quinta-feira, 28 de setembro de 2023

Aconteceu em 28 de setembro de 2012: Voo Sita Air 601 Grave acidente após a decolagem no Nepal


Em 28 de setembro de 2012, o voo Sita Air 601 (ST601) foi um voo doméstico de passageiros do Nepal, operado pela Sita Air, do Aeroporto Internacional Tribhuvan, na capital do Nepal, Catmandu, ao Aeroporto Tenzing-Hillary em Lukla, que levava a bordo 16 passageiros e três tripulantes.

A maioria dos passageiros eram estrangeiros, viajando para Lukla para uma caminhada no Himalaia. A Embaixada Britânica no Nepal confirmou que pelo menos 7 britânicos estavam no vôo. A vítima britânica mais jovem tinha 27 anos, enquanto a mais velha tinha 60. Pelo menos 5 cidadãos chineses e 7 nepaleses estavam a bordo do voo.


O voo 601, operado pelo Dornier 228-202, prefixo 9N-AHA, da Sita Air (foto acima) decolou do Aeroporto Internacional de Tribhuvan às 06h17, horário local. Foi o primeiro voo a partir do Aeroporto Internacional de Tribhuvan naquele dia. Enquanto a uma altitude de 50 pés (15 m), o piloto relatou problemas técnicos com a aeronave e solicitou que voasse de volta para o aeroporto.

A tripulação relatou a Kathmandu que a aeronave pode ter atingido um abutre. Isso foi notado pelo controlador de tráfego aéreo de Katmandu, quando a aeronave começou a balançar e fazer manobras incomuns. 

Três minutos após a decolagem, no caminho de volta ao aeroporto, a aeronave desceu perto do rio Manohara. Em seguida, mergulhou de nariz, errou por pouco uma favela e se espatifou nas margens do rio Manohara, pegando fogo. A parte frontal da fuselagem foi totalmente destruída.


Imediatamente após o acidente, o corpo de bombeiros do Aeroporto de Tribhuvan foi rapidamente implantado. Dezenas de militares e equipes de resgate correram para o local do acidente, embora alguns relatórios afirmem que o corpo de bombeiros demorou mais de meia hora. 


Testemunhas afirmaram que várias pessoas sobreviveram ao acidente e gritavam por ajuda dentro dos destroços em chamas. Os moradores locais queriam ajudar, mas temiam que, se direcionassem água para o motor, ele explodisse.


Quando os serviços de emergência chegaram ao local do acidente, muitas partes do avião foram completamente destruídas. Todas as 19 pessoas a bordo morreram no acidente.


A Autoridade de Aviação Civil do Nepal recebeu ordens para investigar o acidente com a ajuda do Departamento Britânico de Investigação de Acidentes Aéreos. Os investigadores começaram a coletar evidências relacionadas ao acidente. O gravador de dados de voo e o gravador de voz da cabine foram recuperados.

Durante a corrida de decolagem, o clima em Tribhuvan estava em boas condições com boa visibilidade. Com base em entrevistas feitas por testemunhas oculares, a aeronave estava pegando fogo enquanto se espatifava no solo.


Um parente do copiloto do voo 601 disse ter avisado que os voos da companhia aérea costumavam ficar sobrecarregados e que uma favela próxima atraiu pássaros para a pista. No entanto, Sagar Acharya, chefe de segurança de voo da companhia aérea, negou que a aeronave carregue muito peso. 

A maioria dos relatórios afirma que a aeronave sofreu um colisão com um pássaro logo após decolar de Tribhuvan. Relatórios conflitantes afirmam que ela atingiu uma águia negra, enquanto outros afirmam que ela atingiu um abutre. 


Este relatório de colisão com pássaros foi confirmado pelo controlador de tráfego aéreo de plantão, uma vez que o controlador de tráfego aéreo afirmou que o piloto contatou a Torre do Tribhuvan para uma intenção de pouso de emergência devido a "falhas técnicas", possivelmente devido a um colisão com pássaros. 

Com base nas declarações ATC, o motor certo do voo 601 pode ter sido atingido por um pássaro e pegou fogo. Os investigadores mais tarde se concentraram na teoria do ataque de pássaros.


Mais tarde, os investigadores afirmaram que o impacto da colisão com o pássaro pode ter deixado o piloto nervoso. A aeronave mais tarde pegou fogo e, na tentativa de apagar o fogo, o piloto tentou um pouso de emergência no rio Manohara, mas de alguma forma mergulhou de nariz e bateu no campo de futebol.

Com base no relatório preliminar publicado em 30 de setembro de 2012, o pássaro colidiu com o motor direito a cerca de 50 pés acima do solo, fazendo com que alguma parte se separasse do motor. A peça posteriormente impactou a cauda vertical e desativou o leme, cortando os controles do avião. O avião então começou a virar bruscamente. Em seguida, ele saiu do controle e, posteriormente, caiu.


Os investigadores inspecionaram a filmagem CCTV do acidente e notaram que um flash ocorreu no motor direito do voo 601, aproximadamente 5 segundos antes da rotação. Uma testemunha ocular, um piloto profissional, relatou ter notado que a aeronave havia uma tentativa malsucedida de içá-la. O nariz ergueu-se, porém, com a cauda do avião quase atingindo o solo. 

O NAAIC então descobriu que a tripulação chamou "V1" prematuramente, portanto, a aeronave não poderia voar. O NAAIC relatou então que a aeronave não era capaz de manter 77 KIAS em voo nivelado, sugerindo que um motor havia falhado e o outro sofreu uma perda de potência de pelo menos 13%.


Uma análise posterior foi feita pelo NAAIC: “É possível que o pássaro perturbou momentaneamente o fluxo de ar para o motor antes de ser atingido pela hélice, causando uma onda e a suspeita chama vista na filmagem do CCTV, mas o fabricante do motor considerou isso improvável. O fabricante considerou que se o ave tivesse estado suficientemente perto da entrada de ar para perturbar o fluxo de ar, ela teria sido sugada. Se a chama vista no CCTV e o 'estouro' que acompanhava ouvido no CVR fossem evidências de um pico de motor, então outra causa possível é um problema de fluxo de combustível. No entanto, o fabricante também comentou que esse tipo de motor era muito resistente a sobretensões."


Uma investigação posterior descobriu que as hélices do voo 601 não estavam na posição emplumada e estavam operando normalmente. A investigação revelou que o motor não havia perdido toda a potência, mas estava operando com baixa potência. 

As alavancas de impulso na cabine também revelaram que não havia motores que foram desligados pela tripulação durante o incidente. Nenhum resto de pássaro foi encontrado dentro dos motores. No entanto, havia evidências de que a pipa preta havia sido atingida pelas hélices.


De acordo com a planilha de carga do voo 601, o voo decolou com uma massa de decolagem de 5.834 kg e uma massa de pouso estimada de 5.698 kg. A ficha de carga indicava que nenhuma bagagem havia sido carregada, porém os vídeos de vigilância mostraram que a bagagem de cerca de 80 kg foi carregada e não foi retirada antes da aeronave decolar. 

Assim, o peso de decolagem foi corrigido para 5.914 kg usando os pesos padrão do Nepal para passageiros, portanto, a aeronave ficou sobrecarregada. No entanto, a sobrecarga por si só não pode explicar o problema de desempenho, já que uma análise mais aprofundada revelou que uma aeronave muito sobrecarregada teria um desempenho melhor do que o 9N-AHA durante o voo do acidente.


A análise de som do gravador de voz da cabine e as gravações de dados de voo revelaram que o arrasto produzido pela hélice excedeu o empuxo produzido. A investigação declarou mais tarde: "O arrasto de um motor em marcha lenta em voo é maior do que a resistência em um motor inoperante (OEI) e, no caso do 9N-AHA, onde o fluxo de combustível em marcha lenta foi incorretamente ajustado muito baixo, a resistência seria foram ainda maiores em marcha lenta (mais de 350 lb de arrasto - seção de referência 1.16.2). 

Portanto, é possível que em cerca de 6.200 kg com um motor a 100% da potência e um motor em marcha lenta, teria sido insuficiente empuxo para manter 77 kt, e o arrasto adicional em um lado teria afetado a controlabilidade mais do que no caso OEI."

Os investigadores afirmaram que a perda de potência ocorreu em 70 KIAS, enquanto V1 estava em 83 KIAS. Quando uma perda de potência ocorreu abaixo de V1, a tripulação deveria ter rejeitado a decolagem. A tripulação parecia não estar ciente da perda de energia. 


A aeronave continuou a acelerar, embora a uma taxa mais baixa do que durante as decolagens anteriores, tornou-se no ar a 86 KIAS acima de V2 e continuou a acelerar por cerca de 2 segundos, ponto em que a velocidade começou a diminuir continuamente. NAAIC afirmou que a tripulação possivelmente não reconheceu a perda de potência porque ela ocorreu de forma gradual e progressiva ao invés de instantaneamente.

Se ocorrer um mau funcionamento da aeronave na decolagem ou acima de V1, o aeroporto permite que as tripulações de voo continuem a decolagem ou pousem de volta na pista, caso seja longo o suficiente para parar a aeronave com segurança. Uma longa pista estava disponível durante o acidente, o que deveria ter sido suficiente para parar a aeronave. 

No entanto, a tripulação optou por não escolher esta opção e continuou o voo. A investigação afirmou que a tripulação provavelmente optou por não pousar de volta no aeroporto devido à política da empresa de continuar o voo devido a um mau funcionamento do motor igual ou superior a V1.


O NAAIC então concluiu sua investigação da seguinte maneira: "Nenhuma falha foi encontrada em nenhum dos motores, não havia evidência de ingestão de um pássaro no motor. Ambos os motores estavam produzindo baixa potência no impacto, ambas as hélices estavam em sua faixa normal de operação. No entanto, uma redução de potência insidiosa ocorreu a partir de 70 KIAS que passou despercebido pela tripulação. Após a atitude de decolagem fora do campo ter sido definida muito alta para a aeronave manter V2, a velocidade da aeronave caiu abaixo de V2, exigindo mais empuxo do que disponível para acelerar novamente. A investigação não foi capaz de determinar a causa de a redução de empuxo."

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipédia, ASN e baaa-acro

Vídeo: Mayday Desastres Aéreos - Pakistan voo 268 - Em Busca de Respostas


Aconteceu em 28 de setembro de 1992: Voo PIA 268 - 167 mortos em colisão contra montanha no Nepal

Na segunda-feira, 28 de setembro de 1992, o Airbus A300B4-203, prefixo AP-BCP, da PIA (Pakistan International Airlines) (foto abaixo), partiu às 11h13 (hora local) para realizar o voo 268, de Karachi, no Paquistão, com destino a Kathmandu, no Nepal. 

A bordo da aeronave estavam 19 tripulantes e 148 passageiros. O capitão era Iftikhar Janjua, de 49 anos, que havia realizado 13.192 horas de voo, incluindo 6.260 horas no Airbus A300. O primeiro oficial era Hassan Akhtar, de 38 anos, que tinha 5.849 horas de voo, sendo 1.469 delas no Airbus A300.

Da direita para a esquerda: Primeiro Oficial Farooq Ahmad, Capitão M. Nazeer 'Lala' e Primeiro Oficial Hassan Akhtar
Havia dois engenheiros de voo a bordo (em vez de um), um operando e outro observando. O engenheiro de voo operacional era um homem de 40 anos (não identificado) que tinha 5.289 horas de voo, sendo 2.516 delas no Airbus A300. O engenheiro de voo observador era Muhammad Ashraf, de 42 anos, que havia feito 8.220 horas de voo, incluindo 4.503 horas no Airbus A300.

A rota do voo 268
A parte do voo em rota transcorreu sem intercorrências e a aeronave foi liberada para uma abordagem de 'Sierra' para a pista 02 de Kathmandu. 

O voo foi instruído a manter 11.500 pés e reportar a 16 DME (16 milhas do farol VOR/DME, que está localizado 0 , 6 nm antes da pista). 

A abordagem de Kathmandu é muito difícil, uma vez que o aeroporto está localizado em um vale de formato oval cercado por montanhas de até 9.665 pés. A elevação da pista é de 4.313 pés. 


As próximas correções de abordagem para o voo PK268 foram em 13 DME (a 10.500 pés), 10 DME (a 9.500 pés) e 8 DME (a 8.200 pés). Alguns segundos após reportar 10 DME (abordagem que permite que as aeronaves passem sobre a cordilheira Mahabharat, diretamente ao sul de Katmandu, cuja crista está localizada ao norte do ponto de referência da 'Sierra', em uma altitude segura).

Pouco depois de reportar às 10 DME, às 14h30, a aeronave desceu para aproximadamente 7.300 pés (2.200 m) na lateral da montanha de 8.250 pés (2.524 m) em Bhattedanda, chocando-se contra ela e desintegrando-se no impacto, matando instantaneamente todos a bordo. A barbatana caudal separou-se e caiu na floresta na base da encosta da montanha.

Todas as 167 pessoas a bordo morreram. É o acidente de aviação mais mortal que já ocorreu em solo nepalês. Este acidente ocorreu 59 dias após o voo 311 da Thai Airways ter caído ao norte de Kathmandu.

Após o acidente, os militares nepaleses ajudaram os investigadores a encontrar a caixa preta da aeronave . A investigação foi conduzida por Andrew Robinson do Air Accident Investigation Branch (AAIB). A caixa preta foi inicialmente enviada a Paris para decodificação.

No momento do impacto, testemunhas oculares próximas ao local do acidente confirmaram que havia pouco ou nenhum vento, chuva e nenhuma tempestade na área. Os investigadores não encontraram nenhum problema técnico documentado para o A300 e, após considerá-lo como uma causa, posteriormente descartaram o terrorismo.

Embora nenhuma conversa pertinente da cabine de comando tenha sido recuperada do gravador de voz da cabine do voo 268 pelos investigadores do Transportation Safety Board of Canada (TSB), que auxiliou na investigação, os dados recuperados do gravador de dados de voo pelo TSB mostraram que a aeronave iniciou cada etapa de sua descida um passo muito cedo.


Em 16 DME a aeronave estava a 1.000 pés completos abaixo de sua altitude autorizada; em 10 DME (o ponto de referência da Sierra) estava 1.300 pés abaixo de sua altitude liberada. A aeronave se aproximou da Cordilheira do Mahabharat em uma altitude insuficiente e colidiu com a encosta sul. Embora os pilotos do vôo 268 tenham relatado a altitude de sua aeronave com precisão paracontrole de tráfego aéreo , os controladores não fizeram nada para alertá-los de sua altitude inadequada até segundos antes do acidente.

Os investigadores determinaram que o acidente foi causado principalmente por erro do piloto. A visibilidade era fraca devido ao tempo nublado e o sistema de alerta de proximidade do solo não teria sido acionado a tempo por causa do terreno íngreme.


As placas de aproximação para Kathmandu emitidas para os pilotos da PIA também foram determinadas como obscuras, e os controladores de tráfego aéreo nepalês foram considerados tímidos e relutantes em intervir no que eles viam como questões de pilotagem, como separação de terreno. 

O relatório recomendou que a ICAO revisasse as cartas de navegação e encorajasse sua padronização, e que a abordagem do Aeroporto de Kathmandu fosse alterada para ser menos complexa. 

A PIA pagou e mantém o Parque Memorial Lele PIA em Lele, no sopé de uma montanha cerca de 10 km ao norte do local do acidente. 

O Wilkins Memorial Trust, uma organização de caridade do Reino Unido que fornece ajuda ao Nepal, foi criado em memória de uma família morta no acidente.

Por Jorge Tadeu (Site Desastres Aéreos) com ASN, Wikipédia e baaa-acro

Aconteceu em 28 de setembro de 1977: O sequestro do voo 472 Japan Airlines por terroristas em Bangladesh


Em 28 de setembro de 1977, o McDonnell Douglas DC-8-62, prefixo JA8033, da JAL - Japan Airlines (foto abaixo), a vindo de Paris, na França, para o aeroporto de Haneda, em Tóquio, no Japão, com 156 pessoas a bordo, realizou uma escala programada em Bombaim, na Índia. 


Pouco depois de decolar de Bombaim, cinco membros armados do JRA, o  Exército Vermelho Japonês, liderados por Osamu Maruoka, sequestraram a aeronave e ordenaram que voasse para Dhaka, em Bangladesh. 

O avião sequestrado em Bangladesh
Em Dhaka, os sequestradores levaram os passageiros e tripulantes como reféns, exigindo 6 milhões de dólares e a libertação de nove membros da JRA presos.

Os sequestradores alertaram que se o pedido fosse recusado ou não houvesse resposta, os reféns seriam mortos um por um. Neste momento, o grupo criminoso impôs a condição de “matar primeiro os reféns americanos”. Eles sabiam de antemão que o voo transportava um banqueiro americano amigo do então presidente Jimmy Carter.

Posteriormente, os motores do avião sequestrado foram desligados para reduzir o consumo de combustível, fazendo com que a temperatura dentro do avião subisse para mais de 45 graus Celsius, causando o colapso de muitas pessoas devido à desidratação.

No entanto, Masaomi Hokari, um médico contratado da Japan Airlines que por acaso estava a bordo, tratou os passageiros, e o capitão solicitou um veículo auxiliar de energia para ligar o ar condicionado e água aos funcionários do aeroporto, o que foi aceito. 

Os criminosos confiscaram os passaportes , relógios, dinheiro e metais preciosos dos reféns, empilharam suas bagagens no portão de embarque e fizeram uma barricada na aeronave. As proteções das janelas foram baixadas.

Ative a legenda em português nas configuração do vídeo

AG Mahmud, como chefe da aeronáutica de Bangladesh, tomou posição na torre de controle do aeroporto, de onde negociou com os terroristas durante três dias. Durante as negociações, um golpe militar também ocorreu, com vários amotinados espalhando-se na pista. 

O porta-voz do refém e Mahmud haviam estabelecido uma relação cordial até então, que foi ameaçada pelos amotinados que escalaram a situação para um tiroteio aberto entre três grupos armados. 

Toda a situação dos reféns foi transmitida ao vivo pela incipiente BTV com o apoio da embaixada japonesa. A BTV, que iria ao ar apenas quatro horas por dia, basicamente se tornou uma emissora 24 horas durante a crise.


O papel de Mahmud em manter a situação sob controle e garantir a vida de cada passageiro levou o governo japonês a conferir a ele a “Ordem do Sol Nascente, Estrela de Ouro e Prata”. Ele foi a pessoa mais jovem a se tornar o chefe da Força Aérea de Bangladesh.

Em 1º de outubro, o primeiro-ministro Takeo Fukuda anunciou que o governo japonês aceitaria as exigências dos sequestradores, com base no princípio de que "a vida de uma única pessoa pesa mais que a terra". Seis dos membros presos do JRA foram então libertados.


Um voo fretado da Japan Airlines transportou o dinheiro e os seis membros da JRA foram liberados para Dhaka, onde a troca ocorreu em 2 de outubro. Os sequestradores libertaram 118 passageiros e membros da tripulação. Em 3 de outubro, eles voaram para a cidade do Kuwait e Damasco, onde libertaram mais onze reféns. Finalmente, a aeronave foi enviada para a Argélia, onde foi apreendida pelas autoridades e os restantes reféns foram libertados. 

O incidente contrastou a abordagem da Europa e dos Estados Unidos de não negociação com terroristas com a abordagem do Japão de apaziguar terroristas, se necessário. Pouco depois do incidente, a Agência Nacional de Polícia do Japão estabeleceu uma Equipe Especial de Assalto para lidar com futuros atos de terrorismo. Vários dos terroristas do JRA envolvidos no sequestro ainda não foram detidos e seu paradeiro atual é desconhecido.

01 de outubro de 1977: Membros liberados do Exército Vermelho Japonês caminham em direção a uma aeronave especial indo para Dhaka, onde a troca seria realizada, no Aeroporto de Haneda em 1 de outubro de 1977 em Tóquio, Japão. Cinco membros do Exército Vermelho Japonês sequestraram o vôo 472 da Japan Airlines em 28 de setembro após decolar de Mumbai, levaram 156 passageiros e tripulantes como reféns e exigiram 6 milhões de dólares americanos e a libertação de nove membros da JRA presos. O governo japonês aceitou as demandas dos sequestradores. (Foto de The Asahi Shimbun via Getty Images)
Osamu Maruoka, que também liderou o sequestro do voo 404 da Japan Air Lines em 1973, escapou e permaneceu fugitivo até 1987, quando foi preso em Tóquio após entrar no Japão com um passaporte falso. Recebendo uma sentença de prisão perpétua, ele morreu na prisão em 29 de maio de 2011. Outro dos sequestradores, Jun Nishikawa, acabou retornando ao Japão, foi preso, condenado e sentenciado à prisão perpétua.

O avião sequestrado, o DC-8-62 prefixo JA8033, foi devolvido ao Japão, onde o banheiro de bordo, que havia sido parcialmente danificado pelo teste da bomba do sequestrador, foi reparado e a cabine foi limpa. Ele foi devolvido ao serviço regular e usado pela Japan Airlines até 1984, quando foi vendido para a mexicana Aeromexico, onde operou até o início da década de 1990.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipédia, ASN e londoni.co

Aconteceu em 28 de setembro de 1942: Queda do Lockheed Lodestar PP-PBG da Panair do Brasil

Lockheed 18-10-01 Lodestar, prefixo PP-PBK, similar ao envolvido no acidente
Em 28 de setembro de 1942, o avião 
Lockheed 18-10-01 Lodestar, prefixo PP-PBG, da Panair do Brasil, operava o voo doméstico de passageiros do Rio de Janeiro (RJ) para Porto Alegre (RS), com escalas em São Paulo (SP) e Curitiba (PR).

A Panair do Brasil havia adquirido 14 aeronaves do tipo. Operada entre 1941 e 1946, a frota de Lodestars sofreu vários acidentes, de forma que apenas metade das aeronaves adquiridas cinco anos antes ainda encontrava-se operacional. Diante da perda de metade da frota, a Panair revendeu os Lodestar restantes.

O voo saiu do Rio para Porto Alegre com escalas em São Paulo e Curitiba. Ao iniciar a descida no aeroporto de Congonhas, em SP, numa aproximação noturna com mal tempo, O L-18 LodeStar arremeteu e iniciou circuito para uma nova tentativa. 

O avião foi ouvido passando sobre o aeroporto, baixo, mas totalmente fora do eixo da pista. Os motores pararam e a aeronave caiu na mata de Pedra Branca, em Santo André, SP, matando todos os 15 ocupantes, entre eles o comandante Ismael Guilherme e o copiloto Walter Seibel.


Entre os passageiros encontravam-se o empresário Lineu de Paula Machado, o ministro do Tribunal de Contas Eduardo Lopes e o delegado Durval de Vilalva (que havia sido um dos membros das buscas dos destroços da queda do Lodestar PP-PBD).

Os destroços da aeronave foram analisados mas pouco puderam oferecer aos investigadores. Apesar dos motores terem parado subitamente de funcionar, a aeronave ainda possuía combustível em seus tanques. Dessa forma, o acidente foi ocasionado por uma falha indeterminada no sistema de alimentação de combustível da aeronave.

Em 1954 o comandante Coriolano Luiz Tenan (1904-1998), primeiro comandante da Panair, lançou o livro 'Memórias de um piloto de linha'. Em parte da obra Tenan citou alguns acidentes aéreos, entre eles o do Lodestar, atribuindo a uma falha grave na alimentação dos motores.

O comandante Carlos Ari Cesar Germano da Silva lançou o livro 'O rastro da bruxa', analisando diversos acidentes aéreos brasileiros. No caso do Lodestar, Silva especulou que o acidente pode ter sido causado por uma falha humana na abertura/fechamento do sistema de válvulas seletoras dos tanques de combustível. 

Para realizar o voo, o Lodestar dispunha de quatro tanques de combustível (principal esquerdo e direito e auxiliares direito/esquerdo). Cada tanque dispunha de 100 galões americanos de capacidade, gerando um tempo máximo de voo de 5 horas. Os tanques dispunham de válvulas para abertura e fechamento, que permitiam uma distribuição equilibrada do combustível para os motores. Durante um voo era comum a abertura e fechamento manual dos tanques pela tripulação.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipédia

Hoje na História: 28 de setembro de 1988 - 35 anos atrás, o avião Ilyushin Il-96 fez seu primeiro voo

(Foto:  Missão Alexander via Wikimedia Commons)
Em 28 de setembro de 1988, exatamente 35 anos atrás, a Associação de Produção de Aeronaves de Voronezh (VASO) construiu o Ilyushin Il-96 quadrimotor de longa distância. A aeronave fez seu primeiro voo do Aeródromo Khodynka, no noroeste de Moscou.

Sob o comando do Herói da União Soviética Stanislav Bliznyuk, a aeronave fez um voo de 40 minutos diretamente sobre os bairros centrais da capital russa. Alimentado por quatro motores turbofan de dois eixos Aviadvigatel PS-90, o avião foi desenvolvido a partir do primeiro avião widebody da União Soviética, o Ilyushin Il-86. Avanços sobre o antecessor incluíram: uma cabine de vidro, um sistema de controle fly-by-wire, aviônicos avançados e asas equipadas com winglets.

A Rússia ainda usa o Il-96 para transporte VIP (Foto: David McKelvey via Flickr)
Duas versões de aeronaves deveriam ser construídas. O Il-96-300 e o Il-96-300PU. O Il-96 -300 apresentava uma capacidade de passageiros de 262 assentos configurados em um layout de duas classes. Dezoito dos assentos premium apresentavam um espaçamento de assento de 54 polegadas, enquanto os 244 assentos da economia padrão ofereciam um espaçamento de assento de 32 polegadas. Na seção econômica do avião, os assentos são dispostos de forma 3+3+3.

O Il-96-300PU é uma versão altamente personalizada do Il-96 -300 feito para a frota de aeronaves presidenciais russas. Quatro dos aviões foram usados ​​pelo ex-presidente russo Dmitry Medvedev e o atual presidente Vladimir Putin como transporte VIP. A liderança no país de Cuba, administrado por Marxistas-Leninistas, também usa um Il-96 para transporte VIP.

Durante seus testes de voo, o Il-96 realizou vários voos notáveis ​​de longo alcance, incluindo um voo de 9.196 milhas de Moscou a Petropavlovsk-Kamchatskiy e de volta sem pousar em Petropavlovsk. No verão de 1992, um Il-96 voou de Moscou sobre o Polo Norte até Portland, passando 15 horas no ar.

A cabine de um Aeroflot Il-96 (Foto: Dmitry Petrov via Wikimedia Commons)
A aeronave foi então levada para Yakutsk para testes de clima frio, onde encontrou temperaturas de -58° F, e para Tashkent, no Uzbequistão, onde enfrentou temperaturas de mais de 100 graus Fahrenheit. Após completar com sucesso os testes de voo, o Il-96 recebeu seu certificado de aeronavegabilidade em 29 de dezembro de 1992.

Considerado como o novo avião principal da transportadora de bandeira nacional russa Aeroflot, o primeiro voo comercial do avião foi em 14 de julho de 1993, entre Moscou e Nova York. A aeronave foi então implantada em muitas das rotas de longo curso da Aeroflot. Apesar do pouco interesse do exterior, embora os aviões concorrentes Airbus e Boeing fossem consideravelmente mais baratos, três Il-96 serviram com a transportadora de bandeira nacional de Cuba, a Cubana de Aviación.

Dentro da cabine de uma Cubana Il-96 (Foto: DomodedovoSpotters via Wikimedia Commons)
Infelizmente, o Il-96 nunca se tornou a aeronave produzida em massa que a Rússia esperava que fosse e foi atingida pela crise de 2008. No ano seguinte, em 29 de agosto de 2009, o ministro russo da Indústria e Comércio, Viktor Khristenko, anunciou que a fabricação do Il-96-300 cessaria. A razão era que era inferior aos seus homólogos ocidentais e que o fabricante de aeronaves só podia construir um avião por ano. A decisão foi, no entanto, de continuar produzindo uma versão de carga da aeronave.

Após a anexação russa da Crimeia em 2014, as relações entre a Rússia e o Ocidente azedaram. Em 2015, a Rússia anunciou que poderia construir uma versão melhorada do avião para que a Rússia se tornasse menos dependente da Boeing e da Airbus.

Nunca houve um acidente fatal envolvendo um Il-96 (Foto: Anna Zvereva via Wikimedia Commons)
Em setembro de 2017, Aleksandr Tulyakov, vice-presidente da United Aircraft Corporation da Rússia, anunciou o desenvolvimento de uma aeronave widebody 250-280 com um parceiro chinês. Isso foi pensado para ser um golpe mortal para o programa Il-96, mas dada a situação atual com a Rússia buscando aumentar a produção doméstica de aeronaves, isso pode mudar.

Desde que foi introduzido, apenas 30 Il-96s foram construídos. Dez foram para a Aeroflot e três para a Cubana, das quais duas ainda estão em serviço.

Com informações do Simple Flying

Sarcófago: O 'lugar secreto' onde pilotos e comissários descansam em aviões

Sarcófago: Pilotos e comissários têm espaço reservado para descansar em aviões que vão
realizar voos longos (Imagem: P. Masclet/Divulgação Airbus)
Com voos durando cada vez mais, chegando a quase 20 horas, é preciso que a tripulação descanse durante a operação. E isso não é feito em seus postos de trabalho. Esses locais são encontrados em aviões que realizam voos de longa distância e internacionais, mas não em aeronaves menores. Descubra onde os tripulantes dormem e passam o tempo enquanto não estão na ativa.

'Cama secreta'


Espaço reservado longe dos passageiros é apelidado de sarcófago. A melhor dessas acomodações para tripulantes a bordo de aviões é separada da cabine de passageiros e leva essa apelido devido ao espaço que permite, na maioria das vezes, ficar apenas deitado.

Aviões de longo alcance costumam ter esse local. Como as viagens dessas aeronaves tendem a durar mais, é preciso haver um lugar confortável para descansar. E uma aeronave pode ter mais de um desses "sarcófagos".

Sarcófago do A350 da Azul: Espaço serve para tripulantes descansarem em voos longos
(Imagem: Alexandre Saconi)
A350, da Airbus, tem um compartimento para descanso na parte da frente e outro na parte de trás. O da frente, mais próximos à cabine de comando, é onde os pilotos costumam ficar. O dos fundos do avião, geralmente, são reservados para os comissários.

Acesso é feito por meio de escadas. Os sarcófagos ficam, geralmente, em cima da cabine de passageiros, e seu acesso fica próximo à área onde os alimentos são preparados nos aviões. Eles são protegidos por portas com senhas. Em outros casos, aviões podem dispor de instalações no porão, também separado dos demais passageiros.

Todos devem estar na cabine em certos momentos. Mesmo que estejam em horário de descanso, será necessário interrompê-lo para que todos os pilotos estejam presentes na cabine de comando na hora da decolagem e do pouso. Essa regra é para aumentar a segurança da operação e diminuir riscos. 

Local para descanso depende do avião


Local de descanso dos pilotos do Boeing 787, também chamado de sarcófago (Imagem: Alexandre Saconi)
O local de descanso nem sempre é tão reservado. Em muitas ocasiões, pode ser um assento preparado para essa finalidade ou uma poltrona da classe executiva, desde que cumpra as exigências previstas em lei.

Cortina separa o espaço. Esses assentos para descanso da tripulação precisam ter uma divisão em relação às demais pessoas a bordo para garantir o descanso.

Iluminação deve ser controlada. Junto a isso, ainda é necessário que o isolamento garanta conforto e tranquilidade para o descanso, longe de incômodos que os passageiros possam gerar.

Lei define três classes de espaço 


Sarcófago: Espaço dedicado ao descanso de comissários no Boeing 787 (Imagem: Alexandre Saconi)
Ao todo, são três classes de espaço para descanso da tripulação segundo a legislação brasileira. Cada uma tem de seguir às normas determinadas pela Anac (Agência Nacional de Aviação Civil) ou àquelas definidas por outros órgãos regulatórios de cada país.

Por aqui, as regras são as seguintes:

Classe 1
  • Deve ser uma cama ou outra superfície em que seja permitido dormir na horizontal e em local separado das cabines de passageiro e de comando.
  • Ainda deve ter temperatura controlada, permitir o controle da iluminação e tenha isolamento quanto a som e perturbação.
Classe 2
  • Deve ser um assento na cabine de passageiros que permita dormir na horizontal ou que tenha reclinação de 45° ou mais em relação à vertical.Ainda deve possuir largura mínima de 50 centímetros e suporte para as pernas e pés quando estiver reclinada.
  • Deve ter pelo menos uma cortina para separar o local dos passageiros e permitir que se escureça o local e para que fique longe da perturbação dos passageiros e outros membros da tripulação.
Classe 3
  • É um assento na cabine de comando ou de passageiros que recline ao menos 40° em relação à posição na vertical.
  • Deve possuir suporte para as pernas e os pés quando estiver na posição reclinada.
  • Precisa ser separada dos passageiros por, ao menos, uma cortina que permita o escurecimento do local.
  • Não deve ser ao lado de nenhum assento de passageiros.
Quanto melhor a classe, mais tempo tripulantes podem voar. Por exemplo: em acomodações classe 1, é possível que a tripulação exerça jornadas de até 18 horas, enquanto, na classe 3, com as mesmas condições de trabalho, a jornada não poderá exceder 15 horas. Para definir essa duração, devem ser levados em consideração o tipo de tripulação (se em maior ou menor número), o horário do início do voo, entre outros fatores.

Pode cochilar na cabine de comando (não no Brasil) 


Ex-comandante da companhia aérea SAS, Bjorn Lundstrom mostra como é o descanso
controlado durante sobrevoo no oceano Atlântico (Imagem: Facebook/Bjornpilot)
Em momentos de menor carga de trabalho, os pilotos podem cochilar em seus postos. Mesmo com outra parte da equipe em seu momento de descanso, é possível que quem está controlando durma em seu assento.

É o chamado descanso controlado. Entretanto, não em qualquer empresa e, para isso, é preciso seguir uma série de regras. Uma delas é que o cochilo seja de curta duração, geralmente entre 20 e 30 minutos. Outra é que o piloto deve estar afastado dos controles. Costuma ocorrer em voos sobre o oceano, onde a principal parte do trabalho é monitorar os instrumentos. Esse descanso também é reconhecido por favorecer os pilotos para que fiquem mais alertas em momentos críticos, como o pouso ou mudanças de rota.

Brasil não tem regra sobre o tema. Por isso, é proibido os pilotos cochilarem enquanto estiverem na cabine de comando.

Voos mais longos no Brasil não exigem sarcófago 


Pilotos também têm seu espaço reservado para descansar (Imagem: Divulgação/Boeing)
No Brasil, o voo mais longo dura cerca de 4h30min. Ele liga o aeroporto de Viracopos, em Campinas (SP), ao de Boa Vista, em Roraima.

Duração não obriga ter área de descanso. Por isso, essa rota não é normalmente operada por aviões com sarcófagos a bordo.

Modelos não voam tanto tempo assim. No Brasil, os principais modelos de avião utilizados são o Airbus A320 e o Boeing 737. Em raras ocasiões voam mais do que nove horas, dentro do limite da jornada de trabalho dos tripulantes. Por isso, essas aeronaves não contam com um sarcófago de fábrica.

Rota mais longa do mundo chega a 18h40min. É o caso do voo operado pela Singapore Airlines entre o aeroporto de Changi, em Singapura, e o aeroporto John F. Kennedy, em Nova York (EUA).

Rota é feita com o A350. O avião da Airbus têm as adaptações necessárias para garantir o conforto a bordo das aeronaves.

Via Alexandre Saconi (Todos a Bordo/UOL) - Fontes: Tiago Rosa, piloto e diretor de segurança de voo e de relações institucionais do SNA (Sindicato Nacional dos Aeronautas), e Anac (Agência Nacional de Aviação Civil)

quarta-feira, 27 de setembro de 2023

Por dentro de uma missão meteorológica pós-guerra do bombardeiro B-29

Após a Segunda Guerra Mundial, alguns bombardeiros B-29 voltaram sua atenção para uma nova missão em tempos de paz, e essa missão estava no norte - muito, muito ao norte.


As grandes inovações industriais da Segunda Guerra Mundial melhoraram muitas coisas, mas a previsão do tempo nem sempre é incluída entre elas. Mas, por causa do trabalho pioneiro dos engenheiros de aviação dos EUA, as aeronaves do pós-Segunda Guerra Mundial - como o B-29 - agora eram capazes de voar mais ao norte do que antes e, na edição de novembro de 1948, a Popular Mechanics mergulhou fundo em como essa nova capacidade estava revolucionando a previsão do tempo.

Navegando entre o Alasca e o Pólo Norte em um cronograma, os B-29s da Força Aérea estão buscando uma resposta para aquela pergunta simples tão vital para piqueniques, generais e fazendeiros - "Qual é o clima na próxima semana?"

Sem fanfarra e conectando-se rotineiramente ao longo de uma rota perigosa com segurança monótona, os meteorologistas da Superfortress estão lançando as bases para previsões de longo alcance para a América do Norte. Com a experiência total e mais de 110 missões já voaram com sucesso a pista de 3.290 milhas náuticas - a Força Aérea espera descobrir muito do desconhecido sobre as explosões árticas que varrem o Canadá e os Estados Unidos.

Praticamente não há informações disponíveis sobre o clima ao norte de 70 graus de latitude. Até recentemente, apenas algumas expedições bem espaçadas haviam alcançado o pólo, e suas descobertas eram escassas. Estações de reportagem terrestre na calota polar ártica eram uma impossibilidade. Os meteorologistas reconheceram cedo as potencialidades das aeronaves, mas o "topo do mundo" estava além do alcance das aeronaves do pré-guerra.

Da guerra, onde o reconhecimento do clima preciso foi vital para a vitória, veio a grande, rápida e longa aeronave que os meteorologistas sonhavam como uma ferramenta para desvendar os segredos do clima do Ártico. Em março de 1947, longos meses de preparação terminaram e a primeira companhia aérea over-the-pole estava pronta para operar.

Selecionado para voar nas missões Ptarmigan, assim chamadas em homenagem a um pássaro ártico, foi o 375º Esquadrão de Reconhecimento, comandado pelo Tenente-Coronel Karl T. Rauk. Veteranos dos testes de biquíni, o "escritório central" do esquadrão é a Base Aérea de Ladd em Fairbanks, Alasca. Com toda a casualidade superficial de jovens fazendo um passeio tranquilo no país, as equipes rugem para o norte de lá todos os dias por 15 a 19 horas de trabalho em uma das rotas mais desoladas do mundo, dois terços dela sobre um gelo- oceano sufocado.

Curso de ida e volta do percurso polar, que pode ser realizado em qualquer direção
A tripulação normal de 11 homens consiste em um piloto, copiloto, meteorologista, dois navegadores, dois oficiais de radar, engenheiro de vôo, chefe de tripulação e dois radiomenos. Três outras pessoas que estão em treinamento para cargos de tripulação ou outros observadores qualificados também podem participar.

No dia anterior ao voo, toda a tripulação é minuciosamente informada. As informações completas do voo da missão do dia anterior são revisadas e as probabilidades meteorológicas atualizadas são descritas. Com base nesses fatores, o primeiro navegador traça seu curso pretendido para o dia seguinte, sujeito a alterações se a imagem do tempo mudar radicalmente.

O piloto encerra a reunião com instruções sobre as roupas a serem usadas, o equipamento pessoal a ser transportado e atribui posições de avião específicas a cada tripulante para uso durante a decolagem e em caso de pouso de emergência. Ele encomenda um paraquedas para cada tripulante e um extra para cada compartimento em caso de emergência. Um anúncio final resume o equipamento de resgate e sobrevivência a ser armazenado a bordo.

Virando as hélices para uma decolagem antecipada em Ladd.
Eles ultrapassaram o pólo e voltaram em 16 horas
A menos que se saiba que a aeronave explodirá e um mergulho rápido não apagará o fogo, as tripulações raramente saltam no Ártico. Eles aprenderam por experiência própria que suas chances de sobrevivência são muito maiores se descerem o avião aleijado e confiar em seu tamanho e forma para atrair equipes de resgate aéreo. Enquanto isso, a embarcação oferece proteção contra as intempéries.

No frio extremo, quando a temperatura cai abaixo de zero dentro do avião, os homens usam até três pares de luvas (náilon, lã e couro), cuecas pesadas de lã, camisa, calça, suéter e cachecol, coberto por uma lã macacão de vôo com calças forradas de lã e parka. Nos pés estão vários pares de meias, forros internos de feltro, solas internas e um par de mukluks.

Às 4h35 de uma manhã do final do verão, nossa missão típica, pilotada pelo tenente David Laughman de Hanover, Pensilvânia, decolou. Os grandes B-29s são pesados ​​à gasolina, carregando 8.000 galões - cerca de seis libras por galão - para a viagem e usam cada centímetro da pista na decolagem. Queimando combustível a uma taxa de aproximadamente 350 galões por hora, eles podem esperar chegar de volta a Ladd com uma margem de segurança de cerca de 1.500 a 2.000 galões.

Muito carregados de combustível, os aviões meteorológicos vão ganhando altitude lentamente
As missões seguiram um caminho "sinóptico" ou fixo, uma vez que observações regulares nos mesmos locais e na mesma altitude têm mais valor para os previsores do que aquelas de pontos dispersos e em diferentes alturas. Com efeito, ele cria uma cadeia de estações meteorológicas fixas em locais dos quais os relatórios seriam, de outra forma, impossíveis de obter.

As observações meteorológicas técnicas são feitas a cada meia hora, exceto quando as condições existentes justificarem verificações adicionais. Menos de meia hora após o início de cada observação, a informação completa foi enviada por rádio para Ladd, verificada lá por erros de transmissão pelo meteorologista da missão anterior e enviada em um teletipo para uso internacional. Ele está disponível para todas as nações do mundo. Hora a hora, o procedimento se repete durante todo o voo.

A Cordilheira Brooks, uma cordilheira sobre a qual sobrevoam os B-29s
Dependendo do vento, o curso de cinco etapas é executado no sentido horário ou anti-horário a 18.000 pés. Laughman dirigiu no sentido anti-horário, fazendo seu primeiro checkpoint em Aklavik, perto da ponta norte do Canadá, então desviou em direção ao seu segundo posto de controle em Prince Patrick Island.

Contrariando uma noção convencional, os aviadores relatam que as formações de gelo na água abaixo são geralmente mais compactas a cerca de 80 graus de latitude, diminuindo gradualmente conforme se dirigem para o norte.

Às 12h07, horário do Alasca, 812 horas após a decolagem, o avião de Laughman deu a volta no Pólo Norte e rumou para casa. A primeira etapa em direção ao sul, do pólo a Point Barrow, a mais longa da missão, demorou pouco mais de seis horas. Mais duas horas e a tripulação cansada desceu para um terreno familiar na Base Aérea de Ladd, missão concluída.

A ilustração mostra a posição do sol durante a missão de 16 de março, quando testemunhou
dois amanheceres e dois pores do sol durante o curso de voo de 16 horas
A partir de incontáveis ​​voos como o de Laughman e sua tripulação, a Força Aérea está aprendendo sobre o clima polar, um conhecimento valioso para fins de guerra ou de paz. Os pilotos descobriram que o tempo geralmente parecia pior do que era. O ar, eles descobriram, estava quase estável, com neblina, neve e névoa de gelo os principais obstáculos.

Ao contrário das concepções anteriores, verificou-se que tanto os baixos como os altos estão em constante movimento em toda a região. As baixas foram consideradas mais intensas do que as do sul, mas o clima resultante não foi tão severo. A experiência logo estabeleceu a prevalência dos riscos de formação de gelo na hélice e a extraordinária tenacidade das formações de gelo.

Foto feita a alguns graus do poste. Os aviadores encontram formações de gelo menos
compactadas enquanto voam ao norte de 80 graus de latitude
As missões não reconhecem nenhum tempo "sem voo", embora os períodos de transição do crepúsculo no início da primavera e no outono apresentem a maior dificuldade. Em seguida, os navegadores planejam voos para coincidir com as fases e posições da lua ou dos planetas mais brilhantes, Vênus, Júpiter ou Saturno. Durante este tempo, existe uma folga de 40 minutos em cada sentido, durante os quais os voos têm de sair ou serem cancelados.

O uso da astro-bússola em conjunto com uma nova forma de navegação recentemente concebida, chamada navegação em grade, em vez da bússola magnética, elimina a mudança do Pólo Magnético Norte como um problema de navegação. Quando possível, os navegadores preferem trabalhar com o sol porque ele requer menos correções.

Durante o início dos períodos de transição do crepúsculo, quando o sol é apenas um brilho no horizonte ao sul, as missões voam com o sol. Eles se movem por cerca de duas horas do crepúsculo enquanto se aproximam do pólo, dependendo do piloto automático e dos giroscópios direcionais para manter a direção correta. Em seguida, eles voam de volta através da escuridão do outro lado da faixa crepuscular após a curva no polo.

Do nariz do B-29, o meteorologista tem uma visão desimpedida dos fenômenos climáticos
para relatórios enviados por rádio para a base a cada meia hora
Em 16 de março deste ano, pouco antes do equinócio da primavera, uma tripulação teve a estranha experiência de ver dois amanheceres e dois pores do sol durante um voo de comprimento normal. O sol não apareceu até que eles estivessem em seu caminho, se pôs quando eles estavam quase no polo, reapareceu quando rumaram para o sul e se pôs novamente quando pousaram em Fairbanks.

A ciência do clima ainda é relativamente inexplorada. À medida que aumenta o conhecimento da atmosfera superior, os requisitos dos meteorologistas mudam. Mais estudos estão sendo constantemente direcionados a fatores como eletricidade atmosférica, medições de radiação e ozônio, tamanho da gota d'água e contagem de pólen.

Alguns desses fatores podem ser a chave para uma previsão do tempo virtualmente exata, ou mesmo para o controle do tempo, como alguns acreditam com segurança. Mas o primeiro grande passo foi dado agora e as "corridas de passageiros" da USAF sobre o polo estão desvendando o mistério do clima ártico.

Edição de texto e imagens por Jorge Tadeu (Site Desastres Aéreos)

O que é uma volta coordenada?


Virar um avião parece muito fácil, mesmo quando você está sentado na cabine. Mova o manche de controle ou mantenha-se à esquerda ou direita e o avião o seguirá. Afinal, os aviões são projetados para serem estáveis ​​e fáceis de voar. Mas quando você dá um mergulho profundo na aerodinâmica do que mantém um avião no ar e como fazê-lo virar, as coisas podem ficar muito complicadas. Por exemplo, o que é uma curva coordenada?

Em termos mais simples, uma curva coordenada é aquela em que as forças que atuam no avião em uma curva estão perfeitamente equilibradas. O avião está virando e seus ocupantes não estão sendo empurrados ou puxados em nenhuma direção em seus assentos.

Forças de Voo


Para entender melhor como um avião permanece no ar e como as coisas mudam durante as curvas, frequentemente discutimos as forças divididas em componentes individuais.

Voo direto e nivelado

Existem quatro forças a serem observadas para o vôo básico, não acelerado, sem curvas, sem escalada ou descendente.
  • Elevação - A força criada pelas asas que age em oposição à gravidade.
  • Peso - a massa do avião sendo puxado em direção à Terra pela gravidade.
  • Impulso - a potência do motor que puxa o avião no ar e age de forma oposta ao arrasto.
  • Arraste - A resistência do avião a ser movido para a frente no ar.
As quatro forças de voo
Se um avião está voando a uma altitude nivelada e não está acelerando ou diminuindo a velocidade, a sustentação deve ter peso igual e oposto, e o empuxo deve ser arrasto igual e oposto.

Virando o voo

Se o piloto quiser virar em uma direção específica, as asas serão inclinadas nessa direção. A sustentação feita pelas asas não é mais apontada para cima e oposta à gravidade. Ele permanece perpendicular à asa.

Se você quebrar essa linha diagonal em seus componentes, isso significa que a parte que age em oposição ao peso é ligeiramente reduzida. A menos que o piloto tome outras medidas, o avião começará a perder altitude.

Mas também significa que uma parte da sustentação feita pela asa agora está puxando o avião para a curva. A força criada pelas asas é o que faz um avião virar. É chamado de componente horizontal de sustentação.

Forças de voo em uma curva

Forças centrífugas e centrípetas

Quando você está em um carro, dirigindo em uma estrada plana, e faz uma curva repentina para a direita, o que acontece com seu corpo dentro do carro? É jogado para a esquerda.

Por que isso acontece? Como afirma a Terceira Lei do Movimento de Newton, "Para cada ação, há uma reação igual e oposta."

Sentado no carro, quando vira o volante para a direita, você cria uma ação. A força que puxa o carro para a curva é conhecida como força centrípeta.

Mas, em reação, tudo é jogado para a esquerda. Essa força aparente é chamada de força centrífuga.

A mesma coisa acontece em um avião, mas o piloto tem muito mais controle sobre essas forças do que o motorista de um carro.

Controles de voo


Os aviões têm três controles de voo primários. Cada controle move o avião em torno de um eixo de vôo e cada movimento tem um nome.
  • Os ailerons rolam o avião em torno do eixo longitudinal.
  • O leme curva o plano em torno do eixo vertical.
  • O elevador inclina o avião em torno de seu eixo lateral.
Direções de movimento e eixo de voo

Como você faz voltas coordenadas?


Para fazer a curva acontecer, o piloto precisa fazer três (possivelmente quatro) coisas simultaneamente. Aqui está uma olhada em quais controles são usados ​​em uma curva coordenada.

Supondo que eles entrem na curva em um vôo direto e nivelado sem aceleração, o primeiro passo é usar os ailerons para fazer a curva. A roda de controle controla os ailerons.

Ao mesmo tempo, o piloto precisa aplicar alguns comandos do leme na mesma direção. O leme é controlado com os pedais. A quantidade de leme que o piloto coloca determinará se a curva está escorregando (pouco leme), derrapando (muito leme) ou coordenada (logo à direita).

Curvas coordenadas normais versus curvas escorregadias e derrapantes
Conforme o avião faz a curva, a sustentação vertical é reduzida e o avião pode começar a perder altitude. Pode ser necessário algum elevador para manter o nariz nivelado e a altitude. O elevador é controlado empurrando ou puxando o manche. Nesse caso, você puxaria o manche para manter sua altitude.

Dependendo de quão íngreme é a curva, o piloto pode precisar adicionar um pouco de força se o avião começar a desacelerar. Curvas muito acentuadas ou aviões de baixo desempenho exigem um aumento significativo na potência. A potência é controlada pelo acelerador, uma alavanca de controle na mão direita do piloto.

Quanto leme um piloto precisa para manter uma curva coordenada?


Essa é uma ótima pergunta. A resposta é: “Apenas o suficiente, mas não muito!” Em termos práticos, depende do avião que você está voando e da inclinação da curva.

Se uma curva for perfeitamente coordenada, a única força sentida na cabine é uma leve pressão diretamente para baixo em seu assento. Se seu corpo for pressionado para a esquerda ou direita, a curva está escorregando ou derrapando. O uso do sentido cinestésico do corpo é às vezes chamado de "voar pelo assento das calças".

Instrumentos - Coordenador de Turno


Os mecanismos internos do corpo estão longe de ser ajustados para aviões voadores. Os humanos evoluíram para andar com os pés firmemente plantados, não para voar através das nuvens . Felizmente, vários instrumentos simples são usados ​​na cabine para ajudar o piloto a medir a pressão necessária do leme.

O mais simples é conhecido como inclinômetro ou simplesmente “A Bola”. Este pequeno instrumento é geralmente montado dentro do coordenador de curva, montado bem na frente do piloto. Você pode encontrá-lo em qualquer avião, mas ele se move de um lugar para outro. Muitas vezes, é incorporado ao indicador de atitude principal em um display eletrônico de vôo primário (PFD).

A bola se move conforme as forças de vôo agem sobre ela, por isso é uma referência rápida e fácil para o que o piloto deve fazer. Os pilotos são ensinados a “pisar na bola”, o que significa que, seja qual for a direção em que a bola é desviada, o piloto deve pressionar o pedal do leme.

O Coordenador de Bola em uma Volta e um Indicador de Volta e Deslizamento
O objetivo é manter a bola bem no meio, o que indica uma curva perfeitamente coordenada.

Edição de texto e imagens por Jorge Tadeu com informações de Aerocorner