terça-feira, 20 de setembro de 2022

Aconteceu em 20 de setembro de 1989: Voo 5050 da USAir - Mergulhando na Baía de Nova York


No dia 20 de setembro de 1989, um Boeing 737 DA USAir começou sua corrida de decolagem em uma noite tempestuosa no Aeroporto LaGuardia, New York. Mas à medida que o avião acelerou pela pista, começou a puxar para a esquerda com força crescente. Com medo de que caíssem, o capitão decidiu abortar a decolagem - sem verificar se já era tarde ou não. 

Enquanto os pilotos tentavam desesperadamente pará-lo, o voo 5050 da USAir derrapou no final da pista 31 e mergulhou na Bowery Bay, onde atingiu um píer e se partiu em três pedaços. Quando todos foram retirados da água, mais de 90 minutos após o acidente, duas pessoas estavam mortas e outras 21 feridas. 

Os investigadores descobririam que não precisavam morrer: o avião poderia ter sido parado na pista, e a puxada inicial para a esquerda foi causada não pelo clima, mas pelos próprios pilotos, que não conseguiram verificar se o leme estava devidamente ajustado para a decolagem. 

A partir daí, os erros se combinavam, acumulando-se em uma sequência rápida para enviar um avião perfeitamente sadio para fora do final de uma pista que deveria ser longa o suficiente para permitir sua parada.

Boeing 737-401, da USAir, similar ao envolvido no acidente
Na segunda metade de 1989, a transportadora tradicional USAir estava nos estágios finais de aquisição da Piedmont Airlines, no que foi então a maior fusão de companhias aéreas da história. Para suavizar o que certamente seria um processo complicado, as companhias aéreas do Piemonte concordaram em começar a treinar seus pilotos de acordo com os procedimentos da USAir com bastante antecedência.

O N416US, a aeronave envolvida no acidente, fotografada alguns meses antes da ocorrência,
ainda com as cores da Piedmont Airlines
Quando a Piedmont contratou o primeiro oficial novato Constantine Kleissas, de 29 anos, em maio de 1989, a fusão estava quase completa e ele recebeu o mesmo treinamento que qualquer outro funcionário da USAir. 

Na verdade, a Piedmont Airlines não existia mais na época em que ele se formou, e quando ele chegou ao Aeroporto Internacional de Baltimore-Washington em 20 de setembro para seu primeiro voo não supervisionado real como piloto de um Boeing 737, o nome em seu avião era 'USAir'.

A rota do voo 5050 da USAir
Juntando-se a ele na lista da tripulação naquele dia estava o capitão Michael Martin, de 36 anos, que ocupava o posto de Major nas Reservas da Força Aérea e às vezes ainda pilotava o Lockheed C-130 Hercules durante seus dias de folga. Depois de uma breve passagem como engenheiro de voo no Boeing 727, Martin passou pelo mesmo programa de treinamento do 737 baseado na USAir que Kleissas. 

Após quase três anos como primeiro oficial, ele foi promovido a capitão exatamente dois meses antes do voo fatídico. Ele tinha mais de 5.500 horas no total, incluindo 2.600 no 737, mas apenas 140 delas eram como piloto em comando. Isso ainda era muito mais do que seu primeiro oficial extremamente verde, que ainda não havia completado um voo de linha não supervisionado e havia acumulado apenas 22 horas na aeronave real.

Martin e Kleissas voaram de Baltimore para o aeroporto LaGuardia de Nova York naquela tarde sem incidentes. No entanto, o mau tempo e os problemas de tráfego na área de Nova York causaram atrasos e cancelamentos generalizados, com a maioria dos voos saindo do aeroporto atrasados ​​várias horas. 

A viagem seguinte, o voo 1846 da USAir para Norfolk, Virgínia, já havia embarcado quando a USAir os informou que o voo seria cancelado; em vez disso, a empresa queria que eles transportassem a aeronave sem passageiros para Charlotte, Carolina do Norte, onde era necessário com mais urgência. 

Depois de desembarcar os passageiros frustrados de volta ao portão, o capitão Martin foi informado de mais uma mudança de planos: a viagem para Charlotte levaria passageiros que ficaram presos após o cancelamento de um voo anterior. Martin expressou seu descontentamento com a mudança, o que faria com que o voo demorasse mais e levaria a tripulação ao limite de seus limites de tempo de serviço.

Você pode ver como uma pessoa sentada no assento à esquerda e à ré do pedestal central pode acidentalmente mover o interruptor de compensação do leme para totalmente “nariz para a esquerda” se colocar os pés no pedestal? (NTSB)
Mesmo assim, o voo não programado para Charlotte, designado voo 5050, seguiu em frente. Enquanto o avião estava parado no portão, o capitão Martin foi fazer ao despachante uma série de perguntas pontuais, deixando o primeiro oficial Kleissas para supervisionar o processo de embarque. Várias pessoas visitaram a cabine durante esse tempo, incluindo um capitão da Pan Am viajando como um passageiro sem receita, que se sentou no assento traseiro da cabine.

Acredita-se que quando este capitão se sentou na cabine, ele momentaneamente colocou o pé para cima para descansar no pedestal central, um hábito bastante comum entre os visitantes da cabine. O pedestal não é um apoio para os pés, no entanto, pois contém vários controles, entre os quais o mais importante neste caso foi o interruptor de compensação do leme. 

O trim do leme é um sistema que permite aos pilotos inclinarem o leme em uma direção específica, tornando possível compensar o arrasto assimétrico ou um vento cruzado consistente sem ter que pressionar constantemente os pedais do leme. 

Mas, quando os tripulantes da cabine de comando pousaram os pés no pedestal central, foi possível acionar a chave tipo lâmina e girá-la para a posição de compensação do leme esquerdo. De fato, quando o voo 5050 da USAir deu partida em seus motores, algum tempo depois, a chave estava posicionada para aplicar o ajuste quase máximo do leme esquerdo.

A pista de onde decolou o voo 5050, como surgia em 1995, quando a configuração era semelhante a 1989
Depois que o capitão Martin voltou ao avião, o voo 5050 se preparou para recuar do portão cerca de dez minutos antes das 23h00. Depois que a ponte de jato foi removida, um agente de serviço de passageiros chamou Martin pela janela e perguntou se eles poderiam colocar a ponte de jato de volta e embarcar passageiros adicionais, mas Martin recusou, uma decisão que poderia ter inadvertidamente salvado vidas.

Com 57 passageiros e 6 tripulantes a bordo, o Boeing 737-401, prefixo N416US, da USAir, realizando o voo 5050 saiu do portão às 22h52 e taxiou até a pista 31 para decolagem. Durante o taxiamento, os pilotos percorreram a lista de verificação antes da decolagem, que incluía a verificação da posição do compensador. 

No entanto, a lista de verificação dizia especificamente “estabilizador e compensação”, um item que era suficientemente ambíguo para que os pilotos verificassem apenas a compensação do estabilizador, e não a compensação do leme. 

O capitão Martin também não percebeu o que deveria ter sido um puxão significativo para a esquerda durante o táxi, porque o ajuste do leme também desvia a direção da roda do nariz no solo.

Ao atingir a cabeceira da pista 31, o Primeiro Oficial Kleissas assumiu o controle da decolagem, conforme previamente combinado pelos pilotos.

"Você está pronto para isso, cara?" Capitão Martin brincou.

“Aqui vai o nada”, respondeu Kleissas. Ele estendeu a mão para ativar o modo de decolagem/arremesso (TOGA), mas acidentalmente pressionou o botão de desconexão do autothrottle. Consequentemente, quando ele pressionou corretamente os interruptores do TOGA alguns segundos depois, nada aconteceu, então ele decidiu avançar os manetes para a potência de decolagem manualmente.

“Eu mantive a direção até você, uh - ok, esse botão errado foi pressionado”, disse Martin.

“Ah, sim, eu sabia disso, er... -” disse Kleissas.

“É aquele lá embaixo”, disse Martin. "Tudo bem, vou definir o sua potência." Mas, apesar de sua promessa, ele falhou em ajustar a configuração de potência um tanto imprecisa de Kleissas, em que nenhum dos motores estava com potência total de decolagem e o motor esquerdo estava cerca de 3% mais lento que o direito.

À medida que o avião acelerava na pista, o ajuste do leme começou a puxar o leme e a roda do nariz para a esquerda, forçando Kleissas a manter o pé no pedal direito do leme para mantê-los em linha reta. No entanto, Martin disse que cuidaria da direção e - sem saber dos comandos do leme de seu primeiro oficial - ele simultaneamente tentou manter o avião em linha reta usando o leme, uma pequena roda próxima ao assento do capitão que controla a direção da roda do nariz.

O leme de direção em solo de um Boeing 737, circulado em amarelo
Mas quando um Boeing 737 se aproxima de uma velocidade de cerca de 64 nós em uma pista molhada (e a pista naquela noite estava realmente molhada), a força aerodinâmica atuando no leme torna-se um determinante mais significativo da direção do avião do que a direção da roda do nariz. 

Kleissas, portanto, precisava aplicar mais leme direito para compensar o aumento na autoridade do leme em alta velocidade, mas ele não o fez, então o avião começou a se desviar para a esquerda. 

Com Martin ainda segurando o leme reto quando o avião virou para a esquerda, as rodas do nariz começaram a derrapar e, a uma velocidade de 62 nós, uma delas explodiu. Quatro segundos depois, a uma velocidade de 91 nós, um som estrondoso começou a emanar das rodas quando os pneus se desintegraram.

Um trecho da gravação do CVR mostra como tudo se desenrolou rapidamente
Nesse ponto, teria sido prudente abortar a decolagem. Mas, em vez disso, o capitão Martin disse, “pegue a direção”, uma frase ambígua que só causou mais confusão. Martin pensou ter dito " você está com a direção", enquanto o primeiro oficial Kleissas pensou ter ouvido "Eu estou com a direção". 

Consequentemente, os dois pilotos pararam de tentar dirigir o avião em linha reta. O voo 5050 desviou imediatamente cerca de sete graus para a esquerda, um curso que os levaria para a lateral da pista se eles não tomassem medidas imediatas.

Quatro segundos e meio depois, o capitão Martin decidiu abortar a decolagem. “Vamos voltar atrás”, disse ele, colocando os dois aceleradores em marcha lenta. Ele usou a frenagem diferencial para tentar endireitar a trajetória, o que se mostrou eficaz, e então aplicou a frenagem máxima e o empuxo reverso cerca de cinco segundos depois.

O que Martin não percebeu é que abortou depois de passar a V1, a velocidade mais alta na qual é seguro abandonar a decolagem. Antes do voo, ele havia calculado V1 em 125 nós, mas o voo 5050 estava se movendo a 130 nós quando ele anunciou que estavam parando.

“Aborto da USAir cinquenta e cinquenta”, anunciou o primeiro oficial Kleissas pelo rádio.

“Cinqüenta e cinquenta, entendido, vire à esquerda no final”, respondeu o controlador.

Mas de repente ficou claro que eles estavam ficando sem pista. Eles deveriam ter tido bastante espaço para parar, mas por algum motivo não pararam! "Ah, estamos saindo, estamos saindo, estamos saindo!" O primeiro oficial Kleissas gritou.

Ainda se movendo a uma velocidade de 34 nós, o voo 5050 da USAir derrapou no final do deck da pista, caiu vários metros e bateu com força no píer de madeira que sustentava o sistema de iluminação de aproximação que se estendia até a Baía Bowery. Com um tremendo esmagamento, o píer desabou e o avião se partiu em três pedaços, parando com o nariz levantado contra o que restava do píer enquanto a cauda caía na água.

Os bombeiros tentam entrar nos destroços após a queda do voo 5050
A separação da fuselagem logo atrás das asas fez com que as linhas 21 e 22 balançassem para cima e se chocassem contra o teto, esmagando até a morte uma mulher do Tennessee e sua sogra e prendendo várias outras. 

O resto dos passageiros e tripulantes, descobrindo que haviam sobrevivido ao acidente com ferimentos relativamente mínimos, imediatamente começaram a organizar uma evacuação. Os comissários de bordo correram para abrir as portas, mas a porta L1 não abria, e a porta L2 teve que ser fechada rapidamente depois que a água começou a entrar pela porta. 


Aqueles que evacuaram pelas saídas sobre as asas puderam ficar nas asas parcialmente submersas, com a ajuda das cordas de fosso, que alguns passageiros de raciocínio rápido retiraram de seus contêineres. Contudo, aqueles que pularam das portas de passageiros R1 e R2 se viram na água sem nenhum bom meio de flutuação - na época, os voos não precisavam carregar coletes salva-vidas se planejassem ficar a 50 milhas náuticas da costa. 

Enquanto lutavam na água, vários passageiros foram apanhados por uma fraca corrente de maré e flutuaram para baixo da pista, que foi construída em postes que se estendiam sobre a baía. Os comissários de bordo jogaram coletes salva-vidas e almofadas de assento para aqueles que não sabiam nadar, mas muitos descobriram que as almofadas de assento ofereciam flutuabilidade insuficiente para mantê-los à tona. 

As equipes de resgate se aproximam do avião usando barcos algumas horas após o
acidente - observe o nível da maré mais alta
A operação de resgate foi caótica. O controlador, ao perceber que o avião não iria parar a tempo, ativou o alarme de colisão antes que o acidente realmente ocorresse, e os caminhões de bombeiros entraram no local em 90 segundos. Tirar os passageiros da água era outra questão, entretanto. 

Aqueles que estavam nas asas - incluindo uma mãe solteira tentando desesperadamente segurar um bebê de cinco anos e um de 8 meses - foram resgatados cerca de 12 minutos após o acidente. 

Demorou muito mais para encontrar todos aqueles que haviam entrado na água, e os helicópteros e barcos que vieram procurá-los tiveram dificuldade em localizar os passageiros em meio aos escombros flutuantes. 

Vários passageiros quase se afogaram depois de serem apanhados sob a lavagem do rotor de helicópteros em resposta; outros sofreram ferimentos graves após engolir combustível de aviação, e uma mulher sofreu uma fratura no tornozelo e uma mão lacerada depois de ser atropelada por um barco de resgate. 

Os bombeiros também tiveram que entrar na fuselagem precariamente equilibrada para ajudar o comissário de bordo líder e o capitão Martin a retirar os passageiros dos assentos 21F e 22A, que ficaram presos nos destroços e não puderam ser libertados até 90 minutos após o acidente. Após o resgate bem-sucedido, Martin finalmente deixou o avião, a última pessoa a fazê-lo. 

Equipes de resgate retiram pessoas do avião após o acidente
Apesar do medo de que muitos tivessem se afogado, quando todos foram contabilizados, ficou claro que os dois passageiros que morreram no impacto foram as únicas vítimas fatais; todos os outros foram resgatados. 

Vinte e uma pessoas ficaram feridas, incluindo o capitão Martin, cuja perna foi perfurada quando estilhaços do píer de madeira perfuraram o chão da cabine dentro da área dos pés. Mas o acidente poderia ter sido muito pior: os investigadores notariam mais tarde que, se o avião estivesse lotado, com mais certeza teria morrido.

Uma manchete do New York Times detalha o drama do esforço do NTSB para falar com os pilotos
Quando os investigadores do National Transportation Safety Board chegaram ao local na manhã após o acidente, eles esperavam entrevistar rapidamente os pilotos para ter uma ideia do que poderia ter dado errado. 

Eles também queriam realizar testes de rotina para ter certeza de que os pilotos não estavam sob a influência de álcool ou drogas. Mas um pedido à ALPA (sindicato dos pilotos) dez horas após o acidente foi rejeitado. 

A ALPA primeiro disse ao NTSB que não sabia onde os pilotos estavam, mas acabou admitindo que o sindicato os havia transferido para um local não revelado “para que não pudessem ser encontrados pela mídia”. 

O NTSB não conseguiu entrevistá-los até 44 horas após o acidente, e mesmo assim a ALPA só permitiu porque a FAA ameaçou intimá-los.

Embora rumores em contrário persistam, o NTSB não conseguiu encontrar evidências que sugerissem que um dos pilotos estava sob a influência de álcool no momento do acidente; na verdade, um policial treinado para reconhecer sinais de alcoolismo falou com o capitão poucos minutos após o acidente e relatou que ele parecia perfeitamente sóbrio.

Boias de contenção foram colocadas ao redor do avião na superfície da água para
conter o combustível derramado
Enquanto isso, uma pergunta óbvia surgiu: por que o voo 5050 invadiu uma pista que deveria ter sido longa o suficiente para acelerar quase até a velocidade de decolagem, abortar e então parar? 

A pista 31 em LaGuardia tinha 2.140 metros de comprimento, enquanto um 737-400 no voo 5050 com peso deveria ser capaz de alcançar a V1 e parar em uma distância total de apenas 1.730 metros, mesmo em uma pista molhada.

Acontece que, como quase todos os acidentes de atropelamento, uma série de eventos aparentemente menores aumentaram a distância necessária até que o avião simplesmente ficou sem espaço. O NTSB acabou por ser capaz de identificar três fatores principais que impediram o voo 5050 de parar a tempo, sem nenhum dos quais a queda não teria ocorrido.

Uma vista do avião da borda da pista 31, olhando na direção do voo
O primeiro fator foi o empuxo de decolagem insuficiente. Nenhum dos motores atingiu o ajuste correto de potência de decolagem, porque o primeiro oficial acidentalmente desengatou a aceleração automática. 

O autothrottle teria automaticamente definido o impulso de decolagem correto assim que um dos pilotos pressionou os interruptores do TOGA, mas ninguém nunca ligou novamente, nem o capitão Martin corrigiu o ajuste muito difícil do acelerador do primeiro oficial Kleissas. Isso acrescentou 97 metros à distância necessária para atingir a velocidade com que Martin abortou a decolagem.

Em segundo lugar, o capitão Martin abortou a decolagem após passar por V1, uma violação dos procedimentos adequados. Embora V1 seja definida como a velocidade após a qual a decolagem não pode ser abortada sem ultrapassar a pista, isso nem sempre é o caso na prática; no voo 5050, os pilotos derivaram V1 de uma tabela padrão de números, enquanto a pista era na verdade longa o suficiente para permitir uma decolagem rejeitada com sucesso de uma velocidade mais alta do que aquela que eles selecionaram. 


No entanto, o capitão Martin não olhou para a velocidade deles antes de tomar sua decisão - se tivesse, certamente teria continuado a decolagem, já que a situação não era tão crítica a ponto de justificar uma parada de emergência após passar por V1. 

Na verdade, era perfeitamente possível dirigir o avião em linha reta com os pedais do leme, sair do solo, e então consertar o equilíbrio do leme enquanto no ar (e caso sua palavra não fosse suficiente por si só, o NTSB encontrou vários casos de pilotos fazendo exatamente isso). Em qualquer caso, abortar a 130 nós, em vez da velocidade V1 de 125 nós, acrescentou 151 metros à distância de parada.

Finalmente, o capitão Martin poderia ter acionado os freios muito mais rápido do que ele. Não acreditando que a distância de parada seja uma grande preocupação, ele se concentrou primeiro em usar a frenagem diferencial para endireitar a trajetória antes de aplicar a pressão máxima de frenagem. Isso atrasou o início da frenagem máxima em cerca de três segundos em relação ao seu tempo de reação normal, que acrescentou 240 metros à distância de parada.

A polícia inspeciona o local do acidente um dia após o acidente
Martin também poderia ter reduzido esse tempo ainda mais se tivesse armado os freios automáticos antes da decolagem. Os procedimentos da Boeing e da USAir recomendaram que os pilotos armem os freios automáticos para que possam aplicar automaticamente a pressão máxima de frenagem assim que uma decolagem rejeitada for detectada. 

No entanto, alguns pilotos se recusaram a fazer isso devido ao equivalente aéreo de uma velha história de esposas: eles acreditavam que os freios automáticos sacudiriam os passageiros desconfortavelmente durante um aborto em baixa velocidade (Isso era de fato falso, porque os freios automáticos só seriam ativados se a decolagem rejeitada ocorresse em alta velocidade).

Os investigadores observaram que essa prática era perigosa porque, embora fosse tecnicamente possível fazer movimentos do leme e aplicar pressão máxima de frenagem ao mesmo tempo , isso exigia que o piloto colocasse os pés em uma posição nada natural; como consequência, os pilotos podem ter que escolher entre frear e dirigir. Armar os freios automáticos eliminaria esse dilema.

Como o acidente ocorreu à vista do complexo penitenciário de Rikers Island, vários oficiais de correção participaram da resposta (foto acima). Não foi a primeira vez que fizeram isso: a inserção mostra as consequências de um acidente de avião em 1957 na Ilha Rikers, em que tanto presidiários quanto oficiais de correção ajudaram a salvar os sobreviventes.
Somados, esses três fatores explicaram a diferença entre as distâncias de parada teórica e real do voo 5050. Mas os investigadores também precisavam entender por que os pilotos rejeitaram a decolagem em primeiro lugar. O problema começou com o compensador do leme, que puxava o avião para a esquerda. 

O gravador de dados de voo mostrou que o ajuste do leme estava em neutro quando o avião chegou ao LaGuardia, mas mudou para a esquerda total no momento em que os motores ligaram novamente e o registrador voltou a funcionar. 

Após o acidente, os investigadores receberam pelo menos 90 relatos informais do interruptor de compensação do leme movendo-se para a posição totalmente à esquerda antes da decolagem, principalmente porque os visitantes da cabine se sentaram na poltrona voltada para o lado e descansaram os pés no pedestal central.

No caso do voo 5050 da USAir, o capitão da Pan Am que visitou a cabine e sentou-se na poltrona negou ter colocado os pés no pedestal; nenhum piloto tocou a chave antes ou durante a decolagem; e nenhuma evidência de falha mecânica foi encontrada. 

Os investigadores concluíram que o capitão da Pan Am provavelmente colocou os pés para cima e depois esqueceu, embora não tenham descartado a possibilidade de o interruptor ter se movido quando o primeiro oficial colocou alguns papéis no pedestal central enquanto o avião estava no portão. 

Como resultado dessas descobertas, a Boeing anunciou que mudaria o seletor de compensação do leme de uma chave do tipo lâmina para uma maçaneta redonda que não se movia quando batida, e que acrescentaria uma crista protetora ao redor da maçaneta para manter os objetos longe isto.

Uma foto de jornal mostra a seção do nariz danificado do voo 5050
Não importa quem acidentalmente moveu a chave, os efeitos da posição incorreta do compensador do leme deveriam ter sido evidentes durante o taxiamento. O compensador do leme teria deslocado os pedais do leme um em relação ao outro em mais de 11 centímetros, facilmente o suficiente para ser notado, e o capitão Martin precisaria fazer movimentos constantes com o leme para manter o avião se movendo em linha reta enquanto fazia seu caminho para o pista. 

E, no entanto, em sua entrevista inicial, ele não mencionou ter notado nenhuma dessas coisas. Só muito mais tarde ele disse aos investigadores que estava vagamente ciente dos pedais do leme deslocados, mas não se importou com isso porque tal condição é comum no C-130, que voou simultaneamente com o Boeing 737. No entanto, o NTSB sentiu que como um capitão 737 qualificado,

Os pilotos também poderiam ter detectado a discrepância se tivessem seguido a intenção da lista de verificação antes da decolagem, que solicitava que os pilotos verificassem a posição do "estabilizador e compensação". 

No entanto, se os pilotos não foram rigorosamente ensinados que isso deveria incluir o leme e o compensador do aileron além do estabilizador, seria compreensível por que eles poderiam ter interpretado mal esta linha. Em qualquer caso, eles verificaram apenas o acabamento do estabilizador e não os outros (A USAir posteriormente revisou o texto para evitar confusão).

Cobertura do acidente pelo New York Times
Durante a própria decolagem, uma falha na comunicação fez com que esse problema relativamente pequeno aumentasse significativamente. O primeiro oficial Kleissas não disse ao capitão Martin que ele estava tendo dificuldade em manter o avião em linha reta ou que estava usando o leme para isso. 

Então, quando um estrondo ocorreu a uma velocidade de 62 nós, ninguém sugeriu abortar a decolagem. Em vez disso, Martin anunciou “Tenho a direção”, uma declaração ambígua que não deixava claro quem deveria estar no controle. 

Essa linguagem imprecisa levou os dois pilotos a abrirem mão do controle sobre a direção e, como o primeiro oficial Kleissas não mencionou que estava aplicando força extra com os pedais do leme ou que estava prestes a remover essa força, a guinada repentina para a esquerda pegou Martin totalmente de surpresa. Ele tentou reagir usando o leme,

Quando a cana do leme não conseguiu corrigir a deriva para a esquerda, ele decidiu abortar a decolagem sem verificar a velocidade. Como o piloto não estava voando, ele deveria estar monitorando a velocidade deles para avisar “80 nós” e “V1”, mas por causa do problema de direção e da falta de clareza sobre quem estava pilotando o avião, ninguém fez isso. Como resultado, ele optou por rejeitar a decolagem após o ponto em que ela não era mais permitida.

Nesse ponto, ficou claro que o acidente poderia ser evitado em todos os níveis. Houve inúmeras oportunidades para os pilotos perceberem a configuração do equilíbrio do leme e igualmente inúmeras oportunidades para eles usarem os controles disponíveis para endireitar e decolar normalmente. 

Nenhuma dessas oportunidades foi aproveitada. Os pilotos também poderiam ter evitado o acidente corrigindo a configuração do empuxo de decolagem, armando os freios automáticos conforme recomendação da companhia aérea, ou mesmo comunicando mais claramente sobre o que estavam experimentando enquanto o avião acelerava na pista. 

No final, duas pessoas morreram, 21 pessoas ficaram feridas e uma aeronave multimilionária foi destruída por complacência e desatenção.

O New York Daily News não foi tão circunspecto em sua cobertura quanto o New York Times
No entanto, várias das decisões críticas que levaram ao acidente também podem ser atribuídas à inexperiência. O NTSB achou que não era sensato emparelhar um capitão recém-promovido com um novo primeiro oficial que tinha apenas 22 horas no 737. 

Especialmente considerando que esta foi a primeira decolagem não supervisionada do Boeing 737 do primeiro oficial Kleissas, o capitão Martin deveria ter dado mais passos para garantir que ele estava pronto (como revisar os procedimentos de decolagem rejeitados), mas sua própria inexperiência pode tê-lo impedido de pensar nessas contingências.

Após a queda do voo 1713 da Continental Airlines em 1987, outro acidente fatal causado por uma série de erros banais antes e durante a decolagem, o NTSB recomendou que a Federal Aviation Administration exigisse que as companhias aéreas evitassem emparelhar novos comandantes com primeiros oficiais inexperientes. 

No entanto, a FAA optou por “promover” a política em vez de impô-la. Embora tais procedimentos sejam exigidos hoje, eles chegaram tarde demais para evitar a queda do voo 5050 da USAir.

Outra vista frontal dos destroços
O acidente também poderia ter sido evitado se os pilotos tivessem recebido um treinamento melhor para se comunicar. A comunicação clara é um princípio básico do bom gerenciamento de recursos de tripulação (CRM), um tópico que já estava sendo ensinado em várias das principais companhias aéreas dos Estados Unidos. 

A USAir, entretanto, não estava entre eles e nenhum dos pilotos havia recebido treinamento em CRM. (Embora seja considerado indispensável hoje, a FAA não exigia que as companhias aéreas fornecessem esse treinamento até 1994).

Se eles tivessem sido treinados nos princípios do CRM, o primeiro oficial Kleissas poderia ter mencionado que estava usando o leme para manter o avião em linha reta, e o capitão Martin poderia ter deixado mais claro quem assumiria o controle da direção. Isso teria dado aos pilotos as informações de que precisavam para estabilizar a situação e continuar a decolagem com sucesso.

Nesta vista de alta qualidade da quebra principal na fuselagem, é fácil ver
como os dois passageiros da fileira 21 perderam a vida
Além do redesenho do interruptor de compensação do leme e da proposta de evitar o emparelhamento de dois pilotos inexperientes, o NTSB também recomendou que o LaGuardia tentasse tornar as áreas próximas às extremidades de suas pistas menos perigosas para os aviões; que os comissários de bordo recebam exercícios práticos de emergência sobre a água; que as companhias aéreas garantam que os pilotos saibam como extrair o máximo desempenho de parada durante uma decolagem rejeitada; e que os pilotos sejam obrigados a armar os freios automáticos (se disponíveis) sempre que decolarem em uma pista molhada ou particularmente curta, entre outras sugestões. 

O NTSB também apelou ao Departamento de Transportes para criar requisitos unificados para o fornecimento de amostras de sangue e urina de operadores de veículos envolvidos em acidentes em todos os setores de transporte de massa. Em seu relatório final, o NTSB invadiu a ALPA por segurar os pilotos por muito tempo após o acidente, observando que isso "complicou muito a investigação". 

Realmente, é incrível que o cais não tenha desabado sob o peso da seção do nariz
Não fazendo nenhum esforço para esconder sua exasperação, os investigadores acrescentaram,“O sequestro dos pilotos por um período de tempo tão extenso em muitos aspectos beira a interferência em uma investigação federal e é imperdoável”. Na verdade, se os pilotos tivessem tentado fugir dos investigadores por 44 horas após um acidente sem a proteção da ALPA, eles provavelmente teriam sido presos.

Infelizmente, apesar das melhorias prometidas, os eventos dos anos que se seguiram à queda do voo 5050 reduziram em grande parte o acidente a uma nota de rodapé à margem de tragédias maiores. 

Os destroços do voo 405 da USAir, após ter caído na mesma pista três anos depois
Em 1991, 35 pessoas morreram quando um voo da USAir colidiu com um Skywest Metroliner em LAX devido a um erro do controlador de tráfego aéreo. Em 1992, o voo 405 da USAir caiu na mesma pista de LaGuardia, matando 27 das 51 pessoas a bordo, devido ao acúmulo de gelo nas asas. Então, em julho de 1994, o voo 1016 da USAir caiu perto de Charlotte depois que os pilotos ficaram desorientados devido ao cisalhamento do vento, matando 37; e dois meses depois, o voo 427 da USAir caiu em Pittsburgh, matando 132, devido a um mau funcionamento do leme. 

Embora alguns desses acidentes não pudessem ser atribuídos à USAir, no final de 1994, a companhia aérea conseguiu acumular o pior histórico de segurança de qualquer grande companhia aérea dos Estados Unidos. 

Hoje, porém, a USAir não existe mais e a maioria dos fatores que levaram ao acidente foram retificados. A última das melhorias de segurança buscadas pelo NTSB após o voo 5050 veio apenas em 2015, quando a LaGuardia instalou sistemas especializados de detenção de materiais 'engenheirados' em todas as suas pistas, garantindo que nenhum avião de passageiros jamais sairá da extremidade e cairá no East River.


Imediatamente após a queda do voo 5050, os dois pilotos perderam suas licenças, mas pelo menos um deles voltou a trabalhar na indústria. 

Embora o destino do capitão Michael Martin não esteja claro, o primeiro oficial Constantine Kleissas se tornou um investigador de acidentes aéreos em nome da Associação de Pilotos da Linha Aérea, onde auxiliou na investigação do NTSB sobre a perda do voo 427 da USAir. 

Tendo sobrevivido a um acidente. e investigou um desastre muito mais trágico, Kleissas declarou em um artigo de 2002: “Ser um investigador de acidentes é dez vezes mais estressante do que ser o membro da tripulação sobrevivente”. Esperançosamente, as lições de sua queda continuarão a salvar outras pessoas de ambos os traumas por muitos anos.

Edição de texto e imagens por Jorge Tadeu (Site Desastres Aéreos)

Com Admiral Cloudberg, Wikipedia e ASN - Imagens: NTSB, New York Daily News, New York Times, Werner Fischdick, Alex Beltyukov, Google, Getty Images, The New York Correction History Society, Bureau of Aircraft Accidents Archives.

Por que os aeroportos proibiram líquidos?

Os procedimentos de segurança dos aeroportos tornaram-se muito mais rigorosos após os eventos terroristas em 2001 e conspirações posteriores.


Estamos todos muito acostumados a retirar nossos recipientes de líquidos de 100 ml ao passar pela segurança do aeroporto. Não muito tempo atrás, você poderia levar recipientes de líquidos de qualquer tamanho pela segurança e a bordo da aeronave. As limitações só foram introduzidas em 2006, na sequência de parcelas específicas descobertas em voos transatlânticos.

Aumentando a segurança após 2001


Houve muitas mudanças na segurança de voos e aeroportos após os incidentes terroristas de 11 de setembro de 2001. Os processos de segurança e a tecnologia foram intensificados, e as companhias aéreas e os reguladores começaram a exigir portas de cabine seguras. Nos EUA, a Transport Security Administration ( TSA ) foi formada como uma autoridade separada para lidar com a segurança de passageiros e aeroportos.

Essas mudanças levaram a processos de segurança e triagem de aeroportos muito mais rigorosos em todo o mundo - mas não introduziram a proibição de líquidos . Isso ocorreu depois que os serviços de segurança descobriram e impediram outro conjunto de ataques terroristas.

A 'conspiração da bomba líquida'


Em agosto de 2006, os serviços de segurança britânicos descobriram um plano para transportar dispositivos explosivos improvisados ​​a bordo de vários voos transatlânticos e detoná-los durante o voo. A trama envolvia o uso de peróxido de hidrogênio como explosivo. Isso seria transportado a bordo dentro de recipientes de bebidas padrão e montado em um dispositivo explosivo a bordo.

Os voos entre o Reino Unido e os EUA foram alvos da trama (Foto: Getty Images)
Isso levou à imposição de restrições imediatas e severas. As regras foram trazidas durante a noite e, a partir da manhã de 10 de agosto, os passageiros do Reino Unido e dos EUA não podiam levar nada a bordo da aeronave, exceto um pequeno item pessoal. Líquidos foram proibidos - além de uma concessão para as mães trazerem leite para bebês.

Isso teve um efeito significativo no setor de aviação. A pressão sobre os sistemas de bagagem (particularmente em Heathrow ) foi severa, muitos voos foram cancelados e muitos passageiros mudaram para transportes alternativos. De acordo com reportagem do The Independent, na semana após a proibição, a British Airways cancelou mais de 1.500 voos, e o setor de aviação do Reino Unido em geral perdeu mais de £ 50 milhões (US $ 69 milhões).

Novas regras para líquidos


As restrições líquidas foram introduzidas repentinamente em 10 de agosto no
 Reino Unido e nos EUA (Foto: Getty Images)
As regras foram introduzidas repentinamente, causando confusão e longos atrasos nos aeroportos. Desde então, os procedimentos e a compreensão melhoraram, assim como a tecnologia de triagem e varredura para detectar e testar líquidos.

Há esperança de que as melhorias tecnológicas possam em breve começar a remover as restrições. A tomografia computadorizada (TC) está agora mais prontamente disponível e pode detectar melhor líquidos e outros itens. Os scanners de tomografia computadorizada produzem uma imagem de 360 ​​graus da bagagem e seu conteúdo. Líquidos, e seus volumes, podem ser detectados desta forma – esperamos permitir mudanças nas políticas.

Southend foi o primeiro aeroporto no Reino Unido a ter scanners de tomografia computadorizada instalados - outros aeroportos de Londres seguiram agora (Foto: Getty Images)
Até agora, os scanners foram testados em muitos aeroportos (incluindo Londres Heathrow em 2019) e instalados em vários - incluindo muitos grandes aeroportos dos EUA e Amsterdam Schiphol. No entanto, tornar a tecnologia suficientemente disponível para alterar as restrições provavelmente levará algum tempo.

Eles permitem uma triagem muito mais rápida, muitas vezes eliminando a necessidade de remover líquidos e eletrônicos da bagagem. Mudar as restrições para permitir novamente líquidos está muito mais distante, no entanto. O que começou como uma resposta temporária a um incidente de segurança já está em vigor há mais de 15 anos e provavelmente continuará por alguns anos ainda. Espero que se torne mais fácil de gerenciar.

Via Simple Flying

Como funciona o freio de um avião?

O sistema de freios das aeronaves é bem potente e capaz de parar toneladas de peso
(Imagem: Divulgação/twenty20photos/Envato)
Uma das situações mais delicadas e importantes de um voo é o pouso da aeronave. Seja qual for o seu tamanho, peso ou potência, a manutenção dos freios e dispositivos auxiliares para que o piloto faça bem o seu trabalho deve estar sempre em dia, isso sem falar nas condições da pista, que são bem diferentes do que encontramos nas estradas e ruas pelas cidades mundo afora.

O avião, claro, tem freios em seu trem de pouso e eles funcionam de modo muito parecido como em outros veículos. Mas a diferença é que, ao contrário de seu carro ou picape, ele precisa ser capaz de parar toneladas, seja no pouso, seja em uma decolagem abortada. Esse sistema de freios é composto por inúmeros discos, que podem ser de aço ou de carbono, dependendo do modelo da aeronave. Para acioná-los, claro, há um pedal na cabine do piloto ou acionamento eletrônico.


Durante o processo de frenagem, os discos dos freios não podem ultrapassar os 900ºC, de modo que, se isso ocorrer, significa que o acionamento ou os próprios materiais desses discos estão gastos e necessitam de troca ou de reparos. Para evitar esse desgaste, os pilotos podem utilizar dois outros mecanismos que ajudam na hora do pouso: os spoilers e os reversos.

Os spoilers, ou freios aerodinâmicos, são placas localizadas nas asas que se levantam para gerar mais resistência no ar. Já o reverso está presente majoritariamente em aviões a jato e funcionam dentro dos motores. Ao acioná-los, o piloto consegue utilizar parte da potência do avião para diminuir a velocidade no solo. E assim, a união desses três elementos faz esses gigantes prateados pararem em segurança no solo.

Via Canaltech News (com informações de Aviões e Músicas)

Alumínio x Composto: Qual fuselagem é a melhor?

O 787 foi a primeira aeronave de fuselagem composta (Foto: Vincenzo Pace)
Jatos modernos, como o 787 e o A350, viram uma mudança para materiais compostos para a construção da fuselagem. Parece que isso permanecerá como o caminho a seguir para novos projetos de aeronaves. Existem desafios, mas o peso menor oferece melhorias significativas em eficiência e custo operacional.

A fuselagem de alumínio


Os aviões nem sempre foram feitos de metal. Muitos dos primeiros aviões usavam madeira e tecido. E não apenas aeronaves pequenas, como os primeiros biplanos - o Howard Hughes H4 de madeira, conhecido como 'Spruce Goose', foi uma das maiores aeronaves já construídas. Ele voou uma vez, mas nunca entrou em serviço - devido ao fim da guerra, porém, não sua construção de madeira!

O Spruce Goose, lançado em 1947, foi a maior aeronave de madeira construída (Foto: Getty Images)
A madeira era um material prático. Era de baixo custo e muito baixo peso. Mas não era forte o suficiente para voar em alta velocidade. Com o aumento das velocidades e, certamente, com a introdução dos motores a jato, o metal se tornou a melhor opção.

O alumínio foi a melhor escolha. É durável, leve e relativamente barato. O titânio, na verdade, é ainda melhor, mas muito caro. O compromisso é usar ligas de alumínio para reduzir os problemas de fadiga por tensão e corrosão. Essas ligas de alumínio formaram a base de todas as fuselagens de aviões a jato até recentemente. Pequenas quantidades de outros metais (como aço ou ferro) podem ser usadas na construção, mas por si só são muito pesadas e sofreriam tensão em altas temperaturas.

Douglas DC-8 (1961) - Os jatos são construídos há muito tempo com a maioria das
ligas de alumínio (Foto: Getty Images)

Mudando para o composto


Muitas aeronaves modernas, principalmente o Boing 787 e o Airbus A350, mudaram para materiais compostos para construção. Isso segue a tendência de operação de aeronaves mais eficiente, de menor custo e de emissões mais baixas nos últimos anos. Estes são os dois primeiros a ter uma construção composta significativa

As aeronaves anteriores já haviam começado a se mover dessa forma, no entanto. O A380, por exemplo, é aproximadamente 20% composto, e o 777 cerca de 12%. Curiosamente, o novo 777X manterá uma fuselagem de alumínio, pois é baseado na atualização do 777.

Composto refere-se à construção de dois ou mais materiais diferentes que, quando combinados, apresentam um desempenho melhor do que os elementos por si próprios. No 787, cerca de 50% dos materiais usados ​​são plástico reforçado com fibra de carbono (CRFP) e outros compósitos. O alumínio ainda representa 20%, o titânio 15% e o aço 10%.

A fuselagem do 787 tem cerca de 50% de fibra de carbono e compostos (Foto: Getty Images)
A Airbus também faz uso de CFRP no A350. O fabricante fornece uma boa descrição de como ele usa o CRFP em seu site: “Na produção de CFRP, milhares de fios de carbono microscopicamente finos são agrupados para fazer cada fibra, que se junta a outras em uma matriz mantida unida por uma resina robusta para atingir o nível necessário de rigidez. O componente composto é produzido em folhas de formato preciso colocadas umas sobre as outras e, em seguida, ligadas, normalmente usando calor e pressão em um forno chamado autoclave, resultando em um composto de alta qualidade.”

Grande parte do crédito pela mudança para os compósitos deve-se à Boeing. Ela optou por seguir o sucesso do 777 (como o carro largo mais vendido até agora) com um novo projeto de aeronave em folha limpa no 787. Essa era uma capacidade inferior ao do 777 e levou a Boeing para o mercado não comprovado de fuselagem composta. As companhias aéreas reagiram positivamente, no entanto. Tanto que a Airbus optou por revisar seus planos para o A350 e também projetar um novo corpo largo composto de folha limpa com o A350XWB (anteriormente, estava planejando uma atualização com base no A330).

O 787 foi a primeira aeronave de construção composta significativa,
lançada quatro anos antes do A350XWB (Foto: Vincenzo Pace)

Vantagens dos compósitos


A principal vantagem é a redução de peso, o que reduz o consumo de combustível, as emissões e, em última análise, o custo por assento para as companhias aéreas. Esses materiais também são menos suscetíveis à corrosão e fadiga, reduzindo o tempo e o custo de manutenção para as companhias aéreas.

As estruturas compostas podem ser moldadas em qualquer formato. Isso permitiu que seções inteiras do "barril" da fuselagem fossem feitas em locais diferentes, em vez de chapas de alumínio que precisavam ser aparafusadas. A Boeing usou isso extensivamente na construção do 787. As seções de fuselagem são totalmente montadas em diferentes locais (incluindo Itália e Japão) e depois transportadas para as fábricas da Boeing nos Estados Unidos para montagem final, usando a aeronave Dreamlifter.

Seções separadas da fuselagem do compósito 787 são unidas durante a montagem final (Foto: Boeing)
Outra diferença que você notará com o composto são as janelas maiores. Com a fuselagem menos resistente à fadiga, eles podem ser aumentados em tamanho. O 787 tem as maiores janelas de passageiros de qualquer jato de passageiros e, à medida que o uso de compostos avança, poderíamos ver maiores.

O 787 tem as maiores janelas de qualquer aeronave atual (Foto: Getty Images)

Limitações de compostos


Com a mudança para os compostos, pelo menos para jatos comerciais de passageiros, agora bem encaminhada, há desvantagens? O custo é um, até certo ponto. Os componentes CFRP são mais caros de produzir do que as peças metálicas padrão (isso pode mudar à medida que a produção e o uso se expandem). Mas, com o tempo, isso pode ser compensado por custos de manutenção mais baixos.

Também surgiram preocupações sobre a detecção de danos à fuselagem. O dano por impacto não é tão visível ou fácil de detectar como em uma fuselagem de metal. As propostas dos reguladores para mitigar isso incluem melhor treinamento e mais monitoramento e relatórios de contatos de fuselagem em potencial. Outros testes (incluindo ópticos, elétricos e acústicos) podem verificar se há danos à fuselagem.

Outro desafio que podemos ver é com a modificação da aeronave. Isso foi levantado como um problema com as conversões de cargueiros - cortar uma porta de acesso de carga em uma fuselagem composta é mais desafiador do que em uma de alumínio. Pode ser mais fácil para um possível cargueiro A350 , já que sua fuselagem é construída a partir de painéis compostos em vez de seções completas do cilindro.

Um cargueiro A350 provavelmente seria baseado na fuselagem do A350-900 (Foto: Getty Images)
Mas com a economia de peso e a melhoria na eficiência, essas desvantagens provavelmente agradarão aos operadores.

Como o magnetismo da Terra obrigou o Aeroporto de Guarulhos a alterar suas pistas


Quem viaja bastante de avião já deve ter percebido que as pistas dos aeroportos têm uma numeração pintada no chão. Ela ajuda a orientar os pilotos a decolar e pousar, e corresponde ao ângulo da bússola magnética. Com a mudança do magnetismo da Terra, o Aeroporto de Guarulhos, em São Paulo, precisou ajustar as suas pistas.

As bússolas servem como orientação para os pilotos, fundamental para mostrar para onde devem direcionar o avião no momento do pouso, alinhando sempre com a pista. Acontece que o campo magnético da Terra não é 100% estável e o ‘norte’ está em constante movimento. De tempos em tempos, ele acaba se movimentando mais, e a bússola vai o seguindo.

Assim, os números da pista dos aeroportos que antes apontavam para um lugar exato precisam ser alterados. Do dia 7 para 8 de setembro, o Aeroporto de Guarulhos precisou passar por essa readequação.

Novos números na pista


Pista do Aeroporto de Guarulhos com a nova numeração
Os números nas pista dos aeroportos vão de 01 a 36, que são pintados nas cabeceiras. Eles correspondem ao ângulo da bússola, divido por 10. Por exemplo, o 36 significa 360º. O terceiro número é sempre descartado, e se ele for maior que 5 é arredondado para cima. Assim, 276º corresponde ao número 28 na pista.

No caso de o aeroporto ter duas pistas paralelas (como Guarulhos), ele também ganha letras. A da esquerda tem a letra L (de left, ou esquerda em inglês). E a da direita, R (right). Em caso de aeroportos com uma terceira pista, a central é nomeada como C.


As cabeceiras das pistas de Guarulhos levavam os números 27 e 09, mas, com o magnetismo da Terra e a mudança do norte da bússola, foi preciso pintar novamente a pista. E elas são agora chamadas de 10L/28R e 10R/28L.

Mas as mudanças não param por aí: será preciso alterar, por exemplo, os sistemas informativos de tráfego aéreo e a documentação da navegação. Segundo a GRU Airport, administradora do aeroporto, essa é a primeira vez que a numeração das cabeceiras é alterada desde a sua inauguração em 1985. E bem provavelmente não será a última.

Voo que transportou corpo de Elizabeth 2ª foi o mais rastreado da história

Estandarte Real da Escócia ao lado do RAF C17, avião que transportou o corpo da
Rainha Elizabeth 2ª de Edimburgo para Londres (Imagem: Paul Ellis/Pool via Reuters)
Todos de olho na rainha. O voo com corpo de Elizabeth 2ª, na terça-feira (13), foi o mais rastreado da história, de acordo com informações do site de rastreamento de voos Flightradar24. 

Mais de 5 milhões de pessoas acompanharam o último voo da monarca: 4,79 milhões assistiram ao vivo pelo site e aplicativo da empresa, e 296 mil viram pelo canal no YouTube. O corpo da soberana foi levado de Edimburgo para Londres na semana passada.

O avião da Royal Air Force, que transportou a rainha, passou 1h12 no ar e aterrissou na RAF Northolt, uma estação militar a cerca de dez quilômetros do Aeroporto de Heathrow, em Londres. De Northolt, o caixão da rainha foi levado para o Palácio de Buckingham. O funeral da rainha acontece nesta segunda (19), na Abadia de Westminster.

Os dados do Flightradar sobre o voo que levou o corpo da Rainha Elizabeth de
Edimburgo para Londres (Imagem: Reprodução)
Os funcionários do site de rastreamento tinham ideia que a última viagem aérea da rainha se tornaria extremamente popular, por isso trabalharam para fornecer o máximo de estabilidade possível, mas o fluxo maciço de novos usuários provou ser um desafio técnico.

"Esse pico imediato e maciço foi além do que havíamos previsto", escreveu Ian Petchenik, diretor de comunicações do Flightradar24, em um post no blog. "No total, processamos 76,2 milhões de solicitações relacionadas apenas a este voo - é qualquer ação de um usuário, como clicar no ícone do voo, clicar nas informações da aeronave na caixa do lado esquerdo ou ajustar as configurações".

Essa ação quebrou o recorde anterior do Flightradar24, que havia sido alcançado no mês passado, durante a visita de Nancy Pelosi, presidente da Câmara dos EUA, a Taiwan. A viagem do avião da autoridade foi rastreada por cerca de 2,9 milhões de pessoas.

Via UOL

Falta de funcionários faz voo sair sem nenhuma bagagem a bordo na Inglaterra


Um voo da Iberia Express decolou na noite de domingo de Manchester, no norte da Inglaterra, e pousou na capital espanhola de Madri algumas horas depois, segundo o site da companhia aérea. Os passageiros que viajavam no voo não sabiam que sua bagagem não havia chegado ao avião, informou o jornal.

Depois de chegar a Madrid, os passageiros esperaram na esteira de bagagens por cerca de meia hora, mas suas bagagens nunca apareceram.

Os passageiros disseram ao jornal na quarta-feira que ainda não tinham suas malas – três dias após o desembarque em Madri – e tiveram dificuldades em obter ajuda da Iberia Express.

Um porta-voz da companhia aérea disse ao Manchester Evening News que as malas não chegaram ao avião devido à falta de manipuldores de bagagem de seu fornecedor de manuseio em Manchester.

Helicóptero da Polícia Civil tomba no Aeroporto Campo de Marte, na Zona Norte de SP

Segundo a polícia, aeronave estava estacionada no momento do acidente. Dentro dela, havia policiais civis que sairiam para uma operação. Não houve feridos.


Um helicóptero da Polícia Civil, o Pelicano, tombou na manhã desta terça-feira (20) no Aeroporto Campo de Marte, em Santana, na Zona Norte da capital paulista.

Segundo a Polícia Civil, a aeronave estava estacionada no momento do acidente. Dentro dela, havia policiais civis que sairiam para uma operação. Não houve feridos.


O acidente ocorreu em frente ao hangar do helicóptero, por volta das 6h. Aeronave é avaliada em R$ 4 milhões. Ainda não há informações sobre as causas.

Em nota, a Secretaria da Segurança Pública (SSP) disse que as causas serão apuradas pelo Centro de Investigação e Prevenção de Acidentes Aeronáuticos (Cenipa).


Via g1 e Band - Fotos: Reprodução/TV Globo

Surge vídeo do momento em que um avião caiu em área residencial após motor ingerir uma ave


No final da última semana, veio à tona um vídeo mostrando, a partir de uma câmera no cockpit, o momento em que um avião caiu em uma área residencial a poucos segundos da pista de pouso, após ingestão de ave pelo motor.

O acidente do vídeo a seguir aconteceu em 19 de setembro de ano passado, aproximadamente às 11h00 do horário local, quando o avião de treinamento a jato T-45C Goshawk da Marinha dos Estados Unidos (US Navy) se aproximava da Base de Fort Worth, no Texas:


Segundo a Marinha dos Estados Unidos, o avião de treinamento, atribuído à Training Air Wing 2 na Estação Aérea Naval Kingsville, no Texas, caiu em Lake Worth aproximadamente duas milhas a nordeste da base aérea.

Diante da ingestão da ave pelo motor em baixa altitude e velocidade, não havia como chegar à pista e os dois pilotos ejetaram da aeronave. O piloto é ouvido dizendo que tentaria chegar, mas depois disse que não conseguiria.

O piloto instrutor saiu em condições estáveis de saúde, enquanto o estudante aviador naval ficou em estado grave, mas sem risco de vida. Ambos foram transportados para unidades médicas para avaliação.

O estudante teve seu para-quedas preso em linhas de energia, tendo sido eletrocutado, por isso seu estado de saúde inicial crítico, enquanto o instrutor pousou nas proximidades.


Segundo a Fox4News, o acidente danificou três casas. A da família de Chris Sellers foi a mais impactada. O motor do jato estava no quintal deles. Ele estava sentado com sua filha de 9 anos bem próximo do ponto de impacto.


Mark Sellers, pai de Chris, estava fazendo compras com sua esposa no momento do acidente. Dois meses após o acidente, a família se dizia frustrada com o tempo que levou o processo de limpeza da área e ainda abalada com o que aconteceu. “Foi muito assustador”, disse Mark. “Poderíamos ter perdido Chris e minha neta.”


segunda-feira, 19 de setembro de 2022

Estrangeiros querem levar embora do Brasil um clássico avião para salvá-lo do abandono


Semana passada, o canal Plane Spotting Manaus HD no YouTube, especializado em vídeos das movimentações no Aeroporto Internacional de Manaus, abordou o curioso caso do clássico avião DC-8 que está abandonado no terminal amazonense, mas que tem pessoas do outro lado do mundo interessadas em levá-lo embora do país.

Assim, como o AEROIN havia abordado essa questão no ano passado, a seguir há uma recapitulação dessa curiosa iniciativa, que esbarra em um impedimento. Primeiro, o vídeo do canal Plane Spotting Manaus HD é disponibilizado no player a seguir. Depois, abaixo, há mais informações e outros vídeos sobre o caso.


Recapitulando


Esse objetivo de levar o avião embora do Brasil faz parte de uma campanha lançada há alguns anos por um grupo de civis da Nova Zelândia, chamada “BOBH – Bring Our Birds Home”, ou “Trazer nossos Pássaros para Casa”.

O objetivo da campanha é levantar fundos para salvar seis aeronaves que fizeram parte da frota de companhias aéreas da Nova Zelândia, e levá-las todas para um mesmo local no “país dos Kiwis”, para manter preservada a história.

E a demonstração da seriedade da campanha é vista na pessoa do criador do projeto, Paul Brennan, que participa de entrevistas e fala sobre os trabalhos em vídeos pela internet, e que chegou a vir até Manaus em agosto de 2018 para conversar com o proprietário dessa aeronaves-alvo da BOBH.

Na ocasião, ele fez vídeos do exterior e do interior do jato, conforme as duas gravações a seguir.

Vídeo 1 – vista aérea do exterior do DC-8


Vídeo 2 – visita ao interior do DC-8


A história desse DC-8


O Douglas DC-8-52 de número de série 45752-233 foi entregue da linha de produção à Tasman Empire Airways Ltd (TEAL), precursora da Air New Zealand, em 1965 e voou na companhia até 1981.

A aeronave encontra-se parada em Manaus desde 2003 após ter voado por último pela companhia brasileira TCB sob a matrícula PP-TPC. É a única desse modelo ainda existente, das que foram entregues à TEAL.

Uma oferta já foi feita ao atual proprietário, mas a BOBH precisa aguardar uma liberação da justiça brasileira devido à aeronave fazer parte do inventário do processo de falência da TCB. Com isso, já se vão cerca de quatro anos em que o histórico jato continua se deteriorando ao invés de ser disponibilizado a quem deseja preservá-lo.

Todas as aeronaves que já voaram nas empresas aéreas neo-zelandesas e que o projeto BOBH pretende adquirir para preservação podem ser conferidas neste link.