As principais notícias sobre aviação e espaço você acompanha aqui. Acidentes, incidentes, negócios, tecnologia, novidades, curiosidades, fotos, vídeos e assuntos relacionados.
Visite o site Desastres Aéreos, o maior banco de dados de acidentes e incidentes aéreos do Brasil.
No dia 19 de dezembro de 2005, o voo 101 da Chalk's Ocean Airways decolou de Miami Beach, Flórida, com destino à ilha de Bimini, nas Bahamas. A frota de “barcos voadores” roxos e brancos da companhia aérea era um ícone local e se anunciava como a mais antiga empresa aérea em operação contínua do mundo.
Mas o voo 101 provaria ser sua ruína. Apenas um minuto depois de decolar do Porto de Miami, a asa direita caiu sem aviso, fazendo o hidroavião despencar em um canal de navegação. Todas as 20 pessoas a bordo morreram.
O Grumman G-73 Mallard, prefixo N2969, da Chalk's Ocean Airways, envolvido no acidente
A investigação descobriu que a Chalk's Ocean Airways havia escapado pelas rachaduras na rede de segurança regulatória: além de não ter um programa para prevenir falhas estruturais, a natureza de sua frota significava que tal programa de inspeção nem sequer era necessário.
As imagens desta matéria são provenientes do Bureau of Aircraft Accidents Archives, Ken Fielding, Mustang II, Peter Menner, do Honolulu Advertiser e do NTSB. Clipes de vídeo cortesia de Mayday (Cineflix) e CNN.
A Chalk's Ocean Airways foi fundada em 1919 e operou quase continuamente pelos 86 anos seguintes, exceto por uma pausa de dois anos durante a Segunda Guerra Mundial. A companhia aérea voou uma pequena frota de hidroaviões para uma lista de destinos em constante mudança no sul da Flórida e nas Bahamas. Durante a proibição, ele era conhecido por fazer luar. Muito mais tarde, foi popularizado por sua aparição na introdução de "Miami Vice".
Por muitas décadas, o núcleo da frota da companhia aérea era composto pelo Grumman G-73 Mallard. Considerado um “barco voador”, 59 Mallards foram produzidos entre 1947 e 1951. Na década de 1980, a Chalk's Ocean Airways tinha nada menos que oito Mallards. Eles foram originalmente construídos com motores de hélice movidos a pistão antiquados, mas na década de 1970, Grumman vendeu o certificado de tipo para a Frakes Aviation, uma empresa que modificava aviões movidos a pistão antigos. A Frakes Aviation substituiu os motores a pistão por turbina e nasceu o G-73T Turbine Mallard. Chalk atualizou para G-73T Mallards no início dos anos 80 e ainda os estava usando em 2005.
Quando a Frakes Aviation atualizou os motores do Mallard e adicionou mais assentos para passageiros, teoricamente teria que obter uma nova certificação de tipo para a aeronave. No entanto, a Federal Aviation Administration permitiu que Frakes mantivesse a certificação de tipo original, o que significa que o G-73T poderia ser adquirido de acordo com os requisitos de certificação como eles estavam quando a aeronave foi originalmente projetada em 1946!
Essencialmente, Frakes só precisava provar que as especificações originais do Mallard ainda eram válidas para sua nova versão. Os regulamentos sob os quais foi certificado datavam de 1943 e exigiam apenas um teste estático da estrutura da aeronave. Não havia necessidade de um teste de fadiga para determinar quanto tempo os componentes estruturais durariam antes de sucumbirem à fadiga do metal.
A Chalk Ocean Airways dificilmente estava em posição de analisar a vida à fadiga da estrutura do avião por conta própria. No final dos anos 1990, a empresa estava em apuros financeiros e a certa altura declarou falência. Também teve muito pouco suporte. O fabricante não suportava mais o Mallard, e a Frakes Aviation apenas possuía o certificado de tipo e não era capaz de fornecer assistência extensiva.
A Chalk não tinha seu próprio departamento de engenharia que pudesse avaliar a resistência estrutural de seus aviões. Os regulamentos federais exigiam que todas as companhias aéreas consultassem o fabricante para obter conselhos de engenharia, mas como o fabricante não forneceu nenhum, a Chalk's teve que contratar firmas de engenharia terceirizadas com base em contrato, e eles tinham conhecimento limitado ou nenhum conhecimento específico sobre o Grumman Mallard.
Como um resultado, A Chalk's não conhecia as vulnerabilidades de sua própria aeronave envelhecida e não podia se dar ao luxo de descobrir. Acima: Um Grumman Albatross, anteriormente propriedade de Chalk's, encontra-se abandonado no Arizona, vítima da redução da frota da companhia aérea na década de 1990.
Em vez disso, adotou a filosofia de "executá-lo até que ele quebre" A ausência de suporte do fabricante significava que as peças sobressalentes eram difíceis de encontrar. Alguns dos patos selvagens foram sucateados e canibalizados para obter peças; em 2005, apenas quatro ainda estavam em condições de voar.
A companhia aérea também não conseguiu substituir os Mallards, porque não havia nenhuma empresa moderna que oferecesse um voador na faixa de 15 a 20 passageiros. A companhia aérea tinha que se contentar com o que tinha e, portanto, tendia a espremer todas as últimas horas de voo de cada componente. Na verdade, isso foi permitido devido a uma lacuna deliberada nos regulamentos da FAA.
Depois que uma falha estrutural danificou gravemente o voo 243 da Aloha Airlines em 1988 (imagem acima), matando um comissário e ferindo 61 outros, a FAA determinou um novo regime de inspeções estruturais suplementares para todos os aviões mais antigos. Contudo, havia três isenções a esse requisito: aviões certificados antes de 1958, aviões que transportavam menos de 30 passageiros e aviões operando totalmente dentro do estado do Alasca.
Como o Mallard foi certificado em 1947 e classificado para apenas 17 passageiros, as companhias aéreas que o operam não foram obrigadas a aderir às novas regras sobre como as aeronaves antigas devem ser mantidas. Essas novas regras continham cláusulas críticas que teriam forçado a Chalk's a substituir peças que haviam chegado ao fim de sua vida útil.
Provavelmente, até mesmo descobrir como eram aquelas vidas de fadiga poderia ter levado a empresa à falência. as companhias aéreas que o operam não foram obrigadas a aderir às novas regras sobre como as aeronaves antigas devem ser mantidas.
Essas novas regras continham cláusulas críticas que teriam forçado a Chalk's a substituir peças que haviam chegado ao fim de sua vida útil. Provavelmente, até mesmo descobrir como eram aquelas vidas de fadiga poderia ter levado a empresa à falência. as companhias aéreas que o operam não foram obrigadas a aderir às novas regras sobre como as aeronaves antigas devem ser mantidas.
Essas novas regras continham cláusulas críticas que teriam forçado a Chalk's a substituir peças que haviam chegado ao fim de sua vida útil. Provavelmente, até mesmo descobrir como eram aquelas vidas de fadiga poderia ter levado a empresa à falência.
O resultado foi que a frota de Mallards G-73T da companhia aérea começou a se deteriorar. Rachaduras de fadiga se desenvolveram na pele de várias aeronaves, e o departamento de manutenção da Chalk as remendou repetidamente.
Embora os registros de manutenção sugerissem que esses reparos foram feitos de acordo com os procedimentos da FAA, eles geralmente eram desleixados, com rebites desalinhados ou de tamanho incorreto.
Os pilotos reclamaram que os problemas mecânicos não foram corrigidos até serem registrados várias vezes consecutivas, e três pilotos deixaram a companhia aérea em 2004 e 2005 por causa de sua preocupação com problemas de manutenção. Um deles renunciou imediatamente após a segunda vez em dois meses que teve que fazer um pouso de emergência devido a uma falha de motor.
Em uma tentativa de cortar custos, a Chalk's aparentemente estava pressionando para manter seus aviões no ar o máximo possível, e a manutenção foi forçada a ficar em segundo plano.
Em algum momento da década de 1990, uma rachadura começou a se formar em uma longarina dentro da asa direita de um dos quatro patos selvagens restantes de Chalk. Uma longarina é uma viga estrutural que se estende transversalmente da raiz à ponta da asa. Não havia nada de anormal na longarina - ela simplesmente havia chegado ao fim de sua vida útil e estava começando a quebrar.
Mas o Chalk's carecia do tipo de programa de inspeção estrutural que pudesse detectar esses danos, e a rachadura continuava crescendo. Eventualmente, a longarina não pôde mais funcionar, e as tensões normais de voo foram transferidas para a pele da asa na parte inferior da asa, perto de onde ela se fixava no teto.
Como resultado, a pele também começou a rachar. Os trabalhadores da manutenção colocaram remendos sobre a rachadura para tentar consertá-la e fizeram furos em seu caminho para tentar contê-la, mas esses esforços foram ineficazes porque não abordaram a raiz do problema: a longarina quebrada.
O Mallard não possui tanque de combustível independente; em vez disso, o combustível é colocado diretamente na estrutura da caixa da asa. Como a pele da asa estava rachada, isso causava vazamentos crônicos de combustível que os pilotos tinham que sinalizar repetidamente para o departamento de manutenção.
Em vez de procurar a causa raiz, os funcionários da manutenção simplesmente lacraram o tanque e colocaram o avião de volta em serviço. Isso não apenas não resolveu o problema, como as camadas de selante, de fato, esconderam evidências das rachaduras à medida que cresciam cada vez mais.
Em dezembro de 2005, a pele da asa estava tão degradada que começou a transferir a tensão para uma longarina - uma viga estrutural ainda mais crítica passando entre as longarinas (veja o diagrama anterior). Como a longarina teve que compensar tanto a pele da asa rachada quanto a longarina quebrada, ela rachou muito rapidamente. Apenas 11 voos depois que a longarina começou a rachar, já estava se aproximando do ponto de ruptura.
O voo e o acidente
O próximo voo foi o voo 101 da Chalk's Ocean Airways de Miami Beach para Bimini no dia 19 de dezembro de 2005. 18 passageiros, incluindo três bebês, embarcaram no Mallard em Watson Island, no Porto de Miami.
No comando do voo estavam a capitã Michelle Marks e o primeiro oficial Paul DeSanctis, ambos experientes pilotos de hidroaviões. Entre os passageiros estava Sergio Danguillecourt, herdeiro da empresa de rum Bacardi, que voava para Nassau com a esposa para comprar um iate.
Às 14h38, o voo 101 taxiou até o porto movimentado, alinhou-se com a pista de decolagem do X44 e decolou. Um minuto depois, o Mallard estava escalando o Government Cut, um canal entre Miami Beach e Fisher Island, à vista de centenas de banhistas.
De repente, a longarina rompida na ala direita falhou catastroficamente. A longarina se partiu em duas, a pele da asa se abriu, a longarina falhou e em uma fração de segundo a asa inteira simplesmente caiu.
O avião aleijado rolou noventa graus e mergulhou primeiro na direção de Government Cut, enquanto a asa carregada de combustível explodiu em chamas e desceu em espiral para a água em uma chuva de fumaça.
Um turista na vizinha South Beach conseguiu capturar os últimos segundos do acidente em vídeo antes que o avião e a asa batessem no oceano, matando instantaneamente todas as 20 pessoas a bordo (vídeo abaixo).
Salva-vidas na praia, seguidos logo pela Guarda Costeira dos Estados Unidos, chegaram ao local em minutos, mas estava claro que ninguém havia sobrevivido.
A maioria dos corpos foi encontrada ainda amarrada em seus assentos dentro do avião afundado. O corpo de Sergio Danguillecourt foi encontrado dias depois a 14,5 km do local do acidente, levando a especulações de que ele havia afrouxado o cinto de segurança e tentado pular do avião, embora isso não tenha sido oficialmente confirmado.
Também entre os mortos estavam 11 moradores de Bimini, todos parentes. A comunidade da ilha de menos de 2.000 pessoas foi devastada pelo acidente.
Mais dificuldades estavam por vir: depois de terminar mais um voo naquele dia, a Chalk's Ocean Airways parou sua frota, interrompendo os voos regulares de passageiros para a ilha.
Pouco depois, a FAA emitiu uma ordem que efetivamente colocou de castigo todos os Grumman Mallards nos Estados Unidos. Acima: vídeo real da foto do acidente em South Beach.
A investigação descobriu que a Chalk's Ocean Airways estava isenta exatamente do tipo de regulamentação que teria evitado o acidente. Para todos os efeitos, o Chalk's estava operando sob uma versão das regras que estava décadas desatualizada.
Houve oportunidades para evitar o acidente também: um inspetor da FAA não conseguiu identificar deficiências no programa de manutenção da companhia aérea, como seus frequentes adiamentos, e os técnicos de manutenção não estavam cientes de que vazamentos de combustível no Grumman Mallard eram indicativos de danos estruturais.
Para o National Transportation Safety Board, a fonte do problema era clara: a Chalk's deveria ter sido solicitada a implementar um programa de inspeção estrutural que pudesse determinar a vida útil de fadiga dos componentes da aeronave, remover aqueles que estavam além de seus limites de segurança, e avaliar o efeito dos reparos na resistência geral do avião.
Como resultado, emitiu uma recomendação para que a FAA removesse as isenções para aeronaves certificadas antes de 1958 e aeronaves que transportassem menos de 30 passageiros.
Acima: estrias claras dentro da superfície de fratura na longarina da asa
são evidências de fadiga do metal
No entanto, a FAA rejeitou esta recomendação, alegando que seria um custo proibitivo. Na verdade, a Chalk's Ocean Airways provavelmente teria fechado as portas se tivesse que implementar um regime de inspeção tão rígido.
Mas, na opinião dos investigadores (e de muitos outros), não adianta garantir a viabilidade financeira de uma empresa se ela não puder oferecer um nível adequado de segurança para seus passageiros.
A verdade nua e crua é que, se a Ocean Airways da Chalk's tivesse falido, vinte pessoas ainda estariam vivas. Duas outras recomendações do NTSB com relação à supervisão dos programas de manutenção foram aceitas, mas a rejeição dessa recomendação foi um grande golpe para a segurança das transportadoras aéreas menores nos Estados Unidos.
Por algum tempo após o acidente, a Chalk's continuou a fingir que era uma companhia aérea funcional, embora não tivesse permissão para voar nenhum de seus Grumman Mallards. Os passageiros podiam reservar passagens nele, o dinheiro iria para a Chalk's e, então, a Chalk's colocaria esses passageiros em aviões de outras transportadoras por meio de uma prática conhecida como "wet leasing". Isso continuou até 2007, quando o relatório final sobre a queda do voo 101 foi divulgado, levando a FAA a revogar sua certificação para passageiros de voo.
Mas para os investigadores, o fim da Ocean Airways, da Chalk, tratou apenas do sintoma, não do problema. Em seu adendo ao relatório, a investigadora Kathryn O'Leary Higgins escreveu: “Minha preocupação aqui é que nada realmente mudou. A relação entre reguladores e regulados parece ainda mais atenuada. Se isso é verdade, esse relatório não mudou muito a equação de segurança."
O voo 185 da SilkAir foi um voo de passageiros programado da SilkAir operado por um Boeing 737-300 de Jacarta, na Indonésia, para Cingapura, que caiu no rio Musi perto de Palembang, no sul de Sumatra, em 19 de dezembro de 1997, matando todos os 97 passageiros e sete tripulantes a bordo.
A causa do acidente foi investigada de forma independente por duas agências em dois países: o Conselho Nacional de Segurança no Transporte dos Estados Unidos (NTSB) e o Comitê Nacional de Segurança no Transporte da Indonésia (NTSC).
O NTSB, que tinha jurisdição com base na fabricação da aeronave pela Boeing nos Estados Unidos, investigou o acidente sob o comando do investigador Greg Feith. Sua investigação concluiu que o acidente foi o resultado de informações deliberadas do controle de voo, "provavelmente pelo capitão".
Embora os investigadores indonésios do NTSC não tenham encontrado "nenhuma evidência concreta" para apoiar a alegação de suicídio do piloto, e a suspeita anterior de que a unidade de controle de potência hidráulica (PCU) da Parker-Hannifin já havia sido determinada pelo fabricante como livre de defeitos, a declaração final do Comitê Indonésio foi que eles foram incapazes de determinar a causa do acidente e, portanto, inconclusivos.
Independentemente das descobertas ou da falta delas fornecidas pelo NTSB americano ou pelo NTSC indonésio, acredita-se que o fator potencial de uma PCU defeituosa fabricada pela Parker-Hannifin que controlava o leme da aeronave possivelmente levou à queda da aeronave 737.
A causa de alguns acidentes anteriores do 737, como o voo 585 da United Airlines e o voo 427 da USAir , foi atribuída a problemas no leme do 737. Embora o fabricante do NTSB e da PCU Parker-Hannifin já tivesse determinado que a PCU estava funcionando corretamente e, portanto, não era a causa do acidente, uma investigação privada e independente sobre o acidente para um processo civil julgado por um júri em um tribunal estadual em Los Angeles, que não teve permissão de ouvir ou considerar as conclusões do NTSB e da Parker-Hannifin, decidiu que o acidente foi causado por uma válvula servo defeituosa dentro da PCU, com base em descobertas forenses de um microscópio eletrônico , que determinou que pequenos defeitos dentro da PCU tinham causou o endurecimento do leme e um subsequente voo incontrolável e colisão. O fabricante dos controles de leme da aeronave e as famílias mais tarde chegaram a um acordo extrajudicial.
Aeronave
A aeronave envolvida no acidente, o Boeing 737-36N, prefixo 9V-TRF, da SilkAir (foto acima), pousou no aeroporto de Changi, apenas seis dias antes do acidente. A aeronave que operava o voo 185 era equipada com dois motores CFM56-3B2.
Tendo completado seu voo inaugural em janeiro de 1997, a aeronave foi entregue à SilkAir em fevereiro de 1997, 10 meses antes do acidente. No momento do acidente, era a aeronave mais nova da frota da SilkAir e havia acumulado 2.238 horas de voo em 1.306 ciclos. Esta é a primeira e única perda fatal do casco do SilkAir.
O voo e o acidente
Carregando 97 passageiros e uma tripulação de sete pessoas, o Boeing 737 partiu da pista 25R do Aeroporto Internacional Soekarno-Hatta de Jacarta às 15h37 hora local (08h37 UTC) para um voo planejado de 80 minutos para o Aeroporto Changi de Singapura.
No comando, o capitão Tsu Way Ming, 41 anos, de Cingapura, um ex-piloto de A-4 Skyhawk, junto com o primeiro oficial Duncan Ward, 23, da Nova Zelândia. Geralmente tempo bom era esperado para a rota, exceto por algumas tempestades perto da Ilha Singkep, a 120 km (75 milhas) ao sul de Cingapura.
A aeronave foi autorizada a subir ao nível de voo 350 (FL350), cerca de 35.000 pés (11.000 m), e seguir diretamente para Palembang.
Às 15h47:06, enquanto subia 24.500 pés (7.468 m), a tripulação solicitou autorização para prosseguir diretamente para o waypoint PARDI (0° 34′S 104° 13′E).
Às 15h53, a tripulação relatou ter alcançado a altitude de cruzeiro do FL350 e foi autorizada a prosseguir diretamente para o PARDI e relatar a travessia de Palembang.
O gravador de voz da cabine (CVR) parou de gravar às 16h05. A série de TV Mayday argumenta que o Capitão Tsu pode ter aproveitado a oportunidade de deixar a cabine para desarmar o disjuntor para desligar o CVR.
Às 16h10, o controlador de tráfego aéreo informou ao voo que estava a través de Palembang e instruiu a aeronave a manter o FL350 e entrar em contato com o Controle de Cingapura ao chegar ao PARDI. O primeiro oficial Ward reconheceu essa informação.
Às 16h11, quase 6 minutos após o CVR ter parado de gravar, o gravador de dados de voo (FDR) também parou de gravar. A série Mayday mostra que acredita-se que Tsu tenha inventado uma desculpa para tirar Ward da cabine.
Feito isso, o piloto procedeu então a trancar seu copiloto fora da cabine de comando antes de desativar o FDR. Presume-se que Tsu fez isso para garantir que nenhum registro seria feito do que ele faria a seguir.
O voo 185 permaneceu nivelado no FL350 até começar um mergulho rápido e quase vertical por volta das 16h12. Enquanto descia 12.000 pés (3.700 m), partes da aeronave, incluindo uma grande extensão da seção da cauda, começaram a se separar da fuselagem da aeronave devido às altas forças decorrentes do mergulho quase supersônico.
Segundos depois, a aeronave atingiu o rio Musi, perto de Palembang, Sumatra, matando todas as 104 pessoas a bordo. O tempo que a aeronave levou para mergulhar da altitude de cruzeiro no rio foi de menos de um minuto.
O avião estava viajando mais rápido do que a velocidade do som por alguns segundos antes do impacto. Partes dos destroços foram incrustadas em 15 pés (4,6 m) no leito do rio.
A aeronave se partiu em pedaços antes do impacto, com os destroços espalhados por uma ampla área, embora a maioria dos destroços estivesse concentrada em uma área de 60 metros (200 pés) por 80 metros (260 pés) no fundo do rio.
Nenhum corpo completo, parte do corpo ou membro foi encontrado, pois a aeronave inteira e os passageiros se desintegraram com o impacto. Posteriormente, apenas seis identificações positivas foram obtidas dos poucos restos mortais recuperados.
Passageiros e tripulantes
A SilkAir emitiu um comunicado à imprensa em 19 de dezembro de 1997 com uma contagem de passageiros por nacionalidade, e outro no dia seguinte com detalhes da tripulação e um manifesto de passageiros completo.
Entre os mortos no acidente estava a modelo e autora de Cingapura Bonny Hicks.
Investigação e relatório final
O acidente foi investigado pelo NTSC da Indonésia, que contou com a assistência de grupos de especialistas dos Estados Unidos, Cingapura e Austrália.
Cerca de 73% dos destroços (por peso) foram recuperados, parcialmente reconstruídos e examinados. Ambos os gravadores da aeronave, o CVR e o FDR, foram recuperados do rio e seus dados foram extraídos e analisados.
Dragas recuperando destroços do Rio Musi após a queda do voo 185 da SilkAir
Os investigadores testaram 20 simulações diferentes para vários cenários de falha de equipamento e descobriram que o único cenário que combinava com a trajetória real do radar da descida e queda do voo era um mergulho íngreme de alta velocidade comandado por um dos pilotos.
Além disso, os investigadores encontraram o parafuso de ajuste para o estabilizador horizontal, que revelou que as entradas de voo de um dos pilotos mudaram o estabilizador de voo nivelado para uma descida de nariz para baixo.
Os destroços recuperados do 9V-TRF do rio Musi, na Indonésia
O primeiro oficial Duncan Ward foi inicialmente especulado por ter deliberadamente derrubado a aeronave, já que ele era a única pessoa na cabine quando o CVR parou de gravar, mas isso foi rapidamente descartado, pois os amigos, familiares e colegas de trabalho de Ward disseram que ele tinha não apresentou nenhum sinal de depressão ou suicídio durante sua carreira na SilkAir e estava de bom humor na manhã do voo do acidente.
Às 16h00, o CVR mostrou que o Capitão Tsu deixou a cabine; cinco minutos depois, o CVR parou de gravar. Os testes indicaram que um clique seria ouvido na gravação do CVR se o disjuntor do CVR tivesse desarmado normalmente, mas não se tivesse sido puxado manualmente. Como não houve clique, o capitão Tsu provavelmente puxou o disjuntor do CVR após deixar a cabine.
Os investigadores do NTSC e do NTSB pensaram que se o Capitão Tsu fosse o responsável pelo acidente, ele deve ter inventado alguma desculpa para fazer o primeiro oficial deixar a cabine de comando antes de desativar o FDR (o que teria acionado imediatamente uma Advertência Principal em ambos os pilotos ' painéis de controle), para que suas ações não fossem percebidas. Vários minutos depois, conforme registrado pelo radar de solo da Indonésia, a aeronave entrou em uma descida rápida, desintegrou-se e caiu no rio Musi.
Em 14 de dezembro de 2000, após três anos de investigação, o NTSC indonésio publicou seu relatório final. O presidente do NTSC anulou as conclusões de seus investigadores - que o acidente foi causado deliberadamente por informações do piloto - de modo que o relatório declarou que as evidências eram inconclusivas e que a causa do acidente não pôde ser determinada.
O NTSB dos EUA, que também participou da investigação, concluiu que as evidências eram consistentes com uma manipulação deliberada dos controles de voo, provavelmente pelo comandante.
Em uma carta ao NTSC datada de 11 de dezembro de 2000, o NTSB escreveu:
"O exame de todas as evidências factuais é consistente com as conclusões de que: 1) nenhum mau funcionamento ou falha mecânica relacionada ao avião causou ou contribuiu para o acidente e 2) o acidente pode ser explicado por ação intencional do piloto. Especificamente, a) o perfil de voo da aeronave acidentada é consistente com as entradas de controle de voo com o nariz para baixo manual; b) as evidências sugerem que o gravador de voz da cabine (CVR) foi intencionalmente desconectado; c) a recuperação do avião foi possível, mas não foi tentada; e d) é mais provável que os comandos de controle de voo do nariz para baixo tenham sido feitos pelo capitão do que pelo primeiro oficial."
Geoffrey Thomas, do The Sydney Morning Herald , disse que "um relatório secreto confirmou que as autoridades indonésias não dariam um veredito público porque temiam que isso deixasse seu próprio povo com medo de voar". Santoso Sayogo, um investigador do NTSC que trabalhou no caso SilkAir 185, disse que a opinião do NTSB foi compartilhada por alguns investigadores indonésios, que foram rejeitados por seu chefe.
Motivos potenciais
No rescaldo da queda, vários motivos potenciais para o suposto suicídio e homicídio do capitão foram sugeridos, incluindo perdas financeiras recentes de US$ 1,2 milhões (sua negociação de ações mostrou negociação de mais de um milhão de ações e seus privilégios de negociação de títulos tinham foi suspenso 10 dias antes do acidente devido ao não pagamento), ele obteve uma apólice de seguro de vida de $ 600.000 na semana anterior, que deveria entrar em vigor no dia do acidente (embora mais tarde tenha sido descoberto que era uma apólice de rotina tomada como parte de uma exigência de hipoteca).
O recebimento de várias ações disciplinares recentes por parte da companhia aérea (incluindo uma relacionada à manipulação inadequada do disjuntor CVR), e a perda de quatro companheiros de esquadrão durante seu treinamento de voo militar, 18 anos antes no exato data do acidente.
Ele também teve vários conflitos com Ward e outros copilotos que questionaram sua adequação de comando. As investigações revelaram posteriormente que seus ativos totais eram maiores do que seus passivos, embora seus ativos líquidos não pudessem cobrir suas dívidas imediatas; sua renda mensal era inferior às despesas mensais de sua família; e ele tinha algumas dívidas de cartão de crédito pendentes.
Uma investigação oficial da Força Policial de Cingapura sobre a evidência de crime que levou ao acidente não encontrou "nenhuma evidência de que o piloto, copiloto ou qualquer membro da tripulação tivesse tendências suicidas ou um motivo para causar deliberadamente a queda da [aeronave]".
Tsu era ex-piloto da Força Aérea da República de Cingapura e tinha mais de 20 anos de experiência de voo no antigo T/A-4S Skyhawks, bem como no mais recente T/A-4SU Super Skyhawks. Sua última nomeação foi o piloto instrutor de um esquadrão Skyhawk.
Anúncio PA
O capitão Tsu fez o que parecia ser um anúncio de rotina em público sobre o voo às 15h44:37, cerca de 7 minutos após a decolagem, que foi gravado pelo CVR e transcrito pelo NTSC:
"Boa tarde senhoras e senhores, este é o seu capitão. Meu nome é Tsu Wai Ming. Na cabine de comando esta tarde está comigo o primeiro oficial Duncan Ward. Gostaríamos de recebê-lo a bordo e agora estamos escalando 19.000 pés. Estaremos viajando hoje a 35.000 pessoas rumo ao noroeste, seguindo inicialmente para a costa leste de Sumatra em direção à cidade de Palembang antes de virar à direita em direção a Cingapura. Tempo de voo 1 hora e 20 minutos. Você pode esperar que ah chegue a Cingapura por volta das seis horas da tarde, horário de Cingapura, que é uma hora a mais que o horário de Jacarta. O tempo em Cingapura agora é 4h45 da tarde, cerca de cinco minutos antes do previsto. Condições meteorológicas, céu limpo em Jacarta, tarde muito quente, e no momento ainda estamos com bom tempo, porém em direção a Cingapura, podemos esperar um pouco de chuva, tempestade em direção à parte sul de Cingapura. A chegada a Cingapura deve ser boa com uma temperatura de cerca de 28 ° Celsius. O sinal do cinto de segurança está apagado, fique à vontade para se mover pela cabine, mas enquanto estiver sentado, para sua própria segurança, coloque o cinto de segurança. Sente-se e relaxe, aproveite os serviços oferecidos hoje no SilkAir one eight five e entrarei em contato com você antes de nossa descida a Cingapura com uma previsão do tempo atualizada. Obrigado. e eu entrarei em contato antes de nossa descida a Cingapura com uma previsão do tempo atualizada. Obrigado. e entrarei em contato com você um pouco antes de nossa descida a Cingapura com uma previsão do tempo atualizada. Obrigado."
O anúncio de Tsu terminou às 15h46. Às 16h05, 19 minutos depois, o CVR parou de gravar. Seis minutos depois, às 16h11, o FDR parou de gravar e às 16h12 a aeronave mergulhou em sua queda fatal.
Desativação do CVR e do FDR
O CVR e o FDR pararam de registrar minutos antes da descida abrupta, mas não ao mesmo tempo. O CVR parou de funcionar cerca de 6 minutos antes do mergulho, quando o capitão estava deixando a cabine para um breve intervalo. O FDR foi desativado 5 minutos depois, cerca de 1 minuto antes do mergulho.
Os testes de sobrecarga e curto-circuito mostram que um tom distinto de 400 Hz é registrado pelo CVR quando o disjuntor do CVR desarma. Os investigadores não conseguiram encontrar este som no CVR do voo 185, o que os fez concluir que o disjuntor do CVR foi retirado manualmente.
O rádio continuou a funcionar após a falha do CVR, o que indica que a falta de energia não foi a causa. Investigações subsequentes, incluindo um documentário do National Geographic Channel, revelaram que este FDR havia falhado anteriormente, por períodos de 10 segundos a 10 minutos. O teste da unidade pelo NTSC não encontrou nenhuma evidência de que um mau funcionamento ou falha fez com que qualquer gravador parasse de registrar dados.
Questão da válvula servo
A partir de 1991, vários acidentes e incidentes envolvendo o Boeing 737 foram o resultado de movimentos não comandados de seus lemes. Em 3 de março de 1991, o voo 585 da United Airlines , um 737-200, caiu em Colorado Springs, Colorado , matando 25 pessoas. Em 8 de setembro de 1994, o voo 427 da USAir , um 737-300, caiu perto de Pittsburgh , Pensilvânia, matando 132 pessoas. Mais quatro incidentes ocorreram em que havia suspeita de mau funcionamento da PCU do leme 737.
O Seattle Times dedicou uma série de 37 artigos aos defeitos de perda de controle do Boeing 737. O acidente ocorreu no meio de uma polêmica sobre o papel do NTSB em acidentes causados pela unidade de controle do leme.
Durante a investigação do voo 427, o NTSB descobriu que a válvula de servo duplo da PCU também poderia emperrar e desviar o leme na direção oposta da entrada dos pilotos, devido ao choque térmico, causado quando PCUs frias são injetadas com sistema hidráulico quente fluido.
Como resultado desta descoberta, a FAA ordenou que as válvulas servo fossem substituídas e um novo protocolo de treinamento para pilotos para lidar com movimentos inesperados dos controles de vôo a ser desenvolvido. A FAA ordenou uma atualização de todos os sistemas de controle de leme Boeing 737 até 12 de novembro de 2002.
De acordo com a série Mayday, o problema do leme foi corrigido antes do início da construção da aeronave acidentada. No entanto, a teoria de um mau funcionamento do leme foi investigada com a possibilidade de corrosão e/ou detritos presos na PCU e foi refutada.
Resultado
Ações judiciais
A SilkAir pagou US$ 10.000 de indenização à família de cada vítima, o máximo segundo a Convenção de Varsóvia. A Boeing também pagou uma indenização não divulgada. Em 2001, seis famílias que processaram a SilkAir por danos com base na alegação de que o acidente foi causado pelo piloto foram rejeitadas por um juiz do Tribunal Superior de Cingapura, que determinou que "o ônus de provar que o voo MI185 sofreu uma queda intencional não foi descarregado."
Apesar do fato de que o NTSB e a Parker-Hannifin já haviam descartado a possibilidade de falha mecânica como causa da queda do Voo 185 devido a uma unidade de válvula servo PCU defeituosa (fabricada pela Parker-Hannifin), uma investigação independente e privada focalizou e examinou mais profundamente o dispositivo PCU recuperado cujo mau funcionamento foi apontado em outros acidentes repentinos do Boeing 737.
Os registros do fabricante relativos a esta unidade em particular revelaram que ela falhou em alguns testes de rotina, mas eles alegaram ter corrigido esses problemas. Um especialista em metais, com o uso de imagens de um microscópio eletrônico de varredura, concluiu que a servo válvula tinha 'lascas' e inúmeras rebarbas "que poderiam facilmente ter interferido no bom funcionamento da válvula".
Depois que esta investigação foi concluída, em 2004, um júri do Tribunal Superior de Los Angeles nos Estados Unidos, que não teve permissão para ouvir ou considerar as conclusões do NTSB sobre o acidente, concluiu que o acidente foi causado por uma válvula servo defeituosa no leme do avião.
O fabricante do dispositivo PCU hidráulico, a Parker-Hannifin foi condenada a pagar às três famílias das vítimas envolvidas naquele caso US$ 43,6 milhões. Depois de ameaçar apelar do veredicto, a Parker-Hannifin mais tarde compensou todas as famílias envolvidas (embora não tenha aceitado a responsabilidade).
O porta-voz da Parker-Hannafin, Lorrie Paul Crum, afirmou que uma lei federal os proibiu de usar o relatório final do NTSB como prova a favor da empresa durante o processo. O advogado que representa os demandantes, Walter Lack, afirmou que a lei apenas proíbe a utilização das conclusões e sugestões do relatório do NTSB, sendo admissíveis declarações de fato.
SilkAir
Após o acidente, bem como com o agravamento das condições para a aviação asiática em geral devido à crise financeira, a SilkAir encerrou seu serviço Cingapura-Jacarta e não voltou mais desde então. Antes do acidente, a rota era servida tanto pela SilkAir quanto pela empresa controladora Singapore Airlines; a partir de 2017, a rota, a segunda rota internacional mais movimentada do mundo, é servida pela Singapore Airlines e sua ramificação Scoot, que combinada, serve Jacarta 79 vezes por semana (até 12 voos diários).
Memoriais
Um memorial para as vítimas foi erguido no local do enterro, que está localizado no Jardim Botânico perto de Palembang. Outro memorial está localizado no cemitério Choa Chu Kang, em Cingapura.
Dramatização
A série de TV Mayday do Discovery Channel Canada / National Geographic (também chamada de Air Crash Investigation ou Air Disasters) dramatizou o acidente em um episódio de 2013 intitulado Pushed to the Limit (transmitido em alguns países como Pilot Under Pressure).
Na cultura popular
A canção de 2013 do cantor de Cingapura JJ Lin "Practice Love" do álbum "Stories Untold" é baseada neste acidente, como homenagem a um amigo próximo do artista, Xu Chue Fern, que morreu no acidente.
Por Jorge Tadeu (com Wikipedia / ASN / baaa-acro.com)
Em 19 de dezembro de 1946, o Douglas C-47A-10-DK (DC-3), prefixo G-AGZA, da companhia aérea britânicaRailway Air Services, se envolveu em um acidente a 1 km a nordeste do aeroporto de Northolt, em Londres, na Inglaterra. Foi um acidente incomum, considerando que houve sem fatalidades dadas as circunstâncias e o local de parada final do avião (foto acima).
Aeronave
O Dakota envolvido fez seu primeiro voo em 1944 como transporte militar Douglas C-47A 42-92633 da Força Aérea dos Estados Unidos (USAAF) e tinha o número de série Douglas 12455, foi transferido para a Força Aérea Real (RAF) como KG420. O KG420 foi registrado na Railway Air Services como Dakota 3 em março de 1946 com o registro britânico G-AGZA, equipado com 2 motores Pratt & Whitney R-1830-92 Twin Wasp.
Acidente
O DC-3 Dakota da Railway Air Services estava pronto para partir do Aeródromo Northolt, em Londres, para um serviço regular em direção ao Aeroporto de Glasgow, na Escócia, em nome da Scottish Airwayse.
A bordo da aeronave havia tinha um total de quatro tripulantes e um passageiro a bordo. A aeronave estava congelada por ser uma noite fria e com neve, o que atrasou a partida.
Enquanto o Dakota esperava a temperatura baixar e começou a cair neve que congelou nas asas. A aeronave finalmente estava pronta para decolar e taxiar até a posição de decolagem.
A tempestade de neve havia fechado o aeroporto para o tráfego de entrada e o tráfego de saída estava sujeito a longos atrasos. A aeronave estava esperando há mais de uma hora pela liberação. Quando o voo recebeu autorização, o piloto operou os motores com até 45,5 polegadas de pressão múltipla e 2.500 RPM.
Quando o piloto acelerou na pista, ele percebeu que quando a aeronave decolou, ela não conseguiu ganhar altura. O gelo nas asas atrapalhou o fluxo de ar, o que fez com que a aeronave não ganhasse altura.
No entanto, era tarde demais para abortar a decolagem, então a tripulação foi forçada a tentar fazer a aeronave subir. O DC-3 voou apenas alguns metros de altura, indo diretamente na Angus Drive, no final da pista, até que a asa esquerda tocou alguns telhados e a aeronave girou 90 graus e incrivelmente parou sobre os telhados de duas casas nos números 44 e 46 da Angus Drive, no subúrbio londrino de South Ruislip.
O G-AGZA ficou seriamente danificado e o oficial de rádio Murdoch teve a sorte de não estar sentado em seu assento, pois um pedaço de metal foi empurrado pelo assento e provavelmente o teria matado se ele estivesse sentado lá.
Irene Zigmund e seu filho David de 4 meses estavam na casa vizinha (44 da Angus Drive) na época, mas a aeronave pousou no telhado sem nem mesmo acordar a criança que estava dormindo em sua cama andar de cima.
Na verdade, ninguém ficou ferido no acidente. A tripulação e o passageiro desceram para o loft da casa, desceram a escada do loft para o patamar e depois desceram as escadas e saíram pela porta da frente.
As pontas das asas estavam faltando, mas o nariz e a cauda permaneceram intactos. Não havia feridos no chão, apenas um bebê assustado em seu berço, olhando para cima com os olhos cheios de lágrimas, para a barriga do avião.
Alguns historiadores dizem que a Railway Air removeu o G-AGZA das casas, reparou-o e colocou-o de volta em serviço. Outros, afirmam que aeronave foi totalmente perdida.
Investigação
Foi rapidamente determinado que a causa da queda foi a neve que congelou nas asas da aeronave enquanto o G-AGZA esperava para decolar, fazendo com que a aeronave não ganhasse altura e fizesse um pouso de emergência no telhado do número da 46 Angus Drive.
A casa foi posteriormente apelidada de "Dakota Rest". O piloto também foi designado como um fator de causa para não abortar a decolagem depois de perceber que estava nevando e sua aeronave estava coberta de neve.
O pouso forçado sobre as casas valeu ao capitão o apelido de "Rooftop Johnson".
Por Jorge Tadeu (com Wikipedia / ASN / baaa-acro.com)
O acidente aéreo do Canal Creek ocorreu em 19 de dezembro de 1943, quando a aeronave Douglas C-47A-DL (DC-3), prefixo 43-30742, do 22º Troop Carrier Squadron 374th Troop Carrier Group, da Força Aéreas dos Estados Unidos, caiu em Canal Creek, Queensland, cinquenta quilômetros ao norte de Rockhampton , matando todas as 31 pessoas a bordo.
Atribuído os 374º Grupo de Transporte de Tropas e ao 22º Esquadrão de Transporte de Tropas, o DC-3 foi apelidado de "viajante Hoosier". Na Austrália, foi atribuído o indicativo de chamada civil VH-CHR.
História da Missão e o acidente
Em 19 de dezembro de 1943 às 7h10 o DC-3 decolou do Campo Garbutt perto de Townsville pilotado pelo 2º Ten William R. Crecelius em um voo para o Aeródromo de Rockhampton e depois para Brisbane.
A bordo estava um total de 31 indivíduos, incluindo 4 membros da tripulação e 27 passageiros (16 americanos e 11 australianos). Entre os passageiros estava o correspondente Harold G. Dick, do Departamento de Informação da Austrália (Australian D of I) que retornou à Austrália após participar de missão sobre território japonês com filme exposto a ser revelado. Também William B. Tibbs, Exército de Salvação, Comissário Adjunto.
O tempo ao sul de Townsville era ruim, mas bom em Rockhampton . Por volta das 9h20, esta aeronave pegou fogo ou explodiu no ar e caiu na Ross Moya Road na área de Canal Creek, cerca de 30 milhas ao norte de Rockhampton. Todos os 31 a bordo morreram no acidente.
Entre os mortos estavam vinte militares das Forças Armadas dos Estados Unidos, oito membros das Forças de Defesa Australianas, um fotógrafo de guerra australiano, um representante do YMCA (Associação Cristã de Moços) e um ajudante do Exército de Salvação.
Devido à censura durante a guerra, houve muito pouca cobertura da imprensa sobre o acidente, com os poucos artigos de jornal publicados enfocando os não-combatentes a bordo, como Harold Dick (fotógrafo de guerra), Nigel James MacDonald (YMCA) e William Tibbs (Exército da Salvação). No entanto, essas histórias apenas mencionaram que eles foram "mortos em um acidente de avião", sem detalhes específicos sobre o desastre.
No solo, cinco tratadores trabalhando em Canal Creek relataram ter visto uma explosão no ar e uma bola de fogo caindo na terra. Às 9h45, um voluntário do Air Observe Corps relatou um acidente.
Recuperação de restos mortais
Após o acidente, os restos mortais da tripulação e dos passageiros foram recuperados e enterrados na Austrália. Após a queda, o filme de Dick foi recuperado e desenvolvido com sucesso.
No pós-guerra, os restos mortais dos americanos foram transportados para os Estados Unidos para sepultamento permanente. Durante 1948, os restos mortais de Snyder foram transportados a bordo do cardeal SS O'Connell de volta aos Estados Unidos.
Com tantos moradores ainda desconhecendo o desastre na virada do século, o morador de Yeppoon John Millroy começou a fazer campanha por um memorial permanente no local do acidente para homenagear aqueles que morreram.
Depois de garantir US$ 14.000 em financiamento do governo, um monumento foi inaugurado pelos militares da Segunda Guerra Mundial Neville Hewitt e o presidente da Yeppoon RSL, Wayne Carter, em 16 de junho de 2012.
A prefeita de Rockhampton Margaret Strelow e a governadora de Queensland Penelope Wensley compareceu à cerimônia. Wensley disse que era bom que a tragédia estivesse sendo lembrada enquanto Strelow elogiava Millroy por sua participação na organização do memorial.
Serviços memoriais anuais são realizados no local do acidente. Uma comemoração do 75º aniversário foi realizada em 2018.
O acidente aéreo do Canal Creek ocorreu apenas um mês após o acidente aéreo Rewan perto de Rolleston, no qual 19 australianos e americanos morreram e seis meses após o acidente aéreo Bakers Creek perto de Mackay, no qual 40 militares pessoal foi morto.
Uma pá de hélice recuperada do DC-3 acidentado e exposta em museu
Este acidente foi o segundo pior desastre aéreo na Austrália, com 31 mortos. A causa do acidente nunca foi determinada.
Por Jorge Tadeu (com Wikipedia / ASN / pacificwrecks.com)
Em maio de 1992, a Popular Mechanics relatou o futuro brilhante das naves com asas no solo, conhecidas no ekranoplane russo. Esse futuro nunca veio.
Na edição de maio de 1992, a Popular Mechanics relatou o futuro brilhante da nave asa-no-solo (WIG), conhecida em russo como ekranoplane. Surgido de um projeto secreto da União Soviética, o Orlyonok representava o que esse futuro poderia ser. Nesta visão ambiciosa de viagens, frotas de navios pairando cruzariam os oceanos transportando passageiros e carga. É um futuro que nunca chegou, e hoje os ekranoplanos são encontrados principalmente em museus .
Em meio às ruínas de um império desgastado pelo longo impasse latente da Guerra Fria, estão espalhadas joias de tecnologia. Nascidos de décadas de trabalho secreto das melhores mentes que esta vasta nação conseguiu reunir, muitos são diferentes de tudo que o Mundo Livre já viu.
Uma dessas joias é chamada Orlyonok, ou Little Eagle. meio avião, meio embarcação, seu protótipo emergiu silenciosamente de um estaleiroao longo das margens do rio Volga, na Rússia, há mais de uma década. É a realização de um conceito com o qual os engenheiros ocidentais apenas brincaram.
Capaz de deslizar alguns metros sobre as ondas a 250 mph e pousar 30 toneladas de tropas, mísseis e suprimentos em uma cabeça de praia em guerra, Orlyonok foi projetado para lutar contra umguerra que nunca veio. Agora, desesperados para fazer seu vasto investimento valer a pena, os construtores de Orlyonok estão procurando novos mercados e começando a compartilhar seus segredos.
As linhas de comunicação entre o Oriente e o Ocidente ainda são instáveis. Mas as entrevistas com fontes russas e aerodinamicistas ocidentais estão começando a produzir uma visão detalhada de uma tecnologia que poderia, se devidamente alimentada, proporcionar o primeiro grande avanço no transporte de alta velocidade desde que a Boeing trouxe o voo a jato para as massas.
Orlyonok
Uma ilustração do Orlyonok
O Orlyonok é uma máquina enorme e complexa. Com um comprimento de 190 pés e um peso máximo de decolagem de 275.000 libras, está na escala de um avião largo de tamanho médio como o Boeing 767. O que diferencia Orlyonok, no entanto, é que, junto com um punhado de aviões russos semelhantes embarcação, é a primeira máquina voadora prática em grande escala construída para aproveitar um poderoso fenômeno aerodinâmico conhecido como efeito solo.
Familiar desde os primórdios da aviação, o efeito solo é o que explica o simples fato de as naves aladas voarem com mais eficiência quando estão próximas ao solo. Ele funciona alterando os padrões de fluxo de ar para aumentar a sustentação e reduzir o arrasto.
Em voo normal, o ar de alta pressão que sobe por baixo de cada ponta de asa agita correntes semelhantes a tornados, chamadas de vórtices nas pontas das asas. Eles voltam da asa e desviam a corrente de ar que passa para baixo. Isso dá à direção geral do fluxo de ar uma ligeira inclinação para baixo. E como a sustentação é perpendicular à corrente de ar, a asa tende a puxar o avião ligeiramente para trás e também para cima.
Os aerodinamicistas desenvolveram uma série de maneiras de lidar com isso, incluindo os winglets agora comuns nas pontas das asas dos aviões. Mas nada disso se compara à eficácia de voar tão baixo que o solo bloqueie os vórtices em espiral.
Embora qualquer avião possa se beneficiar do efeito solo simplesmente ficando a cerca de meia envergadura da superfície, é necessário um tipo diferente de veículo aéreo para tirar o máximo proveito disso.
A recompensa é substancial, entretanto. Um veículo de efeito solo especialmente construído - conhecido como nave asa no solo (WIG) ou ekranoplane em russo - pode voar com cerca de um quinto da potência de um avião de tamanho semelhante voando sem efeito solo. Isso significa cinco vezes a eficiência de combustível.
Flarecraft
O Flarecraft
Ao longo dos anos, vários pequenos protótipos foram construídos para testar todos os tipos de configurações de WIG. Um dos mais avançados é o Flarecraft de 2 lugares, que apareceu em nossa capa de julho de 1989 (acima) e recentemente entrou em produção. Mas todos esses são brinquedos aerodinâmicos em comparação com o que os russos construíram.
“Eles estão, sem dúvida, 30 anos à frente do Ocidente”, diz Stephan Hooker, um importante especialista em efeitos de solo dos EUA que visitou vários escritórios de design russos.
Essa sofisticação é baseada não apenas em análises teóricas sólidas e testes completos, mas em décadas de experiência prática. Onde outros esboçaram, os russos construíram. Uma amostra do know-how resultante pode ser encontrada em Orlyonok. Embora os russos sejam rápidos em apontar que este não é seu design mais avançado, é de longe a WIG mais avançada a que os ocidentais têm acesso.
Um recurso-chave originado pelos russos, e embutido em todos os seus grandes WIGs, é a capacidade de usar algo chamado de efeito Power-Augmented Ram (PAR). No caso de Orlyonok , isso é criado por um par de turbofans Kuznetsov NK-8 montados dentro do nariz. Bicos giratórios direcionam a exaustão de volta para baixo das asas, onde fica presa por flaps da borda de fuga e placas finais das pontas das asas. O resultado é uma almofada de ar que levanta a nave da superfície e permite que ela se mova facilmente em baixas velocidades, como um hovercraft.
O PAR resolve um problema que sempre perseguiu os projetistas de hidroaviões. Ou seja, essa água é cerca de 800 vezes mais densa que o ar. Isso significa que é necessária uma enorme quantidade de energia para fazer um avião se mover na água rápido o suficiente para decolar. Historicamente, a solução tem sido sacrificar o desempenho de vôo ao dominar a nave e dar a ela uma grande área de asa para que possa voar em baixa velocidade. PAR reduz a necessidade de tais compromissos.
Filho de um monstro do mar
O design de Orlyonok foi desenvolvido pelo falecido Rostislav Evgenyevich Alekseev, uma figura reverenciada na aerodinâmica soviética. Um esforço anterior dele, conhecido no Ocidente como o "Marinheiro Cáspio", é a fonte da forma básica de Orlyonok . Construído no início dos anos 1960, aquele navio único era movido por 10 motores de turbina e era cerca de 300 pés de comprimento, tornando-se uma das maiores aeronaves já construídas.
Nos designs de Alekseev, a sustentação vem de uma asa atarracada e de baixa relação de aspecto montada na meia nau e uma grande superfície de cauda horizontal montada no topo da nadadeira vertical. Esta configuração de asa dupla supera a instabilidade longitudinal que tem afetado outros veículos de efeito solo. O problema surge de uma tendência do centro de pressão que suporta a nave se mover para frente e para trás com as mudanças de altitude. Alekseev localiza as superfícies da cauda altas o suficiente fora do efeito de solo e as modela de modo que essas dinâmicas complexas não sejam um problema.
No caso de Orlyonok, a cauda vertical alta também fornece o poleiro para um motor turboélice Kuznetsov NK-12, bem conhecido da OTAN por seu uso no bombardeiro estratégico Bear. Equipado com duas hélices contra-rotativas, ele libera 15.000 cavalos de potência para conduzir Orlyonok em vôo de cruzeiro, durante o qual os motores PAR dianteiros são normalmente desligados. Não apenas o turboélice é mais eficiente do que um jato, mas seu passo variável oferece notável capacidade de manobra em baixa velocidade no modo PAR.
Como é pilotar uma nave tão pouco ortodoxa? Valentin Vassilyevich Nazarov, designer-chefe do bureau de design Ekolen e um dos pilotos de teste de Orlyonok , falou conosco sobre isso por telefone de São Petersburgo, Rússia.
“O procedimento é semelhante ao de qualquer aparelho voador”, diz ele. “É preciso ligar os motores, colocar toda a tripulação em seus lugares, verificar todo o equipamento, aquecer os motores de decolagem e o motor principal. Em seguida, os motores de decolagem começam a bombear o ar sob a asa e o movimento horizontal começa. A embarcação começa a se erguer da água. Ele ganha velocidade de até 150 km/h (93 mph). Depois disso, o piloto pode usar todas as superfícies aerodinâmicas para voar a nave.” A altitude de cruzeiro normal é entre 25 e 40 pés, dependendo da altura da onda.
Parte da tensão de manter a altitude com tanta precisão é aliviada por um sistema de controle de voo computadorizado, que usa dados de Doppler de varredura de superfície e radares convencionais. Para evitar obstáculos, altitudes de até 5000 pés são atingíveis, mas com um alto custo de eficiência.
Uma ilustração de um ekranoplano comercial operado pela American Airlines
Embora notável em muitos aspectos, Orlyonok representa o passado, e não o futuro, do voo com efeito asa no solo. "Orlyonok já é história", diz Nazarov. Sem dinheiro, mas cheio de ideias, Ekolen já projetou uma série de novos ekranoplanos civis para substituí-lo.
De acordo com o presidente da agência, Ilya Lvovich Gerlozin, isso representa uma abordagem totalmente diferente. “Eu usaria apenas uma palavra para descrevê-lo: conforto. Em Orlyonok , não havia conforto porque costumava ser um veículo militar. ”Nem Nazarov nem Gerlozin discutiam detalhes da nova nave, cujos elementos dizem que agora estão sendo patenteados.
Os esforços de Ekolen representam apenas uma pequena parte da atividade dos ekranoplanos que agora emergem do sigilo na ex-União Soviética. Outro consórcio muito maior também é conhecido por realizar o trabalho de Alekseev. Além disso, uma abordagem substancialmente diferente, mas igualmente refinada, está supostamente sendo seguida pelos seguidores do designer italiano/soviético Roberto di Bartini. Seus esforços poderiam levar a veículos adequados para viajar pela tundra árida da Sibéria, bem como sobre a água.
No entanto, nenhuma empresa russa tem recursos para empreender um grande programa de construção por conta própria. Todos procuram parceiros estrangeiros.
A próxima onda
Um ekranoplano abandonado no Mar Cáspio, em foto de 6 de outubro de 2020
Um americano muito interessado em manter esse relacionamento é Stephan Hooker. Sua empresa de engenharia, Aerocon, foi contratada pela Agência de Projetos de Pesquisa Avançada de Defesa (DARPA) do Pentágono para explorar o potencial do voo de efeito asa no solo. A esperança é que se torne uma tecnologia de considerável valor militar e econômico para os Estados Unidos.
O resultado do pensamento de Hooker é que, se os WIGs devem ser práticos como transportes de longo alcance, eles terão que ser grandes - muito grandes. Típico dos primeiros estudos de design conceitual com que ele está trabalhando é uma nave de 150 metros de comprimento, pesando 4,5 milhões de quilos. Ele chama essa classe de veículo de "nave-asa".
Inicialmente, a ideia de construir uma máquina voadora com aproximadamente 10 vezes o tamanho do maior avião da Terra parece estranha - mas os argumentos de Hooker são lógicos. Eles começam com economia. “Se você é um projetista de aviões comerciais da Boeing, centavos por assento-milha é o seu grande diferencial”, diz ele. Essa consideração manteve a pressão para construir aeronaves cada vez maiores.
Conforme a progressão continua, no entanto, as demandas de aerodinâmica e integridade estrutural começam a se chocar. A aerodinâmica exige que as asas cresçam cada vez mais e mais finas para que a velocidade e a eficiência sejam mantidas. Eventualmente, torna-se impossível torná-los fortes o suficiente para resistir à flexão.
A solução de Hooker é integrar a asa com a fuselagem. "Você tem que trazer a estrutura de volta. Faça com que pareça uma caixa de lenços de papel", diz ele. "Você constrói navios que se parecem com isso e são muito mais pesados do que 10 milhões de libras." Isso resolve o problema estrutural, mas leva para uma forma que carece de eficiência aerodinâmica. A menos que você voe com efeito de solo.
Isso introduz a questão da navegabilidade. Como diz Hooker, "O avião de tamanho padrão não pode competir com a onda do mar de tamanho padrão". Portanto, em condições típicas de oceano aberto, você teria que voar alto demais para usar o efeito de solo. a única maneira de contornar isso é construir uma aeronave maior. Não só ela será capaz de sobreviver ao impacto de uma onda ocasional, mas também terá uma envergadura maior e, portanto, será capaz de permanecer no efeito solo até altitudes mais elevadas. Em outras palavras , diz Hooker, “Para construir uma aeronave grande, tenho que construir uma aeronave enorme”.
Inquestionavelmente, construir uma nave espacial seria um empreendimento gigantesco. Mas não seria sem precedentes. Harvey Chaplin, diretor de tecnologia da Divisão Carderock do Naval Service Weapons Center, compara isso ao esforço que levou ao jato de transporte C-5 Galaxy da Força Aérea. “Você realmente precisa estar motivado para fazer isso”, diz ele. “Mas, se alguém desse esse passo, teria uma recompensa comercial”.
Hooker estima que as asas podem reduzir o custo da viagem entre aqui e a Europa para algo entre US $ 75 e US $ 100 por pessoa, e torná-lo muito mais confortável. "Eles são um pouco como os antigos navios oceânicos em termos de disponibilidade de espaço", disse Wayne Thiessen, um colega de Hooker na Aerocon.
Além do mais, os tempos de travessia não sofreriam significativamente. Os conceitos atuais de Hooker seriam capazes de cerca de 500 nós, apenas um pouco mais lento do que um jato. E, como a atual frota de aviões a jato, as asas poderiam ser chamadas para servir como transportes militares, quando necessário. Mas sua tremenda carga útil e alcance de 10.000 milhas os tornariam muito mais adequados para essa função.
Em última análise, a visão de Hooker é de um mundo mais próximo. "Como engenheiros, nossas raízes estão na construção de pontes", explica ele. E com as barreiras políticas entre os países agora desmoronando, os engenheiros podem finalmente continuar com a tarefa de transpor as barreiras geográficas que permanecem.
Dois anos atrás, a Amazon pediu à Airbus para produzir um cargueiro A330neo. Especificamente, ele queria um A330-900, potencialmente com uma fuselagem esticada. A ideia foi apoiada pela companhia aérea de carga UPS. Por enquanto, a Airbus ainda não anunciou tal desenvolvimento, então o fará?
Será que um cargueiro A330neo está no futuro da Airbus? (Foto: Airbus)
Demanda por carga
Com a demanda por carga em todo o mundo em alta, as empresas de frete dependem amplamente da Boeing para atender às suas necessidades. O inimitável 'Queen of the Skies' é um transportador de carga pronto, com os capazes 767 e 777F fornecendo bastante apoio. Mas para a Airbus, o mercado de carga nunca foi realmente seu forte.
A única aeronave que a Airbus realmente construiu para transportar cargas foi o A330-200F. Derivado do passageiro -200, tem capacidade para transportar 65 toneladas por 4.000 milhas náuticas, ou pode gerenciar 70 toneladas para um alcance de 3.200 NM. Com um modelo básico de aeronave capaz que vendeu mais de 600 unidades, o -200F deveria ter sido uma venda fácil.
Mas o -200F nunca realmente vendeu. No final de novembro deste ano, as encomendas do tipo eram de apenas 41, com 38 entregues. Não importou muito para a Airbus, pois o investimento no programa era pequeno, mas deixou a Boeing governando o reino dos aviões de movimentação de carga.
O A330-200F não era um grande vendedor (Foto: Airbus)
Claro, o A330 como uma família mudou do A330-200. As versões 'neo', com seus motores aprimorados e melhor eficiência de combustível, elevaram a fasquia para a fuselagem menor da Airbus. As mesmas melhorias poderiam contribuir para um cargueiro melhor no futuro?
Pressão da Amazon e UPS
Em 2018, a Amazon e a UPS expressaram interesse em uma nova oferta de cargueiro da Airbus. Eles queriam um cargueiro A330neo, especificamente o A330-900, mas potencialmente com uma fuselagem esticada para acomodar uma carga útil ainda maior.
Amazon Prime Air, como se autodenomina agora, é uma companhia aérea de carga totalmente Boeing. Possui 44 767Fs e 22 737Fs .
Seu interesse na Airbus deveria ter valido alguma coisa, já que a companhia aérea planeja expandir para uma frota de 200 aeronaves nos próximos oito anos. Está até construindo uma nova instalação de US $ 1,5 bilhão perto de Cincinnati, que acomodará cerca de 100 aviões para 200 voos por dia.
Os Boeing 767 da WestJet encontraram uma nova vida na Amazon
como cargueiro (Foto: Vincenzo Pace | JFKJets.com)
O projeto pode ser relativamente fácil. O A330neo compartilha a mesma fuselagem da versão CEO original, então a Airbus já tem as ferramentas, planos e know-how para produzir um A330neoF. Mas, até o momento, o fabricante de planetas não fez nenhum anúncio nesse sentido. Será que nunca?
Um cargueiro A330neo faria sentido para a Airbus?
O A330-900 está indo bem. 332 pedidos em toda a família em seis anos não são desprezíveis, mas ele foi vendido mais lentamente do que seu concorrente, o Boeing Dreamliner, que vendeu mais do que isso em seus primeiros três anos. Os pedidos adicionais que poderiam ser garantidos por meio de uma variante de cargueiro poderiam fornecer um aumento bem-vindo para esses números.
Como mencionado antes, o custo de tal projeto seria muito mais suportável do que os custos normais associados à produção de uma nova aeronave. A engenharia já está feita. É apenas uma questão de oferecê-lo no modelo mais recente.
Os pedidos provavelmente não parariam apenas na Amazon e na UPS. As companhias aéreas que dependem do 767 costumam voar em aeronaves antigas e considerariam o 777F grande demais para suas necessidades. A Atlas Air, por exemplo, expressou interesse no A330-300P2F (conversão de passageiro em carga) por causa de suas necessidades de menor capacidade no futuro. Um A330neoF pode ajudar a preencher essa lacuna com algo novo e eficiente.
Apesar do interesse da Amazon e da UPS, ainda existem muitos aviões decentes
usados para se transformar em cargueiros (Foto: Vincenzo Pace | JFKJets.com)
Embora todas essas coisas pareçam ótimas, a realidade é que provavelmente a Airbus provavelmente não lançará um cargueiro A330neo tão cedo, especialmente após 2020 que tivemos. Este ano, muitos aviões de passageiros foram aposentados rapidamente, incluindo o A330ceo e os modelos 757 e 767 da Boeing.
Isso deixa muitos aviões 'sobressalentes' por aí que estão prontos para serem convertidos. As empresas de frete tendem a se preocupar mais com o custo do que com a capacidade, portanto, seria mais provável investir na conversão de um modelo de segunda mão do que investir uma grande quantidade em um avião totalmente novo. Mesmo assim, é uma ideia interessante e talvez um Airbus revisite quando a matéria-prima para outras opções começar a se esgotar.