quarta-feira, 8 de janeiro de 2025

Vídeo: Mayday Desastres Aéreos - Voo Air Midwest 5481 Peso Fatal

Via Cavok Vídeos

Aconteceu em 8 de janeiro de 2003: A queda do voo Air Midwest 5481 - Peso Fatal


No dia 8 de janeiro de 2003, um voo de passageiros saindo de Charlotte, na Carolina do Norte (EUA), subiu incontrolavelmente na decolagem, atingindo 54 graus de nariz para cima antes de estolar e cair do céu. Apesar de seus melhores esforços, os pilotos não conseguiram se recuperar a tempo, e o avião caiu em um hangar, matando todas as 21 pessoas a bordo.

Os investigadores descobriram práticas negligentes de manutenção na companhia aérea que criavam um perigo oculto no sistema de controle de voo da aeronave, mas isso provou ser apenas parte do quebra-cabeça. Foi a outra metade da história que deu a esse pequeno acidente implicações nacionais: para horror do Safety Board, as companhias aéreas de todo o país ainda usavam um peso médio de passageiro que não era atualizado desde 1936. 

A Air Midwest era uma companhia aérea regional que operava voos de curta duração no centro e no leste dos Estados Unidos, geralmente dentro de acordos de compartilhamento de código que permitiam que seus bilhetes fossem vendidos sob marcas importantes como Braniff, TWA e, posteriormente, US Airways Express. 

Em 2003, a Air Midwest operava uma frota de mais de 40 aviões turboélice gêmeos Beechcraft 1900D de 19 passageiros, que passavam o dia pulando entre pequenas e médias cidades americanas. 

O avião envolvido no acidente, com as cores da US Airways Express, mas voando pela Air Midwest
Uma dessas rotas foi o voo 5481 da Air Midwest de Charlotte, na Carolina do Norte, para Greenville-Spartanburg, um aeroporto regional localizado em Greer, na Carolina do Sul. O voo, que foi comercializado pela US Airways Express, contou com um complemento total de 19 passageiros, bem como dois pilotos que operavam o Beechcraft 1900D, prefixo N233YV, prertencente a US Airways Express, voando pela Air Midwest.

No comando estava a capitã Katie Leslie, de 25 anos, uma estrela em ascensão na Air Midwest que era conhecida por seu bom senso e amplo conhecimento de sistemas. Juntando-se a ela na cabine estava o primeiro oficial Jonathan Gibbs, de 27 anos, outro jovem piloto com um histórico limpo e um futuro promissor.

O avião que eles iriam voar acabava de ser levado para manutenção no dia anterior em uma instalação em Huntington, West Virginia. A instalação pertencia à Raytheon Aircraft Company, fabricante da série Beechcraft 1900, e empregava mecânicos e inspetores que trabalhavam nas aeronaves da Air Midwest. 

No dia 7 de janeiro de 2003, dois mecânicos da Raytheon e um inspetor de garantia de qualidade foram encarregados de realizar verificações de rotina neste Air Midwest Beechcraft 1900D, um processo que incluiu a verificação da tensão dos cabos do elevador. 


Por causa de seu tamanho pequeno, o 1900D não tem controles de voo hidráulicos; em vez disso, as entradas do piloto são transferidas diretamente para as superfícies de controle por meio de cabos e manivelas. Para garantir que os controles sempre retornem à posição neutra, os cabos devem ser mantidos em um determinado nível de tensão, que é medido e ajustado durante a manutenção de rotina. 

Nenhum dos dois mecânicos designados para esta tarefa tinha tensionado novamente um cabo de elevador Beechcraft 1900D antes, mas o inspetor tinha, e ele planejava fornecer a eles treinamento no trabalho sobre o processo.

As medições da tensão dos cabos do elevador nesta aeronave revelaram que eles precisavam de ajustes. Retensionar os cabos do elevador é um processo complexo de várias etapas. 


O sistema de controle do elevador consiste em dois cabos interligados, designados “nariz da aeronave para cima” (ANU) e “nariz da aeronave para baixo” (AND), que são conectados às colunas de controle dos pilotos e aos elevadores. Qual cabo está em tensão determina a direção de movimento dos elevadores. 

Duas manivelas - dispositivos que transferem o movimento do cabo ao redor de uma esquina - estão localizadas na cauda e abaixo do piso da cabine. E dentro da cauda, ​​ambos os cabos passam por conjuntos tensores, que permitem aos mecânicos ajustar a tensão do cabo. 

A fim de tensionar novamente os cabos, os mecânicos devem inserir "pinos de sonda" através das manivelas para fixá-los à estrutura da aeronave, segurando o início e o final de cada cabo em tensão e mantendo a coluna de controle e os elevadores na posição neutra. 

Em seguida, os mecânicos podem usar os esticadores para remover qualquer folga restante na seção principal do cabo. Quando executado corretamente, este processo garante que os elevadores permaneçam na posição neutra na ausência de quaisquer entradas de controle.


No entanto, o procedimento de tensionamento do cabo foi incorporado ao procedimento de amarração do cabo do elevador, o conjunto de etapas que é seguido ao instalar um cabo do elevador inteiramente novo.

A intenção do fabricante era que os mecânicos seguissem todo o procedimento de amarração ao tensionar novamente os cabos; entretanto, o inspetor acreditava que eles poderiam pular as etapas que ele não percebeu como estando diretamente relacionadas ao retensionamento. Ele instruiu os mecânicos sobre quais etapas eles poderiam pular com base em seu entendimento do que era necessário. 

Uma das etapas do procedimento completo exigia a remoção de vários assentos e parte do piso para obter acesso à caixa de direção dianteira. O inspetor mostrou aos mecânicos uma pequena porta que daria acesso ao orifício do pino de sonda associado à caixa de direção dianteira, permitindo que eles insiram o pino da plataforma sem a remoção demorada dos móveis da cabine. 

Após discutir as etapas a serem puladas, o inspetor saiu para realizar outras funções. Ele acreditava que, como um dos mecânicos tinha experiência em ajustar a tensão do cabo em outros tipos de aeronaves, não precisaria de supervisão rigorosa. Mas, em sua ausência, a mecânica cometeu um erro crítico. Pelo ângulo fornecido pela porta de acesso, eles não puderam ver que, ao inserir o pino da plataforma pelo orifício na estrutura da aeronave, ele não passou pela caixa de direção dianteira. 

Como resultado, a coluna de controle não foi travada na posição neutra. Conforme a mecânica continuava com o retensionamento, esse erro começou a se agravar. O pino da plataforma de popa foi inserido corretamente, garantindo que os elevadores permanecessem na posição neutra. 

Mas a coluna de controle ficou presa em uma posição de nariz para baixo, incapaz de girar de volta para a posição neutra porque a caixa de direção dianteira bateria no pino da plataforma inserido incorretamente. Portanto, quando chegou a hora de enrolar a folga, a coluna de controle não havia retornado à posição neutra; em vez disso, estava aplicando tensão ao cabo AND. 

Os mecânicos apertaram o tensor até que o cabo atingisse a tensão correta, sem saber que a tensão extra já estava sendo aplicada. Quando os mecânicos removeram os pinos da plataforma, a alavanca angular dianteira pôde mover-se livremente novamente, reduzindo a tensão no cabo. 


O resultado foi que faltou tensão suficiente no elevador e no cabo. A coluna de controle tem uma amplitude fixa de movimento; agora, ao fazer uma entrada de nariz para baixo, parte dessa amplitude de movimento seria consumida pela folga do cabo, fazendo com que a culatra atingisse sua parada dianteira antes que os elevadores tivessem alcançado a posição de nariz totalmente para baixo.

Se os mecânicos tivessem realizado todo o procedimento de amarração do elevador, eles poderiam ter descoberto o erro. Eles pularam as verificações da amplitude de movimento, acreditando que não eram relevantes, e não recalibraram o sensor de inclinação do gravador de dados de voo porque erroneamente pensaram que o avião não tinha FDR. 

Se eles tivessem feito a calibração, eles teriam percebido que os elevadores não se moveriam além de 7 graus de nariz para baixo, bem abaixo do padrão do fabricante de 14 a 15 graus. Uma inspeção visual dos elevadores não revelou problemas, porque seu ângulo de repouso era difícil de detectar cinco metros abaixo. Uma verificação da amplitude de movimento da coluna de controle também foi aprovada porque essa amplitude não estava de fato restrita. 

Considerando o trabalho a ser feito, o inspetor assinou a carteira de trabalho e o avião foi liberado para voar. Entre o trabalho de retensionamento do cabo e o voo 5481, este avião completou oito voos sem incidentes. Entradas de nariz para baixo maiores que 7 graus raramente eram necessárias, então nenhum piloto percebeu que o alcance estava restrito.


A nona viagem do avião após a sessão de manutenção era para ser o voo 5481 da Air Midwest de Charlotte para Greenville-Spartanburg. Quando os passageiros chegaram ao portão, o pessoal da companhia aérea começou a calcular o peso do avião. 

Em aviões pequenos como o Beech 1900, distribuir o peso dos passageiros e suas bagagens é uma tarefa delicada; apenas algumas pessoas mais pesadas ou bolsas na parte de trás podem desequilibrar o avião. 

No entanto, pesar cada passageiro individualmente pode ser proibitivamente demorado, então as companhias aéreas também podem usar pesos médios - no caso da Air Midwest, eram 77 quilogramas (170 libras) para um adulto, incluindo itens pessoais e bagagem de mão; 36 quilogramas (80 libras) para uma criança; e 11 quilogramas (25 libras) para cada mala despachada. 

Sacos com mais de 31 kg (70 libras) eram considerados acima do peso e tinham que ser contabilizados individualmente. Os pesos estimados com base nesses valores foram então repassados ​​aos pilotos para o cálculo final. 

Depois de calcular os pesos aproximados dos passageiros, tripulação, bagagem, itens pessoais e combustível, Leslie e Gibbs determinaram que o peso total da aeronave era 7.724 quilogramas (17.028 lbs) - logo abaixo do peso máximo de decolagem do Beechcraft 1900D de 7.765 quilogramas (17.120 libras).

Os pilotos então usaram os pesos estimados e sua distribuição esperada para calcular a localização do centro de gravidade do avião, ou CG. O centro de gravidade é o ponto teórico no qual o avião se equilibraria se você o segurasse na ponta do dedo. Deve estar dentro de um determinado intervalo para que o avião decole com segurança. 


Este alcance é medido como uma porcentagem da corda aerodinâmica média (MAC), ou a largura média da superfície de levantamento (neste caso, as asas). Um centro de gravidade localizado a 30% do caminho da proa à ré ao longo da corda aerodinâmica média seria, portanto, denotado como um “CG de popa de 30% MAC”, conforme mostrado no diagrama acima. 

No Beechcraft 1900D, o centro de gravidade não pode exceder 40% MAC. No voo 5481, Leslie e Gibbs calcularam um CG de popa de 37,8% MAC, bem dentro desse limite. Tanto quanto eles podiam dizer, eles estavam prontos para partir.


Infelizmente, o capitão Leslie e o primeiro oficial Gibbs não podiam saber que os números que receberam estavam errados. Se a companhia aérea tivesse realmente pesado todos os passageiros e suas bagagens, eles teriam descoberto que o peso real do avião era de 8.028 kg (17.700 libras), bem acima do peso máximo de decolagem. E como os passageiros e as malas ficam na parte traseira das asas, esse peso extra também moveu o centro de gravidade para trás para 45,5% MAC - também muito além do limite. 

Na prática, o avião ainda seria capaz de voar mesmo em tal estado de desequilíbrio, mas encontraria um grande movimento de inclinação na decolagem que os pilotos precisariam suprimir ativamente. 

Depois que todas as malas foram carregadas, o voo 5481 se preparou para deixar o portão. No cockpit, o ambiente era tranquilo. Observando um jato suburbano Bombardier CRJ-100 próximo, Gibbs comentou:

"Esse CRJ é mesmo um avião bonito, não é?" Leslie riu.

"Sim, eu realmente gostaria de estar voando nisso!" 

Como verdadeiros fãs da aviação, eles continuaram a cobiçar os vários aviões que os rodeavam, apontando tudo, de pequenos Gulfstreams a enormes jatos de carga Airbus. Eles continuaram sua conversa animada até a partida do motor, quando foram legalmente obrigados a evitar discussões fora do assunto.


Pouco depois, o voo taxiou até a pista e recebeu autorização de decolagem. Em seguida, os pilotos aceleraram na pista, mantendo o nariz abaixado para se manter no solo até atingir a velocidade de decolagem. 

Quando o avião finalmente decolou, o fez vigorosamente e com poucos estímulos. Em segundos, ficou claro que algo estava errado com a inclinação do avião. O primeiro oficial Gibbs proferiu um “uau” surpreso, enquanto Leslie abaixou o nariz para tentar voltar a um ângulo normal de subida. 

Mas não importa o quão forte ela empurrasse a coluna de controle, o avião continuava subindo. "Ajude-me!" ela exclamou. 

Contrariar o movimento de inclinação para cima criado pelo centro de gravidade de popa exigiu pelo menos 9 graus de elevador de nariz para baixo, mas devido ao trabalho de reparo mal sucedido, eles tinham apenas 7 graus disponíveis. Embora eles não soubessem disso, não havia nada que pudessem fazer para salvar seu avião. 

O voo 5481 subiu abruptamente e começou a perder velocidade no ar. "Você entendeu?" Leslie perguntou. “Oh merda,” Gibbs murmurou. "Empurre para baixo!" 

Ambos os pilotos lutaram com todas as suas forças, mas seus esforços foram inúteis. O avião chegou a surpreendentes 54 graus de nariz para cima, ponto em que um aviso de estol começou a soar na cabine. "Empurre o nariz para baixo!" Leslie gritou. 

Momentos depois, a asa esquerda estolou e o avião rolou rapidamente para um mergulho invertido de uma altitude de 1.150 pés acima do nível do solo. "Oh meu Deus!" Leslie exclamou. 

Na cabine de passageiros, uma criança pode ser ouvida gritando: "Papai!" Em tons frenéticos, Leslie transmitiu uma mensagem ao controle de tráfego aéreo. “Temos uma emergência, Air Midwest 5481!” 

Enquanto o avião mergulhava em direção ao solo, os pilotos lutavam para diminuir a aceleração e sair do mergulho. “Puxe o poder de volta!” Leslie gritou. Mas não havia altitude suficiente para se recuperar. 

Assim que o avião começou a nivelar, eles ficaram sem espaço. Em um último esforço para evitar um hangar no aeroporto, eles giraram seus aviões sessenta graus para a direita, passando pelas enormes portas de rolamento do prédio antes de bater de frente contra uma parede de concreto. O último som capturado pelo gravador de voz da cabine foi o grito apavorado do capitão Leslie.


O impacto com a lateral do hangar destruiu completamente a aeronave e matou instantaneamente todos os 21 passageiros e tripulantes. Uma explosão atingiu o pátio de estacionamento próximo, enviando uma nuvem de fumaça sobre o Aeroporto Internacional Charlotte Douglas. 

Equipes de emergência correram para o hangar de manutenção da US Airways, onde ocorreu o acidente, mas após extinguir rapidamente o fogo, chegaram à triste conclusão de que ninguém havia sobrevivido. 

Exceto por um trabalhador de manutenção que sofreu ferimentos leves devido a destroços voando, os paramédicos não encontraram ninguém para tratar, e as ambulâncias a caminho do local receberam uma ordem dolorosa para retornar à base.


Investigadores do National Transportation Safety Board (NTSB) logo chegaram ao local do acidente e começaram a tentar juntar a sequência de eventos. Olhando para a manutenção realizada nos cabos do elevador do avião no dia anterior, eles descobriram que os mecânicos haviam deixado por engano muita folga no cabo do nariz para baixo. 

Outras invetigações revelaram uma série de problemas com a instalação de manutenção de Huntington, West Virginia, onde o trabalho foi realizado. 

Em primeiro lugar, faltava qualquer treinamento formal em sala de aula para mecânicos no Beechcraft 1900D. Em vez disso, eles ofereciam apenas treinamento no local de trabalho, que pode ser benéfico se feito de maneira correta, mas muitas vezes é conduzido por pessoal sem experiência de ensino que só pode dar aos seus trainees uma educação aleatória e incompleta. 


Além disso, os inspetores de garantia de qualidade não deveriam fornecer treinamento on-the-job (OJT) porque as tarefas de manutenção e inspeção devem ser claramente separadas. E, no entanto, ninguém na instalação parecia estar ciente dessa regra, muito menos o inspetor que deu OJT para os mecânicos que fizeram a instalação errada do cabo do elevador. Ele também falhou em supervisionar a mecânica, tornando-o incapaz de detectar o erro. 

E, finalmente, ele assinou o formulário de inspeção para o trabalho, mesmo estando envolvido no trabalho - algo que não era explicitamente proibido, mas claramente não cumpria a responsabilidade do inspetor de agir como um segundo par de olhos. 

Essas falhas mostraram-se sintomáticas de um ambiente de treinamento geralmente frouxo na instalação. Muitos registros de treinamento estavam incompletos, ou listou tarefas concluídas que possivelmente não poderiam ter sido realizadas no tempo indicado. 

A Air Midwest não forneceu orientações sobre como o OJT deve ser conduzido. E apenas dois meses antes do acidente, a Air Midwest havia auditado a instalação e constatado que havia falta de pessoal. Deveria ter empregado dois capatazes e dois inspetores, mas tinha apenas um de cada. Raytheon, o empreiteiro de manutenção, respondeu contratando dois novos mecânicos, mas não se mudou para contratar um novo inspetor ou capataz no momento do acidente.


De acordo com as regras da FAA impostas após a queda do voo 592 da ValuJet em 1996, era responsabilidade da Air Midwest garantir que sua contratada de manutenção estivesse em conformidade com os padrões da empresa. 

Mas, embora a Air Midwest tivesse tecnicamente cumprido a letra da lei, seu sistema de supervisão era completamente ineficaz por uma razão simples: o gerente da Air Midwest, que deveria monitorar a instalação, trabalhava no turno diurno, enquanto a maior parte da manutenção acontecia durante a noite mudança. 


Simplesmente não havia como descobrir se a manutenção estava sendo feita corretamente. Isso levantou outra questão: será que outros Beechcraft 1900Ds podem ter cabos de elevador manipulados incorretamente? 

Para descobrir, a Administração Federal de Aviação emitiu uma diretiva de aeronavegabilidade exigindo verificações imediatas para garantir que a amplitude de movimento dos elevadores Beechcraft 1900D estava dentro de 1 grau do valor especificado pelo fabricante. 

Das 296 aeronaves pesquisadas, 40 foram reprovadas na verificação, incluindo 5 na Air Midwest, e outras 39 foram reprovadas na verificação de acompanhamento após 100 horas de voo. Todos foram posteriormente corrigidos. 

Embora nenhum estivesse tão mal calibrado quanto a aeronave do acidente, estava claro que uma ação precisava ser tomada. Como resultado dessas descobertas, a Air Midwest revisou sua carta de trabalho de retensionamento de cabos para declarar explicitamente que os mecânicos deveriam seguir todo o procedimento de amarração do cabo, não apenas as etapas que consideravam relevantes para ajustar a tensão. Raytheon também demitiu um dos mecânicos, rebaixou o inspetor e enviou dois outros funcionários para reciclagem.

Mas para os investigadores, a busca pela causa não acabou. O avião voou oito vezes com o cabo do elevador mal montado sem encontrar nenhum problema. Na verdade, foi apenas quando encontrou uma situação que exigia entradas do nariz para baixo superiores a 7 graus que o erro de rigidez se tornou um problema.

A causa da alta que derrubou o avião acabou sendo uma linha de investigação totalmente diferente que afetaria todas as companhias aéreas dos Estados Unidos. 


Os testes iniciais mostraram que, com as informações de peso e equilíbrio listadas no manifesto de voo, o voo 5481 não deveria ter tido problemas para decolar, mesmo com o cabo do elevador com defeito. Indo mais fundo, os investigadores juntaram o peso real do avião usando registros médicos dos passageiros e estimativas baseadas em restos de bagagem recuperados no local. 

Eles descobriram que o avião era provavelmente mais de 272 quilogramas (600 libras) mais pesado do que o indicado no manifesto de carga, e que muito desse peso extra estava localizado na parte traseira do avião, resultando em um centro de gravidade excessivamente traseiro e uma inclinação acentuada na decolagem. 

Isso levantou uma outra questão: o voo 5481 apresentava um conjunto de passageiros e bagagens excepcionalmente pesados ​​ou havia algo errado com os pesos médios em uso em todo o país?


Os pesos médios usados ​​pela Air Midwest - 77 quilogramas (170 libras) para um adulto, incluindo itens pessoais e bagagem de mão; e 11 quilogramas (25 libras) para cada bagagem despachada - vieram das diretrizes da FAA publicadas pela primeira vez em 1965. 

Esses pesos foram especificamente identificados como nada mais do que sugestões, e o regulamento incentivou - mas não exigia explicitamente - as companhias aéreas determinarem suas próprias médias. A fonte original dos dados para essas médias sugeridas era ainda mais antiga. 

Na verdade, esses pesos médios datavam de uma pesquisa realizada em 1936, significativamente anterior à própria FAA. Estudos científicos mostraram que, ao longo das décadas, os americanos estão ficando mais pesados. 

Para determinar o impacto desta tendência no peso médio dos passageiros, a FAA patrocinou um estudo que pesou passageiros reais e descobriu que as médias usadas pela Air Midwest e outras companhias aéreas em todo o país vinham subestimando o peso dos passageiros e da bagagem há anos. 


Em 2003, o passageiro médio - incluindo roupas e uma mala de mão - pesava 88,5 kg (195 libras), um aumento de 11 kg (20 libras) em relação aos dados de 1936. O peso da bagagem despachada média também aumentou em 1,7 kg (3,8 libras). 

Isso estava de acordo com estudos realizados pelas autoridades da aviação civil do Reino Unido e da Austrália durante a década de 1980, que também descobriram que o peso médio dos passageiros e da bagagem havia aumentado. Apesar dessas descobertas, no entanto, a FAA não revisou as médias sugeridas incluídas em suas diretrizes publicadas.

Como resultado do estudo, a Air Midwest aumentou seu peso médio de passageiros, incluindo itens pessoais, de 77 quilos para 91 quilos. Muitas outras companhias aéreas também revisaram suas médias com base nas conclusões de suas próprias pesquisas de peso de passageiros. 

A FAA acabou introduzindo uma nova regra exigindo que as companhias aéreas periodicamente amostrassem os pesos dos passageiros para atualizar suas médias, enquanto a FAA atualizaria suas próprias médias publicadas em nome de quaisquer companhias aéreas que as utilizassem. 


O NTSB, embora satisfeito com esta decisão, sentiu que ainda mais poderia ser feito. Embora o uso de pesos médios de passageiros seja geralmente um método confiável para garantir a distribuição de peso adequada a bordo de uma aeronave, pequenos aviões como o Beechcraft 1900D são vulneráveis ​​a flutuações aleatórias nos pesos reais dos passageiros. 

Mesmo alguns passageiros anormalmente pesados ​​ou bolsas colocadas na parte traseira da aeronave poderiam colocar o centro de gravidade fora dos limites sem qualquer indicação no manifesto de carga. 

Portanto, o NTSB recomendou que a FAA trabalhasse para criar um sistema que pudesse detectar com segurança o peso real e o centro de gravidade de um avião e fornecer essas informações diretamente para os pilotos. 

Em 2010, o NTSB teve o prazer de observar que a FAA estava realmente trabalhando para desenvolver essa tecnologia e publicou diretrizes que esses sistemas devem atender.


O NTSB também emitiu uma ampla gama de recomendações de segurança relacionadas à manutenção de aeronaves, incluindo que as instalações de manutenção sejam vigiadas a fim de garantir que o pessoal não esteja pulando etapas nos procedimentos; que o trabalho de manutenção em um sistema de controle de voo seja sempre seguido por uma verificação funcional completa; que os inspetores sejam proibidos de aprovar itens de inspeção para um trabalho no qual realizaram treinamento no local de trabalho; que as companhias aéreas tenham funcionários fisicamente presentes quando seus contratados estiverem realizando trabalhos de manutenção; que a FAA crie diretrizes oficiais para o treinamento no trabalho; e que os programas de manutenção das companhias aéreas incluem treinamento em fatores humanos. 

Clique AQUI par acessar o Relatório Final do acidente

Essas recomendações representaram parte de uma batalha constante para melhorar a qualidade da manutenção nos Estados Unidos - uma luta que o NTSB parece ter vencido, pelo menos por enquanto.

A queda do voo 5481 da Air Midwest ainda serve como um exemplo útil do perigo de falhas latentes. Nem o peso excessivo nem o deslocamento do elevador restrito jamais poderiam ter causado um acidente por si só, mas quando os dois se juntaram, o desastre aconteceu. 

Com efeito, uma falha que esteve à espreita sob a superfície por décadas - a informação de peso incorreta usada para carregar aviões americanos - encontrou um conjunto particular de condições que permitiu que se transformasse em um acidente fatal. 

É um lembrete sombrio de por que nenhum lapso na segurança pode ser considerado inconsequente - afinal, você nunca sabe quando aquela matéria aparentemente pequena pode ser a última peça em um quebra-cabeça mortal que o universo vem montando há anos. 

O fato de tantas vidas jovens e carreiras promissoras terem sido interrompidas tão repentinamente foi uma terrível tragédia. 

A capitã Katie Leslie fez todo o possível para salvar a vida de seus 19 passageiros, e por isso ela deveria ser homenageada, independentemente do fato de não ter conseguido. 

Na verdade, sua última segunda curva à direita pode ter evitado um desastre ainda pior, já que o avião por pouco evitou bater nas portas do hangar da US Airways, onde dezenas de funcionários trabalhavam arduamente. Embora ela não tenha conseguido salvar a própria vida, há trabalhadores naquele hangar que só estão vivos hoje porque a capitã Leslie nunca parou de tentar pilotar seu avião.

Em uma peça final da história, os pais da vítima Christiana Grace Shepherd, de 18 anos, ajudaram a garantir que a memória de todos os passageiros e tripulantes que morreram naquele dia seja devidamente respeitada: em uma rara vitória para a decência humana, eles conseguiram obter um pedido formal de desculpas da Air Midwest por seu papel no acidente. 

Memorial às vítimas do acidente
Talvez os que mais precisassem de desculpas fossem os infelizes pilotos, que tiveram que enfrentar uma situação da qual a recuperação era impossível - algo que todas as companhias aéreas devem garantir que nunca mais aconteça.

Edição de texto e imagens por Jorge Tadeu (Site Desastres Aéreos)

Com Admiral_Cloudberg, ASN e geniuserc.com - Imagens: Wikimedia Commons; NTSB; Google; planecrashinfo.com; Bureau de Acidentes de Aeronaves; Rob Brisley; International Aviation Safety Association; Charlotte Observer e Robert Koehler. Vídeo cortesia de Mayday (Cineflix).

Aconteceu em 8 de janeiro de 2003: Voo Turkish Airlines 634 - Erro fatal em meio a névoa espessa na Turquia


O voo 634 da Turkish Airlines, foi um voo de passageiros doméstico de Istambul para Diyarbakir, no sudeste da Turquia. Em 8 de janeiro de 2003, a aeronave que operava o voo, um British Aerospace Avro RJ100, atingiu o solo na aproximação final a aproximadamente 900 metros (3.000 pés) da cabeceira da pista durante condições climáticas adversas. Na colisão seguinte com um declive, um incêndio pós-colisão eclodiu, matando 75 dos 80 ocupantes, incluindo os dois pilotos.


A aeronave envolvida no acidente era o British Aerospace Avro RJ100, prefixo TC-THG, da THY - Turkish Airlines (foto acima), construído em 1993, com o número de série do fabricante E3241. Propriedade da Trident Jet (Dublin) Limited, era equipado com quatro motores turbofan Lycoming LF507-1F e foi entregue à companhia aérea em março de 1994. Na época do acidente, havia acumulado um total de 20.000 horas de voo em um total de 17.000 ciclos de voo.

A tripulação era composta por dois pilotos e três comissários de bordo. O capitão Alaaddin Yunuk, um ex- piloto da Força Aérea Turca de 34 anos, ingressou na Turkish Airlines em 1995 e acumulou um total de 6.309 horas de voo. O primeiro oficial Ismail Uluslu, de 33 anos, ingressou na Turkish Airlines em 1998 e, desde então, registrou 2.052 horas de voo no total. O voo transportava 75 passageiros.

O voo 634 partiu do Aeroporto Atatürk de Istambul às 18h43 EET (16h43 UTC) para o voo de quase duas horas para Diyarbakır no sudeste da Turquia. Aproximadamente uma hora após o início do voo e 40 milhas náuticas (70 km) do aeroporto de destino, a tripulação contatou o controle de abordagem do Aeroporto de Diyarbakir, que autorizou o voo para se aproximar do aeroporto pelo sul para a pista 34 usando VHF de alcance omnidirecional - um tipo de curto - sistema de radionavegação de gama que permite às aeronaves com uma unidade receptora determinar a sua posição e permanecer no curso - e instruiu a tripulação a descer a 9.000 pés (2.700 m). O boletim meteorológico retransmitido para a tripulação pelo controlador afirma que não há ventos e visibilidade de 3.500 metros (1,9 nm).

Quando o voo estava a 8 milhas náuticas (15 km) da pista 34 e a uma altitude de 5.000 pés (1.500 m), o controle de tráfego aéreo instruiu a tripulação a continuar a aproximação e relatar assim que estabeleceram contato visual com a pista. 

A tripulação atendeu ao chamado e preparou a aeronave para o pouso, acionando o trem de pouso e estendendo os flaps. Continuando a descer, a aeronave atingiu sua altitude mínima de descida (MDA) de 2.800 pés (850 m) - a altitude mais baixa para a qual a descida é autorizada na aproximação final ou durante a manobra círculo-terra na execução de um procedimento de aproximação por instrumentos padrão onde nenhum glideslope eletrônico é fornecido (o aeroporto não estava equipado com um sistema de pouso por instrumentos) - mas ambos os pilotos disseram que ainda não tinham nenhuma referência visual para a pista ou seu sistema de iluminação de aproximação por causa da névoa espessa. Um piloto discerniu algumas luzes à distância, mas não tinha certeza de a que pertenciam exatamente. 

No entanto, violando os procedimentos padrão, o capitão decidiu continuar a aproximação tão perto quanto 1 milha (1,6 km) da pista e desceu mais para 500 pés (150 m) e além, bem abaixo do MDA. 

A 1 milha (1,6 km) da cabeceira da pista e a uma altitude de 200 pés (60 m) (que neste caso constituiu a altura de decisão), o sistema de alerta de proximidade do solo (GPWS) começou a disparar alarmes sonoros. 

Oito segundos depois, a tripulação decidiu abortar o pouso e dar meia volta, mas antes de poder executar o comando atingiu o solo com a parte inferior da fuselagem e o trem de pouso às 20h19 EET (18h19 UTC), 900 metros (3.000 pés) da cabeceira da pista 34 e 30 metros (100 pés) das luzes de aproximação a uma velocidade de cerca de 131 nós (243 km/h).

A aeronave escorregou no solo por cerca de 200 metros (660 pés) enquanto começava a se desintegrar. Por fim, atingiu uma encosta, quebrou-se em três pedaços principais, explodiu e pegou fogo; a maioria dos corpos e partes dos destroços foram queimados. Os destroços foram espalhados em uma área de cerca de 800 metros quadrados (8.600 pés quadrados).


O impacto matou instantaneamente os dois pilotos, os três comissários de bordo e 69 dos 75 passageiros. Seis passageiros sobreviveram, um dos quais, no entanto, mais tarde sucumbiu aos ferimentos no hospital.

Como o local do acidente estava dentro dos limites do aeroporto, as equipes de busca e resgate do 2º Comando da Força Aérea Tática estacionadas na Base Aérea de Diyarbakır , que incluía dois helicópteros, foram rapidamente destacadas. 


No entanto, nenhum dos helicópteros pôde participar dos esforços de resgate por causa da densa neblina que, de acordo com relatos de testemunhas, às vezes ficava abaixo de um metro. Numerosos caminhões de bombeiros e ambulâncias foram enviados para extinguir o incêndio pós-acidente e resgatar as vítimas.

A investigação do acidente foi realizada pela Direção-Geral da Aviação Civil da Turquia (DGCA). Ambos os gravadores de voo - o gravador de voz da cabine (CVR) e o gravador de dados de voo (FDR) - foram encontrados intactos e enviados aos laboratórios da Turkish Airlines para análise.

De acordo com os registros, o capitão Yunuk e o primeiro oficial Uluslu foram devidamente treinados, qualificados e experientes. Eles tiveram descanso suficiente antes de se apresentarem para o serviço no dia do acidente. Os testes de drogas e álcool deram resultados negativos.

Os investigadores também voltaram sua atenção para a aeronave, mas não foram capazes de detectar qualquer anormalidade. Todas as verificações de manutenção foram concluídas corretamente. 


Um exame atento dos motores revelou que eles estavam funcionando normalmente no momento do acidente. A aeronave estava devidamente configurada para o pouso - os flaps e o trem de pouso estavam estendidos corretamente e o altímetro estava ajustado corretamente - e o sistema de alerta de proximidade do solo (GPWS) também produzia alarmes que podiam ser facilmente ouvidos nas gravações do CVR.

Equipes de busca e resgate que imediatamente correram para o local para responder ao acidente relataram uma espessa neblina no local do acidente e reclamaram da falta de visibilidade que, de acordo com seu relato, chegava a 1 metro (3 pés) às vezes. 

Isso contradiz claramente o relatório meteorológico que o controlador de tráfego aéreo do aeroporto de Diyarbakır transmitiu à tripulação minutos antes do acidente. Segundo eles, o fogo não poderia ser visto até a chegada ao local.


A análise do FDR e do CVR revelou que no momento em que a aeronave atingiu o solo, ela estava em um rumo de 339° (norte-noroeste, em linha com a linha central da pista) e 900 metros (3.000 pés) aquém da cabeceira da pista 34 em um ângulo de inclinação positivo de cinco graus (que corresponde a uma leve posição do nariz para cima). O piloto automático foi encontrado para ter sido ativado até pouco tempo antes do acidente.


A investigação foi concluída cerca de dois anos depois, em abril de 2005, e concluiu que:
  1. A tripulação falhou em responder adequadamente aos avisos produzidos pelo GPWS e, em vez disso, insistiu em pousar apesar da referência visual insuficiente para a pista e seu ambiente
  2. A névoa espessa contribuiu para a causa do acidente.
A Associação de Pilotos Aéreos Turcos afirmou que um sistema de pouso por instrumentos poderia ter evitado o acidente.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipédia, ASN e baaa-acro.com

Aconteceu em 8 de janeiro de 1996: Voo African Air - O maior acidente da África em número de vítimas fatais


Em 8 de janeiro de 1996, a aeronave Antonov An-32B, prefixo 
RA-26222, da Moscow Airlines, operando em leasing para a African Air (foto abaixo), estava programado para realziar o voo doméstico do Aeroporto Kinshasa-N'Dolo, para o Aeroporto Kahemba, ambos no então Zaire, hoje República Democrática do Congo (RDC).


Após décadas de conflitos na África subsaariana, o negócio do transporte aéreo era complexo e muitas vezes ilegal. Como explicou Johan Peleman: "A relação entre os fretadores, que operam o avião, o despachante que organiza a entrega para seus clientes e a empresa que de fato é a proprietária do avião costuma ser muito complexa. Isso torna difícil ver qual das partes contratantes é realmente responsável pelos aspectos ilegais das transações."

A African Air havia alugado o avião e a tripulação da Scibe CMMJ, empresa de Bemba Saolona. O agente de vendas da Scibe na Bélgica havia alugado o avião para a empresa no Zaire. A companhia belga, por sua vez, tinha contrato com a Moscow Airways.

A Scibe Airlift, companhia aérea de propriedade de Bemba Saolona e (pelo menos em 1985) do próprio Mobutu, também transportava armas para a UNITA quando, em janeiro de 1996, um Antonov 32 caiu ao decolar de Kinshasa a caminho de Angola, matando cerca de 370 pessoas. A aeronave e a tripulação, fretadas pela African Air da Scibe, foram, por sua vez, arrendadas da Moscow Airways por meio do agente de vendas da Scibe, Scibe CMMJ, em Ostend.

A aeronave realizava um voo cargueiro de Kinshasa para Kahemba, transportando dois passageiros, quatro tripulantes e uma carga de alimentos e artigos de primeira necessidade.

Ao tentar decolar totalmente abastecido e sobrecarregado da pista curta do Aeroporto de N'Dolo, o An-32B não atingiu velocidade suficiente para levantar o nariz, mas começou a levantar. 

A tripulação decidiu abortar o procedimento de decolagem, mas esta decisão foi tomada tarde demais. Incapaz de parar na distância restante (a pista tem 1.700 metros de extensão), mas, logo em seguida, a aeronave colidiu com o mercado de produtos ao ar livre Simbazikita, cheio de barracas, pedestres e carros, e toda a carga de combustível pegou fogo.


Quatro dos seis tripulantes da aeronave que havia sido arrendada da Moscow Airways, conseguiram sobreviver. O número de vítimas citadas varia de 225 (de acordo com as acusações de homicídio culposo) a 348. 


Cerca de 253 feridos graves ocorreram no terreno. Este acidente continua a ser o mais mortal em história africana, e também uma com o maior número de fatalidades terrestres de qualquer desastre aéreo da história, superada apenas pelas quedas intencionais do voo 11 da American Airlines e do voo 175 da United Airlines nos ataques de 11 de setembro.


Os primeiros feridos foram para o Hospital Mama Yemo (atual Hospital Geral de Kinshasa), que foi rapidamente superlotado. Dois outros hospitais receberam as vítimas adicionais. Um funcionário do Comitê Internacional da Cruz Vermelha, Vincent Nicod, afirmou que 217 corpos foram encontrados no mercado, além de mais 32 corpos possivelmente já em necrotérios da cidade.

Os corpos entre os destroços estavam tão mutilados que apenas 66 foram identificados. 13 Muitas das vítimas mortais foram mulheres que trabalhavam como vendedoras no mercado e que eram as principais fontes de rendimento das suas famílias.

O presidente Mobutu e Saolona compareceram ao funeral em 10 de janeiro de 1996 na protestante Cathédrale du Centenaire.


Foi determinado que a aeronave não conseguiu decolar porque seu peso total no momento do acidente estava bem acima do MTOW. Por falta de evidências, as investigações não conseguiram determinar o valor exato da massa excedente, provavelmente entre 2 e 7 toneladas. No entanto, a decisão da tripulação de abortar o procedimento de decolagem foi tomada tarde demais e o comprimento da pista era insuficiente. 

Também foi relatado que a aeronave era operada pela African Air e arrendada da Moscow Airways. O voo foi operado ilegalmente em nome da Scibe-Airlift, que não estava preocupada com tal operação. O certificado de aeronavegabilidade expirou em dezembro passado e a aeronave não estava autorizada a voar.


Os pilotos russos, Nicolai Kazarin e Andrei Gouskov, foram acusados ​​e condenados por homicídio culposo, cada um recebendo a pena máxima de dois anos. No julgamento, eles admitiram que estavam usando documentos de autorização emprestados da Scibe Airlift, que sabiam que o voo era ilegal e que o voo tinha como destino Angola . A Scibe Airlift e a African Air pagaram multas de US$ 1,4 milhão às famílias e aos feridos.


Os riscos subjacentes de aeronaves sobrecarregadas sobrevoando áreas densamente povoadas não foram abordados na República Democrática do Congo e, em 4 de outubro de 2007, uma repetição virtual ocorreu no acidente do Antonov An-26 do Africa One em 2007 em Ndjili, o outro aeroporto de Kinshasa.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipédia, baaa-acro e ASN

Vídeo: Segundos Fatais - Voo British Midland 092 - Falha Humana


Vídeo: Mayday Desastres Aéreos - British Midland 092 Falha Total no Motor

Aconteceu em 8 de janeiro de 1989: Voo British Midland Airways 092 - Falha total no motor


No dia 8 de Janeiro de 1989, os 126 passageiros e tripulantes do voo 92 da British Midland encontraram-se num cenário de pesadelo, presos a bordo de um Boeing 737 que tinha perdido ambos os motores a uma altura de apenas 900 pés. À vista da pista, mas incapaz de alcançá-la, o avião deslizou indefeso para baixo em direção à zona rural abaixo, até que, com um estrondo poderoso, bateu em um barranco ao lado da autoestrada M1 e parou imediatamente. Em meio aos destroços, os caprichos da física decidiram quem viveu e quem morreu, com 79 pessoas emergindo vivas e 47 não.

O que é intrigante no voo 92, em comparação com outros casos de falha de motor duplo, é que seus motores não falharam ao mesmo tempo: em vez disso, um falhou durante a subida e o outro engasgou e morreu na aproximação final. Num esforço para resolver este mistério, os investigadores mergulharam nos dados e chegaram a uma conclusão surpreendente: apenas um motor apresentou defeito; os pilotos simplesmente desligaram o errado. 

Como esse erro poderia ter ocorrido? Poderia uma melhor resistência a colisões ter permitido que mais pessoas sobrevivessem? E por que um motor totalmente novo em um avião totalmente novo falhou? Estas eram as questões que os investigadores enfrentavam – e as respostas levariam a mudanças que tornariam o voo mais seguro para todos, mesmo que ainda haja mais trabalho a ser feito.

Representação de Matthew Tesch da rota do voo 92, de “Desastre Aéreo: Volume 2” de Macarthur Job
Até à sua absorção pela British Airways em 2012, uma das maiores transportadoras aéreas da Grã-Bretanha era a British Midland, que voava por todo o Reino Unido e Europa a partir da sua base no Aeroporto Heathrow de Londres. 

A companhia aérea entrou pela primeira vez no negócio de voos regulares de passageiros em 1953 usando um biplano da década de 1930, que foi seguido por vários aviões a hélice maiores e, finalmente, jatos, do BAC One Eleven ao Boeing 707 e, eventualmente, ao Boeing 737. que apareceu pela primeira vez na frota da British Midland em 1986. 

A British Midland tinha um apetite considerável por 737 e, na época de seu desaparecimento, a companhia aérea operava mais 737 do que qualquer outro tipo de avião a jato. Os três 737–200 de primeira geração da empresa foram aposentados em dois anos, após a compra de 13 737–300 de segunda geração em 1987, e outros oito 737–400 quando esse modelo foi disponibilizado em 1988.


Nossa história envolve um desses novíssimos 737-400, o Boeing 737-4Y0, prefixo G-OBMEda British Midland (foto acima), que foi designado para realizar o voo 92 da British Midland Airways de Londres Heathrow, na Inglaterra, para Belfast, na Irlanda do Norte, em 8 de janeiro de 1989. 

O cheiro do novo avião mal tinha desgastado: o G-OBME tinha acabado de ser entregue à British Midland dois meses antes e entrou em serviço em 4 de novembro de 1988. Em janeiro, ele já existia há tempo suficiente para passar por uma única inspeção programada, e a possibilidade de um mau funcionamento grave era provavelmente longe das mentes da tripulação.

Na noite do voo 92, a tripulação era composta por seis comissários de bordo e dois pilotos, o capitão Kevin Hunt, de 43 anos, e o primeiro oficial David McClelland, de 39 anos. O Capitão Hunt teve mais de 13.000 horas de voo em uma variedade de tipos de aeronaves, incluindo 763 em vários modelos 737. McClelland não era mais um novato, com 3.900 horas próprias, mas era novo no 737 e tinha menos de 200 horas de tipo.

Cada variante do 737, desde o -200 que entrou em serviço pela primeira vez em 1968, até a série MAX ainda em produção hoje, tem uma qualificação de tipo comum – um currículo de treinamento básico e certificado associado, que concede ao seu titular o direito de voar em qualquer Boeing 737 já fabricado. 

Um piloto que esteja voando em uma versão pode mudar para outra simplesmente fazendo um curso de diferenças, que normalmente dura menos de dois dias (às vezes muito menos) e não precisa envolver um simulador de voo. Tanto o capitão Hunt quanto o primeiro oficial McClelland passaram por esse curso em 17 de outubro, informando-os de todas as diferenças importantes entre o Boeing 737-300 e os novos 737-400 recentemente adquiridos pela British Midland.

Um diagrama de um motor CFM-56–3C-1 e um diagrama dos danos encontrados na pá do ventilador após a colisão. Os danos durante a falha inicial foram muito menos extensos: inicialmente, apenas o painel externo da lâmina 17, circulado em vermelho, se separou. (AAIB e CFM Internacional)
O avião havia recebido recentemente uma atualização para seus dois motores turbofan CFM International, mas havia um problema: os regulamentos da época não exigiam que as atualizações do motor fossem testadas em voo, apenas reprojetos. Os motores atualizados passaram apenas por testes de laboratório, que não detectaram uma tendência inesperada de sofrer vibrações em altas velocidades e altitudes.

Como resultado das vibrações anormais, as pás do ventilador do motor começaram a sofrer de fadiga do metal muito mais cedo na vida do motor do que o esperado. A fadiga do metal é o resultado da tensão repetida do metal, enfraquecendo o material até que ele eventualmente falhe.

Às 19h52 da noite de 8 de janeiro, Hunt e McClelland manobraram seu 737 na pista de Heathrow e decolaram sob um céu claro de inverno. Os 118 passageiros prepararam-se para o voo para Belfast, enquanto os pilotos realizavam as verificações habituais, configurando o avião e examinando os instrumentos em busca de quaisquer indicações incomuns. Sem surpresa, não houve nenhum.

E então, às 20h05, enquanto o voo subia 28.300 pés, o avião começou a vibrar de forma alarmante. Cada rebite e painel começaram a chacoalhar, fazendo com que objetos soltos escorregassem das bandejas dos passageiros. Quase imediatamente, um cheiro acre começou a penetrar na cabine, como se algo estivesse queimando; estrondos estremecedores começaram a balançar a aeronave e os passageiros observaram jatos brilhantes de chamas saindo do motor nº 1 no lado esquerdo do avião.


Dentro do motor nº 1, o painel externo da pá do ventilador nº 17, parte do ventilador que puxa o ar para dentro do motor, separou-se do corpo principal da pá e se incorporou no revestimento acústico circundante. 

Como uma máquina de lavar com um tijolo dentro, a ausência de parte de uma pá desequilibrava o ventilador, causando fortes vibrações enquanto ele balançava de um lado para o outro e roçava na caixa do ventilador. 

Simultaneamente, a falha interrompeu o fluxo de ar delicadamente equilibrado através dos compressores de baixa e alta pressão, fazendo com que o ar altamente pressurizado subitamente avançasse, contra a direção normal do fluxo de ar, com uma série de estrondos fortes. 

O excesso de combustível então se incendiou no escapamento, provocando as rajadas de chamas vistas pelos passageiros. Considerando tudo isso, foi um defeito grave, mas não necessariamente fatal - a maioria dos componentes internos do motor não foram danificados e ele ainda seria capaz de produzir alguma potência se o nível de empuxo comandado fosse reduzido em tempo hábil.


Sem saber da natureza exata do problema, mas preocupado com o cheiro de fumaça, o primeiro oficial McClelland exclamou: “Há um incêndio, é um incêndio chegando”. O capitão Hunt estava de acordo: eles poderiam ter um incêndio em um de seus motores e precisariam identificar e corrigir o problema o mais rápido possível. 

Mas antes de poderem agir, precisavam de responder a uma pergunta básica: qual motor estava falhando? Isso era óbvio para alguns dos passageiros, que podiam ver chamas vindo do motor nº 1, mas os pilotos não podiam ver os motores da cabine, então eles teriam que confiar nas indicações dos instrumentos e no conhecimento dos sistemas para diagnosticar o problema. Mas em meio às fortes vibrações e ao aumento do estresse da emergência, as indicações eram difíceis de ler.

“Qual é?” Capitão Hunt perguntou.

“É o arquivo... é o direito”, disse o primeiro oficial McClelland.

Apesar da hesitação de McClelland, Hunt confiou no seu julgamento. “Tudo bem”, disse ele, “acelere”.


McClelland não hesitou em desconectar o acelerador automático e diminuir o empuxo do motor certo para marcha lenta. E, ao fazer isso, as batidas e batidas altas cessaram e o cheiro de fumaça começou a desaparecer. 

Parecia que o problema havia sido resolvido por uma resposta clássica à falha do motor. Mas os pilotos estavam errados – era o motor esquerdo que estava falhando, e não o motor direito, e o súbito desaparecimento dos sintomas nada mais era do que uma coincidência insidiosa.

Nos bastidores, os sistemas automatizados do avião respondiam à falha do motor de maneira própria e oculta. O principal deles era o autothrottle, sistema responsável por manter e modificar a potência do motor para atingir os parâmetros-alvo selecionados pela tripulação. 

No momento da falha, o autothrottle estava acionado e controlando o empuxo do motor quando detectou uma grande queda na velocidade de rotação do ventilador do motor №1 em relação ao valor comandado. 

Tal queda pode ser, e neste caso foi, um sintoma de um surto - uma inversão repentina do fluxo de ar através do núcleo, geralmente causada por uma interrupção em algum lugar a montante que leva a um acúmulo excessivo de pressão no compressor de alta pressão em relação ao o compressor de baixa pressão adjacente. 

Se a relação de pressão entre os dois compressores se tornar muito grande, o ar irá explodir periodicamente do compressor de alta pressão para o compressor de baixa pressão, provocando o surto. Esses surtos podem sobrecarregar as pás do compressor, resultando em danos irreversíveis ao motor, a menos que a relação de pressão seja reduzida rapidamente.


Com isso em mente, quando o autothrottle detectou uma incompatibilidade entre o empuxo comandado e o empuxo real, ele foi programado para reduzir o empuxo comandado para corresponder à saída de empuxo real, reduzindo a relação de pressão abaixo do limite de surto. No vôo 92, este sistema funcionou perfeitamente, reduzindo o empuxo no motor nº 1 após a ocorrência de cerca de três a quatro surtos. 

Coincidentemente, esta redução no empuxo no motor nº 1 ocorreu ao mesmo tempo que o primeiro oficial McClelland reduziu a potência no nº 2, e a configuração de baixo empuxo resultante no nº 1 foi então preservada devido à desconexão do acelerador automático.

Como resultado da redução no empuxo comandado do motor nº 1, menos combustível foi enviado para a câmara de combustão, a pressão no compressor de alta pressão diminuiu e o motor parou de girar. 

Visualizador de localização do motor (Skybrary)
Ainda estava fundamentalmente desequilibrado devido ao pedaço que faltava na pá do ventilador nº 17, mas nesta configuração de potência mais baixa, a interrupção do fluxo de ar foi insuficiente para impedir que o motor funcionasse totalmente. Como tal, continuou a gerar alguma energia, mascarando os danos. 

Mas o mais importante foi o seu efeito na tomada de decisão dos pilotos: de fato, a cessação dos surtos convenceu-os de que, ao reduzir a potência do motor nº 2, tinham resolvido o problema. Na realidade, porém, não havia nada de errado com o motor direito, e eles agora eram mantidos no ar apenas pelo motor esquerdo mortalmente ferido, que se despedaçaria se tentassem aumentar a potência.

Sem saber que estavam cometendo um erro terrível, os pilotos continuaram com a impressão de que a emergência estava sob controle. O primeiro oficial McClelland ligou para o controle de tráfego aéreo e informou que havia um incêndio no motor, momento em que o capitão Hunt disse-lhe para “desligar”. Segundos depois, porém, ele mudou de ideia: “Parece que agora está funcionando bem”, disse ele. “Vamos ver se chega.”

Com o motor direito ainda em marcha lenta e não totalmente desligado, eles poderiam aumentar a potência a qualquer momento se descobrissem seu erro. Isso seria muito mais difícil se o fechassem totalmente, mas, por enquanto, a possibilidade permanecia aberta. O controle de tráfego aéreo perguntou agora onde eles queriam pousar, e McClelland respondeu que o campo mais próximo era o aeroporto de East Midlands, em Castle Donington.

Enquanto isso, o Capitão Hunt iniciou uma descida, agora voando manualmente. Para perder altitude, ele reduziu o empuxo do motor esquerdo para marcha lenta, igual ao motor direito. Como resultado, os parâmetros do motor esquerdo estabilizaram ainda mais, embora os níveis de vibração e as temperaturas ainda estivessem acima do normal. 

“Parece ter se estabilizado”, disse o primeiro oficial McClelland. “Ainda temos fumaça.” Ele então tentou uma segunda vez iniciar a lista de verificação de “Falha e desligamento do motor”, mas foi novamente interrompido, quando o capitão Hunt ligou para as operações da British Midland para informar a empresa sobre o desvio para Castle Donington.

Dois minutos depois, durante uma pausa nas comunicações de rádio, os pilotos finalmente executaram rapidamente a lista de verificação de desligamento do motor, fechando o combustível para o motor nº 2. Se quisessem restaurar a energia deste motor, teriam agora que passar por um processo complexo e demorado de reacender. Mas, por enquanto, a fumaça havia finalmente desaparecido, tudo parecia normal e parecia não haver dúvida de que o voo 92 em breve faria um pouso tranquilo em Castle Donington.

Apenas para cobrir suas bases, o capitão Hunt ligou para os comissários de bordo pelo interfone e perguntou: “Vocês fumaram na cabine lá atrás?”

“Sim, sim”, respondeu o comissário de bordo principal.

Hunt instruiu a tripulação de cabine a preparar a cabine para um pouso de emergência, mas em um minuto o comissário líder estava de volta. “Desculpe incomodá-lo”, disse ele. “Os passageiros estão em muito pânico.”

Para acalmá-los, Hunt decidiu transmitir uma mensagem pelo sistema de alto-falantes. Em tom calmo, explicou que “problemas com o motor direito” resultaram em fumaça na cabine, mas que o motor havia sido desligado e que pousariam em Castle Donington em 10 minutos.


Esta afirmação foi tranquilizadora para alguns, mas nem um pouco para outros: na verdade, vários passageiros do lado esquerdo do avião sabiam que era o motor esquerdo que estava em chamas, e o comentário de Hunt sobre o motor direito os impressionou. Mas o que eles sabiam? O capitão era piloto e eles não. E assim os pilotos continuaram a descer em direção ao Aeroporto de East Midlands, sem saberem que tinham cometido um erro tão fundamental que até os passageiros notaram.

Durante toda a descida, a carga de trabalho foi alta, pois o capitão Hunt pilotava o avião manualmente através de uma série de manobras para se aproximar do aeroporto, e o primeiro oficial McClelland falava quase continuamente com o controle de tráfego aéreo.

Às 20h12, percebendo uma interrupção nas comunicações, o Capitão Hunt tentou iniciar uma revisão da situação. “Agora, que indicações realmente obtivemos?” ele perguntou. “Apenas vibrações rápidas no avião, fumaça…”

Mas antes que pudesse avançar mais, o controle de tráfego aéreo os chamou com uma nova autorização de rumo e descida, e sua atenção foi novamente desviada para assuntos mais imediatos. O primeiro oficial McClelland então mudou para a lista de verificação de abordagem monomotor e o capitão Hunt tentou estabelecer contato por rádio com os bombeiros do aeroporto.

Perfil de descida com linha do tempo de eventos, por Matthew Tesch
em “Air Disaster: Volume 2” de Macarthur Job
Nos minutos seguintes, a agitação continuou, enquanto eles faziam as curvas finais para se alinharem com a pista, estendiam os flaps e baixavam o trem de pouso a uma altura de 2.000 pés. Para compensar o arrasto causado pelos flaps e marchas, Hunt aumentou a potência do motor esquerdo e inicialmente pareceu responder normalmente. Mas esta ilusão de normalidade seria breve.

Quando o motor começou a girar, as vibrações do ventilador desequilibrado aumentaram até que a peça que faltava na pá do ventilador nº 17, que até então permanecia embutida no revestimento acústico da entrada do motor, se soltou e foi imediatamente sugada de volta. através da turbina. Isso causou danos catastróficos ao ventilador e a ambos os compressores, resultando em novas oscilações e em uma perda massiva e irreversível de energia. As indicações para o motor nº 1 caíram para zero e as chamas mais uma vez começaram a sair em grandes rajadas do escapamento. 

Moradores dos vilarejos de Sutton Bonnington e Kegworth, a cerca de quatro quilômetros da pista, ouviram uma série de estrondos altos e um som semelhante ao de metal esmerilhado, e olharam para cima para ver o avião voando baixo, com fogo saindo de seu motor esquerdo como objetos em chamas. 

Um exemplo de oscilação de motor em um Boeing 767 da EuroAtlantic em 2013. Embora as oscilações possam ser dramáticas, nem sempre causam danos; o avião da foto acima seguiu normalmente até seu destino (Thurston Urbanek)
Na cabine, os pilotos sentiram as fortes vibrações e ouviram os sons horríveis, o que os levou a olhar para os seus instrumentos, onde perceberam, para seu horror, que o único motor restante estava perdendo potência. A tripulação informou ao controle de tráfego aéreo que agora estava tendo problemas com o segundo motor, e o capitão Hunt, desesperado para evitar o desastre, disse ao primeiro oficial McClelland: “Tente acender o outro - não há mais nada que você possa fazer!”

Neste ponto, o avião estava a apenas 900 pés do solo e caindo rapidamente. As luzes da pista podiam ser vistas bem à frente, tentadoramente próximas, mas sem potência do motor, eles não conseguiriam chegar lá. O primeiro oficial McClelland lutou para encontrar o procedimento de reacender o motor, mas ao fazê-lo, a campainha de incêndio soou, alertando sobre um incêndio no motor nº 1. McClelland perguntou se deveria encerrar, mas Hunt disse que não. Eles precisariam operá-lo até que ele se destruísse, explorando até a última gota de energia.

Hunt anunciou que tentaria “esticar o planeio”, mas eles estavam caindo abaixo da rampa de planeio em direção à pista. A voz imparcial do sistema de alerta de proximidade do solo começou a gritar “GLIDESLOPE” repetidamente.

“Tente abrir o outro!” — disse Hunt, observando o chão se erguer para encontrá-los.

“Ela não vai!” McClelland respondeu freneticamente.

Se não conseguissem religar o motor certo, percebeu Hunt, iriam direto para a movimentada rodovia M1, o maior corredor automotivo norte-sul do centro da Inglaterra. Mais uma vez, ele disse: “Tente abrir o outro!” Mas, novamente, McClelland gritou: “Ela não vai!”

A velocidade deles estava diminuindo e ambos os motores estavam mortos ou morrendo. Eles estavam sem tempo e sem altitude. Faltando alguns segundos para o impacto, o Capitão Hunt pegou o PA e fez o anúncio que nenhum piloto deseja fazer: “Prepare-se para um pouso forçado!”


Nos segundos finais, a velocidade no ar caiu tão baixo que o stick shaker foi ativado, avisando que eles estavam prestes a parar. E então, com o nariz inclinado 13 graus para cima e viajando a uma velocidade de cerca de 108 nós, o voo 92 atingiu o solo com um ruído terrível. 

A cauda deslizou por um campo antes que o avião se chocasse contra um grupo de árvores, achatando-as com um só golpe massivo. O trem de pouso principal então atingiu um aterro e o avião saltou de volta no ar, ultrapassando por pouco as pistas sul da M1 enquanto os motoristas atordoados pisavam no freio. 

Diagrama da sequência de impacto. (AAIB)
Num piscar de olhos, o avião ultrapassou o canteiro central, derrubou um poste de luz, errou a pista norte por poucos centímetros e finalmente bateu de nariz no aterro do outro lado. 

O enorme impacto parou o avião e rasgou a fuselagem em três pedaços, fazendo o nariz deslizar encosta acima, enquanto a cauda virou de ponta a ponta, parando precariamente contra o teto da cabine central.

Milagrosamente, o avião não atingiu um único carro na movimentada rodovia e não explodiu ao colidir com a colina. Dois motoristas podem ter salvado vidas acendendo as luzes de perigo e reduzindo a velocidade do tráfego quando viram o avião chegando.


Com o impacto, o chão desabou, fazendo com que os assentos e os passageiros neles se soltassem e batessem juntos nos destroços emaranhados, esmagando pessoas até a morte e prendendo outras por horas. 

Outros sofreram graves ferimentos na cabeça quando os cestos de carga cheios de bagagem desabaram nos assentos. Equipes de emergência tiveram que amarrar seções do avião a árvores para evitar que escorregassem morro abaixo e matassem passageiros presos.

No aeroporto, os bombeiros, que esperavam que a sua presença fosse pouco mais do que uma formalidade, observaram incrédulos as luzes do avião deslizarem abaixo da linha das árvores, seguidas, segundos depois, por uma grande explosão de poeira. Com sirenes tocando, eles saíram para a rodovia M1 e correram para o local.

Porém, os primeiros a chegar ao avião não foram os bombeiros, mas sim os motoristas que passavam, que presenciaram a sequência do acidente do início ao fim. Ao avistar o avião vindo baixo em direção à M1, vários motoristas teriam reduzido a velocidade e ligado as luzes de emergência para bloquear o tráfego e, de fato, em um resultado que só poderia ser considerado milagroso, nenhum carro foi atingido quando o avião colidiu com um dos 

As rodovias mais movimentadas da Grã-Bretanha. Agora, com o avião no solo e os serviços de emergência ainda a poucos minutos de distância, muitos desses mesmos motoristas abandonaram os seus carros e correram para os destroços, na esperança de resgatar sobreviventes.

O que encontraram foi uma cena de carnificina. Com o impacto, a maioria dos assentos foi arrancada do chão e caiu com os seus ocupantes num pântano sangrento na frente do avião, onde dezenas de pessoas estavam agora presas. Alguns morreram e um número ainda maior ficou gravemente ferido, sofrendo ferimentos traumáticos na cabeça e membros quebrados.


As coisas melhoraram um pouco na seção central da asa e na cauda, ​​onde a maioria dos assentos permaneceu presa ao chão, mas mesmo aqui quase todos ficaram gravemente feridos. No final, apenas 14 pessoas conseguiram escapar dos destroços sem assistência, deixando o resto enredado nos escombros, implorando por ajuda – mas ajudar a todos seria uma tarefa gigantesca para um exército de socorristas treinados, muito menos para alguns bons samaritanos. 

Após a chegada dos primeiros bombeiros, que rapidamente extinguiram um pequeno incêndio em torno do motor esquerdo, teve início uma massiva operação de resgate, envolvendo centenas de pessoas e veículos vindos de East Midlands. 

Cada passageiro teve que ser extraído individualmente em uma sequência complexa, enquanto os paramédicos trabalhavam para fazer a triagem das vítimas e identificar os mais necessitados. Tantas pessoas ficaram gravemente feridas que era difícil saber onde traçar o limite. 

Enquanto dezenas de vítimas eram levadas às pressas para o hospital, várias sucumbiram no caminho ou na mesa de operação. E muitos mais, infelizmente, já estavam mortos.


A operação de resgate continuou durante toda a noite e na manhã seguinte antes de finalmente ser concluída. O último sobrevivente só foi retirado dos destroços às 4h20, mais de oito horas após o acidente. Depois disso, a fila de ambulâncias que descia pela M1 transportava apenas os mortos.

No final, 39 pessoas morreram no local e outras 8 morreram no hospital, incluindo uma que sucumbiu quase três semanas após o acidente. Isso elevou o número final de mortos para 47, enquanto 79 pessoas sobreviveram, incluindo os pilotos e os seis comissários de bordo. No entanto, a taxa de sobrevivência desmentiu a gravidade do acidente. 

Na verdade, dos 79 sobreviventes, 75 sofreram ferimentos classificados como graves e alguns nunca recuperaram totalmente. O capitão Hunt estava entre eles: ele sofreu uma grave lesão na coluna vertebral no acidente e suas pernas ficaram presas nos destroços por horas enquanto a equipe de resgate trabalhava para retirá-lo; embora ele vivesse, ele nunca mais voltaria a andar.


Enquanto a última vítima era levada, investigadores da Divisão de Investigação de Acidentes Aéreos da Grã-Bretanha, ou AAIB, já estavam chegando ao local. Alguns deles tinham acabado de começar as tão necessárias férias depois de vasculharem os destroços do atentado bombista de Lockerbie, ocorrido apenas três semanas antes, quando foram chamados ao local de outro grande acidente em solo britânico. 

A sua investigação concentrar-se-ia, em última análise, em três áreas: porque é que os motores falharam, se a tripulação lidou corretamente com as falhas e se mais vidas poderiam ter sido salvas. Este último tópico foi especialmente importante à luz do facto de que muitos assentos se tinham separado do chão e empilhados para a frente, resultando em ferimentos muito mais graves do que teriam ocorrido de outra forma. 

Os requisitos regulamentares para a resistência dos assentos eram bastante rigorosos, com a intenção de evitar exatamente este tipo de perturbação em massa da cabine, pelo que o facto de os assentos falharem desta forma era preocupante. 

Gráfico de assentos das vítimas fatais e sobreviventes (AAIB)
Mas quando os investigadores olharam mais de perto, fizeram uma descoberta interessante: os próprios assentos resistiram notavelmente bem; o que falhou foi, na verdade, o chão ao qual estavam fixados. Numerosas fileiras de assentos foram retiradas dos destroços separadamente, mas com pedaços dos trilhos dos assentos do chão ainda presos aos pés, como se tivessem sido arrancados pelas raízes. 

Mais tarde, as simulações mostrariam que, no momento do impacto, os assentos ocupados tendiam a girar para frente e para baixo, sobrecarregando os trilhos dos assentos até o ponto de falha e permitindo que as fileiras de assentos saíssem do chão. Isso fez com que os passageiros caíssem de cabeça em uma massa de destroços com o impacto, contribuindo para os graves ferimentos na cabeça e no peito sofridos pelos ocupantes, incluindo aqueles que sobreviveram e aqueles que não sobreviveram. 

Na verdade, praticamente todos a bordo, tenham sobrevivido ou não, sofreram algum tipo de ferimento na cabeça ao bater no assento à sua frente. No entanto, os resultados foram mensuravelmente melhores entre aqueles que assumiram a posição de suporte, em relação àqueles que não o fizeram.


Enquanto isso, uma equipe separada de investigadores começou a examinar os destroços para entender por que os motores falharam. Inicialmente, o acidente foi descrito à AAIB como uma falha de motor duplo e, de facto, quando os investigadores examinaram os motores do 737, ficou claro que nenhum deles estava a funcionar no momento do impacto. 

Além disso, o motor esquerdo mostrou evidências claras de falha nas pás do ventilador durante o vôo, seguida de incêndio localizado. Mas o motor direito estava intacto, exceto por alguns danos relativamente pequenos sofridos durante o impacto. O núcleo estava quase totalmente intacto e não havia nada que sugerisse que o motor fosse incapaz de gerar energia até o avião atingir o solo. 

Outros exames laboratoriais confirmaram que, embora o motor certo não estivesse a produzir potência no momento do impacto, não tinha sofrido qualquer falha – uma descoberta perturbadora que levou a AAIB a mergulhar profundamente nas ações dos pilotos durante o voo.

A primeira-ministra Margaret Thatcher no local do desastre (PA)
Ao entrevistar os pilotos e examinar o conteúdo das caixas pretas, os investigadores conseguiram reunir as pistas disponíveis para os pilotos e analisar as suas reações. A conclusão deles era inevitável: os pilotos desligaram o motor errado.

Em seu depoimento, o capitão Hunt explicou que imediatamente suspeitou do motor certo porque sentiu cheiro de fumaça vindo da cabine e sabia que o ar entrava na cabine pelo motor certo. Já tendo feito essa conexão, ele não ficou surpreso quando o primeiro oficial McClelland anunciou que o motor certo estava falhando e não hesitou em ordenar seu desligamento. 

Mas os investigadores notaram dois problemas principais com esta decisão. Em primeiro lugar, no Boeing 737-400, parte do ar da cabine vem tanto do motor esquerdo quanto do direito - um novo recurso que não estava presente nas versões anteriores com as quais o Capitão Hunt estava acostumado. 

Esta pequena alteração não foi abordada no curso de conversão e, com apenas 23 horas no novo -400, Hunt não teve tempo suficiente para aprender através da experiência que esta suposição não era mais válida. Ele dificilmente poderia ser culpado por isso, mas não era a única preocupação da AAIB. 

A segunda questão era que era difícil imaginar como Hunt poderia ter determinado de onde vinha a fumaça em tão curto período de tempo, especialmente sem perguntar a ninguém da tripulação de cabine. Em vez disso, os investigadores sugeriram que ele provavelmente chegou a esta conclusão mais tarde, apenas para que as suas memórias do evento se tornassem (compreensivelmente) comprimidas e confusas. 

Na opinião deles, ele provavelmente determinou que o motor certo estava com defeito porque confiava em McClelland, e sua confiança foi confirmada quando McClelland recuou a alavanca de impulso direita e a oscilação parou.

Deste ângulo, as cordas que sustentam a cauda podem ser vistas com mais clareza (baaa-cro)
Por que McClelland escolheu originalmente o motor direito, em oposição ao esquerdo, era menos certo. Quando questionado sobre o que contribuiu para sua decisão, McClelland, gravemente ferido, infelizmente não se lembrou. 

Embora tenham feito um esforço considerável para descobrir exatamente quais indicações teriam sido exibidas a ele segundos após a falha do motor, os investigadores não conseguiram apontar um item específico que pudesse tê-lo enganado. No entanto, eles encontraram alguns fatores que poderiam ter tornado mais difícil determinar rapidamente qual motor estava falhando.

A primeira delas foi o projeto dos medidores de desempenho do motor. Enquanto as versões anteriores do 737 usavam medidores analógicos com ponteiros tradicionais, o 737–400 foi o primeiro a incorporar um glass cockpit com displays digitais. Essa mudança foi um dos principais temas do treinamento de diferenças que os pilotos realizaram no mês de outubro anterior, mas isso não significou que a leitura dos medidores digitais se tornaria imediatamente intuitiva para um piloto que passou toda a carreira lendo instrumentos tradicionais. 

Uma diferença notável entre os dois era que os medidores digitais apresentavam um ponteiro que se movia pela parte externa do mostrador em vez de emergir do centro, representando uma fonte potencial de dificuldade ao treinar o cérebro para ler os novos medidores. E para piorar a situação, a British Midland não tinha um simulador 737 equipado com o novo sistema de indicação, de modo que os pilotos nunca tinham visto como era um motor com defeito nos visores digitais até encontrarem um na vida real.

O sistema de indicação do motor no 737–400. Esta foto mostra indicações normais,
não aquelas que apareceram no voo 92 (AAIB)
Para saber mais sobre como os pilotos se sentiam em relação ao sistema de indicação digital de motores, a AAIB enviou uma pesquisa que obteve respostas de 90% dos pilotos do Reino Unido que tinham experiência com o sistema. Embora os pilotos da British Midland tenham sido um pouco mais críticos do que a média, a esmagadora maioria dos entrevistados afirmou que o sistema indicava os parâmetros claramente e menos de 10% relataram ter alguma dificuldade de adaptação. 

No entanto, uma percentagem significativa dos entrevistados notou que os medidores digitais não foram tão eficazes em chamar a atenção para mudanças repentinas nos parâmetros do motor. Ao contrário das telas digitais modernas, os displays do 737–400 em 1989 tinham baixa resolução e só podiam indicar um número limitado de localizações de ponteiros; portanto, os ponteiros digitais tendiam a saltar entre pontos fixos, em vez de se moverem continuamente como um ponteiro analógico. Isso poderia dificultar a detecção dos movimentos pelo olho humano, especialmente usando a visão periférica. O efeito poderia ser agravado ainda mais se o piloto não estivesse acostumado a procurar o ponteiro fora do mostrador, e não dentro dele.

Tudo isso significava que, quando os pilotos olhavam para os medidores do motor, talvez precisassem olhar mais de perto do que o normal para lê-los. Além disso, o avião vibrava fortemente, tornando ainda mais difícil focar e rastrear os movimentos dos pequenos ponteiros digitais. Esta suposição foi corroborada pelo Capitão Hunt, que disse aos investigadores que quando olhou para os medidores após a falha, não percebeu nenhuma informação útil.

Na verdade, muitas informações úteis eram exibidas – de acordo com o gravador de dados de voo, a temperatura do gás de entrada do motor №1 estava muito alta; a vibração estava fora dos gráficos, fixando o ponteiro do medidor de vibração №1 na indicação máxima possível; e o fluxo de combustível flutuava descontroladamente. 

No entanto, com base no tempo dos eventos, foi possível que McClelland olhasse pela primeira vez para os instrumentos entre o segundo e o terceiro surtos do motor, quando alguns dos parâmetros do motor esquerdo estariam mais próximos dos seus valores normais. O instrumento mais consistente teria sido o medidor de vibração do motor nº 1, mas também aqui havia um problema: os pilotos não deram muita importância ao que ele dizia. Na verdade, o capitão Hunt disse aos investigadores que normalmente não olhava para os medidores de vibração porque eles não eram confiáveis. 

Na verdade, após a sua introdução na década de 1970, os medidores de vibração foram removidos de vários tipos de aeronaves na Grã-Bretanha porque eram insuficientemente fiáveis, em grande parte porque tinham dificuldade em distinguir entre as vibrações dos motores e as de outras fontes. No entanto, em 1989, os medidores de vibração instalados em tipos de aeronaves mais recentes, como o 737-400, eram bastante confiáveis ​​e eram facilmente capazes de discriminar entre diferentes tipos de vibrações, um fato que aparentemente não era apreciado pela maioria das tripulações aéreas da época.

Outra vista aérea dos destroços (baaa-acro)
Esses fatores explicaram coletivamente por que os pilotos não viram as indicações problemáticas do motor esquerdo, mas não explicaram por que McClelland mudou de ideia no meio da frase e decidiu que o motor direito estava falhando. Infelizmente, talvez nunca saibamos a resposta. Pode até não ter havido qualquer indicação específica que o levasse a esta conclusão. 

Talvez seja desconfortável admitir isso, mas muitas escolhas que fazemos na vida, incluindo algumas de grande importância, são, em última análise, decididas com base na intuição, nos instintos ou no que os jovens de hoje chamariam de “vibrações”, e isso pode muito bem ter sido o caso aqui.

Você pode estar se perguntando como é que um piloto profissional poderia decidir qual motor está falhando com base em tão pouco, mas você ficaria surpreso – na verdade, fazia muito sentido no momento. Devido ao cheiro de fumaça, os pilotos acreditaram que o motor poderia estar pegando fogo e que precisariam agir rapidamente. É claro que a pressa gera erros, e os pilotos são treinados para serem metódicos mesmo em situações de alto estresse – mas isso é mais fácil de dizer em uma sala de aula no solo do que no ar durante uma emergência real. 

Além disso, tal decisão tomada às pressas nunca teve a intenção de ser definitiva. Embora o procedimento adequado exija que os pilotos identifiquem uma indicação positiva de qual motor está falhando antes de agir, eles assumiram corretamente que se movessem a alavanca de propulsão correta para marcha lenta, os sintomas se dissipariam, e que se escolhessem errado, os sintomas seriam continuar, fazendo com que eles revertam sua escolha.

Tal inversão dificilmente teria sido sem precedentes e, na verdade, teria sido consistente com os procedimentos padrão para identificar a fonte de uma vibração de motor de origem desconhecida. Foi apenas por uma coincidência insidiosa, então, que os pilotos não identificaram imediatamente o seu erro.

Vários assentos podem ser vistos espalhados por toda a área ao redor do avião (baaa-acro)
O prego final em seu caixão foi o momento da redução do empuxo do autothrottle no motor esquerdo, que ocorreu quase simultaneamente com a redução do empuxo do primeiro oficial McClelland no motor direito. Quando isso ocorreu, a onda cessou e os fortes estrondos e solavancos cessaram, formando uma poderosa correlação mental entre a ação de McClelland e a resolução do problema. 

Houve alguns indícios de que o problema ainda estava presente: por exemplo, a temperatura do gás de entrada nº 1 permaneceu elevada durante todo o voo, e o medidor de vibração nº 1 permaneceu no máximo pelos próximos minutos, até que a energia foi reduzida para inativo durante o descida. No entanto, como a magnitude das vibrações diminuiu muito após a cessação das ondas violentas, os pilotos não reconheceram que o avião ainda estava vibrando e, na verdade, disseram aos investigadores que, tanto quanto sabiam, as vibrações pararam quando McClelland reduziu a potência do motor nº 2. Em qualquer caso, estas pistas menores foram claramente insuficientes para superar a correlação já estabelecida.

Depois desse ponto, o cenário para o desastre estava praticamente montado, mas ainda havia algumas chances plausíveis de os pilotos terem descoberto seu erro. Provavelmente o mais marcante ocorreu durante a descida, quando o Capitão Hunt tentou iniciar uma revisão da situação. Lendo suas palavras, “Agora, que indicações realmente obtivemos”, é quase possível ver uma bifurcação na estrada: uma linha do tempo onde os pilotos se sentam para revisar tudo e percebem que desligaram o motor errado; e a linha do tempo real, na qual Hunt foi interrompido por uma transmissão do ATC e nunca mais retornou à sua tentativa frustrada de interrogatório. 

Os investigadores observaram que, embora não pudessem culpar a decisão dos pilotos de aterrar no aeroporto mais próximo disponível, dada a possibilidade de um incêndio, a abordagem apressada deixou poucas oportunidades para eles refletirem sobre as suas escolhas e potencialmente descobrirem o problema. No caso, nem sequer conseguiram terminar as listas de verificação aplicáveis, eliminando oportunidades adicionais de verificação cruzada das suas ações.

Outro ponto potencial de intervenção foi quando o Capitão Hunt mencionou problemas com o motor certo durante o anúncio da cabine. Conforme discutido anteriormente, alguns passageiros que viram chamas saindo do motor esquerdo se perguntaram se o capitão havia cometido um erro, mas nenhum deles estava autoconfiante o suficiente para falar. Os comissários de bordo poderiam estar em melhor posição para apontar a discrepância, mas por acaso nenhum deles ouviu Hunt mencionar o motor certo, provavelmente porque estavam muito ocupados preparando a cabine para o pouso de emergência. 

Embora seja raro os passageiros possuírem informações críticas de segurança que a tripulação não possui, isso pode acontecer ocasionalmente, e o voo 92 da British Midland não é o único caso. Com isto em mente, os passageiros devem seguir a regra de “se você vir algo, diga algo”: embora haja grandes chances de que a tripulação de fato saiba mais do que você, não há nada a perder se pedir educadamente a um comissário de bordo que pese se você achar que algo parece errado.

As equipes de resgate abriram a porta L2 na cauda para alcançar os passageiros presos lá dentro (PA)
Com essas oportunidades perdidas, o vôo estava praticamente condenado. Quando o Capitão Hunt aumentou a potência do motor na aproximação final, o motor nº 1 danificado destruiu-se, deixando o avião sem impulso suficiente para manter a altitude. Apenas 54 segundos se passaram entre a falha final do motor e o momento do impacto. Com o motor nº 2 tendo sido totalmente desligado vários minutos antes, a única maneira de fazê-lo funcionar novamente era realizar um complicado procedimento de reacender.

Uma maneira de reacender um motor é reiniciar o moinho de vento, usando o fluxo de ar para iniciar a rotação do núcleo; no entanto, isso requer uma alta velocidade no ar para ser eficaz. Voando baixo e lento na aproximação, o voo 92 não estava indo rápido o suficiente para tentar reiniciar o moinho de vento e eles estavam muito perto do solo para ganhar velocidade mergulhando.

Outra maneira de reiniciar um motor é usar a pressão do ar de sangria do outro motor para iniciar a rotação do núcleo. No entanto, o motor nº 1 estava muito avançado para fornecer a pressão necessária. A única maneira de realizar tal reinicialização teria sido iniciar a unidade de energia auxiliar (ou APU, o gerador de backup na cauda), conectá-la ao coletor de ar de sangria, desligar ambos os conjuntos de ar condicionado e usar a pressão da APU para girar o nucleo. 

No entanto, os procedimentos para tal reinicialização da APU no Manual de Referência Rápida aplicavam-se apenas à reinicialização do motor nº 1, porque o procedimento foi planejado para uma situação em que ambos os motores haviam queimado pelo mesmo motivo, como combustível ruim ou chuva forte, sob a suposição de que os pilotos poderiam então usar o motor nº 1 para reiniciar o nº 2. 

Como resultado, o primeiro oficial McClelland teria que improvisar um procedimento para reiniciar o №2 com base no procedimento para o №1, que estava muito além de suas habilidades, dada a sua experiência limitada em Boeing 737. E mesmo que ele tivesse pensado nisso de alguma forma, o tempo disponível teria sido insuficiente para concluir o procedimento de qualquer maneira.

Outra foto aérea mostra claramente onde a cauda e o equipamento principal
impactaram primeiro o campo, seguidos pelas árvores (Getty Images)
Dito isto, resta uma questão importante: por que o motor nº 1 falhou em primeiro lugar?

Seguindo dicas de testemunhas, os investigadores encontraram vários pedaços das pás do ventilador do motor nº 1 em um campo na vila de Sutton Bonington, a mais de três quilômetros atrás do local do acidente, incluindo o painel externo da pá nº 17. Este painel mostrou sinais claros de fadiga do metal – isto é, a quebra cíclica do material ao longo de repetidas aplicações de carga, resultando em fissuras que crescem até a falha do componente. 

Simulações confirmaram que a liberação da porção externa desta pá desequilibrou o motor e causou vibrações e oscilações durante a falha inicial do motor. No entanto, o motor continuou a funcionar de forma relativamente normal durante vários minutos depois disso, indicando que os danos naquele momento foram limitados - certamente menos do que a extensa destruição dos conjuntos do ventilador e do compressor que foi encontrada no motor após o acidente. 

O fato de a peça que faltava da lâmina 17 ter sido encontrada tão perto do local do acidente, e não no ponto inicial da falha, forneceu a resposta a este mistério. Muito provavelmente, concluiu a AAIB, o fragmento da pá ficou incrustado no revestimento acústico durante a descida, antes de ser sugado, destruindo o motor, quando os pilotos aumentaram a potência na aproximação final.

No entanto, isso foi apenas parte da história. A grande questão era por que as pás do ventilador falharam tão rapidamente – afinal, as falhas por fadiga das pás do ventilador do motor normalmente ocorrem ao longo de muitos anos, enquanto esta falhou após apenas dois meses. Além disso, a lâmina era idêntica a todas as outras, sem qualquer sinal de que fosse defeituosa. 

Isso deixava apenas duas possibilidades reais: ou o motor foi atingido por algum objeto estranho, enfraquecendo a lâmina, ou houve um problema com o projeto fundamental do motor. No entanto, um exame da pá do ventilador não mostrou nenhuma evidência de que ela tenha sido atingida por um pássaro, pedra ou qualquer outro objeto em qualquer momento durante sua breve vida útil. Essa descoberta levou os investigadores a examinar mais profundamente o ângulo da engenharia.

Outro avião sobrevoa os destroços do voo 92 (John Downing)
O 737–400 foi equipado com novos motores CFM-56–3C-1, que foram desenvolvidos pelo fabricante de motores CFM International a partir dos motores CFM-56–3B-1 e 3B-2 instalados no Boeing 737–300. Uma das principais diferenças entre as duas versões foi um design ligeiramente alterado das pás do ventilador, que ajudou os motores 3C-1 a atingir 1.500 libras adicionais de empuxo de decolagem em relação aos modelos 3B. No entanto, na maior parte, os motores eram quase idênticos e as versões 3B até agora tinham um desempenho impecável em serviço. Então, o que deu errado?

Normalmente, a pá do ventilador experimenta aproximadamente um ciclo de carga por voo, à medida que a potência é aumentada para a decolagem e removida novamente após o pouso. A progressão da fadiga resultante deste tipo de aplicação de carga cíclica era muito lenta para explicar a falha da pá 17. 

No entanto, uma maneira pela qual a taxa de fadiga do metal poderia ser grandemente acelerada seria se a pá estivesse sofrendo uma tensão anormal devido a vibrações cíclicas, que poderia ser transmitido milhares de vezes durante um único voo, em vez de uma vez. É claro que a CFM estava bem ciente desta possibilidade e conduziu testes extensivos durante o desenvolvimento da série de motores CFM-56-3, a fim de descartar a existência de quaisquer modos de vibração potencialmente perigosos.

Um policial examina o local do acidente (John Downing)
A vibração das pás do ventilador do motor é um tópico complicado, mas no nível mais básico, ajuda a entender que as pás estão sujeitas a forças imensas durante a operação do motor e que mesmo o menor desequilíbrio nas próprias pás ou na estrutura à qual estão conectado pode induzir vibrações prejudiciais que só se manifestam sob condições específicas. 

Algum nível de vibração é inevitável, mas as vibrações de baixo nível carecem da energia necessária para iniciar e perpetuar a fadiga do metal. No entanto, cada lâmina tem seus limites – especificamente, um “limite de resistência”, que representa a quantidade máxima de tensão vibratória que pode ser transmitida antes que ocorram danos à lâmina.

Durante os testes de certificação na série de motores CFM-56–3, o CFM procurou provar que as pás não sofreriam tensões vibratórias superiores a 35% do seu limite de resistência durante qualquer modo de operação concebível. Esses testes foram realizados em laboratório usando um motor equipado com uma ampla gama de extensômetros, que mediam a tensão nas pás à medida que os engenheiros aceleravam o motor em toda a sua faixa de desempenho, até a velocidade de rotação central (ou N1) de 103% da velocidade designada da linha vermelha, mais rápido do que o motor deveria girar durante as operações normais. No entanto, uma velocidade N1 de 103% só poderia ser alcançada em grandes altitudes, onde o ar é menos denso. Para atingir essa velocidade em laboratório, os engenheiros do CFM utilizaram equipamentos especiais que alteraram o fluxo de ar no motor e permitiram atingir um N1 de 103% no solo. Embora o motor tenha passado nos testes com louvor, o uso de equipamentos especiais fez com que o fluxo de ar através do motor durante o teste não fosse uma simulação perfeita das condições em grandes altitudes - fato que se tornará importante posteriormente.

Um bombeiro examina a ruptura traseira da fuselagem após a extração das vítimas (AP)
Quando a CFM desenvolveu o modelo CFM-56–3C-1, os testes mostraram que a nova variante possuía características de vibração virtualmente idênticas às da série CFM-56–3B, portanto, novos testes de vibração até 103% N1 não foram realizados. Este fato levou os investigadores da AAIB a suspeitar que poderia haver um modo de vibração oculto, presente no 3C-1 mas não no 3B, que só se manifestaria em grandes altitudes e elevados valores de N1, permitindo-lhe passar pelas fendas do regime de testes do CFM. 

O CFM inicialmente resistiu a esta teoria, preferindo acreditar que a lâmina defeituosa havia sido danificada por algum objeto estranho. Na verdade, a empresa realizou um teste de vibração no motor 3C-1 até 103% N1 por razões não relacionadas no início de 1989, logo após o acidente, e nenhum modo de vibração inesperado foi detectado. Por um momento, pareceu que o CFM poderia estar certo e a AAIB poderia estar errada.

Então, em 9 de junho de 1989, um Boeing 737-400 da Dan-Air estava subindo 25.000 pés após a decolagem quando seu motor nº 1 falhou, resultando em sintomas semelhantes aos do voo 92. Desta vez, porém, o motor parou imediatamente, a falha foi devidamente reconhecida e os pilotos fizeram um pouso sem intercorrências. Mais uma vez, uma pá do ventilador de um motor CFM-56–3C-1 falhou devido à fadiga. 

E isso não foi tudo: apenas dois dias depois, em 11 de junho, outro motor CFM-56–3C-1 falhou da mesma maneira a bordo de outro British Midland 737–400 enquanto subia 29.000 pés. Este voo também pousou em segurança, mas o padrão era claro e os alarmes soavam nos mais altos níveis da Autoridade de Aviação Civil britânica. 

Imediatamente após as duas falhas de motor, a CAA suspendeu todos os Boeing 737-400 do país e, em 15 de junho, emitiu uma diretriz de aeronavegabilidade determinando a substituição imediata de quase todas as pás do ventilador em todos os motores CFM-56-3C-1 atualmente em serviço. . Os 737-400 foram então autorizados a voar novamente, mas os pilotos não teriam permissão para usar as configurações de potência mais altas até que as pás fossem substituídas. Finalmente, o outro sapato caiu: afinal, havia claramente um problema sistêmico com esse tipo de motor. O desafio, então, era encontrá-lo.

Um pedaço de destroço ficou embutido no guarda-corpo central (ITV)
Para resolver o mistério, a AAIB trabalhou com engenheiros do CFM para desenvolver novos métodos de teste que pudessem detectar vibrações que poderiam ter permanecido ocultas nas condições utilizadas durante a certificação. Eventualmente, seus esforços valeram a pena, pois os testes revelaram um modo de vibração até então desconhecido que se manifestou apenas na variante 3C-1, e apenas em configurações de alta potência e altitudes elevadas durante os estágios posteriores da subida – exatamente onde o voo 92, e o outros dois voos incidentes estavam voando quando as falhas ocorreram. 

A AAIB e o CFM eventualmente encontraram uma assinatura fraca deste modo de vibração nos dados recolhidos durante os testes de vibração não relacionados no início de 1989, mas as diferenças entre as condições de laboratório e as operações reais em alta altitude mascararam quase completamente a sua presença. Na verdade, os engenheiros do CFM não poderiam ter notado isso nos dados originais, a menos que já soubessem o que procurar.

Quando ativo, esse modo de vibração submeteu as pás do ventilador a tensões contínuas de até 80% do seu limite de resistência, enfraquecendo o material até que a fadiga do metal se instalasse no local de alguma pequena imperfeição, como um pequeno corte ou defeito de fabricação. Normalmente demorava vários meses ou mais em serviço para que esta fadiga começasse, mas uma vez iniciada, progrediria para a falha muito rapidamente, devido à alta frequência dos ciclos de carga. 

Na verdade, a pá do ventilador Dan-Air começou a sentir fadiga apenas três voos antes de falhar, e a pá no segundo incidente na British Midland durou apenas dois voos. Isto tornou impossível detectar a fadiga durante as inspeções regulares, porque a probabilidade de uma inspeção ocorrer entre o início da fadiga e a falha da lâmina era praticamente nula.

Agora que o problema foi identificado, no entanto, o CFM agiu rapidamente para corrigi-lo, e pás do ventilador redesenhadas logo foram instaladas em todos os motores CFM-56–3C-1, aplicadas por uma diretriz de aeronavegabilidade juridicamente vinculativa. O modelo 3C-1 teve uma vida útil longa e sem intercorrências, sem a recorrência de problemas semelhantes.

Os destroços do G-OBME são retirados do local (PA)
A queda do voo 92 da British Midland revelou uma série de fraquezas no sistema de aviação, desde a capacidade de sobrevivência em acidentes até à formação de pilotos e aos processos de certificação de motores. Várias iniciativas substanciais resultaram ou foram influenciadas pelo acidente, incluindo testes de vibração expandidos para novos modelos de motores, bem como um grande esforço destinado a reduzir acidentes causados ​​por respostas inadequadas da tripulação a problemas no motor. 

O desastre de British Midland não foi o primeiro acidente causado por um piloto que desligou o motor errado; na verdade, esse tipo de erro ocorre desde o desenvolvimento dos primeiros aviões multimotores. Em 1996, vários dos principais organismos de segurança aérea, incluindo a Administração Federal da Aviação dos EUA, divulgaram um relatório conjunto que concluiu que tais incidentes eram causados ​​por uma série de fatores, incluindo cenários enganosos de falha do motor durante a formação e a falta de formação específica sobre como reconhecer uma avaria. Após a publicação do estudo, a FAA liderou um esforço de uma década para melhorar a formação de pilotos nestas áreas. O relatório final foi divulgado um ano e oito meses após o acidente.

Além disso, o acidente contribuiu para os esforços contínuos para melhorar a capacidade de sobrevivência a acidentes, o que resultou em alterações na forma como os compartimentos superiores e os assentos são fixados à estrutura do avião em futuras aeronaves. O manual de referência rápida do 737 também foi atualizado para fornecer procedimentos de reinicialização do APU para ambos os motores, não apenas para o nº 1.

E, além destas mudanças, a AAIB fez uma série de recomendações interessantes, incluindo a criação de um quadro regulamentar para câmaras CCTV montadas externamente em aviões; que os reguladores investiguem se os assentos voltados para trás ou os arneses de três pontos podem melhorar a capacidade de sobrevivência em acidentes; que uma luz de advertência acenda para alertar os pilotos sobre vibrações excessivas do motor (agora comuns em muitas aeronaves); e que os cenários de treinamento de coordenação de tripulação envolvam os comissários de bordo (agora prática padrão em toda a indústria).

A cabine e a fuselagem dianteira do G-OBME foram transportadas em um caminhão-plataforma (PA)
Também é importante notar que as melhorias tecnológicas nas décadas desde o acidente tornaram muito mais fácil para os pilotos determinar qual motor está com defeito, caso ocorresse um defeito. A maioria das aeronaves modernas está agora equipada com um Sistema de Indicação de Motor e Alerta de Tripulação, ou EICAS, que fornece informações mais detalhadas sobre o funcionamento do motor e pode fornecer aos pilotos mensagens de aviso explícitas que ajudam muito na identificação de qual motor está com problema. 

Esta tecnologia não é totalmente infalível: em 2015, um ATR-72 da TransAsia Airways caiu logo após a decolagem de Taipei, Taiwan, matando 43 pessoas, depois que o capitão desligou o motor errado enquanto solucionava um defeito. 

Embora um sistema semelhante ao EICAS produzisse uma mensagem de alerta indicando qual motor estava com defeito, o capitão agiu instintivamente antes de ler a mensagem e não havia altitude suficiente para corrigir seu erro antes do avião atingir o solo. No entanto, se o voo 92 da British Midland estivesse equipado com um EICAS, é quase certo que o acidente não teria acontecido, dado o tempo disponível para os pilotos o observarem.


E ainda assim, apesar disso, o Boeing 737 ainda não vem com EICAS. Os 737 estão saindo da linha de montagem neste exato momento sem o sistema. Isto porque a adição de um EICAS perturbaria a continuidade entre os vários modelos 737, forçando os pilotos a receberem qualificações de tipo separadas para 737 com EICAS e aqueles sem. 

Esta característica da série 737 é tão fundamental que quando uma regra que exige o EICAS em novos modelos certificados nos EUA entrou em vigor no final de 2022, a Boeing e os operadores do 737 pressionaram o Congresso para conceder uma isenção, permitindo à FAA terminar a certificação do novo 737 MAX 10 e MAX 7 sem EICAS. 

A pressão era imensa: afinal, as grandes companhias aéreas não queriam comprar o MAX 10 e o MAX 7 se os seus pilotos tivessem de adquirir uma nova qualificação de tipo para voar com eles, e se as companhias aéreas não quisessem comprar os modelos, então a Boeing não iria construí-los, resultando em perdas de empregos e na escassez de aviões comerciais de fuselagem estreita no mercado. 

Como resultado, no futuro imediato, os 737 continuarão a voar à volta do mundo sem o benefício do EICAS, embora quase todos os outros aviões modernos possuam agora o sistema. É claro que houve razões convincentes por trás da isenção, mas isso não significa que não haja uma compensação.

O capitão Kevin Hunt teve que usar uma cadeira de rodas devido ao acidente (PA)
E assim, se os pilotos modernos do 737 se encontrarem novamente confrontados com uma falha de motor de origem ambígua, caberá apenas a eles identificar a origem do problema, tal como aconteceu com o Capitão Kevin Hunt e o Primeiro Oficial David McClelland. Seria falso evitar críticas a algumas das suas decisões - erros foram definitivamente cometidos, um fato que o capitão Hunt admitiu abertamente. 

É possível, porém, compreender e perdoar. Afinal, compreender não precisa ser o mesmo que justificar. Infelizmente, essa não foi a posição adotada pela British Midland - embora nenhum dos pilotos provavelmente voltasse a voar de qualquer maneira, a companhia aérea apenas acrescentou um insulto aos ferimentos ao demitir Hunt e McClelland por justa causa logo após o acidente. 

Esta medida foi criticada por muitos na indústria, incluindo o próprio Hunt, que acusou a British Midland de despedir um ex-piloto aleijado como uma façanha sem propósito, exceto para evitar um auto-exame mais profundo. McClelland, por sua vez, processou a British Midland por rescisão injusta e recebeu £ 57.000 em indenização.

Agora é encorajado que os passageiros apontem qualquer coisa estranha em vez de permanecerem calados em deferência à autoridade (Veja o voo 254 da Varig para outro exemplo de quando isso teria ajudado).

Pergaminho memorial na Catedral de Santa Ana, em Belfast
Foi construído um memorial para "os que morreram, os feridos e os que participaram na operação de resgate", no cemitério da aldeia vizinha de Kegworth, juntamente com um jardim feito com solo do local do acidente.

Jardim memorial no cemitério de Kegworth (Wikimedia Commons)
Como qualquer acidente, a queda do voo 92 foi resultado de uma confluência de fatores, e seria difícil chamá-la de culpa individual. Alguns destes fatores estavam sob controle dos pilotos; outros não. O desastre surgiu de suposições erradas durante a certificação dos motores, de um treinamento irrealista, de uma coincidência infeliz e, finalmente, de uma má tomada de decisão sob pressão, reunindo-se para mandar o avião para o solo antes da pista, embora as probabilidades favorecessem um resultado seguro. 

Um breve momento de compreensão, ou talvez até mais alguns segundos de impulso do motor esquerdo, teria feito o avião sobrevoar a autoestrada M1 para um pouso bem-sucedido em Castle Donington, e 47 pessoas ainda estariam vivas. 

Essa é a parte dolorosa do voo 92: a qualquer momento, uma palavra bem colocada, lançada no burburinho da conversa na cabine, poderia ter evitado todo aquele sofrimento. Mas esse momento nunca chegou e a melhor coisa que podemos fazer é aprender com as consequências.

Edição de texto e imagem por Jorge Tadeu (Site Desastres Aéreos) com Admiral_Cloudberg, ASN e baaa-acro.com