, momento em que a aeronave anunciou que estava a 46 km (29 milhas) do aeroporto e no FL 80. O AFIS informou que não havia aeronaves reportadas na área e que a pista 22 estava em uso. O vento estava a 5 nós (9 km/ h; 6 mph) de sudeste, 5 milhas náuticas (9 km; 6 mi) de visibilidade, uma chuva leve e 6° C (43° F). 

Às 20h23min22s, o primeiro oficial teve uma conversa de 62 segundos com a companhia aérea, pedindo um táxi para um dos passageiros para que ele pudesse chegar à sua balsa de conexão.

O capitão solicitou a lista de verificação de descida às 20h24min24s. O sinal de apertar o cinto de segurança foi ligado e o comissário iniciou o processo de preparação da cabine para o pouso. 

Às 20h24min46s, o capitão, como parte da lista de verificação, informou ao primeiro oficial que eles iriam descer para 1.500 pés em Torghatten e depois para 550 pés. Isso foi seguido primeiro por uma conversa parcialmente intelegível entre o capitão e os primeiros oficiais, que incluiu se eles deveriam abastecer, e então uma conversa inintelegível entre o capitão e o passageiro do assento traseiro. 

A direção da faixa de rádio omnidirecional VHF (VOR) e do equipamento de medição de distância (DME) em Brønnøysund foi verificada às 20h26min37s. A lista de verificação de aproximação foi iniciada às 20h27min01s, quando a altitude da aeronave atingiu 500 metros (1.500 pés). O primeiro ponto da lista de verificação não era legível, mas os três últimos sim. 

Às 20h27min32s, o comandante pediu flaps e trem de pouso, que foram imediatamente acionados pelo primeiro oficial e fizeram com que a aeronave ganhasse 70 metros (200 pés) de altitude. Os trens de pouso foram confirmados bloqueados às 20h28. Quatro segundos depois, o passageiro perguntou ao capitão se havia sistemas de reserva que poderiam ser usados ​​caso o trem de pouso não fosse acionado corretamente. Neste ponto, a aeronave iniciou a descida de 500 metros (1.500 pés).

O AFIS perguntou a posição da aeronave às 20h28min10s, e o primeiro oficial respondeu às 20h28min13s que estava a 15 km (9 mi) de distância. Ele pediu ao AFIS uma verificação do vento, e o AFIS respondeu que era de 220 graus e 8 nós (15 km/h; 9 mph). 

A tripulação confirmou a informação às 20h28min24s. A aeronave atingiu 170 metros (550 pés) de altitude e permaneceu nessa altura pelo restante do voo. Uma curta conversa foi iniciada pelo passageiro às 20h28min55s. Três segundos depois, o capitão pediu "flaps de 25 graus e props totalmente perfeitos". Isso foi confirmado pelo primeiro oficial dois segundos depois. A lista de verificação pré-pouso foi concluída entre 20h29min04s.

O piloto automático foi usado 25 segundos após a decolagem de Namsos e foi usado para o restante do voo. A partir de 20h29min21s, todos os quatro motores mostraram aumento de torque e, imediatamente, a aeronave mudou seu ângulo de -2,5 graus para 5 graus. Às 20:29:29 o sistema de alerta de proximidade do solo mostrou 'mínimo'. 

A aeronave voou para a montanha em um ângulo de 15 a 20 graus, com o lado estibordo voltado para a montanha. A aeronave estava subindo em um ângulo de sete graus, mais/menos um grau. A ponta da asa de estibordo foi a primeira a atingir a montanha, seguida pelo motor número quatro (o mais à direita).


O motor foi imediatamente arrancado e a aeronave começou a girar. A aeronave começou a ser rasgada na costela posterior da asa de estibordo. Então, o nariz e a asa de bombordo do motor número dois (o interno) atingiram uma depressão na face da montanha, fazendo com que o motor número um se soltasse de sua nacela e a asa de bombordo quebrasse entre os motores. 

Ao mesmo tempo, o corpo da aeronave foi quebrado em dois. O movimento para a frente da aeronave parou, os destroços giraram com oestabilizador vertical longe do lado da montanha, a asa de bombordo pegou fogo e explodiu e o resto da aeronave caiu ladeira abaixo. Na descida, a asa de estibordo pegou fogo.

A aeronave caiu no lado oeste de Torghatten às 20h29min30s a 170 metros (560 pés) de altitude, matando todos os seus 36 ocupantes.


Causa


A comissão concluiu que a causa do acidente foi que a abordagem foi iniciada 4 milhas náuticas (7 km; 5 mi) muito cedo e que, portanto, a aeronave ficou abaixo da altura do terreno. Nenhuma razão específica para a abordagem inicial foi encontrada, embora tenha havido várias não-conformidades por parte dos membros da tripulação com os regulamentos e procedimentos. 

Especificamente, a comissão apontou para a falta de controle interno que teria identificado as deficiências de operação e a falta de procedimentos adequados de cockpit, especialmente no que diz respeito às chamadas. Não houve falhas técnicas na aeronave, e os pilotos tinham total controle da aeronave no momento da colisão, tornando-o um voo controlado no terreno.


Entrevistas com pilotos aleatórios em Widerøe mostraram que a companhia aérea tinha deficiências em seus procedimentos de treinamento, em parte porque faltava um simulador Dash 7. Havia uma cultura na companhia aérea de se desviar dos procedimentos e da cooperação da cabine de comando. Os planos de voo muitas vezes tornavam os procedimentos de controle mútuo de procedimentos impraticáveis ​​e eram comumente ignorados. 

A comissão teve a impressão de que a transição da Widerøe de uma companhia aérea exclusivamente Twin Otter para também operar o Dash 7 mais exigente não foi realizada de forma adequada, o que resultou em deficiências nos procedimentos de treinamento e operação. Todas as listas de verificação durante o voo foram seguidas corretamente. No entanto, os pilotos não elegeram um método de duplo controle de descida e aproximação, como o uso de briefings e callouts.

Torghatten, o local do acidente
Os pilotos tiveram várias não conformidades com os regulamentos em sua descida. Isso incluiu o uso de "Torghatten" durante as instruções do capitão, apesar de não haver marcação no mapa com esse nome, nem de estar localizado perto da montanha. 

A aeronave deveria ter planado a 750 metros (2.500 pés), mas em vez disso ocorreu a 500 metros (1.500 pés). A próxima descida foi iniciada a 8 milhas náuticas (15 km; 9 mi) em vez de 4 milhas náuticas (7 km; 5 mi) do aeroporto e a aeronave ficou sob a altitude permitida.

A aeronave estava usando regras de voo por instrumentos (IFR) e Torghatten estava coberto de névoa. A visibilidade estava dentro da faixa permitida de IFR. A comissão encontrou cinco erros nos mapas de Widerøe que podem ter influenciado o acidente. Isso incluía uma formulação que dava a impressão de que DMR não estava em uso; um farol marcador "Torget" fechado ainda estava nos mapas; um plano de voo vertical de Lekan não foi incluído; as limitações de altura na área do acidente foram observadas por meio de comentários, e não por meio de uma apresentação gráfica; e confusão sobre quando o momento da abordagem final deve começar. 

A comissão também criticou a companhia aérea por suas listas de verificação instruindo os pilotos a um dos VHFcanais para a frequência da empresa durante a descida, em um momento em que a comunicação não relacionada à segurança é indesejada.


Como a aeronave estava lotada, o passageiro foi autorizado a sentar-se no assento auxiliar da cabine. O passageiro não tinha ligação com a companhia aérea, mas obteve permissão do comandante por meio de um conhecido da companhia aérea. 

Vários dos outros passageiros eram funcionários em Widerøe e deveriam - de acordo com as regras da companhia aérea - ter se sentado lá. De Namsos a Brønnøysund, havia assentos disponíveis na cabine, mas o passageiro do assento auxiliar continuou sentado na cabine. 

A comissão considerou que a conversa do passageiro com o capitão desviou sua atenção e concentração de suas funções em um ponto crítico do voo. Isso também interrompeu a comunicação entre os dois pilotos, resultando na interrupção do controle mútuo.

Resgate


A aeronave caiu em Torghatten, que está localizado a 9 km (6 mi) a sudoeste do aeroporto de Brønnøysund. A montanha tem 271 metros (888 pés) de altura e é uma altura distinta em uma área que é bastante plana. 

A aeronave atingiu o lado oeste da montanha em um ponto onde o terreno é íngreme de quarenta graus. A linha central da rota de voo é de 800 metros (2.600 pés) de Torghatten. O naufrágio se espalhou por uma área de 60 a 100 metros (200 a 330 pés) abaixo do ponto de impacto.

O AFIS fez várias tentativas para chamar a aeronave. Ele recebeu uma ligação de um residente próximo a Torghatten que disse ter ouvido barulho de aeronave seguido de um acidente. 

O Corpo de Bombeiros de Brønnøysund e um helicóptero de ambulância com um médico foram enviados para Torghatten. O trabalho de resgate foi dificultado por nuvens baixas, pequenos incêndios e explosões. O terreno era difícil e a falta de luz do dia dificultava o atendimento da situação.


Um helicóptero com equipe médica e direto do aeroporto chegou às 21h25, enquanto um ponto de encontro para os parentes mais próximos era estabelecido no aeroporto. Às 23h30, a polícia afirmou que não havia esperança de encontrar sobreviventes e a cena mudou de uma busca para uma cena de investigação. Devido ao nevoeiro, não foi possível verificar se todas as pessoas foram mortas até ao dia seguinte. Setenta e cinco soldados da Guarda Nacional participaram do resgate.

Investigação


O Conselho de Investigação de Acidentes da Noruega foi informado sobre o acidente às 21h10. Quatro membros da comissão de investigação foram nomeados, consistindo do líder Tenente General Wilhelm Mohr, Piloto Hallvard Vikholt, Tenente Coronel Asbjørn Stein e Chefe de Polícia Arnstein Øverkil. Devido às más condições meteorológicas, a comissão não foi reunida em Brønnøy até às 15h00 de 7 de maio. No mesmo dia, o Serviço Nacional de Investigação Criminal chegou para ajudar a AIBN. 

Seis pessoas indicadas pelo Conselho Canadense de Segurança da Aviação, incluindo representantes de Havilland Canada e Pratt & Whitney Canada, foram enviados para auxiliar na investigação. Quatro representantes de Widerøe estavam disponíveis para consultas com a comissão. A comissão de investigação foi posteriormente complementada pela psicóloga Grethe Myhre e Øverkil substituído por Arne Huuse.


O sistema VOR/DME foi testado pela Administração da Aviação Civil em 7 de maio e estava funcionando corretamente. A AIBN estabeleceu uma base de operações no hangar no Aeroporto de Brønnøysund e usou um helicóptero para transportar os pedaços dos destroços e os corpos para o Hospital Universitário de Trondheim para identificação. 

As investigações técnicas começaram em 9 de maio. A aeronave era equipada com um gravador de dados de voo e um gravador de voz da cabine. Ambos foram encontrados intactos e decodificados no Departamento de Investigação de Acidentes Aéreos no Reino Unido. O uso inadequado do microfone dificultou a escuta da voz do capitão, mas foi possível reconstituir as conversas e o desenrolar dos acontecimentos. 

Um serviço memorial foi realizado em 10 de maio e contou com a presença da primeira-ministra Gro Harlem Brundtland. O último pessoal da Guarda Doméstica concluiu seu trabalho em 11 de maio e a polícia concluiu suas investigações em Torghatten em 13 de maio.


Em maio de 2013, a comissão de investigação foi informada de que dois passageiros estavam com o seu telefone móvel Mobira NMT-450 cada um nos voos. Como isso não havia sido mencionado no relatório original, a AIBN fez uma revisão do assunto e principalmente se os telefones poderiam ter influenciado a navegação vertical. Eles concluíram em dezembro que não era esse o caso, pois não havia indícios de interferências e que não havia casos em que a interferência eletromagnética tenha contribuído para um acidente de aviação.

Consequências


O voo 710 foi o segundo acidente fatal de um Dash 7 e continua sendo o mais mortal. Na época, foi o terceiro acidente de aviação mais mortal da história da Noruega, depois do acidente do Holtaheia Vickers Viking em 1961 e do voo Braathens SAFE 239 em 1972. Desde então, tornou-se o quarto acidente mais mortal da Vnukovo Airlines Flight 2801. Continua a ser o acidente mais mortal no norte da Noruega.


A comissão recomendou que Widerøe atualizasse seus mapas para Brønnøysund, revisasse e melhorasse seus procedimentos de pouso, melhorasse seus procedimentos de controle interno para garantir que os pilotos seguissem os regulamentos de operação de voo da companhia aérea e que introduzissem a regra do cockpit estéril. 

A comissão recomendou que a Administração da Aviação Civil alterasse as rotas de voo em Brønnøysund para aumentar a altitude em torno de Torghatten. O voo 710 foi o segundo de quatro acidentes fatais de Widerøe que ocorreram entre 1982 e 1993. No primeiro acidente, o voo 933, uma cultura pobre da cabine também foi descoberta, mas pouco foi seguido, em parte por causa de uma teoria da conspiração que surgiu a respeito de uma colisão com um caça a jato. Também nos dois principais acidentes de Widerøe a seguir, o voo 893 em 1990 e o voo 744 em 1993, a investigação descobriu deficiências operacionais.

A imprensa fez uma cobertura agressiva do acidente. Várias organizações de imprensa importantes compareceram ao serviço fúnebre, e os jornais publicaram fotos em close de parentes chorando em suas primeiras páginas. A Comissão de Reclamações da Imprensa Norueguesa, um comitê nomeado pelos próprios jornais, absolveu o Dagbladet após uma denúncia pelo uso agressivo de sua imagem. 

No entanto, a cobertura de acidentes iniciou um debate interno entre os jornalistas sobre sua cobertura de acidentes graves. A conclusão foi que o sofrimento privado não deveria ser coberto pela mídia e, desde então, eles tiveram uma auto-aplicação estrita dessa política.

O Aeroporto de Brønnøysund instalou o sistema de pouso baseado em satélite SCAT-I em 29 de outubro de 2007. Steinar Hamar da Avinor afirmou na cerimônia de abertura que o sistema teria impedido o voo 710 e o voo 744 no aeroporto de Namsos em 1993. O roll-out, ocorrendo na maioria dos aeroportos regionais de AVINOR, estava programado para terminar em 2013.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipedia, ASN e baaa-acro

Vídeo: Segundos Fatais - O dirigível Hindenburg

Aconteceu em 6 de maio de 1937: A explosão do dirigível Hindenburg

Em 6 de maio de 1937 ocorreu a explosão do Hindenburg, em Lakehurst, perto de Nova York. O incêndio do maior zepelim do mundo causou a morte de 35 pessoas.


O dirigível Hindenburg tinha 245 metros de comprimento, 41,5 metros de diâmetro, voava a 135 km/h, com autonomia de voo de 14 mil quilômetros, e havia sido construído pela Zeppelin, na Alemanha. Ele era, em sua época, o maior e mais moderno dirigível do mundo.

Era o começo da noite do dia 6 de maio de 1937 quando o LZ 129 Hindenburg finalmente começou as manobras de atracamento na base de Lakehurst, em Nova Jersey. Estava chovendo. Fazia 77 horas desde que o dirigivel havia decolado em Frankfurt.

Chegava mais de 6 horas atrasado de numa viagem da Alemanha. Era a primeira de uma série de 10 voos circulares previstas para a temporada, que havia começado no fim de março com uma viagem entre a Alemanha e o Rio de Janeiro. O atraso era por conta de tempestades de raios durante o dia, que tornaram o pouso impossível.


Para matar tempo, o capitão havia desfilado com o portentoso dirigível — com seus 245 metros, até hoje a maior aeronave já feita pela humanidade — sobre Manhattan. O que foi fotografado por aviões.

A bordo estavam 61 tripulantes, 36 passageiros, dois cachorros, além de bagagem, cargas e correspondências. O forte vento em Lakehurst havia obrigado o capitão Max Pruss a sobrevoar o atracador por duas vezes. Ao mesmo tempo, ordenou que fossem soltos gás e mais de uma tonelada de água para aliviar o peso.

Após várias manobras para conseguir se estabilizar diante do forte vento, os cabos foram lançados ao solo. O zepelim já estava com as escadas baixadas quando, a 60 metros do chão, quando às 19h25, como que do nada, o dirigível pegou fogo.


Depoimentos de testemunhas oculares discordam sobre onde o incêndio começou inicialmente; várias testemunhas a bombordo viram chamas vermelho-amareladas primeiro saltarem para a frente da barbatana superior perto do duto de ventilação das celas 4 e 5. 

Outras testemunhas a bombordo notaram que o fogo realmente começou um pouco antes da barbatana de bombordo horizontal, só então seguido por chamas na frente da barbatana superior. Um deles, com vista para estibordo, viu as chamas começando mais abaixo e mais à ré, perto da cela 1 atrás dos lemes. 

Dentro da aeronave, o timoneiro Helmut Lau, que estava estacionado na nadadeira inferior, testemunhou ter ouvido uma detonação abafada e olhou para cima para ver um reflexo brilhante na antepara frontal da célula de gás 4, que "desaparece repentinamente pelo calor". Quando outras células de gás começaram a pegar fogo, o fogo se espalhou mais para estibordo e o dirigivel caiu rapidamente.

O furioso incêndio começou a trazer o colosso para o chão, perdendo sustentação primeiro atrás e empinando, em sucessivas explosões de cada uma de suas câmaras de gás.

Em segundos, restava uma carcaça flamejante no solo. Como havia uma grande quantidade de jornalistas no local, prontos para registrar a chegada do celebrado dirigível, o evento foi amplamente filmado e fotografado.


Chocado, Herb Morris, repórter da CBS que fazia a cobertura da aterrissagem, apenas balbuciava: "Terrível, ele está caindo. Os passageiros... não posso continuar. A pior catástrofe do mundo".

Cinco equipes de cinegrafistas e massas de repórteres e fotógrafos guardaram para o mundo as imagens da destruição do orgulho dos alemães da época. O fogo consumiu o dirigível em poucos segundos. Foi o primeiro acidente com o zepelim, que já havia percorrido 2 milhões de quilômetros nos oito anos em que estava sendo usado no transporte comercial.

Das 97 pessoas a bordo, 35 morreram,13 das quais passageiros. Houve outra morte, de um membro da equipe de terra. O acidente ficou famoso na voz do locutor Herbert Morrison, da estação WLS, de Chicago. "Oh, a humanidade!", tornou-se uma expressão incorporada à cultura popular americana.

Sua narrativa só foi ao ar no dia seguinte. E o sistema de gravação acelerou sua locução, o que deu um tom mais dramático ao texto. Sua última frase: "Preciso parar por um minuto. Perdi minha voz. Esta é a pior coisa que presenciei em minha vida."

Sequência do desastre do Hindenburg mostrando a proa se aproximando do solo
Foi um choque também para o governo nazista, na Alemanha. O ministro da Propaganda, Joseph Goebbels, havia ordenado a pintura da suástica no dirigível e exigia sua presença em atividades políticas e festas populares.

Diversas comissões de peritos tentaram descobrir a causa da explosão, sem alcançar resultados concretos. Na época, correram várias versões. Podia ter sido um problema técnico, mas também uma sabotagem dos norte-americanos, duas semanas após o bombardeio de Guernica pelos alemães. Ou teria sido um complô judeu? Da concorrência? Ou ainda dos agricultores cujos campos ficavam em volta do campo de pouso?

Os destroços do Hindenburg na manhã seguinte ao acidente
Os técnicos têm quase certeza de que a causa está nas leis da física. O gás hidrogênio, que fazia o balão flutuar, vazou devido a uma trágica cadeia de circunstâncias e explodiu em contato com o ar, por causa da eletricidade estática acumulada na atmosfera com o temporal. O fogo espalhou-se rapidamente pela parede externa do dirigível, feita de algodão e linho e revestida por uma fina camada de alumínio.

Depois da tragédia, a indústria alemã de zepelins passou a fazer contatos com os Estados Unidos para importar hélio, gás não inflamável, produzido no Texas. Os negociadores alemães quase haviam atingido seu objetivo, um navio com milhares de garrafas do gás estava a caminho da Alemanha quando os nazistas invadiram a Áustria, a 1º de março de 1938.

Mais interessado na guerra do que no pioneirismo aéreo, três anos após o acidente do Hindenburg, o ministro Hermann Göring mandou destruir o hangar de dirigíveis em Frankfurt. Durante a Primeira Guerra Mundial, os zepelins já haviam provado serem imprestáveis em conflitos.

Um memorial no local do desastre, mostrado o Hangar nº 1 ao fundo
Por Jorge Tadeu (Site Desastres Aéreos) com Wikipedia, Abenturas na História e DW

Aconteceu em 6 de maio de 1935: A queda do voo TWA 6 no Missouri (EUA)

Em 6 de maio de 1935, voo 6 da TWA - Transcontinental & Western Air, foi operado pelo avião Douglas DC-2-112, prefixo NC13785chamado “Sky Chief”, em uma rota de Los Angeles na Califórnia, a Newark, em Nova Jersey.

O Douglas DC-2 (NC13784) da TWA, um avião 'irmão' do envolvido no acidente
O voo 6, que e levava a bordo seis passageiros e dois tripulantes, previa duas escalas, a primeira em Albuquerque, no Novo México, e a segunda na cidade de Kansas, no Missouri. 

Ao se aproximar da cidade de Atlanta, no Missouri, às 3h30 da madrugada, o avião caiu quando sua asa atingiu o solo enquanto voava sob um teto baixo de nuvens em um nível muito baixo, sob céu escuro e envolto em nevoeiro, enquanto seus pilotos tentavam desesperadamente chegar a um campo de pouso de emergência próximo antes que seu combustível acabasse.

Cinco das treze pessoas a bordo morreram no acidente, incluindo o senador Bronson M. Corte do Novo México.


Os investigadores do Bureau of Air Commerce concluíram que vários fatores levaram a esta crise, incluindo problemas de comunicação, escuridão, previsões meteorológicas imprecisas, piora do tempo no aeroporto de destino e erros de julgamento por parte dos despachantes da linha aérea e da tripulação de voo; eles também descobriram que a TWA violava vários regulamentos da aviação.


A morte do senador Cutting levou o Congresso a examinar a administração da aviação civil pelo próprio Bureau. O senador Royal S. Copeland estabeleceu um subcomitê especial, o Comitê Copeland, que realizou audiências que criticaram duramente o Bureau e divulgou um polêmico relatório preliminar que culpava a administração do Bureau pelo acidente. Esta batalha política desempenhou um papel importante no Bureau of Air Commerce, sendo substituído em 1938 pela recém-formada Autoridade Aeronáutica Civil .

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipedia e ASN

Por que os voos podem ser vendidos em excesso?

As razões e a metodologia por trás da venda excessiva de voos.

(Foto: pp1/Shutterstock)
A venda excessiva de voos é uma prática da indústria global. À primeira vista, a venda exagerada de um voo pode parecer negligente, se não fraudulenta, e o público viajante é legitimamente cético em relação à prática. Na realidade, o número de passageiros deslocados por oversales é mínimo (como discutido mais tarde). A venda excessiva de voos permite que as companhias aéreas mantenham os preços mais baixos, oferecendo mais assentos do que estariam disponíveis de outra forma. Também permite que mais passageiros reservem um voo no horário que preferirem, em vez de serem forçados a um cronograma de viagem mais inconveniente.

Overselling


Os departamentos de agendamento de rotas das companhias aéreas destilaram informações incrivelmente precisas sobre passageiros com conexões erradas e "não comparecimento" para cada partida, para cada cidade e sempre que um voo é oferecido. Com base nesses pontos de dados históricos, as companhias aéreas vendem voos em excesso para gerar um fator de carga real que mais se aproxima de 100%. Como um exemplo teórico, a programação da Lufthansa pode saber que a venda de 107% dos assentos disponíveis em uma tarde de terça-feira saindo de Frankfurt resultará em um fator de ocupação de 99,5%. Seu Airbus A320 tem 126 assentos econômicos, então a Lufthansa pode disponibilizar 135 assentos econômicos (107% de 126). Eles tornarão esses assentos adquiríveis até um ponto de corte pré-determinado antes da partida.

(Foto: Tom Boon/Simple Flying)
Uma regra prática para as companhias aéreas é que elas podem vender voos em excesso de forma mais acessível (e mais eficiente) com origem em um de seus hubs . Um dia de clima perfeito no sul e leste dos Estados Unidos pode causar alguns passageiros com conexões erradas voando por Atlanta na Delta Air Lines. A Delta pode não conseguir acomodar todas as "vendas excessivas de receita" no voo original que os passageiros reservaram. Ainda assim, a companhia aérea terá mais voos partindo no final do dia para acomodar os viajantes. 

Como alternativa, a Delta pode conectar os passageiros em excesso por meio de outro hub, adicionando uma etapa extra à jornada, mas levando o viajante ao destino com um pouco de compensação adicional para o aborrecimento. Isso só é possível em uma cidade onde uma companhia aérea tem uma presença operacional significativa, pois existem muitas opções para conectar os passageiros ao seu destino final.

Vista externa do saguão A no Atlanta Hartsfield Jackson Int'l (Foto: Thomas Barrat/Shutterstock)
As companhias aéreas geralmente têm margens menores para vender demais os últimos voos do dia de seus hubs. Os voos que chegam tarde da noite geralmente são realizados exclusivamente por passageiros "terminantes" ou aqueles que não farão conexão, pois não há voos noturnos disponíveis. 

Consequentemente, os fatores de carga em voos que chegam depois das 22h, horário local, são significativamente mais baixos do que seus equivalentes anteriores. Isso é bom para as companhias aéreas, principalmente nos dias em que muitos passageiros se desconectam ou têm o embarque negado involuntariamente. 

As companhias aéreas usam os últimos voos do dia para resolver os problemas de programação que surgiram e garantir que poucos passageiros fiquem presos no aeroporto central durante a noite. Pagar por quartos de hotel para passageiros com conexões erradas é uma despesa que sempre faz a companhia perder dinheiro e prejudica sua reputação.

A realidade da venda excessiva de voos


É difícil determinar o número de passageiros com embarque recusado involuntariamente devido a vendas excessivas. Em 2016, a Associação Internacional de Transporte Aéreo ( IATA ) estimou que 0,09% dos passageiros nos EUA teve o embarque negado. Não está claro se isso se deve estritamente a vendas excessivas de receita ou se esse número é a porcentagem geral de passageiros com embarque negado por qualquer motivo (intoxicação e argumentação são outros motivos notáveis). 

A IATA estabeleceu padrões a serem seguidos pelas companhias aéreas do mundo quando há overbooking em voos. Pedir voluntários é a primeira medida listada, e oferecer compensação por desistir voluntariamente de um assento é uma prática padrão do setor. Da mesma forma, os governos estabeleceram regulamentos rígidos que limitam a quantidade de vendas excessivas(tanto em valor quanto em porcentagem) as companhias aéreas podem fazer.

Passageiros embarcando em um 737 da Ryanair em Budapeste (Foto: frantic00/Shutterstock)
Como uma ferramenta adicional em seu cinto, as companhias aéreas vendem bilhetes de "reserva de receita" aos passageiros. Isso não é apenas um esforço para tornar a emissão de passagens mais transparente, mas também permite que os passageiros façam um voo que as companhias aéreas não poderiam legalmente (ou não) oferecer como opção. Isso dá à companhia aérea mais receita também. 

Depois de atingir o limite de venda excessiva de bilhetes, uma companhia aérea pode vender cinco bilhetes adicionais de espera de receita caso mais passageiros confirmados percam o voo do que os números históricos indicam - isso acontece com certa regularidade, pois as estatísticas históricas são uma média e não uma regra. É uma opção útil de emissão de bilhetes, mas também pode ser um pouco estressante devido à incerteza do bilhete de espera.

Como evitar ser recusado o embarque


Existem três medidas simples que os viajantes podem tomar para se tornarem menos suscetíveis à recusa de embarque em um voo com excesso de vendas. Primeiro, esteja no portão a tempo. Os passageiros que estão longe do portão e não respondem ao seu nome na primeira vez que são chamados provavelmente terão sua reserva removida enquanto os agentes do portão se apressam para acomodar as pessoas em um voo movimentado. 

Em segundo lugar, mantenha algum tipo de status com a companhia aérea. Uma medida tão pequena quanto se inscrever em uma conta de recompensas com a companhia aérea para a qual você está voando fará com que seu status saia do final da lista de viajantes. Certifique-se de que seu número de recompensas esteja associado à sua reserva. Não custa nada e te apresenta no sistema da companhia aérea como tendo status junto a ela, mesmo que seja a primeira vez que você voa. 

Por fim, faça o check-in 24 horas antes do voo, se puder. Ao determinar quem não voará, os passageiros sem status na companhia aérea geralmente são eliminados pela antecedência (ou atraso) com que fizeram o check-in.

A venda excessiva de voos faz sentido para a companhia aérea, para que ela possa oferecer mais assentos a preços mais baixos . Em última análise, os assentos em aviões são uma mercadoria perecível. Assentos não ocupados representam perda de receita para as companhias aéreas e perda de oportunidades para os passageiros assim que a porta de embarque é fechada. A maioria das pessoas sai ganhando quando o número máximo de passagens é oferecido - os preços diminuem, as companhias aéreas aproveitam a receita extra e o número máximo de viajantes chega ao seu destino. A desvantagem é que o assento do meio ao seu lado, com seu cobiçado segundo apoio de braço, agora está ocupado.

Com informações da Simple Flying e IATA

Foto histórica: Um estranho pequeno avião da GulfAir


Embora possa não parecer, o 
Short SC-7 Skyvan 3-100, era um dos menores aviões de uma das companhias aéreas mais antigas do Golfo Pérsico: a GulfAir. Embora na época fosse conhecida como Gulf Aviation. Após a venda da empresa pela BOAC aos governos de Bahrein, Qatar, Abu Dhabi e Omã, a empresa adicionou L1011 e B737 para complementar a frota de VC10.

Tem buzina? E ré? As peças em comum entre aviões comerciais e carros


Comuns no dia a dia do trânsito nas cidades, a buzina, o farol e até o limpador de para-brisa também são usados em jatos comercias. Máquinas tão complexas, as aeronaves podem ter muito mais em comum com automóveis convencionais do que se pensa.

É evidente que o motivo da buzina no trânsito aéreo, por exemplo, não é de alerta como nas ruas. Confira cinco ferramentas dos aviões comercias que são parecidas com as de veículos terrestres.

Chave


Os aviões de pequeno porte possuem chave para trancar as portas e dar partida no motor. No entanto, o sistema para ligar os jatos comerciais é feito por meio de alguns botões dentro da cabine de comando.

O acionamento dos motores é feito com o uso de pressão pneumática. Desta forma, o motor auxiliar injeta ar para os motores principais, fazendo com que a turbina comece a girar e movimente as outras partes do motor. Com o aumento da rotação, ele começa a queimar o combustível e gerar a própria energia.

Para isso, o piloto precisa acionar as bombas de combustível e hidráulicas, além do sistema de partida do motor.

Buzina


Jatos comerciais possuem buzinas como instrumento de comunicação ao invés de alerta. Sendo assim, ela é acionada pelo tripulante somente quando a aeronave está em terra. O objetivo é chamar a atenção da equipe mecânica.

Outro diferencial é que, nos aviões, o botão identificado como "Ground", "GND" ou "horn" fica em meio a outros comandos, e não no manche (como no volante do carro).

O som varia de acordo com o modelo ou fabricante do avião, mas é de alta frequência, para ser ouvido em meio aos barulhos do aeroporto. A caixa de som fica embaixo da aeronave.

Farol


Os aviões possuem diversas luzes localizadas em pontos diferentes. O farol é chamado de "landing lights" (luzes de pouso) e é acionado quando a aeronave está em solo ou se aproximando para o pouso. Assim como nos carros, ele serve para iluminar o caminho que o avião percorre em terra firme.

Além do farol, os aviões contam com luzes coloridas nas pontas das asas (vermelhas do lado esquerdo e verdes do lado direito), e uma luz branca na cauda. Chamadas de luzes de navegação ou anticolisão, elas têm como função principal indicar para outras aeronaves qual a direção que aquele determinado avião está seguindo.

Limpador de para-brisa


Apesar dos recursos tecnológicos de aproximação por instrumentos, os pilotos utilizam o limpador de para-brisa para dias de chuva, pois precisam ter contato visual com a pista para seguir para o pouso. Sendo assim, as aeronaves não apenas contam com a ferramenta, como não podem decolar se o equipamento estiver quebrado.

A função é a mesma dos instalados nos carros: espalhar a água para aumentar a visibilidade. Porém, o limpador de para-brisa do avião é acionado somente a baixa altitude.


Mesmo sem uma marcha à ré, os aviões conseguem andar para trás por conta própria. Para isso, são usados os reversos dos motores, que foram criados para frear a aeronave durante o pouso.

O reverso forma uma concha na parte traseira do motor e inverte a direção do fluxo de ar. Desta forma, quando o avião está parado em solo, o piloto pode acionar o reverso e aplicar potência no motor, fazendo com que o ar que dá impulso ao deslocamento seja direcionado para frente e a aeronave se movimente para trás.

No entanto, a manobra não é comum, pois gasta muito combustível, polui, faz barulho e aumenta as chances de algum detrito que estava no chão ser jogado para o motor. A técnica só deve ser utilizada quando não há nenhum trator de "push back" disponível e a aeronave precisa se movimentar.

domingo, 5 de maio de 2024

Como é um avião do “juízo final” por dentro?

Conheça os modelos de aeronaves conhecidas como aviões do juízo final, designação não oficial como posto de comando em casos de calamidade.

Ilyushin Il-80 (Foto: Reprodução)
As tensões e guerras que têm acontecido no mundo trouxeram à tona um assunto não tão debatido, o uso de um avião do “juízo final”. As aeronaves, também conhecidas como aviões do Apocalipse ou aviões doomsday, já foram avistadas, segundo relatos. Mas afinal, o que é um avião desse tipo e quando é usado?

Os aviões doomsday (termo em inglês que significa Apocalipse) são aeronaves militares altamente resistentes, concebidas para operar em condições extremas, incluindo queda de radiação nuclear e pulsos eletromagnéticos que poderiam perturbar as comunicações eletrônicas.

São blindados e equipados com sistemas redundantes para garantir a sobrevivência e a continuidade das operações do governo em caso de um evento catastrófico. São construídos para permanecerem no ar durante dias sem necessidade de reabastecimento.

Os aviões doomsday são conhecidos no exército como E-4B e são uma versão militarizada do Boeing 747-200. Servem como o Centro Nacional de Operações Aéreas para o Presidente, Secretário de Defesa e Presidente do Estado-Maior Conjunto das Chefes de Estado-Maior.

Avião do juízo final dos EUA, modelo E-4B Nightwatch
(Imagem: Jacob Skovo-Lane/10.jul.2019/Departamento de Defesa dos Estados Unidos)
Os aviões doomsday são uma designação não oficial de uma classe de aeronaves que são utilizadas como posto de comando aéreo em caso de guerra nuclear, desastre ou outro conflito de grande escala que ameace a infraestrutura militar e governamental fundamental. Os únicos países conhecidos por terem concebido e fabricado aeronaves semelhantes são os Estados Unidos e a Rússia e, portanto, ficaram de herança da Guerra Fria.

A frota de aviões doomsday da Força Aérea, composta por apenas quatro aeronaves, foi concebida para dar aos líderes seniores dos EUA um posto de comando aéreo para controlar as forças em caso de emergência ou crise nacional.

Como é um E-4B por dentro?


Cabine de comando do E-4B (Imagem Josh Plueger/U.S. Air Force)
O Boeing E-4B Nighwatch, também conhecido como o “avião do Dia do Apocalipse” ou “do Juízo Final”, é uma versão militarizada de um jato jumbo Boeing 747-200 altamente modificado da década de 1970. Foi projetado para servir como um posto de comando aéreo em caso de uma guerra nuclear, sendo capaz de resistir a explosões eletromagnéticas, radiação e choques térmicos.

O E-4B tem quatro motores e é dividido em seis áreas funcionais: Área de trabalho de comando, Sala de conferências, Sala de briefing, Área de trabalho da equipe de operações, Área de comunicações e Área de descanso.

O interior do E-4B Nightwatch abriga uma rede de salas e áreas especializadas, projetadas para acomodar até 112 pessoas. Dividida em três níveis e seis seções distintas, a aeronave dispõe de áreas de trabalho de comando , salas de conferências insonorizadas e equipadas com ecrãs de vídeo, zonas de descanso com beliches e poltronas amplas, bem como espaços dedicados à comunicação e controle técnico.

(Imagem: Lance Cheung/U.S. Air Force)
Equipado com instrumentos de voo analógicos tradicionais, o E-4B Nightwatch garante operacionalidade contínua mesmo em condições extremas, protegendo a integridade de suas funções críticas.

A Força Aérea dos Estados Unidos possui quatro aviões E-4B “Doomsday”, com pelo menos um sempre em alerta. Os aviões são operados pelo 1º Esquadrão de Comando e Controle Aerotransportado do 595º Grupo de Comando e Controle na Base Aérea de Offutt, em Nebraska.

O E-4B tem 231 pés e 4 polegadas de comprimento, envergadura de 195 pés e 8 polegadas e altura de 63 pés e 5 polegadas. Ele tem quatro motores turbofan General Electric CF6-50E2, cada um com empuxo de 52.500 libras. O avião é altamente durável e pode permanecer no ar por mais de 150 horas com reabastecimento aéreo.


Em julho de 2022, os brasileiros tiveram a oportunidade de conhecer o Boeing E-4B quando aterrissou no Aeroporto de Brasília. Espera-se que o E-4B chegue ao fim da sua vida útil no início da década de 2030. Veja o vídeo do E-4B por dentro aqui.

Ficha técnica

  • Função principal: Centro de operações aerotransportadas
  • Construtor: Boeing Aerospace Co.
  • Propulsão: Quatro motores turbofan General Electric CF6-50E2
  • Empuxo: 52.500 libras cada motor
  • Comprimento: 70,5 metros
  • Envergadura: 59,7 metros
  • Altura: 19,3 metros
  • Peso máximo de decolagem: 800.000 libras (360.000 kg)
  • Resistência: 12 horas (sem reabastecimento)
  • Teto: acima de 30.000 pés (9.091 metros)
  • Custo unitário: $ 223,2 milhões
  • Ocupantes: até 112
  • Data de implantação: janeiro de 1980
  • Inventário: força ativa, 4 unidades

Como é um Ilyushin Il-80 Maxdome por dentro?


lyushin Il-80 Maxdome
O Ilyushin Il-80 Maxdome é um avião russo altamente especializado, desenvolvido a partir do avião de transporte civil Il-86, e utilizado como posto de comando aéreo do presidente russo em caso de ataque nuclear. O avião do “Juízo Final” russo tem duas cabines de comando elétricas montadas dentro das naceles do motor (espaço numa aeronave para alojar uma estrutura específica, como um motor), cada uma com cerca de 9,5 metros (32 pés) de comprimento e 1,3 metros (4 pés) de diâmetro, e ambas incluem luzes de aterragem.

O avião também tem uma canoa dorsal SATCOM, que se acredita conter equipamento avançado de comunicações por satélite, e uma antena de fio de arrastamento montada na parte inferior da fuselagem de popa para transmissão e recepção de rádio de muito baixa frequência (VLF), provavelmente para comunicação com submarinos balísticos de mísseis.


Também ficou conhecido pela OTAN como Maxdome, e ocasionalmente referido como o “Kremlin voador”. Acredita-se que ele tenha entrado em serviço em 1987, embora fotógrafos ocidentais tenham captado imagens da aeronave pela primeira vez em 1992.

Os quatro Il-80 das Forças Aeroespaciais Russas foram desenvolvidos a partir do II-86, um quadrijato de passageiros de fuselagem larga desenvolvido sob a União Soviética durante a década de 1970. O Il-80 Maxdome tem uma barreira incomum que bloqueia as janelas da cabine de comando da parte de trás, o que pode servir para bloquear pulsos EMP ou RF.


De acordo com a mídia russa, a atual frota de Il-80 não receberá mais atualizações antes de serem aposentadas. Espera-se que o Ilyushin Il-96, que foi o sucessor do Il-86, sirva de base para a próxima geração de aviões do “dia do juízo final” do país. Veja vídeo sobre o Ilyushin Il-80 aqui.

Ficha técnica

  • Função principal: Posto de comando aéreo
  • País de origem: Rússia (antiga União Soviética)
  • Fabricante: Ilyushin
  • Quantidade produzida: 4
  • Desenvolvido a partir do Ilyushin II-86
  • Primeiro voo: 5 de março de 1987
Outros países, como a China e o Reino Unido, também operam aeronaves semelhantes projetadas para fornecer continuidade às capacidades governamentais e de comando e controle durante emergências nacionais.

Felizmente, os aviões do Juízo Final são raramente utilizados, embora desempenhem um papel crucial para garantir a resiliência e a capacidade de sobrevivência das operações governamentais face a acontecimentos catastróficos.

Via Renata Mendes Gonçalves, editado por Bruno Ignacio de Lima (Olhar Digital) e Aeroin

Voo Delta Air Lines 1080 - Salvando o avião que não descia


É quase meia-noite no aeroporto de San Diego enquanto o jato da Delta Air Lines acelera na pista, com destino a Los Angeles.

Quando atinge 126 nós, o avião inesperadamente ergue o nariz antes que o piloto puxe a coluna de controle para a decolagem. Acelerando para as nuvens pesadas sobre o oceano, o nariz fica ainda mais alto. O piloto surpreso desesperadamente bate a coluna de controle o mais longe possível para tentar forçar o nariz para baixo.

Este foi o início do Delta Flight 1080 em 12 de abril de 1977. Foi também o início de um dos 55 minutos mais angustiantes da história da aviação. A história tem um final feliz. Após uma série de manobras potencialmente desastrosas, o avião pousou com segurança no Aeroporto Internacional de Los Angeles. 

Embora os passageiros tenham sido informados de um problema de controle, eles nunca souberam o quão perto estiveram da tragédia. Na verdade, pelo menos um deles estava furioso por estar atrasado.

A história do voo 1080, como se viu, ilustra o quanto a segurança das companhias aéreas melhorou nos últimos anos. A melhoria nos registros gerais de segurança é claramente demonstrada pelas estatísticas do National Transportation Safety Board.

Motores de aeronave mais confiáveis, sistemas de controle de backup incorporados aos aviões mais novos e, geralmente, melhor controle de tráfego aéreo são algumas das principais razões para a melhoria dos registros. 

No voo 1080 da Delta, saindo de San Diego, os passageiros tiveram a sorte de ter Jack McMahan nos controles. Um homem forte e afável de 56 anos, ele é um dos capitães mais experientes da Delta. Durante 36 anos voando, ele pilotou biplanos, Grumman Wildcats (como piloto do Corpo de Fuzileiros Navais durante a Segunda Guerra Mundial) e mais de uma dúzia de aviões de passageiros, incluindo todos os modelos de jumbo.


No voo 1080, Jack McMahan pilotava o modelo wide-body Lockheed L-1011 TriStar 1, prefixo N707DA, da Delta Air Lines (foto acima). Embora o avião da Lockheed transporte até 293 passageiros, apenas 41 estavam a bordo na noite. Oito aeromoças estavam a bordo, e na cabine estavam Wilbur Radford, o copiloto, e Steven Heidt, o engenheiro de voo.

Enquanto o capitão McMahan empurrava a coluna de controle para frente em resposta à subida muito íngreme, o nariz do avião desceu ligeiramente e, pelo menos momentaneamente, o avião pareceu retornar a uma subida normal.

“Depois disso”, diz o capitão McMahan, “a primeira coisa que fiz foi verificar a configuração do estabilizador” (as duas extensões horizontais na cauda, ​​que controlam a inclinação do avião). “De acordo com nosso painel de controle”, diz ele, “o estabilizador foi ajustado corretamente”. O capitão retraiu o trem de pouso, apagou as luzes de pouso e desligou as placas de "não fumar" na cabine de passageiros.

A uma altitude de 400 pés, no entanto, o avião começou a subir novamente e o piloto começou a usar o "compensador elétrico", outro sistema para ajustar o estabilizador. Isso não funcionou. Ele tentou o "corte manual". Isso também não funcionou. “Simplesmente não houve resposta”, diz ele. Ele tentou os dois novamente, sem efeito.

A 250 metros, com o avião subindo em nuvens espessas, o capitão pediu a Steve Heidt, o engenheiro, para verificar o sistema hidráulico por meio do qual funciona a maioria dos controles. "Neste momento", acrescenta o capitão, "eu não estava muito chateado, pois o L-1011 tem quatro sistemas hidráulicos independentes - bastante redundância - e eu tinha certeza que um dos vários procedimentos possíveis resolveria nosso problema."

O capitão McMahan destravou e redefiniu todos os interruptores associados ao ajuste ou ângulo de voo do avião. Will Radford, o copiloto, verificou as luzes de advertência do painel de controle para se certificar de que estavam funcionando corretamente. Usando dispositivos do painel de controle, o engenheiro verificou novamente os sistemas hidráulicos. 

A 3.000 pés de altitude, todos os procedimentos de emergência relativos à inclinação e compensação foram tentados e a tripulação não conseguiu descobrir o que estava errado.

O controle de tráfego aéreo foi notificado da situação do avião por rádio. Tanto o capitão quanto o copiloto assumiram os controles, exercendo força total para a frente na coluna de controle. Mesmo assim, conforme o avião subia sobre o oceano Pacífico, ele subia cada vez mais, muito acima dos 15 graus normais.

"Lembro-me de observar 3.000 pés... 3.500 pés... 4.500 pés no altímetro", diz o capitão McMahan. "Atitude de inclinação superior a 18 graus.. 20 graus... 22 graus. E a velocidade estava diminuindo, 150 nós... 145... 143... 140."

Nessa sequência, o avião corria rapidamente para o perigo de um estol fatal, porque com o nariz para cima e a velocidade do ar caindo, o ar não estaria se movendo pela asa rápido o suficiente para fornecer sustentação suficiente. A solução para esse problema é abaixar o nariz e aumentar a velocidade do ar - mas a tripulação simplesmente não conseguia abaixar o nariz.


"De repente", disse o capitão McMahan, "tive a terrível constatação de que íamos perdê-lo. Estou tentando voar nesta coisa o melhor que posso e pensei, filho da puta, não posso até mesmo voá-lo - ele não responderá. Eu tinha uma imagem mental muito clara de exatamente o que a aeronave iria fazer - estolar, rolar para a esquerda e descer verticalmente, desaparecendo nas nuvens - à noite - na água." 

Uma semana antes, um DC9 da Southern Airways havia caído, matando 72 pessoas. E na semana anterior os aviões da Pan Am e da KLM colidiram em Tenerife. "Os acidentes vêm em três, eles dizem, e eu pensei: 'Meu Deus, somos o número três.'"

Nesse momento, o capitão puxou todos os manetes para trás, reduzindo a potência. Para um piloto, foi um movimento antinatural e ilógico. Reduzir a potência reduziria ainda mais a velocidade do ar e isso pareceria aumentar o risco de estol. Mas, o capitão diz: "No palco, você para de ser metódico - você apenas faz algo e o faz rápido."

A tática funcionou. "Eu senti uma pequena mudança na 'sensação' de controle, um pouco mais de controle sobre o avião." O capitão então avançou o acelerador nº 2, o que aumentou o impulso do motor nº 2 na cauda do L-1011. No L-1011, os dois motores pendurados nas asas do avião, nºs 1 e 3, são ligeiramente inclinados para baixo, e seu impulso faz o avião inclinar-se para cima. Mas o motor número 2 na cauda está ligeiramente inclinado para cima e seu impulso faz o avião inclinar-se ligeiramente para baixo. O impulso aumentado que o capitão McMahan aplicou ao motor nº 2 fez exatamente isso.

O nariz começou a baixar lentamente, cerca de 18 graus; a velocidade começou a aumentar, para cerca de 150 nós, e a 9.000 pés o avião saiu do céu nublado e entrou no luar brilhante. "Uma mudança bem-vinda", lembra o capitão. Ajustando ligeiramente os aceleradores, o capitão conseguiu estabilizar o avião a cerca de 10.000 pés.

Jane Hooper, a coordenadora da comissária de bordo, sentiu que algo estava errado mais cedo e foi até a cabine. Mas ela foi avisada para voltar e "se prender", disse o engenheiro Steve Heidt. "Estávamos muito ocupados antes", lembra ele. Miss Hooper voltou novamente. Disseram a ela que havia um problema de controle e foi-lhe pedido que movesse todos os passageiros para a frente na cabine para ajudar a baixar o nariz. “Provavelmente não ajudou muito, mas nessa situação imaginamos que qualquer pequena coisa ajudaria”, diz Heidt.

Agora, a questão era: onde pousar. O capitão imediatamente descartou o retorno a San Diego coberto de nuvens. "De jeito nenhum eu voltaria para aquele tempo." O Aeroporto de Palmdale e a Base da Força Aérea de Edwards foram considerados, mas fecham às 22h, e já passava da meia-noite. Phoenix e Las Vegas também foram considerados, mas essas escolhas significariam voar sobre a Sierra Nevada, onde a turbulência poderia ser fatal para um avião já difícil de controlar. Restava Los Angeles International e, apesar das condições nubladas, também. Los Angeles foi escolhida.

De que direção o avião deve vir? Nesse ponto, o gravador de voz da cabine fica disponível (as seções anteriores foram automaticamente apagadas enquanto a fita de 30 minutos é continuamente reutilizada) e a conversa da tripulação indica que o capitão teve a opção de voar sobre Los Angeles até o aeroporto.

"Isso não é bom", disse o capitão. ("Eu poderia imaginar o holocausto se descêssemos sobre a cidade", recorda ele mais tarde. "Achei que se o perdêssemos, deveríamos perdê-lo por causa da água.")

Então o voo da Delta viria do oceano. Isso tinha algumas desvantagens que os pilotos não gostam de pousar sobre a água à noite, porque não há nenhum ponto de referência visual. Entre os pilotos, é chamado de pouso "sobre um buraco negro". 

Mas essa abordagem também tinha vantagens: tornava possível uma abordagem longa e direta. Os pilotos preferem isso, pois isso lhes dá tempo suficiente para estabilizar o avião e lidar com quaisquer problemas de controle. E Jack McMahan estava totalmente familiarizado com essa abordagem para o Los Angeles International.

Um touchdown normal, no entanto, seria impossível. Sem controle de inclinação para que o piloto pudesse forçar o nariz para baixo na pista, o avião poderia flutuar no aeroporto sobre uma almofada de ar e cair no final. Pior ainda, à medida que se aproximava do toque, ele poderia repentinamente subir alguns metros, estolar e, em seguida, cair na pista. Sem altitude para manobrar, não haveria nada que o piloto pudesse fazer.


A solução, percebeu o capitão McMahan, era entrar com flaps nas asas em um ângulo reduzido. Isso permitiria ao avião chegar a uma velocidade mais alta - 170 nós em vez dos 130 normais - o que era arriscado, mas permitiria ao piloto "bater" o avião na pista. “O que queríamos era um contato positivo com o solo”, diz Copilot Radford. Os segundos finais seriam a chave.

A descida da abordagem começou, e o jato Delta desceu até as nuvens que pairavam sobre Los Angeles. Os membros da tripulação, entretanto, ainda estavam tentando resolver seu problema. "Você tem o estabilizador [indicador] mostrando o nariz cheio para baixo... e você não está entendendo... Não posso acreditar", disse Heidt, o engenheiro, de acordo com a fita.

O copiloto comunicou-se pelo rádio com a torre de Los Angeles para que os caminhões de bombeiros aguardassem. Ele também deu o número de passageiros para que ambulâncias suficientes pudessem ser chamadas.

Então, a 2.500 pés, o trem de pouso foi estendido, mudando o centro de gravidade, e o avião subiu abruptamente de novo. "Eu empurrei a coluna de controle para a frente", diz o capitão, "mas continuamos a subir enquanto a velocidade do ar se deteriorava e estávamos indo acima da rampa de pouso. Meu primeiro pensamento foi: 'Já que não podemos controlar a aeronave com o abaixe o trem de pouso, retraia o trem, vire para o sul e vala no oceano paralelo à costa.'

Em vez disso, o capitão aumentou novamente a potência do motor nº 2 e reduziu o empuxo dos motores nº 1 e 3. Lentamente, lentamente, o nariz começou a cair.

Copiloto Radford: "1.000 pés - tudo com bom aspecto - no plano de planagem, no curso."

A 500 pés, o jato Delta surge das nuvens e a pista está bem à frente.

Capitão McMahan: "Vou pousar no chão e pisar no freio... bem no meio... e ligá-lo... Ajude-me a segurar os controles..."

O avião bate na pista a 170 nós e, quando o capitão McMahan freia, o copiloto anuncia a velocidade.

Copiloto Radford: "130... 120... 110... 100... 90... 80... 70 nós, 60 nós, graças a Deus".

Engenheiro Heidt: "Wheeee-eh."

Torre: "Bem, Delta 1080, está tudo bem?"

Capitão McMahan: "Diga a eles que estamos bem - vamos levá-lo até o portão."

Jane Hooper correu para a cabine e beijou o piloto. "Qual era o problema?" ela perguntou. O engenheiro Heidt respondeu: "Tínhamos para cima, mas não para baixo; apenas continuamos subindo, subindo e subindo".

Mas o que aconteceu de errado? Em poucas horas, os engenheiros da Lockheed e da FAA invadiram o avião. O estabilizador tem, em suas bordas traseiras, pequenos "elevadores" que balançam para cima e para baixo em conjunto com o movimento do estabilizador, e os engenheiros rapidamente descobriram que o elevador esquerdo tinha ficado preso na posição para cima, fazendo com que o avião se inclinasse. (Não há nenhuma luz de aviso no cockpit de L-1011 para indicar um elevador com defeito, porque o estabilizador é o principal dispositivo de controle. Na noite escura, não havia nenhuma maneira de ver o elevador emperrado, mesmo que o problema tivesse sido suspeito. Portanto, não havia como o piloto descobrir o que estava errado.)


Por que ele travou? Água da chuva, nevoeiro e névoa escorreram de uma estrutura na cauda para um rolamento. Como o avião havia subido e descido repetidamente durante os muitos voos, as mudanças na pressão sugaram a água para o rolamento. O rolamento corroeu e quebrou. Quando o capitão McMahan manobrou seus controles de vôo antes da decolagem, o elevador, ligado ao rolamento quebrado, emperrou.

Em poucas horas, a Lockheed telefonou para companhias aéreas de todo o mundo usando o L-1011, avisando-os para verificar a direção (Vários foram encontrados cheios de água e começando a corroer).


Em poucos dias, a FAA emitiu uma diretriz de aeronavegabilidade de emergência tornando a verificação obrigatória nos Estados Unidos. Em 5 de junho de 1977, mesmo depois de fazer o cheque, um British Airways L-1.011 passou por um problema de controle semelhante, embora menos grave. 

Decolando de Ailcante, na Espanha, o avião britânico, carregado com 160 passageiros e com destino a Londres, conseguiu desviar para Barcelona e pousar em segurança. A FAA então ordenou uma verificação visual do elevador antes de cada decolagem do L-1011.

Desde então, a Lockheed desenvolveu um defletor para drenar a água do mancal, junto com uma vedação no mancal para impedir a entrada de água e graxa, e reconstruiu o próprio mancal para que, se alguma peça falhar, as outras partes funcionem.

Quanto à tripulação e aos passageiros da Delta, eles mudaram para outro avião da Delta e decolaram para Dallas, a próxima parada do voo 1080. No caminho para Dallas, o capitão McMahan recebeu uma nota de um passageiro dizendo: "Todas aquelas bagunças em LA vão me atrasar para uma conexão - o que você vai fazer sobre isso? " O melhor que puder, foi a resposta.

No final de 1977, o capitão McMahan ganhou o prestigioso prêmio de serviço diferenciado da FAA por trazer o voo 1080 com segurança. Will Radford e Steve Heidt receberam certificados de elogio da FAA.

O avião foi reparado e continuou a voar para a Delta até 1985. Ele foi posteriormente vendido para a American Trans Air, onde foi registrado com o número de cauda N187AT. O avião foi sucateado em 2002.

Por Jorge Tadeu (Site Desastres Aéreos) com ASN, Wikipedia e The Washington Post