As principais notícias sobre aviação e espaço você acompanha aqui. Acidentes, incidentes, negócios, tecnologia, novidades, curiosidades, fotos, vídeos e assuntos relacionados.
Visite o site Desastres Aéreos, o maior banco de dados de acidentes e incidentes aéreos do Brasil.
Em todo o mundo, as atividades de aviação estão sempre sujeitas às condições meteorológicas. Pilotos de todos os tipos de operadoras dependem de previsões locais e globais. Assim, pensamos em dar uma olhada rápida em alguns termos meteorológicos cotidianos.
Advecção
Esta é a situação quando o calor ou a umidade é transferido horizontalmente. Impactando as atividades da aviação, o nevoeiro de advecção ocorre quando uma massa de ar quente e úmida flui ao longo de uma superfície mais fria.
CAVOK
Significa “teto (ou nuvens) e visibilidade OK”, é quando a visibilidade é de 10 km. Além disso, não há nuvens abaixo de 5.000 pés ou altitude mínima do setor, dependendo de qual for maior. Em suma, não há nuvens com significado operacional e sem significado climático para as atividades da aviação.
Cloud base
(Imagem via luizmonteiro.com)
Esta é a altura da parte visível mais baixa de uma nuvem sobre um aeródromo. É utilizado onde a nuvem acima do aeródromo é definida como poucas - poucas 1-2 Octas, ou dispersas - SCT 3-4 Octas).
Teto de nuvens (Ceiling)
De acordo com a Organização Internacional de Aviação Civil (ICAO), o teto é a altura acima do solo ou da água da base da camada mais baixa de nuvens abaixo de 20.000 pés que cobre mais da metade do céu.
Altitude de densidade
O Essential Pilot explica que a altitude de densidade é “altitude de pressão corrigida para temperatura não padrão de acordo com ISA (Atmosfera Padrão Internacional)”, o que significa que qualquer temperatura que não seja de 15 graus Celsius oferecerá uma leitura de altitude que não corresponde ao seu equivalente ISA.
Ponto de condensação da água (Dew point)
Também conhecida como temperatura do ponto de orvalho, é a temperatura de formação da condensação, ou seja, a temperatura do ar na qual o ar atingiria 100% de umidade.
Corrente de Jato (Jet stream)
Representação altamente idealizada da circulação global. Os jatos de nível superior tendem a fluir latitudinalmente ao longo dos limites da célula (Imagem: Wikipedia)
Estas são faixas estreitas de vento forte encontradas nos níveis superiores da atmosfera. Soprando de oeste para leste em correntes de jato, o fluxo dos ventos frequentemente muda para o norte e para o sul. Notavelmente, eles influenciam o fenômeno de por que leva mais tempo para voar para o oeste .
Altitude de pressão
(Imagem via monolitonimbus.com.br)
A altitude do aeródromo ou local que um piloto está realizando é ajustada para a pressão local , que muda constantemente com os sistemas de alta e baixa pressão que passam por uma região.
RVR (Alcance visual da pista)
O alcance visual da pista é uma figura derivada instrumentalmente com base em calibrações padrão. A página meteorológica da SkyStef observa que “representa a distância horizontal que um piloto pode ver na pista desde o final da aproximação”.
Corrente ascendente/corrente descendente
(Imagens via Tempo Online)
Enquanto uma corrente ascendente é uma corrente de ar ascendente em pequena escala, uma corrente descendente é uma coluna de ar em pequena escala que cai rapidamente em direção ao solo.
Visibilidade
Esta é a distância horizontal que a tripulação pode ver objetos escuros sem a ajuda de instrumentos de ampliação. O SkyStef acrescenta, “no caso de observações noturnas, (o objeto) pode ser visto e reconhecido se a iluminação geral for aumentada para o nível normal da luz do dia”.
Cisalhamento do vento
Em resumo, o cisalhamento do vento é uma mudança rápida na velocidade ou direção do vento em um curto espaço de tempo. O cisalhamento do vento pode acontecer em todas as direções. No entanto, geralmente é considerado ao longo do eixo vertical e horizontal, dando lugar aos conceitos de cisalhamento vertical e horizontal do vento. Este é um tema amplo que abrange uma gama de fenômenos, como o mais perigoso cisalhamento do vento - microbursts.
A resposta explica por que os carros elétricos estão por toda parte, mas as aeronaves elétricas ainda são uma novidade.
A melhor coisa sobre os carros elétricos é que eles não queimam combustíveis fósseis, adicionando dióxido de carbono à atmosfera e contribuindo para as mudanças climáticas. Não podemos continuar queimando essas coisas para sempre .
Mas enquanto os carros elétricos são cada vez mais comuns, as aeronaves elétricas estão apenas começando a decolar . Claro, existem drones com motores elétricos, veículos do tipo quadricóptero grandes o suficiente para transportar uma pessoa e até algumas aeronaves comerciais elétricas (a Air Canada encomendou recentemente 30 desses aviões da Heart Aerospace).
Ainda assim, existem alguns desafios significativos no uso de baterias para voar, e é por isso que você provavelmente nunca fez uma viagem em um avião elétrico. Aqui estão alguns dos problemas de física com os quais os engenheiros de aviação terão que lidar primeiro.
Física do Voo
Os objetos na Terra permanecem no solo devido à sua interação gravitacional com o planeta, o que cria uma força descendente. Para sair do chão e permanecer no ar, um avião precisa de uma força de empuxo para cima que seja igual em magnitude à força gravitacional. Para aeronaves, essa força é chamada de sustentação e se deve à interação entre as asas do avião e o ar.
Como exatamente uma asa fornece sustentação? Uma asa é uma superfície angular que se move através do ar, composta de pequenas moléculas que são essencialmente estacionárias. Imagine essas moléculas como sendo como neve, e a asa como um arado que as empurra, desviando-as para baixo, mas também ligeiramente para a frente. Se a asa empurra o ar, então o ar deve empurrar a asa para trás na direção oposta – o que neste caso significa principalmente para cima. Esta é a força de sustentação.
Na verdade, como a força do ar empurra principalmente para cima, mas também empurra ligeiramente para trás, na direção oposta ao movimento da asa, frequentemente dividimos essa interação em duas forças. A força que empurra para cima é chamada de sustentação, e a força para trás é o arrasto. Observe que essas duas forças estão conectadas. Você não pode ter sustentação sem arrasto, porque eles são da mesma interação.
Você pode alterar a magnitude da força de sustentação em uma asa. Se o avião estiver viajando mais rápido, ele colidirá com mais ar e produzirá uma sustentação maior – mas também um arrasto maior. Se você deseja que a aeronave voe em um caminho nivelado, sua sustentação deve ser igual ao seu peso. Quando um avião diminui sua velocidade abaixo de um determinado valor (que depende das características desse avião em particular), ele começará a cair.
A força de sustentação também depende da área das asas. Asas maiores colidem com mais ar para produzir maior sustentação. Por fim, a sustentação também depende do ângulo que a asa se move no ar, que é chamado de “ângulo de ataque”.
Com todos esses parâmetros, às vezes é mais fácil caracterizar uma aeronave em particular com um valor chamado “taxa de planeio”. Imagine um avião sem impulso para a frente, que é o que aconteceria se os motores fossem desligados. Agora, a força de arrasto que empurra para trás fará com que a velocidade do avião diminua. No entanto, se a aeronave se mover para baixo (para uma altitude menor) enquanto continua a voar para frente, ela pode usar a força gravitacional para continuar se movendo a uma velocidade constante, mas não manterá um vôo nivelado. Essa proporção de quanto ele se move horizontalmente em comparação com o quanto ele cai verticalmente é a taxa de planeio (como essa proporção realmente depende da conexão entre sustentação e arrasto, ela é igual ao valor da força de sustentação dividida pela força de arrasto, geralmente chamada de relação L/D).
Um avião típico terá uma taxa de planeio de cerca de 15 para 1 (ou apenas 15), o que significa que ele avançará 15 metros e cairá 1 metro durante o voo sem motor. Um planador sem motor pode ter uma proporção de mais de 40 para 1.
Força para voar
Se você deseja que uma aeronave viaje a uma velocidade constante em vôo nivelado, precisará de algum tipo de empuxo. Tem que haver alguma força empurrando o avião para frente para equilibrar a força de arrasto que empurra para trás. Tanto os jatos quanto os veículos movidos a hélice fazem isso essencialmente pegando o ar e jogando-o para trás, através de um motor ou passando por uma hélice, para fornecer uma força de avanço.
Aumentar a velocidade do ar requer energia. Aeronaves convencionais obtêm essa energia por meio da combustão de combustível de aviação - mas poderia ser facilmente proveniente de uma bateria elétrica ou de qualquer outra fonte de energia. O importante é que não pode fazer isso apenas uma vez; ele tem que continuamente empurrar o ar para fornecer impulso. Se parar, a aeronave passará de voo motorizado para voo planado e provavelmente voltará ao solo muito cedo.
Vamos pensar na potência necessária para voar a uma velocidade constante. Definimos potência como a taxa de variação da energia. Digamos que você pilote este avião por 100 segundos (esse é o nosso Δt ) e use uma energia total de 200 joules ( ΔE ). Então a potência seria ΔE / Δt = 2 joules por segundo. Isso é o mesmo que 2 watts.
Como estimamos a potência necessária para pilotar um avião? Um método seria apenas pilotá-lo e, em seguida, verificar quanto combustível foi consumido. Mas eu quero uma maneira de aproximar esse valor sem realmente entrar em uma aeronave, então aqui está uma maneira de fazer isso usando a razão de planeio. Imagine que tenho um avião sem energia planando em algum ângulo. Depois que ele cai 1 metro, eu o levanto de volta à sua altura original. Levantar um avião a uma altura h requer uma energia de m × g × h , onde m é a massa do avião e g é o campo gravitacional. (Na Terra, isso tem um valor de 9,8 newtons por quilograma.) Aqui está um diagrama de como isso se parece:
Tenho a energia necessária para erguer o avião, mas para calcular a potência também preciso do tempo que leva para que esse movimento aconteça. Se a aeronave estiver viajando com uma velocidade v , ela percorrerá uma certa distância s , e exigirá um intervalo de tempo entre as elevações de Δt = s / v . Juntando tudo isso, obtenho a seguinte expressão para o poder:
Essa expressão tem a razão de h/s , que é exatamente o inverso da razão de planeio. Vamos chamar a taxa de planeio de G . Isso significa que a potência para pilotar a aeronave será:
Se a massa estiver em quilogramas e a velocidade em metros por segundo, a potência estará em watts.
Só por diversão, vamos tentar isso para um Boeing 747. Há várias variantes do 747, então vou apenas escolher alguns valores. Vamos com um peso de 800.000 libras e uma velocidade de cruzeiro de 800 quilômetros por hora (precisarei fazer algumas conversões de unidade para esses valores). Finalmente, irei com uma razão de planeio de 15 , o que parece razoável. Com isso, obtenho um requisito de potência de cruzeiro de 5,26 x 10 7 watts, ou cerca de 70.000 cavalos de potência. Isso é muito, mas lembre-se que este é um jato gigante.
Que tal uma aeronave menor como um Cessna 172? Tem uma massa de 1.111 kg com uma velocidade de cruzeiro de 226 km/h. Isso colocou sua potência em 45.600 watts, ou apenas 61 cavalos de potência. Obviamente, um avião pequeno não deveria exigir tanta potência quanto um avião grande, então isso faz sentido.
Energia e Massa Armazenadas
Por que os aviões usam combustíveis fósseis em vez de bateria para voar? A razão é que você pode obter muita energia queimando gasolina de aviação (para aeronaves a hélice) ou combustível de aviação (para jatos - obviamente).
A ideia-chave aqui é o que chamamos de “densidade de energia”. Na verdade, existem duas versões de densidade de energia. Existe a energia armazenada por unidade de volume (em joules por litro) ou a energia armazenada por unidade de massa (em joules por quilograma), que costuma ser chamada de energia específica .
Vamos voltar ao exemplo do 747. A maioria das variantes deste avião tem uma capacidade de combustível em torno de 200.000 litros, o que é realmente muito combustível. Com uma densidade de cerca de 0,8 quilograma por litro, isso lhe dá uma massa de combustível de 160.000 quilos. A energia específica do combustível de aviação é de cerca de 12.600 watts-hora por quilo. Isso significa que, com 1 quilo de combustível, você pode obter uma potência de 12.600 watts por uma hora – supondo que você possa usar toda a energia, o que não pode.
Digamos que a eficiência geral do avião seja de 35% (o que é o mesmo que dizer que cada motor a jato é 35% eficiente). Isso significa que 1 quilo de combustível fornecerá apenas 4.410 watts por uma hora. Mas você vê onde isso vai dar, certo? Eu sei a quantidade de combustível no 747 e a potência necessária. Com isso, posso calcular o tempo de voo (e também a distância de voo). Acionar os números me dá um tempo de voo de 13,5 horas e uma distância de cerca de 10.000 quilômetros, ou 6.200 milhas. Isso é apenas um cálculo aproximado, mas parece legítimo.
Agora suponha que eu pegue todo aquele combustível de aviação e o substitua por baterias. Suponha que eu possa substituir os motores a jato por motores turbofan elétricos equivalentes ou algo assim. Então, é uma bateria de 160.000 quilos. Os carros elétricos usam uma bateria de íons de lítio, e a melhor energia específica que você pode obter é de cerca de 250 watts-hora por quilo. Agora você já pode ver o problema. Se eu assumir que um motor elétrico é 50% eficiente, nosso 747 movido a eletricidade poderia voar por 22,7 minutos com um alcance de 304 quilômetros. Esqueça aquela viagem ao Havaí.
Na verdade, é ainda pior do que isso. Ignorei a energia extra necessária para levar a aeronave à altitude de cruzeiro em sua velocidade de cruzeiro. Nem chegaria tão longe.
Ajudaria ter uma aeronave menor como o Cessna 172? Claro, ele consome menos energia, mas também carrega menos combustível – cerca de 170 quilos. Se substituirmos esse combustível por uma bateria de íons de lítio, ela poderá voar por cerca de 30 minutos. Isso ainda não é ótimo. Se você reduzir a velocidade de 220 km/h para 150 km/h, poderá obter um tempo de voo de cerca de 42 minutos, mas não conseguirá realmente obter uma distância melhor, pois estará voando mais devagar.
Então, talvez as baterias de íons de lítio não sejam a melhor opção. E algumas outras fontes de energia? Vamos apenas tentar algumas coisas para nos divertir.
Que tal um avião movido a energia nuclear? Se você pegar o urânio-235 e dividi-lo em partes (como em um reator), poderá obter 79 milhões de megajoules por quilograma. Isso é 7,9 x 10 13 joules para um quilograma de combustível. Ainda assim, você não pode simplesmente jogar um pouco de urânio em um avião e esperar obter energia. Um reator nuclear não contém apenas combustível, ele tem todos os tipos de outras coisas para transformar a reação nuclear em energia. A coisa mais importante que você precisa é de uma blindagem pesada para proteger os humanos a bordo da radiação . Isso adiciona muito mais massa. Mas ainda assim, é possível. Apenas 1 quilo de combustível seria suficiente para um 747 voar por mais de 200 horas.
Se os aviões nucleares parecem muito com uma ideia da Guerra Fria (porque eram), que tal algo mais razoável, como uma aeronave movida a elástico? Eles seriam como aqueles aviões de brinquedo que você costumava construir com a hélice de corda, só que maiores e com mais elásticos. Acontece que eu medi anteriormente a energia específica para um elástico torcido. Descobri que com apenas um quilo de elásticos você pode armazenar 6.605 joules, para uma energia específica de 6.605 joules/kg. Se você retirar o combustível de um 747 e substituí-lo por 160.000 kg de elásticos, obterá um tempo de voo de 10 segundos. Isso seria divertido, mas você não teria tempo para assistir a um filme ou mesmo para sua bebida grátis. Pelo menos você poderia dizer que voou em um avião de elástico.
E se o avião fosse movido por ter os passageiros andando em um monte de bicicletas ergométricas? Um 747 pode facilmente transportar 500 passageiros, e um humano pode produzir uma potência de 75 watts por um período de oito horas (ou um dia de trabalho). Mas isso dá apenas uma potência total de 37.500 watts. Isso é apenas 0,07% da potência necessária para voar em velocidade de cruzeiro. Então isso também não vai funcionar.
Ainda assim, é uma espécie de alívio. A única coisa pior do que abastecer aviões com combustíveis fósseis pode ser abastecê-los com pessoas.
Os Estados Unidos da América mais uma vez fecharam o espaço aéreo sobre o Lago Michigan.
A Autoridade de Aviação Civil dos EUA (FAA) declarou publicamente que acompanhou operações do Departamento de Defesa norte-americano e que esse foi o motivo do fechamento.
“A FAA fechou brevemente uma parte do espaço aéreo sobre o Lago Michigan para apoiar as operações do Departamento de Defesa. O espaço aéreo foi reaberto… para apurar as circunstâncias de uma anomalia no radar … Essas aeronaves não identificaram nenhum objeto que correlacionasse com o que mostrou o radar”
Os norte americanos acreditam que se trata de mais um balão controlado pelos militares chineses e que ele também seria parte de uma verdadeira frota enviada por Pequim a mais de 40 países com o objetivo de realizar espionagem.
Imagens do site flightradar24 da rota de aeronave militar em busca do objeto não identificado
Em 13 de fevereiro de 2018, por volta do meio-dia, horário local, um Boeing 777 da United Airlines operando o voo UA1175, experimentou uma separação em voo de uma pá do ventilador no motor nº 2 (à direita) enquanto sobrevoava o Oceano Pacífico a caminho do Aeroporto Internacional Daniel K. Inouye (HNL), em Honolulu, no Havaí. A tripulação declarou emergência e iniciou uma descida à deriva, seguindo direto para Honolulu, onde fez um pouso monomotor sem mais incidentes às 12h37, horário local. Não houve relatos de ferimentos aos 374 passageiros e tripulantes a bordo.
A aeronave envolvida no incidente fotografada em 2012 (Foto: Erwin Scholz/Planespotter)
A aeronave envolvida no incidente era o Boeing 777-222, prefixo N773UA, da United Airlines (foto acima), uma variante específica da empresa para a série 777-200 original. O avião era equipado com dois motores Pratt & Whitney PW4000 e tinha 23,3 anos de idade, tendo feito seu primeiro voo em 28 de outubro de 1994. Foi entregue novo à United Airlines em 29 de setembro de 1995. A Boeing parou de construir o 777 com motores da série P&W PW4000 em 2013, e o motor não está mais em produção ativa.
O 777-200 original era distinto por seus motores Pratt & Whitney PW4000, que são tão largos quanto a fuselagem de um 737. A variante PW4077 usada no United 777-222 produz nominalmente 77.000 libras-força (340 kN) de empuxo. É um motor turbofan de duplo carretel, fluxo axial e alto desvio, que é uma versão de desvio superior do motor PW4000-94 originalmente instalado no Boeing 747-400.
Ele foi redesenhado exclusivamente para o 777 com uma seção de ventilador maior de 112 polegadas (280 cm) de diâmetro usando 22 pás de núcleo oco. A pá do ventilador PW4000-112 é um aerofólio de corda larga feito de uma liga de titânio, com cerca de 40,5 polegadas (103 cm) de comprimento e cerca de 22,25 polegadas (56,5 cm) de largura na ponta da pá. Uma pá do ventilador PW4000-112 pode pesar no máximo 34,85 libras (15,81 kg).
O incidente
O voo partiu do SFO no horário e o push back, táxi, decolagem e subida foram normais. Havia três pilotos na cabine de pilotagem: o capitão Christopher Borzu Behnam (57), que era o piloto monitorando, o primeiro oficial (FO) Paul Ayers (60), que era o piloto voando, e um piloto de assento auxiliar, que estava fora se serviço no 777 da United Airlines, o primeiro oficial Ed Gagarin. O capitão relatou possuir um total de 13.592 horas no total, sendo 360 horas no B777. O primeiro oficial relatou ter um total de 11.318 horas de tempo total, com 10.087 no B777.
No momento do evento de falha do motor da pá do ventilador, 11h58, horário padrão havaiano (HST), o voo estava a cerca de 120 milhas (100 milhas náuticas; 190 km) de HNL no nível de voo (FL) 360 (aproximadamente 36.000 pés ou 11.000 metros) quando houve um solavanco violento e um estrondo muito alto que ambos os pilotos afirmaram ter sido seguido por vibrações extremas na fuselagem.
Os pilotos relataram que imediatamente após o solavanco e o estrondo, o piloto automático foi desligado e o avião começou a rolar para a direita. Uma troca positiva de controles foi realizada com o capitão tornando-se piloto voando.
Os pilotos afirmaram que cerca de 15 a 30 segundos após o solavanco e o estrondo, o Sistema de Indicação de Motores e Alerta de Tripulação (EICAS) mostrou que não havia relação de pressão do motor(EPR), N1 ou pressão do óleo. Depois de completar a lista de verificação de Danos Graves no Motor, a tripulação desligou e trancou o motor.
O piloto do assento auxiliar afirmou que depois que o motor direito foi desligado, a vibração diminuiu, embora a capacidade de controle do avião não fosse normal. A tripulação declarou emergência e iniciou uma descida para FL 230 (aproximadamente 23.000 pés ou 7.000 metros).
O capitão instruiu o piloto do assento auxiliar a voltar para a cabine para avaliar a condição do motor. O piloto do banco de salto notou que o motor estava oscilando e que a carenagem estava faltando. Ele gravou um vídeo do motor para mostrar ao capitão e ao FO a condição do motor. Os pilotos relataram que, simultaneamente, o comissário havia chegado à cabine de comando e o capitão a informou sobre a emergência e que eles pousariam em HNL.
A tripulação decidiu que o aeroporto mais adequado em tempo, distância e familiaridade era o HNL. A aeronave seguiu para HNL e fez uma aproximação visual e pousou na pista 8R sem maiores incidentes.
Os pilotos afirmaram que as aeronaves de resgate e combate a incêndio(ARFF) inspecionaram o avião e quando o avião foi considerado seguro, eles taxiaram o avião até o portão onde os passageiros desembarcaram normalmente. Os 363 passageiros, 3 pilotos e 12 comissários embarcaram normalmente no portão de embarque e não houve feridos.
Linha do tempo do gravador de voz do cockpit - Eventos selecionados do CVR:
11h58:27 - Som de estrondo.
11h58:58 - A tripulação disse aos comissários de bordo para se sentarem.
12h27 - United 1175 declarado mayday.
12h05:28 - O capitão notou muita vibração nos controles.
12h05:48 - O capitão pediu ao ocupante do assento auxiliar para entrar na cabine e inspecionar visualmente o motor.
12h07:47 - O ocupante do assento auxiliar voltou e relatou que toda a caixa externa do motor havia sumido. O capitão se perguntou se detritos haviam atingido o estabilizador devido à vibração nos controles.
12h08:10 - O capitão pediu ao ocupante do assento auxiliar para voltar novamente e tirar algumas fotos dos danos.
12h10:37 - O primeiro oficial relatou a situação ao despacho.
12h17:41 - A tripulação discutiu a alimentação cruzada de combustível e decidiu esperar até passar 10.000 pés.
12h21:05 - A tripulação discutiu uma aproximação de flaps 20 a cerca de 145 nós
12H27:50 - O capitão informou os comissários de bordo sobre a situação.
12h29:51 - A tripulação iniciou a alimentação cruzada de combustível.
12h30:36 - A tripulação informou os procedimentos de chegada em Honolulu.
12h34:00 - A tripulação informou que o Aeroporto de Honolulu estava à vista.
12h34:20 - A tripulação baixou o trem de pouso.
12h36:12 - A tripulação terminou a lista de verificação de pouso.
12h37:15 - A aeronave pousa.
12h37:34 - A tripulação diz aos passageiros para permanecerem sentados.
12h38:55 - A tripulação pede ao ARFF para inspecionar visualmente o motor em busca de vazamentos e riscos de incêndio.
12h41:57 - O ARFF relatou um pequeno vazamento hidráulico. A tripulação declarou sua intenção de taxiar até o portão.
13h34 - A aeronave alcançou o portão e a tripulação realizou o checklist de desligamento do motor.
Investigação
Vista do motor direito da frente direita mostrando o que restou do duto de admissão (Foto NTSB)
O exame do avião revelou um pequeno orifício junto com vários amassados e sulcos na fuselagem adjacente ao motor nº 2. Havia dois pequenos amassados e furos no lado direito da fuselagem, abaixo do cinturão da janela nas proximidades das fileiras de assentos 20 e 21.
Exames laboratoriais subsequentes da pele ao redor do furo encontraram partículas incorporadas de titânio e vanádio, que junto com alumínio são os elementos de liga do material das pás do ventilador. Também havia vários amassados na asa direita e no estabilizador horizontal direito.
A maior parte do conjunto de entrada do motor direito estava faltando. Toda a pele do lábio de entrada, o anteparo dianteiro, a maioria dos canos internos e externos e cerca de metade do anteparo traseiro não foram recuperados. A maioria das metades interna e externa da tampa do ventilador também estava faltando. As peças que faltavam foram perdidas no mar. Os reversores de empuxo esquerdo e direito e a tampa do escapamento estavam no lugar e intactos.
Motor
Houve danos extensos na superfície interna da caixa do ventilador na forma de arranhões e rachaduras. Embora houvesse rachaduras na caixa e a camada externa do invólucro de Kevlar estivesse rachada, não houve penetração de detritos.
Superfície de fratura da pá do ventilador UA1175 mostrando área descolorida e marca de catraca irradiando de uma superfície interna da pá do ventilador (Foto NTSB)
A deformação máxima do invólucro ambiental Kevlar foi de cerca de 2,5 polegadas por volta das 3 horas. A localização da deformação máxima do invólucro coincidiu com a rachadura de aproximadamente 34 polegadas no interior da caixa do ventilador.
As superfícies internas da caixa do ventilador e os restos do duto de entrada mostraram arranhões e sulcos que estavam em um padrão espiral ao longo da caixa do ventilador e do flange frontal no duto de entrada até a borda quebrada do duto na área interna da nacele.
O exame do invólucro do ventilador mostrou que havia três padrões distintos de rastros ao longo do caminho do fluxo que pareciam espiralar para frente a partir do plano da borda dianteira das pás do ventilador através do flange A até o barril interno do duto de entrada.
A pá do ventilador nº 11 foi fraturada transversalmente ao longo do aerofólio diretamente acima das carenagens que estão entre a base de cada pá. A superfície de fratura da pá era plana com marcas elípticas nas nervuras internas e ao longo da superfície convexa do aerofólio.
A outra pá do ventilador, que foi identificada como pá do ventilador nº 10 e era a pá traseira adjacente, foi fraturada no aerofólio cerca de 24 polegadas acima das carenagens. O exame laboratorial da pá do ventilador nº 11 revelou uma fratura por fadiga de baixo ciclo (LCF) que se originou na parede interna da cavidade diretamente abaixo da superfície.
Superfície de fratura da seção da raiz da pá do ventilador UA1175 nº 11 (foto NTSB)
O exame metalúrgico da pá fraturada do ventilador foi realizado no Laboratório de Materiais da P&W na presença de membros do Powerplants Group, bem como de um metalúrgico do NTSB. O exame revelou uma fratura por fadiga iniciada a partir de uma origem subsuperficial na superfície interna da pá do ventilador de núcleo oco.
A origem da trinca estava em uma área onde os planos basais dos cristais estavam todos alinhados de forma semelhante e eram quase perpendiculares ao campo de tensão localizado quando a pá do leque foi formada. O exame também revelou que o material da pá do ventilador estava em conformidade com os requisitos especificados da liga de titânio.
O conjunto instalado de pás do ventilador, incluindo a pá do ventilador fraturada, passou por duas revisões, quando as pás passaram por uma inspeção de imagem termoacústica (TAI). No IAT inicial de 2010, havia uma pequena indicação no local de origem da trinca.
A revisão dos registros do IATF de 2015 mostra que houve uma indicação maior na mesma área onde houve a indicação em 2010 e de onde se originou a rachadura. No momento de cada TAI, os inspetores atribuíam o indício a um defeito na tinta utilizada durante o processo de TAI e permitiam que a lâmina continuasse o processo de revisão e voltasse ao serviço.
Devido a esse incidente de separação da pá do ventilador da United Airlines e à descoberta de que a pá do ventilador fraturada tinha uma indicação rejeitável no TAI anterior, a P&W iniciou uma inspeção excessiva e revisou os registros de inspeção do TAI para todas as 9.606 pás do ventilador PW4000 de 112 polegadas inspecionadas anteriormente.
A formação ministrada aos inspetores consistiu essencialmente em formação no local de trabalho (OJT). A revisão do processo TAI revelou vários problemas com o treinamento dos inspetores, bem como com as instalações de inspeção, que poderiam afetar adversamente a inspeção.
A P&W informou que estava trabalhando para corrigir esses problemas. O Escritório de Certificação de Motores (ECO) da Federal Aviation Administration (FAA) emitiu um Aviso de Proposta de Regulamentação que exigiria a realização de inspeções TAI iniciais e repetitivas nas pás do ventilador PW4000 de 112 polegadas.
Aerofólio
Ao lado, imagem da modelagem do cenário de falha pela Boeing reconstruindo a perda da capota do UA1175 com base apenas nas peças restantes, porque as peças que partiram foram perdidas no mar. (foto NTSB)
A entrada é uma estrutura em balanço que direciona o fluxo de ar para a caixa do ventilador do motor de maneira controlada e uniforme. A entrada consiste em dois cilindros concêntricos (os barris interno e externo) unidos por anteparas dianteiras e traseiras e um revestimento labial.
A antepara traseira de entrada foi construída com plástico reforçado com fibra de carbono (CFRP) nos aviões de produção. Durante o teste de certificação da lâmina do ventilador do motor (FBO), a construção da tampa de entrada consistia em um anteparo de alumínio.
A entrada é aparafusada na extremidade dianteira da caixa do ventilador por meio de um anel de fixação usando 44 conexões aparafusadas. Cargas e deslocamentos resultantes de um FBO são transferidos entre a entrada e a caixa do ventilador do motor através dos parafusos de fixação e do anel de fixação.
Como a estrutura de alumínio versus CFRP tem a capacidade de ceder enquanto absorve a mesma quantidade de energia, ela pode redistribuir as cargas FBO entre a caixa do ventilador e a entrada sem causar falha na entrada ou na caixa do ventilador para a interface de entrada.
As análises estruturais da entrada e da capota do ventilador mostraram que o design da antepara traseira de CFRP era menos capaz do que a antepara de alumínio que foi testada durante o teste de certificação do motor e determinou que vários cenários possíveis poderiam ter levado à sua separação:
o dano do caminho de carga da antepara de ré na entrada causado pela magnitude imprevista dos deslocamentos induzidos pela onda de deslocamento após o FBO combinado com o dano antecipado induzido pelo fragmento do cano interno progredido sob cargas de degradação, resultando em partes da entrada partindo dentro de um segundo após o FBO,
a saída de partes da entrada, incluindo a antepara inferior de popa, fez com que as cargas estáticas e/ou dinâmicas aumentassem além da capacidade das capotas do ventilador, levando à saída de grandes porções da capota do ventilador,
a resistência do núcleo do favo de mel da capota do ventilador foi reduzida abaixo de sua capacidade de reagir a cargas de degradação devido à entrada de umidade nos pontos de dobradiça, levando a grandes porções da capota do ventilador partindo antes da partida das entradas.
As capotas do ventilador são duas metades cilíndricas localizadas atrás da entrada que envolvem a caixa do ventilador do motor e os acessórios externos do motor que fornecem uma superfície aerodinâmica lisa sobre o núcleo da caixa do ventilador do motor. As capotas do ventilador são suportadas na extremidade dianteira pela entrada e na extremidade traseira pelo reversor de empuxo. Além disso, as capotas do ventilador são presas à viga de suporte da capota do ventilador usando quatro dobradiças (total de oito) na parte superior e travadas (quatro travas) na parte inferior para permitir que as capotas do ventilador sejam abertas para manutenção.
Um 777 equipado com PW4000 em manutenção, com as portas do ventilador abertas. A entrada está à frente das portas abertas (Foto: Noriko Yamamoto)
O motor é certificado pela parte 33 dos Regulamentos Federais de Aviação (FAR). Para cumprir os regulamentos, o motor demonstrou com sucesso a contenção e o desligamento seguro de um motor após a fratura intencional de uma pá do ventilador na velocidade redline. Embora seja necessário instalar uma entrada para o funcionamento adequado do motor durante esses testes, não é necessário que essa entrada atenda aos padrões de produção.
A entrada de teste usada tinha um design diferente que incluía uma antepara traseira de alumínio em vez da antepara traseira de CFRP de produção. Além disso, esses testes são conduzidos sem as tampas do ventilador anexadas. A entrada e as capotas do ventilador são certificadas pela FAR Part 25, pela qual a Boeing era responsável.
Em 30 de junho de 2020, mais de dois anos após o incidente, o NTSB determinou que as causas prováveis deste incidente foram: "a fratura de uma pá de ventilador devido à classificação contínua da P&W do processo de inspeção por Imagem Termoacústica (TAI) como uma tecnologia nova e emergente que lhes permitiu continuar realizando a inspeção sem ter que desenvolver um programa de treinamento inicial e recorrente formal, definido ou um programa de certificação de inspetores. A falta de treinamento fez com que o inspetor fizesse uma avaliação incorreta de uma indicação que resultou no retorno ao serviço de uma pá com trinca onde acabou fraturando. Contribuiu para a fratura da pá do ventilador a falta de feedback dos engenheiros de processo sobre as pás do ventilador que os inspetores enviaram aos engenheiros de processo para avaliação das indicações que haviam encontrado."
Ação subsequente
A United Airlines planejava reembolsar totalmente todas as passagens dos passageiros.
Em 18 de julho de 2019, a tripulação do cockpit recebeu o prêmio Superior Airmanship da Airline Pilots Association por pousar o avião com segurança.
Capitão Todd Insler (United), presidente do Conselho Executivo Mestre de seu grupo de pilotos, à esquerda, e Capitão Joe DePete, presidente da ALPA, à direita, com os homenageados do Prêmio Superior de Aeronaves da ALPA: membros da tripulação do voo 1175 da United, Capitão Christopher Behnam, Capitão Paul Ayers , e o Primeiro Oficial Ed Gagarin (Foto: ALPA)
Em 2019, a FAA emitiu uma diretiva de aeronavegabilidade exigindo inspeções recorrentes de motores com base nos ciclos de uso e, na época, afirmou que "esses limites fornecem um nível aceitável de segurança". O intervalo de inspeção das pás do ventilador do ciclo de voo 6500 adotado pela FAA também foi adotado e usado por outras autoridades nacionais, até que o ministério dos transportes do Japão ordenou o aumento da frequência de inspeção após o incidente semelhante de falha do motor JAL 777-200/PW4000 no Aeroporto de Naha (OKA) no Japão em 4 de dezembro de 2020.
Em 12 de fevereiro de 2020, um residente da Califórnia e Guam que era passageiro do voo entrou com uma ação no Tribunal Superior de Guam pedindo mais de US$ 1 milhão cada da United, da Boeing Company e da Pratt & Whitney por graves lesões mentais e emocionais, incluindo transtorno de estresse pós-traumático, além de lesões físicas. O processo cita declarações feitas pelo capitão à imprensa, incluindo uma descrição da sensação após a falha do motor como "a aeronave experimentando o que parecia 'bater em uma parede de tijolos a 500 milhas por hora'".
Em agosto de 2020, a Boeing forneceu uma atualização à FAA sobre seu trabalho para também fortalecer as tampas do motor 777. O fabricante disse aos reguladores que decidiu redesenhar e fazer coberturas de substituição com as quais as companhias aéreas poderiam adaptar suas frotas, de acordo com o documento da FAA. Este documento não foi tornado público até que o conteúdo dos documentos internos da Boeing revisados pelo Wall Street Journal foram publicados pela primeira vez imediatamente após um incidente semelhante ocorrido com o voo 328 da United Airlines em Denver em 2021.
Na coletiva de imprensa do NTSB, dois dias após o incidente semelhante do voo 328 da United Airlines, o presidente do NTSB, Robert Sumwalt, disse que resta saber se a falha do motor é consistente com o incidente anterior. “Acho que o importante é que realmente entendamos os fatos, circunstâncias e condições em torno desse evento específico antes de podermos compará-lo com qualquer outro evento”, observou ele. "Mas certamente vamos querer saber se há uma semelhança."
Em 13 de fevereiro de 2013, a aeronave de passageiros ucraniana Antonov An-24RV, prefixo UR-WRA, da South Airlines (foto acima), partiu do Aeroporto Central de Odessa para realizar o voo 8971 até o Aeroporto Internacional de Donetsk, ambas localidades da Ucrânia. A bordo estavam 44 passageiros e oito tripulantes.
Acidente
Às 18h09, na aproximação final ao Aeroporto Donetsk-Sergei Prokofiev, apesar de a tripulação não relatar nenhum problema e não declarar emergência ou prioridade, durante o último segmento, a aeronave tombou para a direita em um ângulo de inclinação de 48°. A asa direita atingiu o solo e a aeronave capotou antes de parar de cabeça para baixo em um campo à esquerda da pista 08.
Após o toque, a aeronave explodiu em chamas, no entanto, a maioria dos ocupantes foi evacuada porque foram capazes de escapar da aeronave em chamas através de um buraco na fuselagem deixado pelo acidente. Cinco passageiros foram confirmados como mortos.
Testemunhas oculares afirmaram que a aeronave estava tentando pousar em meio a uma névoa densa e pousou em solo mole entre a pista principal e a pista de taxiamento.
Outros observadores relataram que a aeronave pousou antes da pista, em solo mole. De acordo com a documentação de voo a bordo estavam 36 passageiros e 7 tripulantes; mas também havia vários passageiros não registrados, totalizando 52 pessoas a bordo.
Todos os 44 passageiros eram fãs de futebol a caminho do jogo entre o Shakhtar Donetsk e o Borussia Dortmund. Esta partida começou com um minuto de silêncio em memória do falecidos no acidente.
Investigação
Volodymyr Vyshynsky, oficial do promotor de Donetsk Oblast, foi o responsável pelo inquérito que foi aberto no dia seguinte ao acidente. Em 14 de fevereiro de 2013, os investigadores consideraram o erro do piloto, o equipamento de suporte de solo defeituoso e as más condições climáticas como possíveis causas.
O piloto do avião - que foi fabricado em 1973 - culpou o mau tempo pelo acidente; enquanto a operadora do avião, South Airlines, afirmou que o avião estava em boas condições e o piloto não deveria ter pousado no nevoeiro e deveria ter desviado para outro aeroporto. Um passageiro mencionou "falha do motor durante a aterrissagem".
O Vice-Primeiro Ministro Oleksandr Vilkol afirmou que a causa do acidente foi a perda de velocidade da aeronave durante a aproximação de aterrissagem devido a um erro da tripulação despreparada, que não tinha autorização para efetuar o voo naquelas condições meteorológicas.
O Ministério dos Transportes informou que na Altitude Mínima de Descida a tripulação não estabeleceu contato visual com as luzes de aproximação ou pista, o comandante então reduziu a razão de descida, entretanto não comunicou uma decisão de dar a volta ou continuar a aproximação para sua tripulação. A aeronave desacelerou abaixo da velocidade mínima de controle, rolou para 48 graus de inclinação lateral e impactou a asa direita no solo primeiro.
Por Jorge Tadeu (com Wikipedia, ASN e baaa-acro.com)
O acidente do voo 503 da Sabena foi um acidente envolvendo um Douglas DC-6 da companhia aérea belga Sabena, que caiu no Monte Terminillo perto de Rieti, Itália, 100 km a nordeste de Roma, em 13 de fevereiro de 1955, matando todas as 29 pessoas a bordo.
Aeronave
O avião envolvido no acidente era o Douglas DC-6, prefixo OO-SDB, da Sabena (foto acima), que foi construído em 1947 com o número de série 43063/60 e foi usado pela companhia aérea belga Sabena até sua destruição em 1955.
O voo e o acidente
O voo 503 da Sabena partiu de Bruxelas, na Bélgica às 17h17 (GMT) com destino a Leopoldstad, no Congo, com escalas em no Aeroporto Roma-Ciampino, na Itália, e em Kano, na Nigéria sob o comando do piloto Stephan Stolz e do copiloto Patrick McNarama. No total, estavam a bordo da aeronave 21 passageiros e oito tripulantes.
Após um voo sem maiores intercorrências, a aeronave fez contato com o Aeroporto Internacional Ciampino, em Roma, de acordo com o planejado às 19h29 GMT, momento em que a aeronave havia passado por Florença, também na Itália, a 17.500 pés.
As condições meteorológicas, no entanto, continuaram a piorar com chuva forte e queda de neve. Às 19h48, o controle Ciampino perguntou à aeronave se ela havia passado sobre Viterbo.
Em vez de responder a esta pergunta diretamente, a tripulação perguntou se o Viterbo NDB (farol não direcional) estava com força total. O controlador respondeu que outra aeronave havia sobrevoado Viterbo pouco antes e estava operando de maneira adequada.
Às 19h51 GMT, a aeronave declarou que havia passado por Viterbo um minuto antes e solicitou autorização para descer a 5500 pés que foi concedida. Um minuto depois, indagou se o ILS de Ciampino estava em funcionamento e recebeu resposta afirmativa.
Às 19h55 o copiloto McNamara contatou Ciampino e afirmou que a tripulação se prepararia para o procedimento de pouso, mas que a visibilidade havia piorado; a conexão estava muito fraca devido à forte tempestade e forte neve e queda de chuva.
Às 19:56 o voo 503 chamou o controle de Roma pela última vez quando de repente a comunicação foi cortada. "Está chovendo forte, mas acho...", foram as últimas palavras do Capitão Stolz ouvidas no Aeroporto Internacional Ciampino.
A aeronave caiu nas montanhas de Rieti, 100 km a nordeste de Roma e agora estava desaparecida.
A própria Sabena foi notificada sobre o desaparecimento da aeronave naquela mesma noite, às 23h15, mas não se manifestaria oficialmente até a manhã do dia seguinte.
Esforço de resgate
O avião caiu em algum lugar nas montanhas de Rieti, que eram conhecidas por serem de difícil acesso e também ficavam em uma reserva natural onde os lobos vagavam. Os italianos iniciaram imediatamente uma missão de busca e resgate para localizar a aeronave desaparecida e resgatar seus ocupantes.
Eles sabiam das condições adversas nas montanhas e, se houvesse algum sobrevivente, eles não durariam muito no topo da montanha gelada. No entanto, como o tempo não melhorou, os pesquisadores só puderam investigar as partes mais baixas das montanhas.
Dois dias após o desastre, investigadores belgas chegaram a Rieti e ajudaram seus colegas italianos a localizar o local do acidente.
Em 16 de fevereiro, o tempo finalmente melhorou e os helicópteros puderam ser usados na busca, mas infelizmente nada foi encontrado.
Em um último esforço para localizar a aeronave a tempo de qualquer pessoa sobreviver, os especialistas calcularam quanto combustível a aeronave havia sobrado e extrapolaram a distância que ela poderia ter viajado. Seus cálculos indicavam que a aeronave deveria estar a uma distância de 100 km (62 milhas) de Ciampino .
Finalmente, após uma busca de 8 dias em 21 de fevereiro de 1955 às 10h15, a aeronave foi localizada no Monte Terminillo em um local tão remoto que só poderia ser alcançado no dia seguinte, em 22 de fevereiro, depois que as equipes de resgate caminharam e escalaram a montanha por mais 2 horas.
Quando eles finalmente chegaram ao local do acidente, houve devastação. Estava congelando a -11° C e a visibilidade era de apenas 15 a 20 m (49 a 66 pés), às vezes até menos.
A neve estava com 1 m de espessura e escondia parte da aeronave. A aeronave estava em pedaços grandes na neve e parecia que havia caído com o nariz para baixo após bater em várias árvores na encosta da montanha.
Apenas a cauda da aeronave à ré da porta traseira estava relativamente intacta. Os motores foram arrancados e apenas 2 dos 4 foram encontrados, um deles claramente atingiu as árvores porque havia galhos presos nele.
A seção dianteira da fuselagem foi retalhada e as asas completamente destruídas também, as tampas da roda principal rasgadas indicavam que o trem de pouso foi estendido quando a aeronave atingiu as árvores e segundos depois a montanha.
Os primeiros corpos foram encontrados pouco depois, completamente congelados. Uma das vítimas ainda tinha um cartão de quatro de ouros na mão. O resto dos corpos foram encontrados dentro ou perto da aeronave e ficou claro que não havia sobreviventes.
No entanto, ficou claro após autópsias e outras evidências que todos haviam morrido com o impacto. Todos os corpos foram recuperados em 25 de fevereiro de 1955 e transportados para um necrotério temporário na igreja de San Antonio em Rieti.
Investigação
Depois de determinar o ângulo de impacto com a montanha, foi descoberto que o voo 503 estava 150° fora do curso. Depois que os investigadores calcularam a trajetória de voo, os momentos finais do voo 503 puderam ser reconstruídos a partir do momento em que passou por Viterbo.
Uma série de relógios encontrados parados no local do acidente, juntamente com as mensagens de rádio e a velocidade da aeronave, os investigadores puderam fazer uma imagem clara da trajetória do voo 503.
Isso mostra que os pilotos seguiram seus horários de voo e continuaram voando em linha reta. Porém, a tripulação nunca percebeu que o mau tempo e o vento que soprava de oeste haviam tirado a aeronave do curso e direto para a cordilheira.
Em certos pontos das montanhas italianas o vento pode ser tão forte que a aeronave foi lançada em um curso diferente e que as ferramentas de radionavegação na onda média não puderam oferecer a assistência usual, o que também explica os fracos sinais de rádio.
No final, a forte tempestade associada a uma navegação deficiente e uma tripulação não familiarizada com o terreno revelou-se fatal e colocou o Voo 503 em rota de colisão direta com a cordilheira sem ninguém perceber.
Resultado
A maior parte da aeronave foi deixada na montanha, uma vez que as constantes mudanças dos ciclos climáticos tornaram quase impossível recuperar os destroços, a maior parte deles agora foram levados para partes mais profundas da cordilheira.
A atriz italiana Marcella Mariani foi uma das vítimas
28 dos 29 corpos foram levados de volta para a Bélgica para sepultamento. Entre as vítimas estava a atriz e Miss Italia Marcella Mariani que foi enterrada em Roma, Itália, seu destino pretendido.
A família das vítimas colocou uma cruz apoiada em pedras em 1964 no local do acidente em memória daqueles perdidos naquela noite tempestuosa de 1955. Um novo monumento representando a seção da cauda intacta foi inaugurado no local do acidente em 2010.
Por Jorge Tadeu (com Wikipedia, ASN e baaa-acro.com)