sábado, 6 de janeiro de 2024

Por que as tampas das janelas estão de cabeça para baixo nas linhas de saída?

Você já percebeu como as cortinas nas fileiras de saída sobem, não baixam? (Foto: Getty Images)
Se você já gostou do espaço extra para as pernas disponível nas fileiras de saída de um avião, deve ter notado outra diferença sutil com esses assentos. Na maioria dos modelos de aeronaves, a cortina da janela na fileira de saída puxa para cima para fechar, em vez de puxar para baixo como fazem em outros assentos. Aqui está o porquê.

O mito


Há muito tempo existe uma explicação para as persianas deslizantes para cima nas fileiras das saídas de emergência que têm circulado e, em muitos casos, tem sido aceita como verdade. Enquanto outras cortinas deslizam livremente para baixo, isso pode ser um problema no caso, por exemplo, de um impacto repentino que as fez descer.

É amplamente aceito que as tripulações de vôo geralmente pedem aos passageiros que abram totalmente as cortinas das janelas para decolagem e pouso. Embora isso não esteja escrito nos regulamentos da aviação em nenhum lugar, há boas razões para isso. Desde permitir que os olhos dos passageiros se ajustem à escuridão (ou claridade) do mundo exterior até permitir que as equipes de resgate vejam o interior, ter uma linha de visão visual entre a cabine e o exterior é visto como um benefício de segurança.

Os assentos vêm com espaço extra para as pernas, mas também com responsabilidade extra
(Foto: Delta Air Lines)
Mas e se aquela aeronave fizer um pouso muito difícil? E se ele passar por uma excursão na pista e cair em um terreno acidentado? E se tiver que fazer uma aterrissagem de barriga, caindo com um solavanco e tanto? Esses tipos de incidentes certamente podem fazer com que as cortinas suspensas caiam de forma indesejada, bloqueando a visão externa.

Por esse motivo, a explicação bem-intencionada, mas não muito correta, para as cortinas que se movem para cima nas linhas de saída é porque elas se abrem, não fecham, no caso de um impacto repentino. Talvez esse seja um benefício colateral da verdadeira razão para essa nuance de design, mas certamente não é toda a história.

A verdade


As saídas sobre as asas têm alguns designs diferentes, mas todas servem essencialmente ao mesmo propósito - tirar as pessoas do avião. Geralmente são menores do que as portas das aeronaves, mas precisam ser grandes o suficiente para permitir que passageiros de todas as formas e tamanhos saiam do avião. Alguns possuem um mecanismo de levantamento, que os mantém presos à aeronave, mas permite que se abram para cima, enquanto outros saem completamente da fuselagem.


Uma coisa que as saídas sobre as asas mais modernas têm em comum é que elas têm uma alça de emergência localizada na parte superior do painel. Esta alça libera a saída da fuselagem, permitindo sua abertura. Há uma alça gratuita na parte externa da aeronave que permitirá que os socorristas abram a porta externamente.

É este puxador que explica por que motivo as persianas fecham para cima e não para baixo. Simplesmente não há espaço para a cortina retrair dentro do painel acima da janela. Abaixo da janela, é claro, há muito espaço, e é por isso que a cortina fica assim.

Talvez haja outros benefícios em ter as cortinas retraídas nesta direção, mas é por isso que foi projetado desta forma.

Sete abreviações de aviação comuns para saber


A aviação é uma daquelas indústrias que alguns podem dizer que tem sua própria linguagem específica. Com centenas e centenas de abreviaturas – e até mais, dependendo da região – qualquer um pode se perder um pouco ao pesquisar temas específicos da aviação ou simplesmente dar os primeiros passos na carreira no setor.

Toma Matutyte, CEO da Locatory, uma empresa de TI de aviação, atuando principalmente como localizador de peças de aeronaves, afirmou que ficar cara a cara com a aviação pode ser um verdadeiro choque para o sistema, pois muitos dos procedimentos, segmentos da indústria, reguladores e muito mais têm suas próprias abreviaturas.

“Uma coisa é verdade – ninguém nasce sabendo a terminologia da aviação ou abreviações específicas da indústria, mas a curva de aprendizado pode ser íngreme, especialmente para aqueles que estão entrando na aviação pela primeira vez. Seria seguro dizer que temos abreviaturas para quase tudo – aprender, entendê-las é uma parte importante do trabalho na aviação, pois as mais comuns são usadas diariamente.”

Matutyte compartilhou algumas das abreviações de aviação mais comuns que as empresas de aviação entram em contato diariamente e são essenciais para um ávido fã de aviação e um profissional recém-chegado.

A/C ou AC


Na aviação, essa abreviação comum significa aeronave. Na aviação comercial, existem dois tipos de aeronaves – de fuselagem estreita e de fuselagem larga. Aeronaves de fuselagem estreita são caracterizadas por uma configuração de ilha única e operam em voos de curta distância. Já os widebody têm capacidade para transportar entre 200 e 850 passageiros e normalmente possuem duas ilhas. Estas aeronaves realizam voos de médio e longo curso.

AOG


Decifrado como "Aircraft on Ground", esse termo de manutenção da aviação indica que um problema na aeronave é sério o suficiente para impedi-la de sair do solo. Embora uma situação de AOG possa ser causada por vários motivos, como conflitos de programação de voo ou até mesmo condições climáticas, às vezes a aeronave em serviço também pode ser aterrada por motivos mecânicos. Se for esse o caso, as aeronaves comerciais não podem retornar ao serviço até que sejam reparadas, inspecionadas e aprovadas.

MRO


Abreviatura de "Maintenance, Repair, and Overhaul" ou "Maintenance Repair Organisation" ("Manutenção, Reparo e Revisão" ou "Organização de Reparo de Manutenção"), é o principal serviço de muitas empresas de aviação. MRO refere-se a todas as atividades que visam garantir que a aeronave permaneça sempre pronta para voar.

“A parte de manutenção do negócio é responsável por garantir que a aeronave esteja nas melhores condições de voo”, explicou Toma Matutyte. “ Reparo é a retificação e eliminação de defeitos reais/ativos, danos ou falta de resposta do sistema e pode variar de pequenas amolgadelas a mais extremas, como falha do motor. Já o overhaul é um processo de manutenção preventiva dos componentes da aeronave ou do próprio AC. O processo inclui desmontagem completa e verificação da unidade de acordo com OEM (Original Equipment Manufacturer) CMM (Component Maintenance Manual) ou AMM (Aircraft Maintenance Manual)”

IATA


A "International Air Transport Association", fundada em 1945 e abreviada como IATA na maioria das vezes, é a associação comercial das companhias aéreas do mundo. A IATA apóia a aviação com padrões globais para segurança, proteção, eficiência e sustentabilidade das companhias aéreas.

AO


Refere-se ao "Aircraft Operator" ("Operador da Aeronave"), uma organização e pessoas que possuem ou operam a aeronave, equipamentos, procedimentos e informações relacionadas. É importante não confundir com o termo “transportadora aérea”, que normalmente significa uma empresa de transporte aéreo com uma licença de operação válida, de acordo com a definição do Regulamento da UE.

ACMI


Decifrado como "Aircraft, Crew, Maintenance and Insurance" ("Aeronave, Tripulação, Manutenção e Seguro"), nos últimos anos, ACMI tornou-se uma abreviação de aviação mais visível. Também conhecido como locação molhada ou úmida, é um acordo entre duas companhias aéreas.

“Uma companhia aérea – a arrendadora – concorda em fornecer aeronave, tripulação, manutenção e seguro para outra – a arrendatária – em troca de pagamento pelo número de horas de bloco operadas”, esclareceu Matutyte. “Isso também significa que o locatário recebe capacidade adicional ou de substituição, mesmo que seja em curto prazo. Estas operações são bastante comuns no mundo da aviação empresarial, comercial e de carga. A ACMI, como linha de negócios, teve um grande aumento de popularidade no setor nos últimos dois anos e alguns dizem que é uma das principais forças motrizes do setor no momento”.


GSE


"Ground Service Equipment" é a abreviação de Ground Power Units (GPUs), Air Start Units (ASUs), veículos de reboque, engates de reboque e outros meios de transporte e equipamentos usados ​​pelos serviços de manuseio e suporte em terra para fornecer uma aeronave.

Embora essas abreviações apenas abordem a superfície de centenas de outras usadas por pilotos, tripulantes de cabine, oficiais de controle aéreo, técnicos e empresas relacionadas à aviação, essas abreviações cobrem as mais comumente encontradas - mesmo pelo público em geral, seja em um aeroporto ou online.

Via aircargoweek.com

Especialista em defesa encontra objeto não identificado “indo mais rápido que a velocidade do som debaixo d’água” enquanto realizava trabalho confidencial no submarino USS Hampton da Marinha dos EUA

Imagens da Marinha mostrando a viagem da Esfera indo do ar para debaixo d'água
(Imagem fornecida por @JeremyCorbell)
Os satélites procuram vida alienígena em planetas distantes, mas o estranho encontro de um cientista sugere que podemos querer olhar mais profundamente para o nosso mundo.

Bob McGwire, professor da Virginia Tech e do Institute for Defense Analyses, estava realizando um trabalho confidencial no submarino USS Hampton quando ouviu o som de “alguma coisa passando zunindo”.

"O sonar a bordo determinou que o objeto submerso não identificado (USO) estava viajando na água mais rápido que a velocidade do som", ele disse.

Essas velocidades debaixo d'água deveriam ter esmagado o submarino, segundo McGwire, mas ele disse que era como se estivessem parados.

McGwire disse que pediu à equipe naval que relatasse o encontro, mas eles determinaram que isso prejudicaria a missão.

'Quando saí de lá com o conhecimento na cabeça, sem ter mandado ficar quieto, sem ter avisado que era sigiloso... É meu poder contar para quem eu quiser. Eles estragaram tudo', disse McGwire, observando que não discutiria o trabalho confidencial feito no submarino.'

O estranho incidente aconteceu no final da década de 1990, mas McGwire recentemente divulgou a história no canal do YouTube UAP Society, onde ele queria “explodir tudo”. Assista abaixo:

Ative a legenda em português nas configurações do vídeo

A história também ressurgiu online, chamando a atenção de muitas pessoas nas redes sociais que ‘se perguntam o que foi’.

McGwire não compartilhou o que estava fazendo no submarino da Marinha, a localização e a profundidade em que se encontrava devido às informações serem confidenciais.

O noivado durou apenas alguns segundos, disse ele. 'Estávamos a caminho e, de repente, ouvi um som. É realmente estranho e claro que algo está passando por nós”, disse McGwire.

O submarino de ataque rápido da classe Los Angeles USS Hampton (SSN 767) é atribuído ao Esquadrão de Submarinos 11 em San Diego, Califórnia.

McGwire embarcou no submarino em um local não revelado e tirou uma foto antes de descer para as profundezas do mar.

O USS Hampton é limitado pela velocidade com que pode viajar devido à incompressibilidade da água à sua frente, mas o USO 'passou' pelo submarino.

Diz-se que “uma pessoa com conhecimento de sistemas de bordo” que provavelmente estava monitorando a tecnologia do sonar anunciou que algo passou pelo submarino mais rápido que a velocidade do som, disse McGwire durante a entrevista no YouTube.

Bob McGwire, professor da Virginia Tech e do Institute for Defense Analyses, estava realizando trabalhos confidenciais no submarino USS Hampton. Ele tirou uma foto sua na proa antes do submarino afundar
O som viaja mais rápido na água, cerca de 3.330 milhas por hora, porque o líquido é cerca de 1.000 vezes mais denso que o ar.

O único objeto artificial comparável seria o torpedo russo Shkval, mas este só pode atingir velocidades de 370 quilômetros por hora.

E o animal marinho mais rápido é o veleiro, que pode nadar 110 quilômetros por hora.

Lehto disse que McGwire “tem vasta experiência na Marinha” e trabalhou com radiofrequências classificadas.

McGwire também atuou como oficial de inteligência de alta segurança e possui doutorado. da Universidade Brown.

Embora o relato seja bizarro, as declarações de McGwire ecoam o vídeo de 2021 que mostra o pessoal da Marinha dos EUA tendo um encontro próximo com um objeto voador não identificado (OVNI).

O USS Omaha filmou um objeto redondo em 2016, que fazia um voo controlado
acima da água por um longo período de tempo antes de finalmente entrar no oceano
O objeto foi filmado por uma câmera a bordo do USS Omaha enquanto navegava na costa de San Diego em julho de 2019.

Dois tripulantes não identificados puderam ser ouvidos exclamando: 'Uau, espirrou', depois que a bola fez um voo controlado sobre o oceano, depois caiu no mar e desapareceu debaixo d'água.

Eles filmaram o objeto fazendo um voo controlado acima da água por um longo período de tempo antes de finalmente entrar no oceano.

O cineasta investigativo Jeremy Corbell compartilhou a filmagem no Mystery Wire. Assista abaixo:


Com informações do Daily Mail e Mystery Wire

sexta-feira, 5 de janeiro de 2024

Avião arrebenta cabos elétricos na região Noroeste do RS


Um acidente atípico foi registrado pela Cermissões na tarde desta quinta-feira, 4/1, quando um avião utilizado para aplicação de defensivos agrícolas, enroscou nos cabos condutores de energia elétrica de média tensão, causando o rompimento dos mesmos.

O fato ocorreu na rede entre a Vista Alegre, interior de Caibaté, e a Serrinha do Rosário, interior do Rolador.

Este acidente, deixou 413 associados daquela região sem energia elétrica. O local foi isolado pela equipe de socorro da Cermissões, possibilitando à Central de Operações e Distribuição (COD), realizar uma transferência de carga, deixando somente 200 associados sem luz. As equipes foram chamadas para fazer a substituição dos cabos rompidos. 

A equipe técnica da Cermissões, contatou uma empresa especializada em aviação agrícola, com o intuito de saber como a aeronave arrebentou os cabos e não caiu. A explicação foi que esse tipo de avião possui lâminas corta fio (sistema de proteção), o que certamente evitou que o mesmo ficasse preso nos cabos energizados, e visse a cair.

O fato chamou a atenção dos funcionários da Cooperativa que estão atendendo a ocorrência, pois o avião teria continuado seu trabalho, após atingir a rede da Cermissões.

Para fins de ressarcimento de danos ao patrimônio público, a Cermissões realizará uma ocorrência, para serem apurados os responsáveis pelo acidente.

Essa é a primeira vez que um avião arrebenta cabos de energia da Cermissões. Os acidentes mais recentes com as redes elétricas, envolveram tratores, semeadeiras, colheitadeiras, pulverizadores e veículos.

Felizmente foram somente danos materiais, por muito pouco não registramos uma tragédia, e reiteradamente reforçamos os pedidos de cuidados quando é realizado algum trabalho próximo dos sistemas de distribuição de energia, frisou o presidente da Cermissões, Diamantino Marques dos Santos.

Falha de comunicação: ouvir e compreender a palavra falada é crucial para um voo seguro


Três recentes acidentes fatais nos Estados Unidos - um acidente de voo controlado no terreno (CFIT) do Airbus A300 na final curta em Birmingham, Alabama; um Boeing 777 bateu em um quebra-mar em San Francisco; e uma colisão no ar sobre o rio Hudson em Nova Jersey entre um Piper PA-32R e um Eurocopter AS350 - expõe as limitações de um componente crucial do desempenho humano: a percepção auditiva.

Erros de comunicação que levaram a acidentes


Vários acidentes recentes ressaltam o papel da percepção auditiva na aviação, incluindo o seguinte:

  • Em 14 de agosto de 2013, a queda de um UPS Airbus A300 ao se aproximar do Aeroporto Internacional de Birmingham (Alabama, EUA) -Shuttlesworth, que matou os dois pilotos do voo de carga programado ( ASW , 15/2, p. 12). No relatório final sobre o acidente, o US National Transportation Safety Board (NTSB) disse que sua investigação “identificou várias áreas nas quais faltou comunicação antes e durante o voo, o que desempenhou um papel no desenvolvimento do cenário do acidente”.
  • Em 6 de julho de 2013, a queda de um Boeing 777-200ER da Asiana Airlines em um paredão durante a aproximação ao Aeroporto Internacional de São Francisco ( ASW , 10/14, p. 14), que matou três passageiros. Entre as causas contribuintes citadas pelo NTSB estavam “a comunicação e coordenação não padronizadas da tripulação de voo em relação ao uso dos sistemas de direção de voo e piloto automático”.
  • A colisão de 8 de agosto de 2009 de um Piper PA-32R-300 e um Eurocopter AS350 BA sobre o rio Hudson perto de Hoboken, Nova Jersey, EUA, que matou nove pessoas. O NTSB citado como uma das várias causas prováveis ​​de um controlador de tráfego aéreo "conversa telefônica não competente, que o distraiu de suas funções de controle de tráfego aéreo (ATC), incluindo a correção da leitura do piloto de avião da frequência da torre do Aeroporto Internacional Newark Liberty"

Os dois primeiros acidentes envolveram falhas na comunicação verbal entre os membros da tripulação; a terceira, entre tripulantes de voo e controle de tráfego aéreo (ATC).

Como distorções na modalidade visual, distorções na sensação auditiva (recepção de estímulos) e percepção (a interpretação dessas entradas) podem reduzir as margens de segurança afetando adversamente funções cognitivas de nível superior, como como tomada de decisão. 

Ao contrário do sentido visual, a sensação auditiva é omnidirecional, permitindo que mensagens de voz e avisos auditivos sejam detectados. No entanto, as entradas auditivas, como mensagens verbais, são transitórias, podem ser esquecidas e, como os estímulos visuais, estão sujeitas a interpretações incorretas.

Em 1981, quando os pesquisadores avaliaram 28.000 relatórios de incidentes enviados por pilotos e controladores de tráfego aéreo durante os primeiros cinco anos de relatórios ao Sistema de Relatórios de Segurança da Aviação (ASRS) da Administração Nacional de Aeronáutica e Espaço dos EUA (NASA), eles descobriram que mais de 70% dos envolvidos problemas com a transferência de informações, principalmente relacionados às comunicações de voz.

Os problemas incluíam conteúdo incompleto e impreciso, fraseologia ambígua, comunicação ausente, mensagens mal interpretadas causadas por semelhanças fonéticas, transmissão de mensagem extemporânea, fraseologia distorcida e falta de monitoramento pelo destinatário pretendido.

Este artigo destaca alguns dos fatores importantes que contribuem para mal-entendidos auditivos na cabine de comando e sugere estratégias de mitigação para superá-los.

Comunicação Ambígua


O recente estudo de fraseologia da International Air Transport Association (IATA) concluiu que o uso de fraseologia não padronizada e/ou ambígua pelo ATC foi o maior problema de comunicação para 2.070 pilotos de avião pesquisados. Mensagens ambíguas consistem em palavras, frases ou sentenças com mais de um significado. Por exemplo:

  • Um comissário ligou para a cabine de comando e disse ao capitão para "dar meia-volta", então ele virou o avião de volta para o aeroporto de partida porque "percebeu que o comentário dela significava que o voo estava em perigo e a aeronave deveria ser virada e devolvida para [aeroporto de partida]." No entanto, ela só queria que ele “se virasse” para ver se a porta da cabana havia sido aberta e precisava ser fechada.
  • Depois de ser liberado para pousar na Pista 24, um piloto foi questionado pelo controlador da torre, "Você pode fazer a Pista 15 à esquerda?" O piloto disse que sim e posicionou o avião para pousar naquela pista. Porém, o controlador queria saber se, após o pouso na Pista 24, o piloto poderia fazer a primeira curva disponível à esquerda para a Pista 15 à Esquerda.

Os números são particularmente irritantes, especialmente homófonos (palavras que soam iguais a outras palavras), como “two” (“to”) (dois/para) e “four” (“for”) (quatro/para). O uso ou interpretação ambígua dessas quatro palavras - citadas como o segundo maior problema de comunicação identificado pelos pilotos no Phraseology Study - foi responsável por um acidente fatal do CFIT envolvendo um Boeing 747 na aproximação final ao Aeroporto de Subang, em Kuala Lumpur, Malásia, em fevereiro 1989. A tripulação interpretou erroneamente a autorização do ATC de “descer dois quatro zero” (descer para 2.400 pés) como “para quatro zero” (descer para 400 pés ).

Uma vez que os números podem se referir a uma variedade de parâmetros em voo - rumos, altitudes, velocidades no ar, etc. - até mesmo números não homofônicos podem ser confusos. Por exemplo, depois de liberar um Learjet para "escalar e manter 14.000 pés", o controlador emitiu instruções para "voar rumo dois zero zero". O piloto leu de volta como “dois zero zero” e então subiu para 20.000 pés.

Fraseologia não padrão


A ambigüidade é reduzida quando os pilotos e controladores utilizam terminologia padrão, incluindo aquela desenvolvida pela Organização da Aviação Civil Internacional (ICAO) e publicada na Aeronautical Telecommunications (Anexo 10, Volume II) e no Manual de Radiotelefonia (Doc 9432).

Exemplos de padronização incluem a maneira adequada de pronunciar letras e números, técnicas comuns de transmissão de mensagens, o uso e o significado de palavras e frases padrão e maneiras comuns de o ATC emitir autorizações.

Apesar desses requisitos de radiotelefonia (RTF), o uso de fraseologia não padrão foi classificado como a reclamação número um (junto com fraseologia ambígua) por pilotos de linha aérea no Estudo de Fraseologia, com 44 por cento dos pilotos experimentando fraseologia não padrão pelo menos uma vez por voar. 

Uma variedade de problemas foi identificada, incluindo o uso impróprio do alfabeto fonético (por exemplo, “Nectar” em vez de “November”) e o uso de indicativos incompletos ou não em conformidade com os padrões da ICAO.

O desastre foi evitado em um incidente de 1974 envolvendo um Boeing 747 em uma abordagem em Nairóbi, Quênia. Embora autorizado a “descer sete cinco zero zero pés” (7.500 pés), ambos os pilotos acreditaram ter ouvido “cinco zero zero zero pés” (5.000 pés) e definir seu alterador de altitude de acordo. No entanto, essa altitude era de 327 pés abaixo da altura do aeroporto; felizmente, a aeronave emergiu das nuvens a tempo de a tripulação ver o terreno e iniciar uma escalada. Eles chegaram a 70 pés de atingir o solo

Para evitar esse tipo de confusão, a maioria das jurisdições exige que as altitudes (exceto os níveis de voo) incluam as palavras “cem” ou “mil” conforme apropriado (por exemplo, “7.500 pés” deve ser pronunciado como “sete mil e quinhentos pés”). Embora o relatório indique que a liberação foi concedida de acordo com os procedimentos internacionais, se o controlador tivesse usado o método agora padrão para determinar as altitudes, o evento provavelmente não teria ocorrido.

O evento aponta um problema recorrente: os pilotos têm dificuldade em interpretar mensagens com vários “zeros”, especialmente com várias instruções em uma transmissão.

Outro problema - o “problema dez/onze” - foi ilustrado pela pergunta de um piloto ao ATC: “Fomos liberados para 10.000 pés 11 milhas a oeste da ARMEL, ou 11.000 pés 10 milhas, ou 10.000 pés 10 milhas, ou 11.000 pés 11 milhas? ”

O problema foi refletido em uma análise de 1991 de 191 relatórios ASRS, que descreveu como as tripulações ultrapassaram ou ultrapassaram sua altitude atribuída em 1.000 pés. Este par de “dez/onze mil pés” foi de longe a combinação de altitude mais comum em 38 por cento dos busts de altitude.

A verbalização padrão de 10.000 pés e 11.000 pés é “um zero mil” e “um mil”, respectivamente. Uma vez que ainda ocorrem interpretações erradas, mesmo com fraseologia padrão, os controladores dos EUA agora têm permissão para agrupar dígitos: por exemplo, “dez mil” ou “onze mil”, para 10.000 pés e 11.000 pés, respectivamente.

A maneira padrão de verbalizar os níveis de voo (na maioria das regiões, níveis de pressão de 18.000 pés e acima) é pronunciar os três dígitos separadamente (por exemplo, Flight Level [FL] 300 é verbalizado como “nível de voo três zero zero”). 

Para reduzir a ambigüidade, os controladores no Reino Unido e em alguns outros países europeus usam “cem” para níveis de voo que são centenas (por exemplo, FL 300 é verbalizado “nível de voo trezentos”).

Diferenças Regionais


Infelizmente, essas tentativas regionais de esclarecer as mensagens de altitude podem resultar em pilotos de voos internacionais recebendo atribuições de altitude de maneiras não padronizadas. O RTF padrão é mais eficaz se aplicado globalmente. 

Embora tenha havido progresso na harmonização - por exemplo, os Estados Unidos agora usam a terminologia da ICAO "alinhar e esperar" em vez de "taxiar para posicionar e aguardar" - ainda existem diferenças:

  • “Liberado direto” na maioria das jurisdições significa voar direto para um ponto fixo/ponto de referência; em outras jurisdições, significa "voar a rota arquivada ".
  • Um pouso rejeitado é chamado de “go-around” em alguns locais e “overshoot” em outros.
  • O padrão de voo retangular em um aeroporto é chamado de “padrão de tráfego” em alguns locais e de “circuito” em outros.

Indicativos de chamada


Confundir o indicativo de chamada de uma aeronave com outra é um problema perene nas comunicações da aviação.

As autorizações destinadas a uma aeronave, mas aceitas pela tripulação de outra, levaram a desvios de altitude e de proa, colisões quase no ar e acidentes. Por exemplo, os dois ocupantes de um Piper Seminole morreram depois que ele colidiu com terreno ascendente a 5.500 pés perto do rádio omnidirecional VHF Julian (VOR) na Califórnia em maio de 2004. 

O piloto aceitou e releu uma autorização de descida para 5.200 pés destinada a outra aeronave com um indicativo de chamada semelhante.15Uma variedade de padrões contribui para a similaridade de indicativos de chamada e / ou números de voo - o principal motivo para confusão de indicativos: dígitos finais idênticos (ACF, JCF; 523, 923); dígitos paralelos (ABC, ADC; 712, 7012); anagramas (DEC, DCE; 1524, 1425); e dígitos do bloco (ABC, ABD; 128, 128T).


Readback-Hearback


O circuito de comunicação piloto-controlador
Podem ocorrer acidentes se um piloto ler incorretamente uma autorização (o problema de readback) e o controlador não reconhecê-la (o problema de hearback). Os pilotos do acidente de Kuala Lumpur e do incidente de Nairóbi leram incorretamente suas atribuições de altitude e os controladores falharam em detectar e corrigir os erros. Uma falha neste loop de feedback (figura acima) geralmente ocorre quando os controladores estão muito ocupados para reconhecer o readback; infelizmente, os pilotos muitas vezes interpretam esse silêncio como uma aceitação de sua leitura.

Os pilotos às vezes ouvem o que esperam ouvir. Por exemplo, um jato de fuselagem larga foi liberado para o FL 230 em um rumo de 340 graus e, como o plano de vôo previa uma altitude de cruzeiro final de FL 340, a tripulação não voou na direção porque interpretou a instrução como significando " espere FL 340.”

Proficiência na língua Inglesa


Uma comunicação bem-sucedida requer um idioma comum: para operações de voos internacionais, esse idioma é o inglês. Os erros de comunicação são agravados quando um piloto e/ou controlador não nativo que fala inglês está envolvido no circuito de comunicação.

Fortes sotaques regionais podem ser difíceis de entender, embora, quando os pilotos ganham mais experiência com diferentes dialetos, a compreensão deixa de ser um problema.

Uma tripulação do Challenger CL300 recebeu a seguinte autorização do ATC: "desça para 310, onze em TIRUL." Não tendo certeza da liberação por causa do forte sotaque do controlador, eles pediram que ele repetisse. Depois de receber a mesma instrução, eles começaram uma descida para 11.000 pés na interseção de TIRUL. Quando o avião deles passou pelo FL 300, o controlador os informou que a altitude atribuída era FL 310. O controlador estava tentando dizer "descer para 310, nível em TIRUL".

As taxas de fala rápidas pelos controladores, especialmente ao fornecer várias instruções em uma única folga, aumentam a probabilidade de interpretação incorreta. Este problema é exacerbado para pilotos não nativos que falam inglês, conversando com controladores nativos que falam inglês, ou pilotos nativos que falam inglês, se comunicando com controladores que não falam inglês. Em um estudo, os pilotos relataram que "a velocidade de fala do controlador foi o maior problema que eles enfrentaram na comunicação".

Mudança de código


Às vezes, falantes multilíngues alternam entre o inglês e sua língua materna; ou falantes unilíngues podem alternar entre diferentes dialetos do inglês (por exemplo, inglês de aviação e inglês normal). Essa troca de código ocorre por vários motivos, incluindo a tendência natural de reverter ao comportamento aprendido anteriormente quando está sob estresse.

A troca de código pode explicar a frase confusa "Estamos agora na decolagem", dita pelo primeiro oficial holandês (FO) de um Boeing 747 da KLM antes de colidir com um 747 Pan American em uma pista de Tenerife, nas Ilhas Canárias, em 1977, matando 583 pessoas no pior desastre da aviação da história. 

O controlador interpretou “agora na decolagem” como significando que o voo da KLM estava em posição para decolar; para o FO, usando uma mistura de gramática inglesa e holandesa, “agora na decolagem” significava que o avião estava realmente decolando.

Um exemplo extremo de troca de código é a troca completa de idioma. Por exemplo, o inglês e o francês são usados ​​em Quebec e na Região da Capital Nacional do Canadá para se comunicar com o ATC. 

Os pilotos que iniciarem a comunicação por rádio no idioma francês receberão comunicação do ATC nesse idioma, enquanto o ATC se comunicará em inglês para aqueles que inicialmente usarem o inglês. Quando questionados se havia um procedimento ou uma prática comum usada pelos pilotos ou ATC que causa mal-entendidos ou erros, a preocupação mais frequentemente mencionada dos pilotos no Estudo de Fraseologia foi “o uso de línguas misturadas com tripulações internacionais que falam inglês com o ATC e o tripulações locais que falam a língua do país.”

Múltiplas partes se comunicando em uma única frequência de rádio fornecem valiosas informações de linha partidária que aumentam a consciência situacional do piloto, comunicando a localização da aeronave, informações da pista e outras atividades - informações que eles não poderiam receber do ATC. 

Esta informação de linha do partido é reduzida quando duas línguas diferentes são faladas, quando duas ou mais frequências de rádio diferentes são usadas (por exemplo, aeroportos militares e civis combinados com uma mistura de frequências VHF e UHF) ou quando maior confiança é colocada nos dados do piloto do controlador comunicações de link.

Contramedidas


Os pilotos devem praticar contramedidas projetadas para minimizar erros de comunicação, alguns dos quais estão listados abaixo:

  • Incorpore a maior inteligibilidade possível em cada transmissão, enunciando cada palavra de forma clara e distinta em um volume constante e em um tom de conversação normal, mantendo uma taxa de fala uniforme, não excedendo 100 palavras por minuto (os controladores devem usar uma taxa mais lenta quando uma mensagem precisa ser anotado pela tripulação de voo), e fazendo uma pequena pausa antes e depois dos numerais para reduzir a confusão.
  • Use fraseologia padrão em todos os momentos.
  • Ao usar números, inclua palavras-chave que descrevam a que se referem (por exemplo, “ rumo dois quatro zero;” “subir para o nível de voo dois sete zero;” “manter um oito zero nós,” etc.).
  • Para evitar confusão com o indicativo, use o indicativo fonético completo da aeronave. Os controladores devem informar os pilotos sobre sinais de chamada semelhantes operando na mesma frequência.
  • Empregue estratégias eficazes de escuta para evitar sucumbir ao viés de expectativa. Preste atenção às conversas entre o ATC e outras aeronaves, especialmente perto de um aeroporto.
  • Se o monitoramento do piloto (PM) está lidando com comunicações de rádio com o ATC, o piloto voando (PF) ainda deve monitorar as comunicações do PM.
  • Leia as liberações e instruções ATC na mesma sequência em que são fornecidas. Se uma releitura não for reconhecida pelo ATC, solicite a confirmação de aceitação. Usar “Roger” em vez de uma releitura completa é inaceitável.
  • Procure esclarecimentos se tiver dúvidas sobre o significado de uma mensagem ou se a transmissão for truncada, cortada ou pisada. Questione uma folga incorreta ou inadequada.
Edição de texto e imagens por Jorge Tadeu com flightsafety.org

Vídeo: Entrevista - Simulador Boeing 737 - Um passo para a aviação comercial


O comandante Lauro Valerio é um aficionado pela aviação desde criança. Resolveu então construir um simulador de voo do modelo de um avião comercial o Boeing 737 para treinamento pessoal, com o tempo tornou-se uma escola, ajudando pilotos no desenvolvimento da carreira profissional.

Via Canal Porta de Hangar de Ricardo Beccari

Aconteceu em 5 de janeiro de 1970: Acidente no voo de balsa do Convair Coronado da Spantax na Suécia


Em 5 de janeiro de 1970, o Convair CV-990-30A-5 Coronado, prefixo EC-BNM, operado pela companhia aérea espanhola Spantax (foto abaixo), estava programado para um voo charter entre o Aeroporto Arlanda, em Estocolmo, na Suécia, e o Aeroporto de Palma de Mallorca, na Espanha.


A aeronave estava prestes a voar para Maiorca naquela noite com viajantes suecos, mas na decolagem o motor número 4 apresentou uma falha. A decolagem foi abortada e a aeronave retornou ao portão de embarque e os passageiros foram autorizados a deixar a aeronave. 

Mais tarde, à noite, foi decidido realizar um voo de balsa* com apenas três motores para Zurique, na Suíça, para uma troca de motor. A bordo estavam três tripulantes e sete passageiros. Havia um vento forte e -27 °C no aeroporto.

Às 22h24 horas a aeronave iniciou sua decolagem na pista 19. Durante a decolagem, o nariz guinou para a direita. Isso foi corrigido retardando a potência do motor número 1 de 85% para 80-60%. A aeronave girou a 134 nós com flaps de 27 graus. Durante a subida, a aeronave inclinou 4-6 graus para a direita e a velocidade caiu repentinamente para 10 nós abaixo de V2 (145 nós). 

A aeronave atingiu algumas copas de árvores, inclinou-se 10-15 graus e caiu a 1.800 metros do ponto de decolagem. O avião percorreu uma longa estrada na floresta e quebrou em vários pedaços. A cabine foi separada do resto da fuselagem e presa entre troncos de árvores e solo congelado e inclinada 45 graus para a esquerda.


O primeiro oficial Miguel Granado estava sentado à direita e ficou preso quando o assento foi empurrado para a frente e as duas pernas ficaram presas sob o painel de instrumentos. Sua perna direita estava quebrada e angulada. Seu pé esquerdo estava fortemente comprimido, assim como sua panturrilha esquerda e o tendão de Aquiles. 


Torto sob o piloto estava um dos engenheiros de manutenção da aeronave, preso com múltiplas fraturas nas costelas. Granado segurou, sem luvas, as mãos em um dos canos da fuselagem e tentou se manter de pé e assim aliviar a pressão no peito do amigo. Ambas as mãos sofreram queimaduras graves.


O capitão escapou com pequenas contusões e conseguiu se desvencilhar e sair. Ciente do risco de ficar imóvel nessas baixas temperaturas, ele caminhou e tentou manter o calor do corpo e, assim, escapou com pequenas queimaduras nas mãos e nos pés. 


Eles procuraram na escuridão predominante e na neve em pó o Transmissor Localizador de Emergência e, depois de encontrado, pedir ajuda. O que a tripulação não sabia era que havia uma casa onde morava uma família, adormecida e alheia ao acidente, a apenas cem metros do local do acidente. A família acordou mais tarde quando um helicóptero da polícia sobrevoou sua casa.


Quatro horas após o acidente, o serviço de emergência localizou o avião. O primeiro oficial Granado, que estava preso, teve que esperar mais de oito horas no frio intenso antes de ser libertado. 

Carta de voo e aproximação da época do Aeroporto de Arlanda, em Estocolmo, na Suécia
No momento do acidente, a preparação para desastres em Arlanda era mínima. Uma ambulância estava estacionada em Löwenströmska lasarettet, em Upplands Väsby, a 10 km ao sul, mas não tinha rádio instalado. A equipe foi enviada com túnicas brancas e tamancos nos pés para ajudar os sobreviventes. 

Cinco pessoas, incluindo um comissário de bordo sueco, morreram devido ao frio.


A Autoridade Sueca de Investigação de Acidentes resumiu os fatores de interação do acidente:
  • Perda inesperada de referência visual externa após a decolagem.
  • Perda de controle direcional durante a transição do voo visual para o voo por instrumentos . A guinada criou maior arrasto e rolagem induzida pela guinada.
  • A presença de uma inversão de temperatura, o que resultou em um baixo calado e perda de velocidade.
  • Presença de cisalhamento do vento, o que causou perda adicional de velocidade.

O grupo da Autoridade Sueca de Investigação de Acidentes que investigou a resposta de emergência apontou certas deficiências nos sistemas de busca e salvamento, que posteriormente resultaram em uma reorganização.

O acidente da Spantax foi um dos eventos que levou o sistema de saúde sueco a desenvolver tanto a preparação quanto o equipamento médico para desastres. Eles também começaram a estabelecer planos de emergência.

Os destroços da aeronave armazenados no Aeroporto de Estocolmo em 1970
* Os voos de balsa abrangem muito mais do que os voos de entrega e aposentadoria. Toda vez que um avião tem um problema que não pode ser consertado no local, ele geralmente pode obter uma autorização de balsa para levá-lo a um aeroporto em que a manutenção possa ser concluída, como no caso deste acidente.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipédia, legalscandal.info e ASN 

Aconteceu em 5 de janeiro de 1969: Tragédia na Inglaterra Acidente com o voo Ariana Afghan Airlines 701


O voo 701 da Ariana Afghan Airlines foi o voo envolvido em um acidente aéreo fatal em 5 de janeiro de 1969, quando um Boeing 727 com 62 pessoas a bordo colidiu com uma casa ao se aproximar do Aeroporto Gatwick de Londres sob forte neblina. Devido a erro do piloto, os flaps não foram estendidos para manter o voo na velocidade de aproximação final.
Aeronave 


O Boeing 727-113, prefixo YA-FAR, da Ariana Airlines (foto acima), tinha menos de um ano na época do acidente e era a única aeronave de Ariana. O avião foi construído em fevereiro de 1968 e recebeu seu certificado de aeronavegabilidade americano em 25 de março de 1968. Em 29 de abril de 1968, foi concedido seu registro no Afeganistão, e aquele país emitiu seu próprio certificado de aeronavegabilidade em 14 de maio de 1968. Na época do acidente, a aeronave registrou 1.715 horas de voo.

O capitão era Rahim Nowroz, o primeiro oficial e copiloto era Abdul Zahir Attayee e o engenheiro de voo era Mohammed Hussain Furmuly O capitão Nowroz se qualificou como piloto em 1956, foi contratado por Ariana no ano seguinte como copiloto e voou 10.400 horas desde então - incluindo 512 em aeronaves Boeing 727, que ele se qualificou para voar após o treinamento em 1968. Havia mais cinco tripulantes a bordo. 

Havia 54 passageiros a bordo. Com exceção de uma garota dos Estados Unidos, todas eram do Afeganistão, Paquistão e Índia (especialmente da região de Punjab). Houve uma mistura de residentes britânicos retornando após visitar suas famílias e novos imigrantes.

Fernhill é uma aldeia com cerca de 1 1⁄2 milhas (2,4 km) da extremidade leste da pista do Aeroporto de Gatwick e uma distância semelhante ao sul da cidade mais próxima, Horley. Até que as mudanças nos limites o trouxeram totalmente para West Sussex (e o bairro de Crawley) em 1990, ele se estendeu pela fronteira Sussex/Surrey e estava na paróquia de Burstow. As duas estradas principais, Peeks Brook Lane e Fernhill Road (chamada de Fernhill Lane na época do acidente), seguem sul-norte e oeste-leste, respectivamente.

O local do acidente foi um campo a oeste de Peeks Brook Lane, ao sul de Fernhill Lane e a leste de Balcombe Road, uma estrada que forma o limite leste do aeroporto. Antlands Lane fica mais ao sul. Uma casa chamada Longfield ao sul de Fernhill Lane foi destruída pelo impacto.

O voo FG 701 do Aeroporto Internacional de Cabul para o Aeroporto de Gatwick era um serviço programado semanal que parava imediatamente em Kandahar, Istambul e Frankfurt. Uma mudança de tripulação também ocorreu em Beirute, quando o Capitão Nowroz, o Primeiro Oficial Attayee e o Engenheiro de Voo Formuly assumiram o comando. 

O tempo na área de Gatwick durante a noite de 4 a 5 de janeiro de 1969 era ruim. Havia neblina forte e congelante e nenhuma aeronave pousou no aeroporto desde cerca de às 16h00 do dia anterior, embora o aeroporto permanecesse aberto (Regulamentos internacionais exigem que os aeroportos permaneçam abertos independentemente das condições do solo, em caso de emergências).
 
O nevoeiro persistia desde o dia anterior e, embora tivesse passado da maior parte do sudeste da Inglaterra, algumas manchas permaneceram em Gatwick em uma altura de no máximo 250 pés (76 m). 

O capitão recebeu relatórios meteorológicos que indicavam que a visibilidade variava entre 50 metros (160 pés) e 500 metros (1.600 pés), a temperatura do ar era de -3° C (27° F) e a névoa congelante era predominante. 

Os relatórios do aeroporto de Stansted de Londres (o destino alternativo designado para este voo) e do aeroporto de Heathrow em Londres indicaram condições muito mais claras, e o voo também poderia ter retornado a Frankfurt já que havia combustível suficiente transportado (O relatório do acidente determinou que cerca de 9.000 kg (20.000 lb) foram deixados quando a aeronave caiu).

A aeronave caiu imediatamente ao sul de Fernhill Road, logo após a cerca viva à esquerda
Quando a aeronave se aproximou de Fernhill e estava a 1 1⁄2 milhas (2,4 km) da pista de Gatwick, cortou o topo de alguns carvalhos no jardim de uma casa chamada Twinyards em Peeks Brook Lane. Isso foi cerca de 500 jardas (460 m) do ponto de impacto no solo.

Em seguida, deixou marcas de pneus no telhado da casa vizinha e derrubou as chaminés da casa em frente a mais 80 m (264 pés) adiante. Nesse ponto, a aeronave estava a apenas 12 m do solo. 

Em seguida, ele pegou uma antena de televisão e outro grupo de árvores, danificando componentes da asa direita. 

Quando começou a girar, as rodas da aeronave tocaram o solo brevemente e ele começou a subir novamente. Não conseguiu evitar a casa de William e Ann Jones, que ficava 300 jardas (270 m) mais a oeste, e a destruiu completamente.

Um motor pousou nos destroços da casa junto com a seção traseira da fuselagem, enquanto a seção dianteira da aeronave se desintegrou em uma trilha de 1.395 pés (425 m). 


O combustível derramou e imediatamente pegou fogo, engolfando a fuselagem e os destroços da casa. Os Jones foram mortos, mas seu bebê sobreviveu com ferimentos leves. As laterais de sua cama desabaram para dentro, "formando uma tenda de proteção sob um dos motores".


O capitão Rahim Nowroz, o primeiro oficial e copiloto Abdul Zahir Attayee e o engenheiro de voo Mohammed Hussain Furmuly ficaram feridos, mas sobreviveram. Os cinco comissários de bordo morreram.

Dos 54 passageiros a bordo, 43 morreram. Os outros 11 sofreram ferimentos graves. Eles estavam sentados principalmente na seção dianteira da aeronave.


Os residentes de Peeks Brook Lane foram os primeiros a chegar ao local do acidente e a contatar os serviços de emergência. A primeira chamada foi recebida à 01h38 na sala de controle da Polícia de Surrey, e policiais foram enviados da delegacia de Horley. 

Os primeiros oficiais chegaram sete minutos depois, logo seguido por PC Keith Simmonds de Oxted que estava de plantão naquela noite e que salvou o bebê ferido da casa destruída. 


Os bombeiros também foram convocados à 01h38, e os veículos chegaram à 01h56 em diante. Os bombeiros de Surrey e Sussex enviaram 20 veículos ao local, e mais foram fornecidos a partir do aeroporto pela Autoridade Britânica de Aeroportos.

Investigadores de acidentes liderados por George Kelly também foram ao local. Apesar de uma presença policial considerável, seus esforços foram afetados por espectadores obstruindo as ruas estreitas. 


Blocos de polícia foram montados em ambas as extremidades de Fernhill Lane, e outros policiais foram posicionados em Antlands Lane, desviando o tráfego da Balcombe Road.

Os serviços de emergência estabeleceram uma instalação temporária de triagem e um centro de resgate fora do Yew Tree Cottage e mais tarde uma sala de incidentes na delegacia de polícia de Horley.

Um centro de resgate foi montado fora do Yew Tree Cottage
Os sobreviventes foram levados para Fernhill House antes de serem transferidos para o Redhill General Hospital ou, no caso de cinco pessoas gravemente queimadas, para a McIndoe Burns Unit no East Grinstead Hospital. 

Dois passageiros morreram a caminho de Redhill General. O bebê que sobreviveu aos destroços da casa também foi levado para lá sofrendo de "hematomas graves e cortes leves". 

Os corpos das vítimas foram transferidos para o St. John Ambulance Hall em Massetts Road em Horley, onde um necrotério temporário foi instalado. Parentes foram então levados para lá para identificá-los. Alguns corpos foram gravemente queimados, e foi necessário usar objetos pessoais para confirmar a identidade da vítima. 


Outros corpos foram transferidos posteriormente para a empresa funerária Kenyon em Londres. As investigações sobre as 50 mortes começaram em poucos dias: o primeiro inquérito foi o de William e Ann Jones, realizado em Reigate em 10 de janeiro de 1969.

A Rainha Elizabeth II transmitiu uma mensagem de condolências a Mohammed Zahir Shah, Rei do Afeganistão. Cinco policiais, incluindo PC Simmonds, foram condecorados com a Comenda da Rainha por Brava Conduta em relação ao "serviço que excedeu os limites do dever" no local do acidente. 

Também receberam este prêmio cinco residentes locais e um passageiro da aeronave que retornou ao inferno para resgatar familiares e também apagou as chamas nas roupas de outro passageiro.


Em termos de vítimas mortais, o acidente foi (e continua sendo até 2023) o pior nas proximidades do Aeroporto de Gatwick. Foi o primeiro incidente sério no aeroporto desde um acidente em fevereiro de 1959, quando um Vickers Viscount operado pela Turkish Airlines caiu em uma área arborizada entre Rusper e Newdigate, também na fronteira Surrey/Sussex, matando 14 passageiros e ferindo o primeiro-ministro turco Adnan Menderes.

Os investigadores descobriram que a causa do acidente foi um erro do piloto do capitão. Sua decisão de pousar em Gatwick foi um "erro de julgamento" causado pela "natureza enganosa" das condições meteorológicas, que eram muito difíceis - embora isso em si não tenha causado o acidente. 


Em vez disso, a falha em estender os flaps na sequência correta e em uma velocidade apropriada fez com que a aeronave caísse abaixo de sua inclinação de planeio, role para a direita em atitude de nariz alto e caia.

A aeronave estava bem abaixo de sua rampa de deslizamento quando passou sobre essas casas em Peeks Brook Lane, Fernhill, atingindo árvores, chaminés e antenas de televisão.

O relatório do acidente observou que YA-FAR tinha um painel de instrumentos completo e "útil", um sistema VHF de alcance de rádio omnidirecional (VOR) e equipamento do sistema de pouso por instrumentos (ILS). 


A comunicação "satisfatória e de rotina" entre o controle de tráfego aéreo e a aeronave foi observada, e o gravador de voz da cabine foi recuperado. Havia também uma unidade de registro de voo na parte traseira da fuselagem, que foi recuperada em 6 de janeiro e seu conteúdo analisado.

A decisão do capitão de voar para Londres em vez de permanecer em Frankfurt não foi criticada: ele poderia ter pousado em Heathrow e Stansted, onde o tempo estava bom, em vez de Gatwick se achasse que as condições eram muito ruins, e a aeronave poderia até mesmo retornar à Alemanha se necessário.

No momento em que a aeronave se aproximou de Gatwick, o alcance visual da pista era de 100 metros (330 pés) de acordo com o último relatório meteorológico em 2350 em 4 de janeiro, e não era esperado que melhorasse naquela noite; além disso, esta leitura foi confirmada em 0123 e 0127.


Na época, aeronaves registradas britânicas não tinham permissão para pousar em um aeroporto em um momento em que seu alcance visual da pista era inferior ao "mínimo declarado" (o de Gatwick era 1⁄2milhas (0,80 km)), mas as aeronaves estrangeiras tinham suas próprias regras e não estavam sujeitas à legislação britânica. 

Os pilotos da Ariana Afghan Airlines foram instruídos a não pousar quando o alcance visual da pista fosse inferior ao mínimo declarado de um aeroporto (embora isso não fosse proibido por lei), mas eles poderiam usar seu julgamento para decidir se deveriam descer até a altura crítica (200 pés (61 m) para esta aeronave) e, em seguida, tente um pouso.

O capitão Nowroz "decidiu que, uma vez que o nevoeiro irregular muda rapidamente, ele faria uma aproximação com o objetivo de pousar em Gatwick". O relatório do acidente afirmava que, como ele confiava principalmente em indicações visuais ao pousar, pode ter se distraído de seus deveres na cabine de comando; e o nevoeiro irregular em outras condições claras é conhecido por afetar gravemente a visualização de referências visuais, às vezes levando a "erros desastrosos de julgamento".


No entanto, a decisão do capitão Nowroz de se aproximar de Gatwick com o objetivo de pousar ali "não apresentou risco indevido" e não causou o acidente. Em vez disso, a causa foi encontrada para ser uma série de mudanças nas configurações de velocidade, potência e ângulo de flap que não estavam de acordo com os procedimentos operacionais da companhia aérea e que ocorreram nos últimos 15 milhas (24 km) de aproximação. 

À 01h28, a aeronave pegou o feixe localizador ILS e os flaps foram abaixados em três estágios conforme a velocidade da aeronave reduzia. Logo em seguida, ao se aproximar do feixe do glideslope ILS, sua altura e velocidade foram reduzidas ainda mais e o trem de pouso foi estendido. 

Então o capitão viu uma luz que ele confundiu com uma na outra extremidade da pista - na verdade era em uma colina além do aeroporto - e a luz de advertência " estabilizador fora de ajuste" acendeu. Isso havia ocorrido com defeito no início do voo, e o capitão desligou o piloto automático e o rastreador automático de glideslope. 


À 01h33, o ângulo do flap foi aumentado; a aeronave então começou a cair abaixo da inclinação de aproximação e estava viajando mais rápido do que a tripulação pensava. Somente quando atingiu uma altura de 400 pés (120 m) foi feita uma tentativa de ganho de altura, mas isso aconteceu tarde demais.

Os três primeiros ajustes de flap ocorreram em velocidades superiores às recomendadas nos procedimentos da companhia aérea, embora não ultrapassassem os limites do Boeing 727. 

O trem de pouso foi estendido em uma velocidade muito alta, e o próximo ajuste do flape deveria ter sido feito em dois estágios. A súbita mudança de ângulo fez com que o nariz se inclinasse para baixo e a aeronave descesse mais rapidamente do que era apropriado para as condições. 


O Capitão e outros membros da tripulação não reagiram a isso por cerca de 45 segundos, no entanto, até a cerca de 300 pés (91 m) do solo, eles aplicaram força total e elevador para cima para tentar trazer a aeronave para o alto. O relatório do acidente afirma que durante esse período de 45 segundos, eles podem ter se preocupado em buscar a confirmação visual de sua posição, como as luzes da pista.

A legislação que proíbe aeronaves britânicas de pousar quando o alcance visual da pista era muito curto foi estendida em setembro de 1969 para cobrir aeronaves de todos os outros países quando voavam para aeroportos em qualquer parte do Reino Unido.


Investigadores de acidentes da Câmara de Comércio levaram os destroços para um hangar no aeroporto de Farnborough para análise. Também envolvidos na investigação estavam funcionários dos Estados Unidos e do Afeganistão. Uma declaração preliminar foi emitida em 17 de janeiro de 1969, e o relatório completo do acidente seguido em junho de 1970.
 
Como saldo final, 43 passageiros e cinco tripulantes morreram no acidente.


Por Jorge Tadeu (Site Desastres Aéreos) com Wikipédia, ASN e baaa-acro.com