As principais notícias sobre aviação e espaço você acompanha aqui. Acidentes, incidentes, negócios, tecnologia, novidades, curiosidades, fotos, vídeos e assuntos relacionados. Visite o site Desastres Aéreos, o maior banco de dados de acidentes e incidentes aéreos do Brasil.
segunda-feira, 21 de novembro de 2022
Avião Beluga sai da pista e atola enquanto tentava dar meia-volta na França
Por que as janelas dos aviões nunca estão alinhadas com as poltronas?
Em um vídeo no canal de Youtube Today I Found Out, o vlogueiro Simon Whistler explica a real razão por que muitas vezes você precisar se inclinar mais para conseguir espiar pela janelinha.
Segundo o apresentador, o principal motivo é porque as companhias aéreas optam por reconfigurar a disposição dos assentos que foi originalmente sugerida pelo fabricante. Dessa maneira, obviamente, elas conseguem colocar mais poltronas e, assim, aumentar o número de passageiros em cada aeronave. As próprias empresas já projetam as fileiras com essa possibilidade de ajuste, que pode trazer as fileiras mais para frente ou para trás. Com a remodelagem, no entanto, o alinhamento vai para o espaço – assim como o conforto dos clientes.
Mais do que estar alinhado com a janela, de décadas para cá, o tamanho do pitch (a distância entre as poltronas) também diminuiu muito nas aeronaves. Antes, era comum um espaçamento de 86 cm, enquanto hoje é comum haver apenas 71 cm. Até a largura das poltronas tem encolhido – costumava ser cerca de 46 cm contra os 42 cm atuais.
Em voos mais curtos, é ainda mais comum encontrar essas versões de aviões “lata de sardinha”. Nessas rotas, os passageiros tendem sempre a procurar a passagem mais barata, independente do conforto oferecido. Assim, as aéreas aproveitam para ter mais oferta de lugares e poder oferecer preços mais competitivos.
Mas se há uma vantagem nessa falta de alinhamento é que fica mais confortável encostar a cabeça na parede do avião para tirar aquela soneca, não é mesmo?
Aqui você pode assistir ao vídeo (em inglês) com a explicação na íntegra:
domingo, 20 de novembro de 2022
História: Milagre com o Boeing 747-400 da United - Como os pilotos evitaram por pouco bater em uma montanha?
Detalhes do voo
O voo UA863 desapareceu brevemente no radar
As pistas do SFO e sua proximidade com a montanha San Bruno ao fundo (Imagem: Wikipédia) |
Consequências
Vídeo: Entrevista - Quase cai do avião! Uma bela troca de cueca…
Aconteceu em 20 de novembro de 1993: Voo 110 da Avioimpex - O acidente aéreo mais fatal da Macedônia
O voo 110 foi um voo regular de passageiros operado pela Avioimpex que caiu em 20 de novembro de 1993 durante o voo de Genebra, na Suiça, para Skopje, na Macedônia. Antes do desastre, o voo 110 havia se desviado do Aeroporto Internacional de Skopje para o Aeroporto de Ohrid devido a uma nevasca na capital da Macedônia.
Liberado para uma aproximação à Pista 02, o Yak-42 estava aproximadamente 2.300 pés alto demais para realizar um pouso com sucesso, então um procedimento de 'abortagem' da aterrissagem foi executado.
Pouco depois, a tripulação do voo 110 comunicou por rádio que não estava recebendo o sinal do VOR. O controle de tráfego aéreo não conseguiu atender à solicitação de rumo e o piloto do voo 110 informou que não conseguia ver as luzes da pista.
Pouco depois, o Yak-42 caiu, matando 115 das 116 pessoas a bordo. Um passageiro sobreviveu, mas ficou gravemente ferido. Em 1 de dezembro de 1993, o único sobrevivente morreu sem nunca ter recuperado a consciência nos dias que se seguiram à queda do voo 110 da Avioimpex.
O acidente foi o terceiro desastre da aviação da Macedônia em 16 meses e continua sendo o mais mortal do país. Uma investigação subsequente estabeleceu a causa do acidente como erro do piloto.
Por Jorge Tadeu (com Wikipedia, baaa-acro e ASN)
Aconteceu em 20 de novembro de 1974: Voo Lufthansa LH 540 - Esquecimento Fatal
Dia 20 de novembro de 1974. A manhã está apenas começando no Aeroporto Jomo Kenyatta International (NBO) em Nairobi, Quênia. Procedente de Frankfurt, o voo LH 540 pousou no horário previsto. Nairobi é a primeira escala do serviço, que tinha por destinação final Johannesburg, África do Sul.
Uma aeronave novíssima, o D-ABYB tinha apenas 4 anos de uso e 16.781 horas voadas. Seus quatro motores Pratt & Whitney JT9D-7 estavam entre os mais potentes em serviço na aviação mundial. A bordo, dos 361 lugares dipsoníveis, menos de 50% estavam efetivamente ocupados. O D-ABYB levava apenas 157 ocupantes, sendo 140 passageiros e 17 tripulantes.
Até então, nenhum 747 havia se envolvido em acidentes fatais. O nível de segurança do majestoso "Jumbo Jet", como era conhecido a época, era perfeito: 273 haviam sido entregues. Até as 07h42 daquela manhã, quando os motores do D-ABYB foram acionados, os 747 transportaram 193 bilhões de passageiros-milhas sem sofrer um único acidente. Um nível de 100% de segurança que beneficiou os 75 milhões de passageiros que até aquele instante haviam tido o privilégio de voar na maior aeronave comercial de todos os tempos.
Mas naquela manhã, a impecável história dos 747 seria marcada para sempre. Os pilotos esquecem de acionar um dos sistemas pneumáticos do D-ABYB. Esse sistema é responseavel pelo acionamento dos slats. Quando acionados, os slats se distendem para a frente e para baixo, criando um perfil que "represa" a camada de ar sob as asas, aumentando enormemente a sustentação das mesmas. São fundamentais nos estágios iniciais e finais de voo, durante a decolagem e aproximação, quando a velocidade é mais baixa e a necessidade de sustentação é mais crítica. O 747 seria até capaz de voar com slats guardados. Mas precisaria de uma corrida de decolagem muito mais longa para ganhar a velocidade necessária para sair do chão e ganhar altitude com segurança.
Essa gritante falha operacional deveria ter sido detectada pelos tripulantes do 747. Os três tripulantes na cabine de comando não procederam ao check-list conforme prescrito nos manuais de operação. O sistema pneumático desligado passou desapercebido aos três tripulantes. Os 157 ocupantes do Boeing não suspeitavam, naquele instante, que o voo 540 seria muito curto. Entraremos agora na cabine de comando do 747.
Cap: Comandante Krack
F/O: Primeiro-oficial Schacke
F/O-RDO: transmissão de rádio do primeiro-oficial ao solo
F/E: Engenheiro de voo Hahn
TWR: Torre de controle do aeroporto de Nairobi
TWR: "Lufthansa 540, torre Nairobi."
F/O-RDO: "540, prossiga."
TWR: "Você pode prosseguir para a cabeceira 06 ou 24, a escolha é sua."
Cap: "Ah, peça a 24, ok?"
F/O-RDO: "Cabeceira 24, por favor."
TWR: " Entendido. Autorizado prosseguir para o ponto de espera da cabeceira 24."
F/O-RDO: " Entendido. Autorizado ponto de espera da 24. Autorizado ingressar na pista?"
TWR: "Lufthansa 540, afirmativo. Você pode ingressar e fazer o backtrack." (taxiar pela própria pista no sentido oposto ao da decolagem)
F/O-RDO: "Entendido, obrigado."
F/O: "Então, os flaps."
Cap: "Sim."
F/O: "Bem, posso ser eu o remador?" (fazer a decolagem)
Cap: "Por favor."
O engenheiro Hahn inicia o checklist.
F/E: "Checklist, freios."
F/O: "Estão checados."
F/E: "Flaps."
Cap: "Dez, dez, verdes."
F/E: "Controles de voo."
Cap: "Checados."
F/O: "Estão checados."
F/E: "Yaw damper."
Cap: "Checados."
F/E: "Instrumentos de voo e painéis de avisos."
Cap: "Sem avisos anunciados."
F/O: " Sem avisos anunciados aqui também."
Cap: "Cabine avisada e pronta."
F/E: "Checklist completo."
São exatamente 07h51. A torre de Nairobi chama o 747 com a autorização de sua subida em rota:
TWR: "Lufthansa 540, para autorização."
F/O-RDO: "Prossiga."
TWR: "ATC autoriza Lufthansa 540, Nairobi para (o aeroporto de Johannesburgo) Jan Smuts, aerovia Delta Ambar, transição uno zero. Suba e mantenha nível 350 para o Mike Bravo, subida por instrumentos Mbeya Echo. Autorização válida até 56, hora agora é 51. Coteje."
O primeiro oficial repete a autorização sem errar. Ao mesmo tempo, os últimos ítens do check antes da decolagem são completados, enquanto o 747 lentamente taxia rumo à cabeceira 24.
F/E: "Take-off checklist completo."
F/O: "Okay."
O gigantesco Boeing 747, pesando exatamente 254.576 Kg, chega à cabeceira 24 e executa um giro de 180º. Perfeitamente alinhado com o eixo da pista, os pilotos do 747 têm à sua frente 4.177 metros de concreto e asfalto à disposição para decolar. Na configuração normal de flaps e slats estendidos, seriam mais do que suficientes para permitir uma operação segura.
Mas, com seus slats recolhidos, o 747 nada mais é que um pássaro condenado. Suas asas, desprovidas da sustentação adicional que os slats permitem, não são capazes de sustentar o grande jato para uma decolagem segura. Sobretudo porque o aeroporto está situado a 1.624 m acima do nível médio do mar. O ar rarefeito nessa altitude sustenta muito menos do que a nível do mar. Some-se a isso a temperatura naquele instante (26ºC), outro fator que contribui para diminuir a sustentação. Nairobi é um exemplo típico da combinação mais perigosa para as operações: um aeroporto "Hot & High", situado em lugar de elevada altitude e sujeito a altas temperaturas.
O drama do LH540 entra em sua fase definitiva no momento que o primeiro-oficial Schacke imprime potência aos quatro motores. A aceleração é normal. O 747 troveja pela pista sob o brilhante sol que banha o Quênia. Com pouco mais de 20 segundos, o jato ultrapassa a primeira velocidade de conferência, quando os velocímetros dos dois pilotos são comparados.
F/O: "Oitenta." (80 nós de velocidade)
Cap: "Sim... Confere."
Mais alguns segundos se passam. Para os controladores observando a decolagem do LH540, tudo parece normal. A bordo do 747, a operação também parece ser rotineira. O jumbo acelera normalmente até chegar ao "Point of No Return" como anunciado pelo cmte. Christian Krack.
Cap: "V-1"
A partir desse momento, a decolagem deve prosseguir, mesmo em caso de perda de um ou mais motores. Depois de ultrapassar a V-1, a aeronave tem de prosseguir na decolagem. Mesmo que sofra pane num dos motores, o procedimento é um só: prosseguir na decolagem. Isso se deve ao fato de que a aeronave já não tem mais condições de abortar a decolagem com segurança na pista. Por isso mesmo a V-1 também é conhecida como "Point of No Return".
Mas o problema que logo ameaçaria o D-ABYB não era falta de potência. Era falta de sustentação, uma condição que só seria percebida no instante em o jato tentasse sair do solo. E isso aconteceria dois segundos depois, por volta das 07h54.
Cap: "V-R"
O primeiro-oficial puxa o manche para sí, erguendo o nariz do 747. O jato, com quase 100 toneladas a menos que seu peso máximo de decolagem, obedece docilmente. No entanto, tão logo o nariz é erguido, com o ângulo de ataque pronunciado, as asas do 747 entram numa condição aerodinâmica conhecida como pré-estol. A estrutura do 747 começa a trepidar violentamente, condição instantaneamente percebida pelo comandante Krack.
Cap: "Atenção! Vibração..."
F/E: "Aqui está tudo normal."
Cap: "Vibração!"
O primeiro-oficial Schacke observa os parâmetros de motor e constata que tudo está normal: as velocidades estão conformes com os cálculos feitos antes da decolagem. Schake parece acreditar que vibração deve ser originária de um problema com uma das rodas. Talvez um pneu estourado ou algo assim. O Boeing 747, desafiando seus limites, sai do chão. Imediatamente após sentir que o 747 deixou o solo, solicita ao comandante que recolha o trem de pouso.
F/O: "Trem em cima!"
Schacke observa as luzes no painel indicarem que os trens estão sendo recolhidos. O 747 trepida violentamente, deixando os três tripulantes surpresos e preocupados. O primeiro-oficial comenta, em voz alta, como se estivesse torcendo para que os segundos necessários para a retração completa dos trens corressem mais rápido.
F/O: "Trem recolhendo!"
Ele sabia que, com os trens guardados, o 747 ficaria mais "liso" aerodinâmicamente e poderia acelerar mais. Schacke sentia que o 747 estava voando com enorme dificuldade, sem ganhar altura normalmente.
F/E: "Parâmetros dos motores normais."
O engenheiro Hahn verifica a potência dos motores: tudo normal. O fato do 747 não ganhar altura é percebido tanto pelos tripulantes como pelos passageiros do 747. O comandante Krack ainda não consegue entender o que acontece ao 747 e se limita a dizer:
Cap: "Entendido!"
F/E: "RPM dos motores também normais."
Nesse exato instante, o 747 atinge 70 metros de altura sobre a pista. Então entra num pré-estol. Apenas segundos depois disso, o sistema de aviso de estol do 747 entra em funcionamento. É o "stick-shaker", que vigorosamante agita a coluna de controle dos dois pilotos, avisando-os de forma inequívoca que a aeronave aproximava-se da velocidade limite, quando as asas simplesmente deixam de sustentar o avião. Alarmado, o engenheiro de voo Hahn grita:
F/E: "Stick-shaker!"
O primeiro-oficial Schacke mantêm a frieza. Abaixa o nariz do 747, tentando com isso fazer o jato ganhar mais velocidade, e consequentemente, mais sustentação. No entanto, o 747 já não tem mais como trocar altitude por velocidade, pois está baixo demais. O 747 afunda em direção ao solo. Percebendo o inevitável, Schacke pronuncia apenas:
F/O: "Okay, crash!"
Os gravadores a bordo da cabine do comando do 747 registram os alarmes de trem de pouso recolhido soarem a bordo. Para os computadores do 747, a velocidade do jato era insuficiente para a retração dos trens. Eles estavam certos.
O 747 não poderia estar mesmo voando. O jumbo perde altitude. Schacke institivamente ergue o nariz, para impedir que a aeronave entre voando no solo. O enorme 747 chega ao seu instante final. A exatos 1.120 metros depois do final da pista, sua cauda toca num descampado.
O Boeing inicia uma corrida no solo, que dura apenas alguns segundos. Com mais 114 metros percorridos em solo, o enorme Boeing colide com uma elevação no terreno. O impacto destrói sua estrutura, que começa a se separar em grandes partes. A fuselagem e parte das asas ainda se arrasta mais 340 metros, girando 180º antes de parar por completo.
Os destroços rapidamente são tomados pelas chamas dos tanques de combustível rompidos pela colisão. Quatro comissários e 55 passageiros não conseguem sair a tempo dos destroços e sucumbem ao fogo, fumaça e escoriações provocadas pelo acidente. Acaba de ocorrer o pior desastre envolvendo aeronaves da Lufthansa em todos os tempos.
Nos meses subsequentes, as investigações apontaram duas causas determinantes do desastre. 1- O esquecimento dos tripulantes para acionar o sistema pneumático. 2- A falha em perceber e corrigir este fato durante os check-lists.
Como fatores contribuintes, as autoridades apontaram a necessidade da Boeing incluir alarmes sonoros nos 747 em caso de não acionamento dos slats. A modificação foi cumprida e incorporada em todos os 747. Os alarmes agora soam toda vez que potência de decolagem é aplicada aos motores com os slats recolhidos. Além disso, luzes de advertência de "pressão insuficiente" no sistema pneumático foram adicionadas às cabines de comando dos 747.
Mudanças que transformaram os veneráveis Jumbos nas mais seguras aeronaves da categoria. Melhoramentos que, contudo, chegaram tarde demais para os desafortunados passageiros do Lufthansa 540.
Um total de 98 pessoas sobreviveram ao acidente de Nairóbi, o primeiro acidente do então incrivelmente grande Boeing 747. Apenas 43 deles ficaram completamente ilesos. A Lufthansa providenciou para eles e também compensou os enlutados "para evitar mais publicidade indesejada". Nem a Lufthansa nem a Boeing sofreram danos permanentes em sua imagem na época.
O capitão Krack e o engenheiro de voo Hahn foram demitidos da Lufthansa logo depois, mas suas demissões foram anuladas por um tribunal do trabalho, pois não havia relatório de investigação disponível para descartar as chances de defeito técnico. O engenheiro de voo Hahn foi acusado de negligência criminosa, mas foi absolvido em 1981.
Edição de texto e imagens: Jorge Tadeu (Parte do relato foi extraído do extinto site Jetsite via acidentesdesastresaereos.blogspot.com)
Aconteceu em 20 de novembro de 1967: 70 mortos em queda de avião da TWA em Cincinnati (EUA)
Em 20 de novembro de 1967, o voo 128 da TWA era um voo regular de passageiros nos Estados Unidos realizado pela Trans World Airlines de Los Angeles a Boston, com paradas intermediárias em Cincinnati e Pittsburgh. O voo 128 caiu na aproximação final do Aeroporto Greater Cincinnati. 70 das 82 pessoas a bordo do Convair morreram.
O voo 128 da TWA foi operado pelo avião a jato de fuselagem estreita Convair CV-880-22-1, prefixo N821TW (foto acima). O Convair foi fabricado em dezembro de 1960 e colocado em serviço pela TWA em janeiro de 1961. Ele havia acumulado um total de 18.850 horas de operação antes do voo do acidente.
Embora vários registros de manutenção tenham ocorrido e sido liberados de acordo com os procedimentos de manutenção existentes, em nenhum caso os altímetros do capitão e do primeiro oficial relataram mau funcionamento ao mesmo tempo.
O capitão do voo, Charles L. Cochran, de 45 anos, acumulou 12.895 horas de voo, incluindo 1.390 horas no Convair 880. O primeiro oficial, Robert P. Moyers, de 33 anos, fez aproximadamente 2.647 horas de voo tempo, incluindo 447 no Convair 880. O engenheiro de voo, Jerry L. Roades, de 29 anos, tinha 3.479 horas de experiência de pilotagem, nenhuma das quais no Convair 880, mas tinha 288 horas de experiência como engenheiro de vôo em o 880. O voo também teve quatro comissários a bordo.
O voo 128 partiu de Los Angeles às 17h37 (EST - Eastern Standard Time) levando a bordo 75 passageiros e sete tripulantes, e operou para Cincinnati sem incidentes. O voo foi inicialmente programado para fazer uma abordagem por instrumentos (ILS -Instrument Landing System) para a pista 18 do Aeroporto de Cincinnati.
A visibilidade era de 1,5 milhas com neve fraca. O marcador externo para pista 18 estava operacional, mas o glide slope ILS, as luzes de aproximação da pista e o marcador intermediário não estavam operacionais devido aos trabalhos de construção da pista.
Nessas condições, o procedimento adequado seria manter a altitude mínima de aproximação de 1.290 pés (390 m) acima do nível médio do mar até que os pilotos fizessem contato visual com a pista.
Às 20h56, o Convair relatou ter passado pelo marcador externo e foi autorizado a pousar. A tripulação de voo então iniciou sua descida e começou a executar sua lista de verificação final de pouso.
Durante a aproximação final, a aeronave desceu a uma altitude de 875 pés (267 m), onde primeiro atingiu árvores em um local a 9.357 pés (2.852 m) da pista 18 e 429 pés (131 m) à direita da linha central estendida da pista.
O primeiro impacto foi descrito por um sobrevivente como uma aterrissagem forçada; isso foi seguido por uma série de solavancos fortes e o impacto final do avião. A posição final da aeronave foi em uma área arborizada 6.878 pés (2.096 m) curta da pista, onde se desintegrou e foi envolvida em chamas.
Das 82 pessoas a bordo da aeronave, 60 morreram imediatamente e outras 10 morreram nos dias seguintes ao acidente (65 passageiros e cinco tripulantes). Doze pessoas (dois membros da tripulação e 10 passageiros) sobreviveram com ferimentos.
Um dos passageiros sobreviventes relatou que o avião se partiu na frente dele, ele saiu e saiu correndo dos destroços pouco antes de explodir.
Clique AQUI para ler o Relatório Final do acidente.
O governador de Ohio, Jim Rhodes , solicitou o fechamento da pista 18. Após a reabertura da pista, luzes de alta intensidade foram instaladas na encosta junto com balizas de equipamentos de glide-slope por recomendação do National Transportation Safety Board.
Por Jorge Tadeu (com Wikipedia, ASN e baaa-acro.com)
NASA confirma que detritos encontrados por mergulhadores são da explosão do Challenger em 1986
Gabriel Godoy e Jorge Paz farão o filme sobre o sequestro do voo 375 da Vasp
O que acontece com os destroços de um avião acidentado?
Destroços do avião que levava a cantora Marília Mendonça serão destinados para diferentes locais para investigação (Imagem: Doctum TV) |
Preservação
Área com destroços usada para treinamento no Cenipa, em Brasília, com aviões da FAB que caíram (Imagem: Alexandre Saconi/UOL) |
Liberação para autoridade policial
Avião remontado
Destroços do avião do voo TWA800 são remontados para investigar as causas da queda (Imagem: Jeff Christensen/Reuters) |
Ellen Church: a primeira 'aeromoça' que subiu ao céu
Ellen Church, a primeira comissária de bordo a voar, fez história em 15 de maio de 1930, quando embarcou em um Boeing Air Transport, um cansativo voo de 20 horas de Oakland para Chicago, com 13 paradas no caminho, levando 14 passageiros a bordo.
Church, de acordo com o National Air & Space Museum , era uma enfermeira de Iowa. Ela era uma piloto licenciada e queria ser contratada por uma grande companhia aérea, uma ideia que estava muito à frente de seu tempo.
Mas Church abordou Steve Simpson, gerente do escritório da Boeing Air Transport (BAT) de São Francisco, com a ideia então radical de colocar enfermeiras em aviões de passageiros.
Church queria ser piloto, mas percebeu que não tinha chance para isso na época. Em vez disso, ela convenceu Simpson e a Boeing Air Transport - que mais tarde se tornaria United Airlines - que a presença de funcionárias pode ajudar a aliviar o medo público de voar.
As aeromoças, ou "garotas do céu", como a BAT as chamava, tinham que ser enfermeiras registradas, "solteiras, com menos de 25 anos; pesavam menos de 52 kg e tinham cerca de 1,6o m de altura.
As comissárias de bordo foram inicialmente contratados para acalmar um público que ainda tinha muito medo de voar. Por isso, nos primórdios da profissão, as comissárias de bordo eram obrigadas a possuir credenciais de enfermagem.
Além de atender aos passageiros, elas deveriam, quando necessário, ajudar no transporte de bagagens, abastecer e auxiliar os pilotos a empurrar a aeronave para os hangares. No entanto, o salário era bom (para a época): US$ 125 por mês.
Church desenvolveu a descrição do trabalho e o programa de treinamento para a primeira classe de oito aeromoças, chamadas de "oito originais" (Ellen Church, Jessie Carter, Cornelia Peterman, Inez Keller, Alva Johnson, Margaret Arnott, Ellis Crawford e Harriet Fry).
Nos primeiros dias da aviação comercial, aviões não pressurizados voando em altitudes muito mais baixas significavam que viajar de avião poderia ser muito mais angustiante do que é hoje, pois havia muito mais solavancos e turbulência .
Ter mulheres atraentes e com treinamento médico a bordo, raciocinaram os executivos das companhias aéreas, acalmaria viajantes desconhecidos e garantiria que eles fossem cuidados, caso o movimento os fizesse mal.
Em quase um século, o papel da aeromoça evoluiu. Não apenas seu nome mudou para "comissário de bordo" mais inclusivo de gênero, o próprio trabalho passou por fases de ser basicamente um zelador calmante a bordo para ser tratado como um objeto sexual e uma jogada de marketing para ser um trabalhador de linha de frente no meio de uma pandemia global.
Ao longo das décadas, as fileiras de aeromoças aumentaram de cerca de cem nos primeiros dias da profissão para dezenas de milhares de comissárias de bordo hoje. Embora suas responsabilidades exatas - e uniformes - tenham mudado ao longo dos anos, a missão principal sempre foi garantir que os passageiros das companhias aéreas estivessem seguros e confortáveis.
Ellen Church cumpriu apenas dezoito meses quando um acidente de automóvel a deixou de castigo. Após sua recuperação, ela voltou a ser enfermeira e sua passagem como aeromoça acabou. No entanto, sua ideia transformou a indústria aérea.
Ela obteve o diploma de bacharel em educação de enfermagem pela Universidade de Minnesota e retomou essa carreira. Em 1936, ela se tornou supervisora de pediatria no Milwaukee County Hospital.
Durante a Segunda Guerra Mundial, Ellen Church serviu como enfermeira de voo no Corpo de Enfermeiras do Exército (Army Nurse Corps) dos Estados Unidos. Pelo serviço prestado, recebeu a Medalha do Ar (Air Medal).
Depois da guerra, Ellen se mudou para Terre Haute, no estado de Indiana (EUA). Lá, foi diretora de enfermagem e diretora do Union Hospital. Ela casou-se aos 60 anos de idade, em 11 de setembro de 1964, com Leonard Briggs Marshall, presidente do Terre Haute First National Bank. A primeira comissária de bordo do mundo morreu em 22 de agosto de 1965, após cair de um cavalo.
O aeroporto da cidade natal da Igreja em Cresco, Iowa, é chamado Ellen Church Field em sua homenagem.
Por Jorge Tadeu com faa.gov / Wikipedia
Quanto custou para operar o Concorde?
Os altos custos operacionais do Concorde foram, em última análise, um fator para sua morte (Foto: Getty Images) |
Uma empresa de um bilhão de libras
O Concorde queimou grandes quantidades de combustível ao atravessar o Atlântico em Mach 2 (Foto: Getty Images) |
Os custos de manutenção também eram altos
O Concorde era mais caro para retrofit com equipamentos de segurança do que a maioria das aeronaves (Foto: Getty Images) |
A depreciação foi um fator menor
Leste x Oeste: Por que demora mais para voar em algumas direções?
Boeing 767-322 (ER), N656UA, da United Airlines. As travessias transatlânticas são um dos melhores exemplos para destacar a diferença entre voar para o leste e voar para o oeste (Foto: Vincenzo Pace) |
É mais rápido voar para o leste (geralmente)
O clima, o tráfego aéreo, as restrições geopolíticas de voo e muito mais têm impacto na duração de um voo (Imagem: RadarBox.com) |
Cavalgando (ou lutando) em correntes de jato
Boeing 747-436, G-BNLN, da British Airways. 747 da British Airways bateu recorde de velocidade transatlântica em 2020 (Foto: Vincenzo Pace) |