quinta-feira, 25 de abril de 2024

Aconteceu em 25 de abril de 1980: A Maldição de Tenerife A queda do voo 1008 da Dan-Air


No dia 25 de abril de 1980, um Boeing 727 que transportava turistas britânicos para Tenerife nas Ilhas Canárias saiu do curso na neblina e se chocou contra o costado de La Esperanza, matando todos os 146 passageiros e tripulantes. 

O cenário do desastre era conhecido por todos os motivos errados: apenas três anos antes, o mesmo aeroporto nesta minúscula ilha do Atlântico havia sido palco do acidente de aeronave mais mortal da históriaA maldição de Tenerife, que já havia custado tantas vidas, atacou novamente.

Mas ao tentar descobrir por que a tripulação do voo 1008 da Dan-Air se viu em rota de colisão com uma montanha, enfrentando avisos terríveis, mas sem saber para onde virar, os investigadores espanhóis e britânicos chegaram a um impasse. Foi a linguagem imprecisa do controlador de tráfego aéreo a causa, ou a responsabilidade final por evitar o terreno ainda estava com os pilotos? 

Os argumentos giravam em torno de uma única letra em uma única palavra - uma palavra que mudava absolutamente tudo sobre a situação. Mas essa confusão, assim como o nevoeiro infame de Tenerife, obscureceu o verdadeiro problema: um sistema tão deficiente que a ausência de uma única letra poderia levar ao desastre.

Aeronaves Comet da Dan-Air em London Gatwick, em 1968
Na Europa, a indústria do turismo há muito confia em pacotes chamados de “passeios inclusivos”, nos quais os turistas compram a viagem de avião, as estadias em hotéis e as atividades programadas em um único pacote de uma operadora de turismo. 

Muitas companhias aéreas, ao longo dos anos, conquistaram um nicho, oferecendo voos charter para operadoras de turismo inclusivas; outras dessas companhias aéreas foram fundadas pelos próprios operadores turísticos para reduzir custos. 

Embora o último tipo, como a TUI, domine a indústria hoje, nas décadas de 1970 e 1980, a companhia aérea britânica Dan-Air cresceu para se tornar a maior companhia aérea independente do Reino Unido fazendo o primeiro - junto com uma lista de outras atividades que poucos outras companhias aéreas considerariam.

A Dan-Air era um verdadeiro pau para toda obra. Entre a sua fundação em 1953 e a sua absorção pela British Airways em 1992, realizou uma ampla gama de serviços, incluindo, mas não se limitando a fretamentos turísticos, fretamentos regulares, voos regulares de passageiros, voos regulares de carga, voos fretados, voos de transporte de migrantes trabalhadores, voos do Royal Mail e voos de apoio a campos de petróleo. Se era possível ganhar dinheiro conduzindo um voo, a Dan-Air conseguia. 


A Dan-Air ainda se ramificou para a Europa continental com um segundo hub em Berlim Ocidental, a partir do qual realizou voos charter para operadoras de turismo alemãs e até voos regulares de passageiros domésticos dentro da Alemanha Ocidental. A frota da Dan-Air era igualmente diversa. A companhia aérea desenvolveu uma estratégia de comprar aviões usados ​​extremamente baratos de uma ampla variedade de tipos às vezes incomuns. 

No início de seu período de expansão, a Dan-Air conseguiu adquirir uma grande frota de Havilland Comet 4s, a única versão bem-sucedida do primeiro avião a jato do mundo, e continuou a operá-los até 1980. O restante da frota principal da companhia aérea consistia de um número igualmente grande de BAC One-Elevens, Hawker Siddeley HS 748 turboélices e Boeing 727s. 

A Dan-Air foi a primeira operadora britânica a voar no 727, que em seu layout de fábrica não atendia aos padrões de segurança britânicos, forçando a Dan-Air a fazer uma série de modificações exclusivas, como uma porta de saída de emergência extra em cada lado. Seus 727s baseados em Berlim foram modificados ainda mais com tanques de combustível extras dentro da fuselagem para permitir que voassem sem escalas da Alemanha às Ilhas Canárias.

G-BDAN, a aeronave envolvida no acidente
Um dos Boeing's 727s da Dan-Air era o G-BDAN (foto acima), que estava programado para voar em um voo fretado turístico inclusivo de Manchester, Inglaterra para Tenerife, nas Ilhas Canárias, no dia 25 de abril de 1980. 

Os 138 passageiros eram em sua maioria turistas britânicos que haviam comprado um pacote de férias que lhes permitiria desfrutar das agradáveis ​​praias de Tenerife, montanhas espetaculares e paisagens vulcânicas de outro mundo. 

No comando do voo estavam três pilotos: o capitão Arthur “Red” Whelan, de 50 anos, que tinha mais de 15.000 horas de voo; O primeiro oficial Michael Firth, de 33 anos, tinha cerca de 3.500 horas; e um engenheiro de voo de 33 anos, Raymond Carey. Uma equipe de cinco comissários de bordo elevou o número total de ocupantes para 146.


O destino deles naquela tarde era o Aeroporto de Tenerife Norte, anteriormente conhecido como Los Rodeos. Este é um nome que ataca o coração dos aviadores até hoje. O Aeroporto de Los Rodeos em março de 1977 foi palco do acidente de aeronave mais mortal do mundo, quando dois Boeing 747 totalmente carregados, ambos desviados de Gran Canaria, colidiram na pista, matando 583 pessoas

As consequências do chamado Desastre de Tenerife ainda estavam em andamento quando o voo 1008 da Dan-Air decolou de Manchester, com destino a este mesmo aeroporto infame. 

O desastre de Tenerife em 1977
Um dos principais fatores que levaram ao desastre de Tenerife foi a localização do aeroporto. Situado em uma sela a mais de 2.000 pés (600 metros) acima do nível do mar, o Aeroporto de Tenerife Norte costumava suportar o impacto do clima imprevisível da ilha. 

O nevoeiro frequentemente se formava em torno dos altos picos no centro da ilha e rolava sobre o campo de aviação, que em 1977 criou as condições que impediram os dois 747 de se verem até que fosse tarde demais. 

Essa mesma névoa voltou em 25 de abril de 1980, envolvendo os picos das montanhas em uma camada de nuvens tão densa que as estações meteorológicas em altitudes mais elevadas relataram uma visibilidade de zero.

Em Tenerife, os ventos predominantes sopram do oeste, da imensidão do Oceano Atlântico. Mas hoje, eles estavam soprando na direção oposta, do leste, forçando os aviões que se aproximavam a pousar na raramente usada pista 12 em vez da pista 30 usual. 


O capitão Whelan voou para o aeroporto de Tenerife Norte 58 vezes, mas nunca pousou na pista 12. O procedimento regular para pousar na pista 12 era voar para o VOR Tenerife Norte, um rádio-farol VHF a nordeste do aeroporto. A partir desse farol (conhecido como TFN), os aviões se voltariam para outro farol chamado localizador, designado FP, situado a oeste da cabeceira da pista. Eles então seguiriam diretamente para longe do aeroporto em linha com a pista, virariam sobre o oceano e inverteriam o curso para aterrissar. 

No entanto, o voo 1008 da Dan-Air não foi o único avião se aproximando da pista 12 naquele dia. Quando o voo 1008 se aproximou do VOR TFN por volta das 13h15, eles se viram atrás do voo 711 da Iberia, um turboélice mais lento operado pela companhia aérea nacional da Espanha. 

O 727 estava voando consideravelmente mais rápido do que o normal para esta parte da abordagem e, no ritmo em que estavam indo, ultrapassariam o avião mais lento por trás muito antes de chegar à pista. Mas quando o voo 1008 ultrapassou o TFN à 1h18, o controlador ainda não tinha entendido o problema de desenvolvimento. 

"Dan-Air um zero zero oito, liberado para o beacon Foxtrot Papa via Tango Foxtrot novembro, nível de voo um um zero, espere pista um dois, sem demora", disse ele à tripulação, sem saber que sua promessa de "sem demora" logo estaria quebrada.


O controlador de serviço em Tenerife Norte naquele dia era Justo Camin, de 34 anos, que trabalhava no aeroporto há pouco mais de um ano - tempo não suficiente para se lembrar do desastre de Tenerife, mas tempo suficiente para se familiarizar com as dificuldades específicas de trabalhar o tráfego aéreo na ilha. 

Em 1980, como em 1977, o aeroporto não tinha nenhum tipo de radar, e a única maneira de saber onde os aviões estavam era ouvindo relatos dos pilotos e anotando o progresso deles em tiras de papel. Além disso, ele sem dúvida estava tendo um dia ruim, pois acabara de saber que sua mãe tinha câncer terminal. 

Quando o primeiro oficial Firth relatou que o voo 1008 havia ultrapassado o TFN, Camin foi pego de surpresa, pois não esperava que eles alcançassem o farol tão rapidamente. Percebendo que o voo 1008 estava chegando muito perto do turboélice Iberia, ele decidiu colocá-los em um padrão de espera para dar ao avião mais lento tempo para sair do caminho. 

O problema era que todos os padrões de retenção oficialmente designados eram bastante inconvenientes. O mais próximo do voo 1008 era baseado no VOR TFN, que agora estava atrás deles. 

Todos os outros foram projetados para aviões que se aproximam da pista 30; nenhum padrão de sustentação foi elaborado para a abordagem da pista 12 porque era raramente usado. Com o voo 1008 já se aproximando rapidamente do farol localizador FP, ele resolveu criar um novo padrão de espera no local.


O padrão de espera que Camin criou baseava-se em FP. Ele queria que o voo 1008 sobrevoasse FP, virasse para noroeste e passasse sobre o mar, então fizesse uma volta de 180 graus de volta para FP em um rumo de 150 graus. O voo então entraria em um padrão de espera da mão esquerda com a perna de entrada em um rumo de 150 e a perna de ida em um rumo de 330. 

Eles permaneceriam neste padrão de espera até que o voo 711 da Iberia estivesse fora do caminho, enquanto a direção segura garantiria que eles estivessem em posição de pousar rapidamente assim que o espaço aéreo estivesse livre. 

Em resposta ao relatório de posição do primeiro oficial Firth, Camin disse: “Roger, o er, padrão de espera acima do Foxtrot Papa está entrando em direção a um cinco zero, vire à esquerda, ligarei de volta em breve."

Aqui ele cometeu um pequeno erro que levou diretamente a todos os eventos que se seguiram. Quando ele disse “vire à esquerda” ("turn to the left"), ele realmente quis dizer “vire para a esquerda” ("turns to the left"), descrevendo a direção em que a tripulação deveria voar em torno do padrão de espera. Mas sem o “s” (em inglês), esta transmissão soou para a tripulação como um imperativo: “vire à esquerda”. 

“Roger, Dan-Air um zero zero oito,” disse Firth. "Entrada um cinco zero à sua esquerda", repetiu o capitão Whelan. “Falta um cinco zero, sim,” disse Firth. 

Da posição em que a tripulação se encontrava naquele momento, as instruções do controlador faziam pouco sentido. Para voar em direção a FP em um rumo de 150 graus, eles precisariam fazer uma curva fechada para a direita, passar por FP, fazer um 180º e voltar do outro lado, mas o controlador não mencionar nada disso. 

Sem saber o que o controlador pretendia espacialmente, tanto o Capitão Whelan quanto o Primeiro Oficial Firth seguiram a ordem aparente de "virar à esquerda" e concluíram que o controlador definitivamente queria que eles virassem à esquerda em um rumo de 150 graus ao alcançar FP, e eles resolveria o resto mais tarde.


Isso era de fato o oposto do que Camin pretendia, e resultaria em voar para fora de FP em 150 em vez de rumo a ele, mas nenhum dos pilotos tinha percebido isso ainda. No entanto, algo parecia errado sobre o padrão de espera. 

“Há algo estranho”, disse Whelan. “A pista…” Três segundos depois, ele acrescentou “Falta um”, relatando que eles estavam 300 metros acima da altitude designada de 6.000. Ambos os outros membros da tripulação reconheceram. 

“Não, não estou - er, acho que está tudo bem”, disse o primeiro oficial Firth. Ele provavelmente estava olhando para seus gráficos e estava no processo de descobrir que esse padrão de retenção não estava em nenhum deles. 

“Vou virar direto para a esquerda para um cinco zero quando passar por cima, então”, disse Whelan. "Sim." “A única coisa é, nós estamos ... estamos prestes a perder haha, está muito perto”, acrescentou Whelan. Na velocidade em que estavam indo, eles ultrapassariam a FP em segundos, e não havia muito tempo para fazer a curva para a radial de 150 graus. 

Enquanto o primeiro oficial Firth trabalhava para configurar seus instrumentos para rastrear os auxílios à navegação que eles usariam no porão, o voo 1008 passou no travessão de FP a uma distância de cerca de dois quilômetros. 

“Dan-Air um zero zero oito está (no) Foxtrot Papa, nível seis zero, assumindo o controle”, relatou. Mas, apesar da chamada de rádio de seu primeiro oficial, o capitão Whelan não virou à esquerda para entrar no que ele pensava ser o bloqueio até 20 segundos depois. 

"Muito estranho segurar, não é?" Firth perguntou. “Sim, não é - não é paralelo à pista nem nada”, disse Whelan. Mas, apesar da confusão, nenhum dos pilotos pediu esclarecimentos ao controlador.


Enquanto isso, a tripulação do voo 711 da Iberia informou (em espanhol) que havia entrado no procedimento de curva na aproximação da pista 12. Em resposta, o controlador Justo Camin os autorizou a descer de 5.000 pés. 

Isso permitiu que ele movesse o voo Dan-Air, que ele pensava estar no padrão de espera atribuído, para o nível que o avião da Iberia acabara de deixar. O voo 1008 imediatamente começou a descer de 6.000 a 5.000 pés - abaixo da altura de La Esperanza, uma montanha envolta em névoa apenas uma curta distância à direita do avião. 

Neste ponto, ainda no processo de virar à esquerda para 150 graus, o capitão Whelan exclamou de repente: "Ei, ele disse que era um cinco zero entrando?" “Inbound, yeah,” disse o primeiro oficial Firth. "Isso ... eu não gosto disso", disse Whelan. 

Quase se pode imaginar as engrenagens girando dentro de sua cabeça. Se o controlador tivesse dito “150 inbound”, isso significava que ele deveria voar em direção a FP naquele rumo, não para longe dele. “Eles querem que a gente continue dando mais voltas, não é?” Firth perguntou. 

Naquele momento, o avião passou pelo canto nordeste de La Esperanza, e a taxa de fechamento com o solo tornou-se alta o suficiente para disparar o sistema de alerta de proximidade do solo. Um alarme severo começou a gritar: “TERRENO! TERRENO! WHOOP WHOOP, PULL UP! ”


O capitão Whelan não hesitou em reagir ao aviso. “Ok, ultrapassagem,” ele ordenou. “Ele está nos levando para o terreno elevado!” 

Acreditando que a ativação repentina do aviso significava que sua curva para a esquerda os estava levando em direção à montanha, ele iniciou uma curva para a direita. Depois de dez segundos, o aviso cessou - mas não porque eles estivessem fora de perigo. 

Na verdade, eles estavam se voltando diretamente para o cume do La Esperanza, mas a passagem repentina do avião sobre um vale convenceu o sistema de alerta de proximidade do solo primitivo de que sua taxa de fechamento com o solo não era mais anormal. 

Quando um piloto ouve um aviso de proximidade do solo, a primeira coisa que ele deve fazer é puxar para cima e acelerar para atingir a razão de subida máxima possível. Mas, acreditando que poderia evitar o terreno virando à direita, o capitão Whelan se esqueceu de fazer isso. 

Olhando para seu gráfico, o primeiro oficial Firth pode ter percebido que esse era o curso de ação errado. “Eu sugiro um cabeçalho de um, dois, dois, na verdade, e er, nos conduza através do overshoot, ah ...” ele disse. 

“Vamos sair daqui”, disse o engenheiro de voo Carey, expressando sucintamente os pensamentos de todos na cabine. "Ele está nos levando para o terreno elevado", repetiu Whelan. “Sim,” disse Firth. Mas, em vez de ouvir a sugestão de seu primeiro oficial, o capitão Whelan continuou a dirigir o avião abruptamente para a direita, perdendo 300 pés de altitude no processo. 

Buscando esclarecimentos do controle de tráfego aéreo, Firth acionou seu microfone e perguntou: "Er, Dan-Air um zero zero oito, recebemos um aviso de proximidade do solo." “Ângulo de inclinação, ângulo de inclinação!” avisou o engenheiro de voo Carey.

Esboço da colisão do voo 1008 da Dan-Air
E então tudo ficou quieto. Dois segundos após a transmissão de Firth para o ATC, o voo 1008 da Dan-Air bateu de cabeça na lateral de La Esperanza a uma altitude de 5.450 pés, apenas 92 pés (28 metros) abaixo do cume. 

O impacto obliterou a maior parte do avião instantaneamente, enviando destroços estilhaçados pela encosta da montanha em todas as direções. A cauda continuou por várias centenas de metros além do ponto de impacto, antes que também se chocasse contra o solo, despencasse em uma ravina e se partisse. Milhares de pequenos incêndios irromperam dos destroços pulverizados, brilhando fracamente em meio aos pinheiros envoltos em névoa. 


Inicialmente, o controlador Camin não sabia que o avião havia caído. Mas quando tentou ligar para o avião para acompanhar a preocupante transmissão final, não obteve resposta. Todas as outras indagações ao avião britânico ficaram sem resposta. 

Pela segunda vez em apenas três anos, o temido alarme de acidente soou no Aeroporto de Tenerife Norte - mas, desta vez, ninguém tinha certeza de onde procurar o avião. 

Embora ninguém tenha testemunhado diretamente o impacto, os sinais de um acidente de avião logo se tornaram aparentes para as pessoas nas encostas superiores de La Esperanza. Detritos leves, como brochuras de viagem e documentos, choveram no vilarejo de Las Lagunetas, cerca de dois quilômetros a favor do vento do local do acidente. 

Enquanto isso, vários pedaços do avião haviam sido impulsionados encosta acima com tanta força que tombaram do topo da montanha e desceram pelo outro lado, parando em ambos os lados da estrada principal entre Santa Cruz de Tenerife e o Parque Nacional de Teide. Os motoristas na estrada perceberam a importância dos destroços quando um anúncio sobre o avião desaparecido apareceu em transmissões de rádio locais. 

Em poucas horas, os resgatadores subiram a montanha até o local dos destroços, mas ficou imediatamente óbvio que nenhuma das 146 pessoas a bordo havia sobrevivido ao acidente. 

Nos dias seguintes, as equipes de recuperação não conseguiram encontrar um único corpo humano completo e os restos mortais de muitos dos ocupantes nunca foram identificados de forma conclusiva. 


Enquanto isso, investigadores da Espanha e da Grã-Bretanha recuperaram as caixas pretas e começaram a desvendar a causa do acidente. 

A sequência de eventos que levou ao acidente começou com a alta velocidade do Dan-Air 727, que o fez alcançar o avião à sua frente muito mais rápido do que o controlador esperava. O controlador não percebeu que a separação entre as duas aeronaves seria um problema até que o voo 1008 já tivesse passado o padrão de espera publicado em torno do VOR TFN. 

Ele, portanto, concebeu um padrão de sustentação informal em torno de FP com pernas em 150 e 330 graus e comunicou isso à tripulação. Mas, em vez de virar à direita e entrar no padrão de espera, a tripulação virou à esquerda, indo para uma área onde a altitude mínima segura de acordo com suas cartas era 14.500 pés. 

Depois de receber um aviso de proximidade do solo, o capitão decidiu fazer uma curva evasiva para a direita, o que na verdade os levou direto para a encosta da montanha. Parecia que a tripulação tinha ficado irremediavelmente confusa sobre sua localização. Como isso pode ter acontecido?


Investigadores de ambos os países concordaram que a confusão começou quando o controlador disse: “o padrão de espera padrão acima do Foxtrot Papa está entrando em direção a um cinco zero, vire à esquerda”. Obviamente, ele pretendia dizer “vira para a esquerda” e, ao omitir um único “S”, mudou para uma ordem aparente de virar à esquerda. 

No entanto, os investigadores espanhóis argumentaram que era responsabilidade dos pilotos reler a transmissão para que o controlador pudesse verificar se eles a entenderam corretamente - algo que eles não fizeram. 

Os investigadores britânicos consideraram isso injusto com os pilotos, porque a transmissão foi redigida de maneira muito inadequada. Da posição em que estavam, o padrão de retenção desejado pelo controlador era difícil de entender espacialmente, e o erro gramatical agravou o problema para tornar as instruções quase ininteligíveis. 


Embora devessem ter pedido esclarecimentos, foi fácil entender como os pilotos ficaram confusos. Tendo ouvido "virar à esquerda", Whelan e Firth claramente se agarraram a este elemento e subconscientemente pesaram acima da palavra "entrada". 

Essas duas partes da instrução - "rumo de entrada 150" e "virar à esquerda" - eram contraditórias e, em tal situação, é da natureza humana pegar as partes que fazem sentido e ignorar as que não fazem. 

Consequentemente, a tripulação virou à esquerda em um rumo de 150 graus, e só mais tarde percebeu que o controlador havia dito “inbound” para FP, enquanto eles estavam se dirigindo para fora de FP. Posteriormente, o controlador, que não tinha radar para rastrear o avião, liberou-os para descer abaixo da altura da montanha sem perceber que estavam fora do curso.


A decisão do controlador de liberar o voo 1008 para descer para 5.000 pés se tornou outro ponto de discórdia. Na opinião dos investigadores britânicos, o problema era que 5.000 pés não era uma altitude razoável para o padrão de sustentação que o controlador havia planejado. Se o padrão de sustentação tivesse sido projetado de acordo com os regulamentos oficiais, a altitude mínima deveria ser de 7.000 pés. 

Por outro lado, os pilotos não tinham motivos para acreditar que esse padrão de espera não era oficial, apesar de não aparecer em seus gráficos, porque o controlador o chamou de “espera padrão”. 

Portanto, é improvável que eles questionem sua altitude designada de 5.000 pés. Embora o voo 1008 nunca tenha realmente entrado no padrão de espera, esta discrepância foi crítica para a sequência de eventos, porque se o avião não tivesse descido a 5.000 pés, não teria colidido com a montanha. 

Os investigadores espanhóis contestaram este raciocínio, observando que se o avião estivesse onde o controlador pensava que estava, uma altitude atribuída de 5.000 pés teria sido razoável.


O próximo elo na cadeia de eventos foi a decisão do capitão Whelan de virar à direita ao receber um aviso de proximidade do solo. Tendo estado muito ocupado pilotando o avião nos últimos minutos, ele provavelmente não olhou para seus gráficos, fazendo com que lentamente perdesse o controle de sua posição exata. 

Quando ele disse “Ele está nos levando para o terreno elevado”, ele pode ter pensado que estava a noroeste de La Esperanza, como indicado no diagrama acima, ao invés de nordeste. Devido à pequena escala da ilha, não ficava longe de sua localização real, mas colocava a montanha em uma posição completamente diferente em relação ao plano. 

Convencido de que virar à direita resolveria o problema, ele ignorou seu primeiro oficial (que provavelmente estava rastreando sua posição e sabia mais ou menos onde eles estavam) quando sugeriu que eles virassem à esquerda para um rumo de 122 graus. 


Se Whelan não tivesse virado para a direita, o acidente não teria ocorrido. E mesmo assim, um acidente ainda não era inevitável. Se Whelan tivesse iniciado uma manobra de fuga acelerando para dar a volta por cima e puxando para cima para escalar, o avião teria ultrapassado o cume da montanha. 

Em vez disso, ao tentar virar bruscamente para a direita, eles perderam 300 pés de altitude - mais do que o suficiente por si só para fazer a diferença entre um quase acidente e um desastre fatal. Na verdade, se os pilotos tivessem reagido ao aviso de proximidade do solo sem fazer nada, eles teriam passado pelo ombro da montanha e continuado em segurança em direção ao oceano.

Para garantir que outros não cometam o mesmo erro no futuro, na esteira do acidente, a FAA dos EUA começou a exigir que as companhias aéreas ensinassem seus pilotos a subir imediatamente ao receberem um alerta GPWS, a menos que o solo estivesse claramente visível.


Nesse ponto, a investigação evoluiu para uma briga mal-humorada entre a Grã-Bretanha e a Espanha sobre se mais culpa deveria ser atribuída aos pilotos ou ao controlador. O relatório espanhol efetivamente absolveu o controlador de qualquer irregularidade, enquanto os investigadores britânicos queriam as instruções confusas do controlador e o uso de um padrão de retenção não aprovado elevado à causa provável, juntamente com a falha dos pilotos em pedir esclarecimentos e sua reação incorreta aos avisos do terreno. 

Os investigadores espanhóis adotaram uma visão puramente legalista da questão: em um ambiente não radar, cabia aos pilotos garantir que cumprissem todas as altitudes mínimas indicadas em sua carta. Uma vez que eles voaram para uma área onde a altitude mínima segura era 14.500 pés enquanto desciam de 6.000 pés, eles foram totalmente culpados no acidente. O Relatório Final do acidente foi divulgado em julho de 1981.


Embora tecnicamente verdadeiro com base na interpretação mais restrita de culpa, o Departamento de Investigação de Acidentes Aéreos da Grã-Bretanha e as famílias das vítimas acharam que isso não era razoável, e o chefe da delegação britânica chamou publicamente o relatório espanhol de "encobridor dos fatos".

Enquanto ambos os lados discutiam se os pilotos ou o controlador deveriam ser culpados, muito pouca atenção foi dedicada ao elefante na sala: infraestrutura deficiente. As autoridades de aviação espanholas não criaram um padrão de espera para os aviões que se aproximam da pista 12. 


O Aeroporto de Tenerife Norte não tinha radar, apesar da investigação sobre o desastre de 1977 recomendando sua instalação. Nenhuma das pistas tinha um sistema de pouso por instrumentos, apesar da cobertura frequente de nuvens. 

Uma abordagem segura para este aeroporto em condições de instrumentos exigia uma coordenação cuidadosa entre os pilotos e o controlador; não havia espaço para erros. Sem infraestrutura como radar e procedimentos designados para recorrer, não havia necessariamente nada que impedisse os pilotos de voar mal fora do curso porque o controlador deixou uma única letra de uma instrução.

Algumas partes do avião, incluindo o eixo do trem de pouso, ainda estão em La Esperanza
Essa combinação de mau tempo, infraestrutura ausente e procedimentos complicados tornou os aeroportos insulares no sul da Europa e no Atlântico um cemitério para aviões. O acidente Dan-Air foi o terceiro grande desastre a ocorrer no Aeroporto de Tenerife Norte em menos de oito anos. 

Acidentes dentro e ao redor do aeroporto custaram 952 vidas desde sua inauguração em 1956. Outras ilhas sofreram da mesma forma. Em 1977, 131 pessoas morreram quando um 727 fugiu de uma pista perigosamente curta e inclinada na ilha portuguesa da Madeira; um mês depois, um jato suíço caiu no mesmo aeroporto, matando 36. 

Um ano após o acidente Dan-Air, um incidente muito semelhante ocorreu na ilha mediterrânea francesa de Córsega, quando um avião iugoslavo voou para uma montanha em um padrão de espera. Descobriu-se que um mal-entendido levou o controlador a acreditar erroneamente que o avião já havia deixado o padrão de espera e ele o liberou para descer enquanto ainda estava sobre as montanhas. 

E em 1989, um avião charter americano caiu na ilha portuguesa de Santa Maria em resultado de mais um mal-entendido entre os pilotos e o controlador. Os sindicatos de pilotos britânicos designaram vários aeroportos em Portugal, Espanha, Itália e Grécia como aeroportos "estrela negra", onde a infraestrutura era tão pobre que aproximar-se desses aeroportos em qualquer outra coisa que não as condições visuais seria inseguro. 


As companhias aéreas, no entanto, estavam mais interessadas nos lucrativos mercados de turismo e, apesar do fracasso abjeto dos governos locais em melhorar sua infraestrutura, aviões fretados continuaram a voar para esses aeroportos em todas as condições meteorológicas e em todos os momentos do dia.

Levaria alguns anos ainda antes que um número suficiente desses aeroportos europeus mal equipados recebessem radares modernos para interromper o derramamento de sangue. A Espanha, em particular, continuou a sofrer inúmeros desastres evitáveis ​​ao longo da década de 1980, incluindo mais dois voos que atingiram o terreno e outra colisão na pista. 

No entanto, no final da década de 1990, a situação já havia sido em grande parte corrigida. As ilhas espanholas e portuguesas do Atlântico (e suas contrapartes francesas, italianas e gregas no Mediterrâneo) não reivindicaram mais nenhuma vida desde 1999, em grande parte graças a um esforço europeu para instalar radares em todos os principais aeroportos. 

E hoje, a abordagem para a pista 12 em Tenerife Norte foi muito simplificada: em vez de sobrevoar o aeroporto e depois voltar, os aviões que chegam vire para oeste na TFN, em seguida, faça uma curva simples para a esquerda para se alinhar com a pista. 

Isso garante que os aviões fiquem longe do terreno o tempo todo. Além disso, a maior parte do tráfego internacional agora voa para o Aeroporto de Tenerife Sul, que foi inaugurado 18 meses antes do acidente do Dan-Air e está em um local muito menos perigoso. 

Um pequeno jardim memorial foi criado em Manchester para as vítimas do acidente
O voo 1008 da Dan-Air foi o último acidente fatal no Aeroporto de Tenerife Norte, encerrando a série de tragédias que transformaram a palavra Tenerife em algo que os pilotos ousaram apenas sussurrar, não dizer em voz alta. Foi também o último acidente fatal para a Dan-Air, uma companhia aérea que até então tinha um histórico de segurança um tanto confuso. 

Mas apesar de seu status como a maior perda de vidas em um avião britânico, o voo 1008 não é bem lembrado hoje: é simplesmente mais um acidente nas ilhas do Atlântico, outra vítima da maldição de Tenerife.

Edição de texto e imagens por Jorge Tadeu (Site Desastres Aéreos)

Com Admiral Cloudberg, ASN, Wikipedia - Imagens: Bureau of Aircraft Accidents Archives, Steve Aubury, Werner Fischdick, Google, History Stack, Dan-Air Remembered, Sergio Arafo e Plucas58 (via Wikimedia). Videoclipes cortesia da BBC.

Aconteceu em 25 de abril de 1951: Colisão aérea na Flórida - Voo 493 da Cubana de Aviación x Beechcraft SNB-1 Kansan da Marinha dos EUA

O voo 493 da Cubana de Aviaciónera operado pelo Douglas DC-4, prefixo CU-T188,  vindo de Miami, na Flórida, para Havana, em Cuba, em 25 de abril de 1951. Um Beechcraft SNB-1 Kansan da Marinha dos Estados Unidos, o de prefixo 39939, estava em um voo de treinamento por instrumentos nas proximidades da Naval Air Station Key West , Flórida, ao mesmo tempo. As duas aeronaves colidiram no ar sobre Key West, matando todos os 43 a bordo de ambas as aeronaves.

A colisão


Um modelo renderizado do DC-4 da Cubana de Aviación
O voo 493 partiu de Miami às 11h09 daquele dia e foi autorizado a subir a 4.000 pés em direção direta a Key West. 

Aproximadamente dez minutos depois, o SNB-1 decolou do NAS de Key West para o treinamento de instrumentos simulados. Embora o voo não tenha sido liberado para uma altitude ou proa específica, procedimentos padrão de treinamento por instrumentos estavam em vigor. 

Às 11h49, o voo 493, rumo ao sul, e o SNB-1, rumo ao oeste, colidiram sobre o Key West NAS a uma altitude estimada de 4.000 pés.

O DC-4 de quatro motores, com 34 passageiros e cinco tripulantes, mergulhou no oceano a meia milha da costa a uma velocidade estimada de 600 milhas por hora e afundou em águas de 6 metros. 

Um Beechcraft SNB-1 Kansan semelhante à aeronave envolvida na colisão
O avião da Marinha, um Beechcraft bimotor com uma tripulação de quatro pessoas em um voo de treinamento por instrumentos de rotina, se despedaçou ao cair e colidiu três quilômetros a oeste do DC-4.

Os relatos das testemunhas sobre a colisão variam. Lucille Cleary, esposa de um piloto da Marinha, disse acreditar que a cauda do DC-4 estava pegando fogo antes dos aviões colidirem. 

Outros espectadores disseram que não viram fogo em nenhum dos aviões. George e Charles Faraldo, operadores de um serviço aéreo de Key West, ergueram os olhos ao ouvir o barulho da colisão. Eles disseram que a asa esquerda do DC-4 foi cortada em frente ao motor externo.


O avião então entrou em uma espiral apertada, relataram os Faraldos, mas o piloto conseguiu subir com força total. Então, em seguida, mergulhou direto no nariz. Quando caiu, a água saltou tão alto no ar que eles puderam vê-la sobre as copas das árvores no aeroporto.

Embora o avião da Marinha estivesse engajado na prática de voo às cegas, o Capitão RS Quackenbush Jr., oficial comandante da Estação Aérea Naval de Boca Chica, disse que em tais casos "um dos pilotos tem observação visual clara o tempo todo." 

O DC-4 caiu perto da costa da "Pequena Casa Branca", onde o presidente Truman às vezes passava férias. Ele passou três semanas aqui no mês passado.

Centenas de banhistas nas praias ficaram chocados com o barulho explosivo da colisão e viram os aviões mergulharem no mar. O DC-4 espirrou colunas de água a 15 metros de altura. Não havia esperança desde o início de que alguém em qualquer um dos aviões tivesse sobrevivido.


Os barcos de resgate invadiram o local tão rapidamente que o primeiro corpo do avião da Marinha foi recuperado em dez minutos e o primeiro do avião em 15 minutos. Às 23h, mergulhadores da Marinha trouxeram 19 corpos dos destroços submersos do transporte. 

Pouco antes de escurecer, as operações de mergulho foram interrompidas temporariamente e os esforços foram iniciados para levar os destroços à superfície. Os motores foram recuperados primeiro. A fuselagem, que enrolou como uma bola no impacto com a água, não será pode ser retirada até o dia seguinte, mas a embarcação da Marinha usou holofotes para continuar a busca por mais corpos durante a noite.

Uma investigação do acidente foi iniciada imediatamente por uma comissão de inquérito naval chefiada pelo Capitão Quackenbush. Também estiveram aqui funcionários da Autoridade Aeronáutica Civil.

Investigação


Os investigadores da Autoridade Aeronáutica Civil (CAA) determinaram que não houve problemas mecânicos em nenhuma das aeronaves. Ambos estavam operando sob regras de voo visual , já que o tempo no momento do acidente estava claro e calmo. 

A causa provável do acidente foi apontada pela CAA como uma falha por parte de ambas as tripulações aéreas em exercer a devida vigilância na busca e prevenção de tráfego conflituoso. A CAA também pediu uma revisão dos procedimentos de controle de tráfego aéreo.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipedia e ASN

Como os aviões inadequados são convertidos para uso em porta-aviões?

Aeronaves específicas são construídas especialmente para operações em porta-aviões.

Uma vista aérea do USS Gerald Ford na água (Foto: Aerial-motion/Shutterstock)
À medida que o porta-aviões Gerald R. Ford (CVN-78) se posiciona ao largo da costa de Israel durante a crise atual, analisámos quatro aeronaves que nunca foram concebidas para serem utilizadas num porta-aviões, mas que eventualmente o foram. Atualmente, a Marinha dos Estados Unidos possui 11 porta-aviões que opera em todo o mundo para projetar o poderio militar americano.

Como a cabine de comando (pista) de uma transportadora típica dos EUA tem 1.092 pés de comprimento, apenas certos tipos de aeronaves podem decolar e pousar nela. Além de poder decolar com o auxílio de uma catapulta e pousar no navio por meio de fios de travamento, os aviões precisam ter asas que se dobrem para não ocupar muito espaço. Apesar das limitações, houve momentos em que aviões que nunca deveriam pousar ou decolar de um porta-aviões foram utilizados nessa capacidade.

North American B-25 Mitchell


Após o ataque surpresa mortal a Pearl Harbor pelos japoneses em 7 de dezembro de 1941, os Estados Unidos precisavam de uma maneira de contra-atacar. Em 8 de dezembro de 1941, os japoneses invadiram as Filipinas, assumindo o controle da base de bombardeiros americana em Clark Field. Os americanos foram forçados a improvisar e, sem aeródromos operacionais a uma distância de ataque do Japão, decidiram pilotar bombardeiros B-25 Mitchell de um porta-aviões.

Uma foto em preto e branco de um B-25A B-25 decolando de um porta-aviões
(Foto: Marinha dos EUA via Wikipédia Commons)
Como o B-25 não foi projetado para decolar de uma cabine de comando, todos os seus canhões e qualquer outro peso desnecessário foram removidos. Incapazes de transportar grande parte da carga de bombas, os aviões foram responsáveis ​​apenas por uma quantidade comparativamente menor de danos, mas aumentaram significativamente o moral em casa.

Douglas C-47 Skytrain


Em 1946, após o fim da Segunda Guerra Mundial, os Estados Unidos queriam estabelecer uma base científica na Antártica. Para obter todos os suprimentos necessários para a instalação, eles modificaram seis R-4Ds, a versão da Marinha do C-47, avião que desempenharia um papel vital durante a ponte aérea de Berlim.

Um Skytrain Douglas C-47 (Foto: Marinha dos EUA via Wikipédia Commons)
Eles foram equipados com foguetes de reforço para impulso adicional e dar aos aviões potência suficiente para decolar do convés do porta-aviões. Embora a Marinha tenha levado as aeronaves e suprimentos do porta-aviões para a Antártica, eles não puderam pousar de volta no navio e foram abandonados após a missão.

Lockheed U-2


No auge da Guerra Fria com a União Soviética, a única aeronave de reconhecimento estratégico capaz de espionar a Rússia era o avião espião U-2. Normalmente, os Estados Unidos operariam aeronaves de países vizinhos como Noruega, Paquistão e Turquia; embora isso funcionasse, havia áreas que a aeronave não conseguia alcançar.

Um Lockheed U-2 sobrevoando um deserto (Foto: Lockheed)
Para resolver o problema, eles modernizaram alguns exemplares do tipo com trem de pouso aprimorado, spoilers de asa e até asas dobráveis ​​para operações de porta-aviões. No final, os aviões nunca sobrevoaram a URSS, mas foram usados ​​para monitorar um teste nuclear francês na Polinésia.

Lockheed C-130 Hercules


Originalmente projetado para ser um transportador de carga e tropas, o quadrimotor Lockheed C-130 nunca foi projetado para decolar ou pousar em um porta-aviões. Embora a maioria dos porta-aviões dependa de navios de apoio para reabastecê-los, alguns itens devem ser entregues com urgência. Foi aqui que o Grumman C-2 Greyhound foi usado.


A capacidade de carga do Grumman C-2 era limitada, levando a Marinha a tentar operar C-130 modificados. As alterações incluíram um orifício menor para o trem de pouso do nariz, um sistema de freio antiderrapante aprimorado e a remoção de cápsulas de reabastecimento sob as asas.

No final das contas, o C-130 alterado fez 21 decolagens e pousos sem assistência, mas nunca entrou em serviço. Até hoje, detém o recorde da maior aeronave já operada em um porta-aviões.

Com informações do Simple Flying

Aviões sumidos: por que caixas-pretas não transmitem dados em tempo real?

Mesmo com tanta tecnologia, aviões ainda desaparecem, como é o caso do voo MH370,
da Malaysia Airlines (Imagem: iStock)
Ao longo da história, alguns aviões desapareceram e seu paradeiro é um mistério até os dias de hoje.

São casos como o do voo MH 370, da Malaysia Airlines. Ele fazia a rota entre Kuala Lumpur (Malásia) e Pequim (China) em 2014, quando desapareceu com 239 pessoas a bordo.

Outro caso foi o do voo Varig 967, que sumiu em 1979. A aeronave era um Boeing 707 que decolou de Narita (Japão) rumo ao aeroporto do Galeão, no Rio de Janeiro, e antes faria uma Los Angeles (EUA).

Com tanta tecnologia, por que aviões ainda desaparecem?

Caixas-pretas em tempo real?


Um dos principais dispositivos utilizados para investigar um acidente aéreo é a caixa-preta do avião. Embora não seja obrigatória em todos os tipos de aeronaves, elas armazenam diversas informações fundamentais para entender o que aconteceu em um voo.

Sua função primária, entretanto, não é fornecer a localização das aeronaves. De acordo com Fabio Rocha, gerente de Manutenção da Gol, esses dados não precisam de um acompanhamento tão rápido.

"Ter esses dados em tempo real não é fundamental. Nossas aeronaves enviam os dados sempre ao final de cada dia de voo e isso já é suficiente para as análises que precisam ser realizadas", diz Rocha. Ao mesmo tempo, o valor gasto para uma transmissão em tempo real para analisar o que o avião está enfrentando é muito alto. O volume de dados é muito grande e a transmissão de dados a partir de aeronaves possui um custo elevado. As aeronaves são programadas para enviar apenas alguns poucos alertas, os quais possuem uma quantidade baixa de dados e com isso se tornando viável o envio a partir do avião", disse Fabio Rocha, da Gol.

Para solucionar essa questão, uma alternativa é ter uma banda larga mais econômica, diz o executivo.

Qual alternativa para localizar aviões?


Hoje, a principal tecnologia usada para receber informações básicas de voo é chamada de ADS-B (Automatic Dependent Surveillance-Broadcast, ou, transmissão de vigilância dependente automática). Ela registra a localização da aeronave (que é definida, geralmente, por coordenadas GPS) e envia o sinal contendo, além da posição do avião, dados como velocidade, rumo, altitude, características do avião etc.

Essas informações são captadas por antenas no solo e, quando o avião está sobre o oceano, por satélites. Dali, são repassadas para os diversos destinos, como empresas aéreas ou plataformas de rastreamento de voos online.

Sistema para emergências


Para Philippe Priouzeau, diretor técnico de atividades de aviônica de voo da fabricante do setor aeroespacial Thales, a indústria aeronáutica trabalha para melhorar a resposta a situações de emergência. Quem encabeça um grupo de trabalho com esse objetivo é a OACI (Organização da Aviação Civil Internacional).

O sistema que está sendo elaborado é o Gadss (Global Aeronautical Distress & Safety System, ou, Sistema Global de Socorro e Segurança Aeronáutica). O executivo destaca que o sistema poderá contar com receptores de GPS e sistemas de navegação para permitir o posicionamento exato.

Informações ao vivo


Para que ambas as informações, tanto de localização quanto dados das aeronaves, cheguem em tempo real às empresas, é preciso desenvolver ainda um sistema de transmissão de dados de banda larga de baixo custo e eficiente. Mesmo assim, seria necessário observar quais são os dados fundamentais para monitorar um voo.

Uma informação como, por exemplo, baixa pressão no pneu do trem de pouso pode ajudar as empresas a planejarem o pouso com mais segurança. Poderia ser o caso de se alternar o aeroporto de destino ou de já deixar as equipes de emergência em alerta, mas isso pode ser feito pelos próprios pilotos via rádio.

Aviões desviando da rota também soariam um alarme nas empresas. De qualquer maneira, qualquer atitude que teria de ser tomada a bordo, não teria como sofrer interferência das empresas, dependendo apenas da experiência e capacidade dos pilotos.

A era de ouro do voo: como as coisas mudaram

Uma época emocionante para viajar, para poucos sortudos.

Boeing 377 Stratocruiser Cathay da BOAC nas Bermudas em 1953 (Foto: Wikimedia Commons)
A era de ouro das viagens nas décadas de 1950 e 1960 foi o epítome do glamour e do luxo. Voar era um grande evento e apenas para os relativamente ricos. Foi uma experiência prestigiosa e glamorosa de se ter. O que tornou as viagens aéreas tão especiais e diferentes hoje? Vamos voltar no tempo.

Na cabine


As cabines das aeronaves eram menos lotadas e os assentos tinham mais espaço para as pernas e para se movimentar. Os assentos eram grandes e confortáveis, independentemente da duração do voo. Você poderia reclinar seu assento sem ofender ninguém. A distância entre os assentos estava entre 36 e 40 polegadas hoje, em comparação com 28 polegadas hoje. O corredor era muito mais largo do que as aeronaves de hoje. Não havia distinção entre primeira classe e economia, era tudo uma só cabine.

Outras comodidades a bordo


Algumas aeronaves tinham camas a bordo como beliches com cortina de privacidade onde os passageiros podiam dormir. Não era incomum que os passageiros encontrassem um piano lounge ou bar na aeronave, onde pudessem relaxar e socializar. Coquetéis eram servidos em festas sofisticadas e os passageiros podiam se divertir e possivelmente esquecer o medo de voar. Os passageiros receberam “cartões postais do céu” para enviar a amigos e familiares, que se tornaram muito colecionáveis.

(Foto: SAS Scandinavian Airlines/Wikimedia Commons)

A experiência


Viajar em uma aeronave foi uma experiência de luxo que seguiu a experiência do navio de cruzeiro. As companhias aéreas focavam no conforto e no luxo, e não era apenas um assento que levava você de A a B. Era algo para desfrutar e contar aos seus amigos. Não era permitido pijama a bordo, era um desfile de moda com todos vestidos com seus melhores trajes. Passageiros vestidos de maneira muito elegante e formal. Não havia limites de bagagem ou taxas e os itens eram entregues por correio em suas casas.

Refeições a bordo


Não havia sinal de refeições em uma bandeja de papel alumínio naquela época. Os menus foram criados por conceituados chefs de restaurantes. As refeições eram uma experiência gourmet e havia vários pratos. Esculturas de gelo adornadas com caviar eram normais. A sopa era servida em uma terrina e a lagosta costumava ser um aperitivo. Rosbife e costela podem ser esculpidos à mão no carrinho de prata. Claro, linho branco, talheres de prata e porcelana fina estavam na ordem do dia. Champanhe, conhaque e bom vinho francês eram abundantes.

Lounge de um Convair 880 da TWA
(Foto:  San Diego Air and Space Museum Archive/
Wikimedia Commons)

Fumar a bordo


Nas décadas de 1950 e 1960, fumar a bordo de uma aeronave era completamente normal. Os comissários de bordo distribuíam cigarros e charutos e os acendiam para os passageiros. Os incêndios a bordo tornaram-se um problema quando os cigarros quentes iluminavam as toalhas de mão no banheiro, aplicando detectores e supressores de incêndio nos anos posteriores. O último voo para fumantes ocorreu em 2000.

Comissários de bordo


Os comissários de bordo eram jovens, solteiros e glamorosos e tiveram que se aposentar antes dos 30 anos. Eles levavam um estilo de vida glamoroso, viajando ao redor do mundo em viagens extensas. Eles usavam uniformes de grife, muitas vezes com luvas e chapéu, e nunca conseguiam engordar. A ênfase estava no conforto na cabine e em torná-la uma ótima experiência para os passageiros. Isso mudou nas décadas de 1980 e 1990, quando a segurança se tornou o foco da função.

(Foto: Esko Manninen/Suomen Ilmailumuseo/Wikimedia Commons)

Segurança da aviação


A segurança no aeroporto era um processo relativamente simples, um pouco como ir a uma paragem de autocarro, até que o sequestro se tornou mais comum no final da década de 1960. Só nos EUA, entre 1968 e 1971, ocorreram 130 sequestros. As pessoas tinham medo de voar porque era uma forma de viagem relativamente nova para a maioria. Na verdade, era uma época bastante perigosa para voar e os acidentes eram comuns. A cabine da aeronave muitas vezes não estava pressurizada, por isso podia fazer barulho na cabine. Os cigarros e o álcool provavelmente acalmaram os medos.

O futuro


Na década de 1970, voar tornou-se mais acessível ao público. Um voo da TWA em 1953 de Chicago para Phoenix custava US$ 138, o que equivaleria a US$ 1.200 no dinheiro de hoje. As pessoas economizaram dinheiro para voar. Na década de 1980, os preços das passagens caíram ainda mais, permitindo que mais pessoas pudessem voar. Nas décadas de 1970 e 1980, ocorreram muitas mudanças na indústria da aviação e não havia mais necessidade de glamour e luxo. A era de ouro das viagens realmente acabou, mas trouxe consigo a oportunidade de mais pessoas voarem do que nunca e, claro, melhores padrões de segurança.

Com informações de Simple Flying

quarta-feira, 24 de abril de 2024

Conheça invenções da NASA que você tem em casa

Pode ser que você nem note, mas há 65 anos invenções da NASA fazem parte da sua vida diária.


Quem nunca falou ou viu a frase "Agora a NASA vem...", para mostrar sua indignação com algo. Acredite, a NASA já está presente na sua vida sem você nem ter que se preocupar com um cientista de roupa especial entrando na sua casa.

Mais de 550 milhões de telespectadores assistiram à primeira transmissão ao vivo via satélite quando o astronauta Neil Armstrong proferiu seu célebre dizer: “Um pequeno passo para o homem, um grande salto para a humanidade”.

Além de imortalizar a frase, Armstrong levou para o mundo o nome da NASA, a agência espacial norte-americana. O curioso é que, apesar do uso indiscriminado da expressão “agência espacial”, a tradução é imprecisa.

A NASA, acrônimo para National Aeronautics and Space Administration (Administração Nacional da Aeronáutica e Espaço, na tradução literal), é uma das principais agências federais dos Estados Unidos, tendo como principal atividade a pesquisa e o desenvolvimento de tecnologias aeroespaciais.

Ou seja, a agência vai muito além de estudar apenas o cosmos ou tecnologias que levem a humanidade ao espaço.

Há mais de 100 anos


A história da agência remonta ao início da aviação. Com o avanço da nova ciência, o governo norte-americano criou, em 1915, um comitê focado exclusivamente para o segmento. O NACA, ou National Advisory Committee for Aeronautics (Comitê Consultivo Nacional para a Aeronáutica), em pouco tempo, tornou-se uma referência mundial em pesquisas aeronáuticas.

Menos de quinze anos após sua criação, contava com quatro laboratórios e 500 cientistas altamente especializados. Com a Segunda Guerra, passou a ser uma provedora de soluções para o esforço de guerra e suas pesquisas em aerofólios ganharam notoriedade, que se mantém até os dias de hoje. Foi ainda co-responsável pelo desenvolvimento do X-1, o primeiro avião a quebrar a barreira do som.

S de Sputnik


Com a União Soviética avançando a passadas largas na pesquisa aeroespacial, os norte-americanos assistiram chocados ao lançamento do Sputnik, em 1957. Uma reunião emergencial na Casa Branca definiu que os Estados Unidos deveriam dedicar máximo esforço para manter sua liderança na tecnologia aeronáutica e, naquele momento, no recém-criado setor espacial.

A solução foi bastante óbvia: a NACA deixaria de ser apenas um comitê para aeronáutica, tornando-se uma agência de pesquisas aeroespaciais. O presidente Dwight D. Eisenhower sancionou a criação da NASA em julho de 1958, com a agência entrando em serviço em 1 de outubro do mesmo ano.

A criação da NASA não se restringiu a substituir o “C” pelo “S” da NACA. Além de herdar três laboratórios, mais de 8.000 funcionários e ganhar imediatamente um orçamento de US$ 100 milhões (equivalente a US$ 873 milhões em 2018), a nova agência superou fronteiras nas pesquisas espaciais.

Entre 1969 e 2018, a NASA registrou no US Patent and Trademark Office nada menos que 6.305 patentes. O número pode parecer pequeno, já que gigantes como a Google registraram, em vinte anos, mais de 60.000 patentes. A diferença é que a muitas dessas tecnologias que o Google criou, acredite, foi baseada em soluções e patentes da NASA.

Na prática, os trabalhos feitos pelos pesquisadores da NASA estão mais próximos do nosso cotidiano do que se pode imaginar.

Da NASA para sua vida


Travesseiro – Com espuma de memória


Acredite, a tecnologia do travesseiro da NASA é realmente da NASA. A espuma da memória foi criada por pesquisadores financiados pela NASA, que procuravam maneiras de manter o corpo dos pilotos de teste amortecidos durante os voos com vibrações bastante intensas. Atualmente, a espuma de memória é utilizada em travesseiros, colchões, sofás, assentos de carros e aviões, calçados, entre outros.

Selfies – Imagens digitais

As imagens feitas por seu smartphone, das câmeras fotográficas digitais, mesmo as filmagens do cinema, utilizam como base um sensor digital criado pela NASA no início dos anos 1990. Para atender às necessidades cada vez maiores de imagens espaciais, como a da Terra vista do espaço, a agência criou um sensor que emprega um semicondutor complementar de óxido de metal (CMOS). A vantagem foi criar um dispositivo muito pequeno, que requer pouca energia e é altamente eficiente. A tecnologia CMOS domina a indústria de imagem digital, permitindo que se desenvolvam câmeras de celular e vídeo de alta definição. Além de ser responsável por bilhões de selfies todos os anos.

Carros – Computador de bordo

Se o computador de bordo informa que os sistemas estão todos “okay” ao ligar o carro, agradeça aos engenheiros da NASA. Embora a indústria automobilística tenha aperfeiçoado o processo, ela não passa de uma licença sobre uma tecnologia by NASA. Atualmente, a equipe do Glenn Research Center da NASA desenvolve funções de aprendizagem simples e elementos adaptáveis ​​que podem ser colocados em pequenos sistemas de hardware, incluindo instrumentos para espaço, dispositivos médicos implantáveis ​​e observadores estocásticos.

Maracanã – Cobertura com mesmo material de trajes espaciais

O icônico aeroporto de Denver se destaca por sua cobertura branca, assim como os grandes estádios de futebol utilizam enormes coberturas flexíveis. O material foi originalmente desenvolvido para trajes espaciais pela BirdAir a pedido da NASA e são feitos de um composto de fibra de vidro e Teflon, exatamente o mesmo material que protegeu os astronautas da Apollo enquanto eles caminhavam na Lua. E você ironizou a cobertura bilionária do Maracanã falando que era da NASA? Pois é, acertou.

Tempo bom – Previsão meteorológica


A previsão meteorológica é cada dia mais precisa. Em alguns locais é possível afirmar com quase certeza o horário exato que começará a chover, nevar ou ventar. Além desses dados, em muitos casos, serem obtidos por satélites da NASA, a maior parte dos algoritmos empregados nas complexas análises do clima foi criada pela agência ao longo das últimas décadas.

Na nuvem – Armazenamento de dados

Há uma década, a NASA iniciou o projeto para organizar seus sites, seja de conteúdo para internet ou de sua rede interna. O objetivo era padronizar métodos e ferramentas para seus desenvolvedores web. A solução levou à criação da tecnologia de computação em nuvem. Quase instantaneamente o padrão criou uma nova indústria no mundo, que possibilitou o desenvolvimento de sistemas de armazenamento em nuvem, aplicativos baseado na rede, até mesmo o Netflix e o AmazonPrime se beneficiam dessa tecnologia.

Aparelho fixo – Braces ortodônticos transparentes

No início dos anos 1980, a NASA trabalhava em um programa de pesquisa avançado para aplicação cerâmica. O estudo, conduzido em parceria com a Ceradayne, buscava uma solução para a criação de um material que pudesse ser empregado em radomes de radares infravermelhos. O objetivo era encontrar uma forma de proteger as antenas com uma cúpula o mais transparente possível, para permitir que o máximo de energia pudesse transplantar o radome sem perda. Materiais espessos ou opacos eram bastante problemáticos. O estudo levou à criação de um material chamado polycrystalline alumina (TPA). Pouco tempo depois a 3M contratou a Ceradayne para buscar um material resistente e ao mesmo tempo transparente para que pudesse ser utilizado na indústria odontológica. O resultado? O TPA se tornou a base para os braces invisíveis utilizados em aparelhos ortodônticos. Foi o alivio para muitas crianças.

Isolante térmico – TEEK é leve, moldável e resistente ao fogo

O engenheiro Erik Weiser trabalhava na seção de materiais e processos avançados no Langley Research Center, em uma pesquisa para desenvolvimento de uma substância que permitisse produzir compósito para uso em aeronaves supersônicas. Como inúmeras invenções do mundo, algumas coisas saem diferente do esperado. Uma das substâncias resultantes se mostrou uma excelente espuma de isolamento térmico, que deu à equipe de Weiser o prêmio NASA’s 2007 Commercial Invention of the Year. O material batizado de TEEK se mostrou leve, altamente moldável e resistente ao fogo, suportando temperaturas acima de 315°C (600°F) e criogênicas.

Terremoto – Edifícios e pontes com sistema de amortecimento


Edifícios e pontes em países e regiões com elevada incidência de terremotos, ou mesmo construções que necessitam de amortecimento contra vibrações, utilizam uma solução desenvolvida para o lançamento de naves espaciais. Os amortecedores absorventes de choque foram originalmente criados para proteger naves espaciais e equipamentos das plataformas durante as condições extremas dos lançamentos. A vibração intensa gerada pelos motores poderia literalmente colapsar a estrutura ao redor. Amortecedores especiais absorviam o choque e mantinham a estrutura praticamente inerte, mesmo com o chão tremendo como em um terremoto.

Ômega 3 – Favorece o desenvolvimento infantil

As missões para Marte nem começaram, mas a NASA trabalha há vários anos no projeto, criando condições mínimas para permitir a exploração do planeta vermelho. Enquanto pesquisadores desenvolviam suporte de vida para as missões marcianas descobriram uma fonte natural de um ácido graxo (ômega-3), o leite materno. As pesquisas mostraram que o ômega-3 desempenha um papel fundamental no desenvolvimento infantil. Desde então, o ingrediente foi adicionado a praticamente todas as fórmulas de leite e suplemento infantil disponível no mercado.

GPS, Rnav e Waze – A revolução da navegação por satélite

Possivelmente o leitor já voou usando como referência dados de GPS, pousou por meio de um procedimento RNAV, entrou no carro e procurou no Waze o melhor caminho para chegar em casa. A constelação de satélites GPS foi criada pela Força Aérea dos Estados Unidos, mas, desde a década de 1990, também é utilizada para fins civis. Contudo, os militares liberaram o uso da rede GPS sem fornecer acesso aos dados corrigidos de localização, que podem apresentar um erro de até 15 metros. A incerteza das posições dos satélites e a interferência da atmosfera da Terra causam uma distorçam no sinal. Os pesquisadores do Jet Propulsion Laboratory (JPL), da NASA, instalado na CalTech, desenvolveram um software civil capaz de corrigir esses erros. Além disso, a NASA monitora a integridade dos dados globais de GPS em tempo real para os militares norte-americanos.

Caminhões – Projeto aerodinâmico

Quase todos os caminhões que rodam pelo mundo tiveram seu desenho aerodinâmico criado baseado em estudos da NASA. A pesquisa da agência no projeto aerodinâmico de veículos pesados levou às curvas e aos contornos que ajudam os caminhões modernos a atravessar o ar com menor arrasto. Anualmente, um caminhão médio gasta aproximadamente 25.000 litros a menos de óleo diesel graças a sua aerodinâmica.

Água pura – Sistema de filtragem para áreas remotas


Missões espaciais tripuladas enfrentam uma série de desafios, o maior deles: onde obter água? Para isso, a NASA desenvolveu uma série de filtros para reciclar a água na Estação Espacial Internacional (ISS) e mesmo em missões para Marte. Um filtro de nanofibra projetado para purificar a água no espaço tem sido fundamental para purificar a água em regiões remotas, especialmente em aldeias isoladas na África. Além disso, aquelas garrafas de água usadas por aventureiros em trilhas utilizam esse mesmo filtro.

Coração e boca – Bomba cardíaca e válvula de retenção microbiana

A ISS ainda trouxe outra inovação para a Terra, a válvula de retenção microbiana que evita a contaminação nos consultórios odontológicos. A experiência da NASA em simulações de fluxo de fluídos através dos motores de foguetes levou ao desenvolvimento de poderosos e eficientes sistemas de controle de combustível e refrigeração para naves espaciais. Porém, seu uso mais corriqueiro e nobre ocorre em hospitais, onde milhares de pessoas dependentes de um transplante de coração foram mantidas vivas graças a uma bomba cardíaca de assistência ventricular, que mantém o sangue circulando por todo o corpo baseado exatamente no sistema espacial.

Montanha-russa – Software para análise de dados estruturais

Na década de 1960, a NASA se tornou pioneira ao empregar computação na análise de dados estruturais. Anteriormente todos os cálculos eram manuais, sujeitos a erros e a uma eternidade de tempo para serem concluídos enquanto os soviéticos continuavam enviando foguetes e astronautas para o espaço. Com isso surgiu o Astran, um software de análise estrutural bastante popular até hoje, empregado em uma infinidade de aplicações, de reatores nucleares, a carros, bicicletas e especialmente na construção de montanhas-russas.

Esteira sem gravidade – Para pacientes com dificuldade de locomoção

A empresa de dispositivos médicos Alter-G licenciou uma tecnologia da NASA, em 2005, criando uma esteira “antigravidade” utilizada por pacientes que passaram por graves lesões, cirurgias na coluna ou pernas, ou mesmo quem sofre com tensões nas articulações, como artrite ou obesidade, e atletas profissionais. A esteira foi criada pela equipe da NASA para evitar que os astronautas na estação espacial tivessem perda óssea e muscular no ambiente de gravidade zero. Para aplicar o conceito no treinamento na Terra, a agência desenvolveu uma tecnologia para imitar a gravidade usando a pressão diferencial do ar. O princípio é inverso ao existente no espaço, onde seria desejável simular o peso adicional da gravidade, mas na Terra o processo é inverso, usado para aliviar a carga nas pernas de um usuário.

Alimentos – Processamento e acondicionamento seguros

No início do programa espacial tripulado, uma das preocupações da NASA era com relação à segurança alimentar dos astronautas no espaço. Procurando garantir a segurança absoluta dos alimentos pré-embalados para voos espaciais, a NASA em parceria com a Pillsbury Company criou um eficiente controle de qualidade, conhecido como Hazard Analysis and Critical Control Points (HACCP), que é uma análise de perigos no processamento e acondicionamento de alimento. O método HACCP se tornou um padrão da indústria alimentícia desde então.

Óculos – Lentes com filtro UV e sem arranhões


Os óculos que utilizamos hoje empregam algumas das primeiras pesquisas sobre revestimentos resistentes a arranhões para lentes feitas pelo Ames Research Center. Nos anos 1960, a NASA buscava revestimentos para viseiras dos capacetes e membranas plásticas usadas em sistemas de purificação de água. Duas décadas depois, a agência desenvolveu lentes com filtro UV que melhoraram a segurança em dias ensolarados e ainda aperfeiçoavam as cores absorvida pelos olhos. Hoje quase todos os óculos de sol, de esqui e máscaras de segurança para soldadores utilizam essa tecnologia.

Maiô olímpico – Reduz o arrasto quando nadador corta a água

Muitos medalhistas olímpicos devem parte de suas conquistas aos esforços feitos por engenheiros da NASA no túnel de vento do Langley Research Center. Os resultados obtidos tiveram um papel fundamental no desenvolvimento do traje LZR Racer da Speedo, que utilizou novos materiais e costuras para reduzir o arrasto quando um nadador corta a água. O maiô fez estreia olímpica em 2008, em Pequim, mas sua performance era tão superior que o maiô de corpo inteiro foi proibido pelas entidades esportivas.

Aviação – Dos winglets aos motores


Além disso, a NASA foi responsável por centenas de tecnologias utilizadas na aviação. São inúmeros soluções que advém das pesquisas da agência espacial. Entre elas estão os winglets, utilizados para aumentar a eficiência dos aviões, alguns dos materiais compostos, que garantem a produção de peças mais leves, flexíveis e resistentes, além de perfis de aerofólios, motores, sistema antigelo e diversas outras tecnologias.

Via Edmundo Ubiratan (Aero Magazine) - Fotos: NASA/Divulgação

Vídeo: O Mergulho do Voo 841 da TWA


O Mergulho do Voo 841 da TWA. Nesse vídeo, Lito Sousa mergulha de cabeça em uma investigação meticulosa sobre o enigmático mergulho do voo 841 da TWA.

Por dentro do Electra da Varig - O único que sobrou da frota

Via Aero Por Trás da Aviação

Por que os EUA jogaram helicópteros no mar no final na Guerra do Vietnã?

Helicóptero UH-1 Huey sendo jogado ao mar ao final da Guerra do Vietnã, durante a
operação Vento Constante (Imagem: Divulgação/Marinha dos EUA)
No final da Guerra do Vietnã (1959 a 1975), com a evacuação da cidade de Saigon, os militares norte-americanos jogaram dezenas de helicópteros no mar durante os trabalhos de resgate. A situação fora do comum foi necessária para evitar mortes e aumentar o número de pessoas resgatadas.

O volume de aeronaves que deixava a cidade era tão grande, que não havia mais espaço nos porta-aviões para que todos eles pousassem. Com as filas de aeronaves se formando para desembarcar pessoas resgatadas, o combustível acabando, e pouco espaço para os pousos, optou-se por fazer algo que, até então, não se imaginaria ser necessário: arremessar os helicópteros no mar.

Essa medida drástica teve de ser tomada para garantir a sobrevivência do máximo de resgatados possível, abrindo espaço para mais pousos e evitando que houvesse uma tragédia, com helicópteros caindo cheios de pessoas.

Mutirões formados por dezenas de militares empurravam os helicópteros com a força dos próprios braços rumo à borda do convés, de onde eram derrubados. Não havia muitas máquinas disponíveis, mas até uma espécie de empilhadeira chegou a ser usada no descarte dessas aeronaves.

Além dos arremessos, alguns pilotos levavam as aeronaves vazias em direção à água, onde eles as abandonavam e pulavam no mar. Ali ficavam aguardando embarcações de resgate para voltarem aos navios dos Estados Unidos.

Foram cerca de 6.000 vietnamitas e mil americanos retirados de Saigon ao todo. A duração dessa operação foi de 18 horas, e envolveu 81 helicópteros.

Desses, pelo menos 45 UH-1 Huey e três CH-47 Chinook foram lançados na água. Se isso tivesse ocorrido nos tempos atuais, o valor total teria sido de cerca de R$ 4,7 bilhões em aeronaves arremessadas ao mar.

Avião surpresa


O-1 Birddog pousa no convés do USS Midway durante a operação Vento Constante,
na Guerra do Vietnã (Imagem: Museu USS Midway)
Dave Meister, ex-militar que participou da operação no Vietnã, lembra que até um avião de pequeno porte com um piloto dos EUA precisou de espaço para pousar no USS Midway. O militar falou do episódio durante depoimento ao Museu Naval de Hampton Roads em 2020.

O piloto do qual Meister conta a história estava em um avião de pequeno porte com sua família, e tinha conseguido decolar de Saigon apesar do cerco à cidade e ao aeroporto.

Era um avião pequeno, e ele não tinha comunicação via rádio com o navio. Ele sobrevoou o USS Midway e jogou um bloco de notas onde estava escrito "eu quero pousar".

Nesse momento, vários helicópteros foram derrubados nas águas do mar. "Nós abrimos espaço do convés e ele conseguiu pousar. [...] Ficamos surpresos quando ele saiu daquela pequena aeronave com sua esposa e os três filhos", diz Meister.

Operação Vento Constante


Helicóptero UH-1 Huey sendo jogado ao mar ao final da Guerra do Vietnã, durante a
operação Vento Constante (Imagem: Corpo de Fuzileiros Navais dos EUA)
A manobra de evacuação da cidade foi batizada de Vento Constante. À época, o país encontrava-se divido entre Vietnã do Norte (apoiado pela então União Soviética e China) e Vietnã do Sul (que tinha o apoio dos EUA, Coreia do Sul, entre outras nações). A disputa só teve fim em 30 de abril de 1975, com o episódio que ficou conhecido como a queda de Saigon.

A cidade era um dos últimos focos de resistência do exército do Vietnã do Sul, e tinha uma forte presença de militares norte-americanos. Com a derrota iminente, planejou-se uma estratégia de evacuação da cidade por meio de helicópteros.

Uma mensagem codificada nas rádios seria o sinal de que os habitantes deveriam se preparar para deixar Saigon, com destino aos porta-aviões norte-americanos na região. Os rádios iriam tocar a mensagem "A temperatura em Saigon é de 105 graus [Farenheit, equivalente a 40,5º C] e está aumentando", seguida da música "White Christmas" a cada 15 minutos.

Era o início da operação Vento Constante, que duraria de 29 a 30 de abril de 1975.

Fim da guerra


UH-1 Huey sendo jogado ao mar durante a operação Vento Constante
(Imagem: Divulgação/Marinha dos EUA)
Thomas Polgar, chefe da estação de Saigon da CIA, a agência de inteligência dos Estados Unidos, foi um dos últimos a deixar o Vietnã de helicóptero.

Em seus últimos momentos ali, Polgar escreveu uma mensagem para o governo dos EUA que dizia: "Esta será a mensagem final da estação de Saigon. Foi uma luta longa e perdemos. [...] Aqueles que não conseguem aprender com a história são forçados a repeti-la. Esperemos que não tenhamos outra experiência no Vietnã e que tenhamos aprendido nossa lição. Saigon assinando".

Via Alexandre Saconi (Todos a bordo)

Aconteceu em 24 de abril de 1994: Falha do motor após a decolagem leva DC-3 a pouso no mar ao largo de Sidney


Em 24 de abril de 1994, a aeronave Douglas C-47A-20-DK (DC-3), prefixo VH-EDC, da South Pacific Airmotive (foto abaixo), foi fretada para transportar estudantes universitários e seus equipamentos de banda de Sydney para o Aeroporto da Ilha de Norfolk, na Austrália, para participarem das celebrações do Dia de Anzac na ilha. 


A aeronave seguiria do Aeroporto de Sydney (Kingsford-Smith) para a Ilha de Norfolk, com um pouso intermediário no Aeroporto da Ilha Lord Howe, NSW, para reabastecimento. O voo deveria ser conduzido de acordo com os procedimentos IFR. 

A aeronave, que transportava 21 passageiros, era tripulada por dois pilotos, um piloto supranumerário e um comissário de bordo. Os preparativos para a decolagem foram concluídos pouco antes das 09h00, e a aeronave foi liberada para taxiar para a pista 16 via taxiway Bravo Three. 

O copiloto foi o piloto de manuseio para a decolagem. A aeronave foi liberada para decolagem às 09h07min53s. Todas as indicações do motor estavam normais durante a rolagem de decolagem e a aeronave saiu da pista a 81 nós. 

Durante a subida inicial, a aproximadamente 200 pés, com os flaps levantados e o trem de pouso se retraindo, a tripulação ouviu uma série de estalos acima do ruído do motor. Quase imediatamente, a aeronave começou a guinar para a esquerda e às 09h09h04 o piloto em comando avisou à Torre que a aeronave estava com problemas. 

O copiloto determinou que o motor esquerdo estava com defeito. A velocidade da aeronave neste momento havia aumentado para pelo menos 100 nós. O piloto em comando, tendo verificado o mau funcionamento do motor esquerdo, fechou o acelerador esquerdo e iniciou o embandeiramento da hélice. 

Durante este período, a potência total (48 polegadas Hg e 2.700 RPM) foi mantida no motor direito. No entanto, a velocidade no ar começou a diminuir. O copiloto relatou que tentou manter 81 KIAS, mas não conseguiu. 

A aeronave divergiu para a esquerda da linha central da pista. Quase todo o aileron direito foi usado para controlar a aeronave. O copiloto relatou que ele tinha leme direito completo ou leme direito quase totalmente aplicado. 

Quando ficou sabendo do mau funcionamento do motor, o piloto em comando avaliou que, embora um pouso de volta na pista poderia ter sido possível, a aeronave era capaz de subir com segurança em um motor. 

Porém, ao determinar que a aeronave não subia e que a velocidade no ar havia caído para menos de 81 nós, o piloto em comando assumiu o controle e às 09h09min38s avisou à Torre que estava pousando de emergência com a aeronave. 

Ele manobrou a aeronave o mais próximo possível da extremidade sul da pista 16L parcialmente construída. A aeronave pousou aproximadamente 46 segundos depois que o piloto em comando avisou a Torre sobre o problema, sob as águas próximas ao aeroporto de Sidney. 


Os quatro tripulantes e 21 passageiros evacuaram com sucesso da amerrissagem da aeronave antes que ela afundasse. Eles foram levados a bordo de embarcações de recreio e transferidos para a costa.

Após a avaliação inicial, eles foram transportados para vários hospitais. Todos tiveram alta por volta das 14h30 daquela tarde, com exceção do comissário de bordo, que havia sofrido ferimentos graves.


A investigação concluiu que as circunstâncias do acidente eram consistentes com o motor esquerdo tendo sofrido uma perda de potência substancial quando uma válvula de admissão travou na posição aberta. A incapacidade do piloto de manuseio (copiloto) de obter um ótimo desempenho assimétrico da aeronave foi o fator culminante em uma combinação de fatores locais e organizacionais que levaram a este acidente. 


Os fatores contribuintes incluíram a condição de excesso de peso da aeronave, revisão do motor ou erro de manutenção, não adesão aos procedimentos operacionais e falta de habilidade do piloto de manuseio. 


Os fatores organizacionais relacionados à empresa incluíram: 1) comunicações inadequadas entre a South Pacific Airmotive Pty Ltd, que possuía e operava o DC-3 e estava baseada em Camden, NSW, e o titular do AOC, Groupair, que estava baseado em Moorabbin, Vic .; 2) gerenciamento de manutenção inadequado; 3) procedimentos operacionais inadequados; e 4) treinamento inadequado. 


Os fatores organizacionais relacionados ao regulador incluem: 1) comunicações inadequadas entre os escritórios da Autoridade de Aviação Civil e entre a Autoridade de Aviação Civil e a Groupair/South Pacific Airmotive; 2) procedimentos de controle operacional e de aeronavegabilidade deficientes; 3) controle e monitoramento inadequados da aeronave do Pacífico Sul; 4) regulamentação inadequada; e 5) treinamento deficiente da equipe.


Por Jorge Tadeu (Site Desastres Aéreos) com Wikipedia, ASN e baaa-acro

Aconteceu em 24 de abril de 1993: O sequestro do voo 427 da Indian Airlines


O voo IC427 da Indian Airlines estava envolvido em um sequestro de aeronave ocorrido na Índia entre 24 e 25 de abril de 1993. Comandos da Guarda de Segurança Nacional (NSG) resgataram todos os 141 reféns do Boeing 737 da Indian Airlines, no aeroporto de Amritsar. O sequestrador solitário, Mohammed Yousuf Shah, foi morto 5 minutos após a entrada dos comandos no avião, antes que pudesse reagir e ferir qualquer um dos reféns. O resgate foi batizado de 'Operação Ashwamedh'.

Sequestro


Um Boeing 737 da Indian Airlines, similar ao envolvido no sequestro
O Boeing 737-2A8, da Indian Airlines partiu de Delhi às 13h57 para Srinagar realizando o voo IC427 com 6 membros da tripulação e 135 passageiros a bordo. Durante o voo, um passageiro, que primeiro se identificou como Syed Salauddin, alegou que estava carregando pistolas e uma granada de mão e pediu que o avião fosse levado para Cabul. 

Às 14h43, o Controle de Tráfego Aéreo de Delhi recebeu uma mensagem de que o avião havia sido sequestrado e se dirigia a Cabul, no Afeganistão.

O Controle de Tráfego Aéreo de Lahore se recusou a permitir que o avião entrasse no espaço aéreo do Paquistão, e o voo voltou para a Índia depois de sobrevoar Lahore.

O avião pousou em Amritsar, na Índia, às 15h20. O sequestrador exigiu reabastecimento e novamente pediu que o avião fosse levado para Cabul. O Crisis Management Group (CMG) no Gabinete do Secretariado da Índia e o Comitê Central no Aeroporto de Delhi responderam à situação. 

O Vice-Comissário e o Superintendente Sênior de Polícia do distrito de Amritsar foram enviados ao aeroporto para negociar com o sequestrador. Às 18 horas, o Diretor-Geral da Polícia de Punjab chegou a Amrtisar e assumiu o processo de negociação. No entanto, o sequestrador permaneceu inflexível em sua demanda e até disparou um tiro de advertência que perfurou o corpo da aeronave.

Operação NSG


As negociações com o sequestrador foram feitas por um membro do GMC, um ex-DGCA e atual secretário de receita da Índia do secretariado do Gabinete. As negociações continuaram o dia inteiro e o sequestrador insistiu que a aeronave fosse enviada ao Paquistão. O negociador falou com a DGCA do Paquistão e eles recusaram a entrada na aeronave. O pedido do sequestrador de que a aeronave voltasse para Delhi também foi rejeitado. 

Nesse ínterim, o CMG transferiu uma equipe NSG de elite de Delhi para Amritsar e a posicionou estrategicamente. Depois que o sequestrador disparou um tiro, o negociador avisou o sequestrador sobre as terríveis consequências e pediu-lhe que se rendesse, o que ele recusou. 

O CMG então informou ao PM que a aeronave seria invadida. O negociador então emitiu a ordem para o crack 52 Special Action Group do NSG para invadir a aeronave e derrubar o sequestrador. 

O sequestrador foi surpreendido pela entrada repentina dos comandos no avião. Antes que ele pudesse reagir, ele foi derrubado. A operação terminou em cinco minutos, às 01h05, sem qualquer acidente ou ferimento a qualquer refém ou maiores danos à aeronave.

Resultado


O sequestrador, mais tarde identificado como Jalaluddin, apelido de Mohammed Yunus Shah, que foi entregue à polícia local. Ele sucumbiu ao tiro de pistola ao ser transferido para um hospital. Duas pistolas 9 mm carregadas foram recuperadas dele. 

As autoridades indianas alegaram que o sequestrador era membro do Hizbul Mujahideen, mas o grupo negou a responsabilidade.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipedia

Hoje na História: 24 de abril de 1990 - Ônibus Espacial Discovery decola levando o telescópio Hubble

Ônibus Espacial Discovery (STS-31) decola Pad 39B com o Telescópio Espacial Hubble.
O ônibus irmão Columbia aguarda no Pad 39A (Foto: NASA)
Em 24 de abril de 1990, às 12h33min51s (UTC), o Ônibus Espacial Discovery, em sua missão STS-31, decolou do Complexo de Lançamento 39B no Centro Espacial Kennedy, em Cabo Canaveral, na Flórida, em uma missão para colocar o Telescópio Espacial Hubble na órbita da Terra.

A tripulação de voo STS-31 era Loren J. Shriver, Comandante; Charles F. Bolden, Jr., Pilot; Steven A. Hawley, Especialista da Missão; Kathryn D. Sullivan, Especialista da Missão; Bruce McCandless II, Especialista da Missão.

Tripulação de voo do Discovery (STS-31): Sentados, da esquerda para a direita: Coronel Charles F. Bolden, Jr., Corpo de Fuzileiros Navais dos EUA; Coronel Loren J. Shriver, Força Aérea dos EUA; Tenente Comandante Kathryn D. Sullivan, Marinha dos EUA. De pé, da esquerda para a direita: Capitão Bruce McCandless II, Marinha dos EUA; Sr. Steven A. Hawley (Foto: NASA)
O telescópio espacial Hubble tem o nome de Edwin Hubble, um astrônomo do início do século 20 que descobriu galáxias além de nossa própria galáxia, a Via Láctea. É um telescópio óptico Ritchey-Chrétien (um refletor Cassegrain aprimorado). 

A luz da estrela entra no telescópio e é coletada por um grande espelho hiperbólico de 7 pés e 10,5 polegadas (2.400 metros) de diâmetro na extremidade posterior. A luz é refletida para frente em um espelho hiperbólico menor, que focaliza a luz e a projeta de volta através de uma abertura no refletor principal. A luz é então recolhida pelos sensores eletrônicos do telescópio espacial. Esses espelhos estão entre os objetos mais precisos já feitos, tendo sido polidos com uma precisão de 10 nanômetros.

O Telescópio Espacial Hubble sendo implantado do compartimento de carga do Discovery (Foto: NASA)
O Telescópio Espacial Hubble, que foi colocaco em órbita no dia 25 de abril de 1990, tem 43,5 pés (13,259 metros de comprimento. O tubo de luz tem um diâmetro de 10 pés (3,048 metros) e a seção do equipamento de ré tem 14 pés (4,267 metros) de diâmetro. A espaçonave pesa 27.000 libras (12,247 quilogramas).

O HST orbita a Terra a cada 97 minutos a uma altitude de 320 milhas náuticas (593 quilômetros). O telescópio teve sua última manutenção em 2009. Originalmente projetado para operar por 15 anos, o HST está agora em seu 26º.

O telescópio espacial Hubble em órbita terrestre (Foto: NASA)
O coronel Bolden alcançou o posto de Major General do Corpo de Fuzileiros Navais dos Estados Unidos, antes de se aposentar em 2003. Ele foi Administrador, Aeronáutica Nacional e Administração do Espaço, 17 de julho de 2009-20 de janeiro de 2017

A Tenente Comandante Sullivan deixou a NASA em 1993 e se aposentou da Marinha dos EUA com o posto de Capitão, em 2006. Ela serviu como Subsecretária de Comércio para Oceanos e Atmosfera/Administradora da Administração Nacional Oceânica e Atmosférica (NOAA), 28 de fevereiro de 2013 –20 de janeiro de 2017.

Edição de texto e imagens por Jorge Tadeu