terça-feira, 18 de junho de 2024

Não durma antes de o avião decolar! Comissária dá esta e mais dicas a bordo

Dormir antes de o seu voo decolar pode ser perigoso, ensina uma comissária de Orlando (EUA)
 (Imagem: Gilitukha/Getty Images/iStockphoto)
Uma experiente comissária americana viralizou após fazer um alerta aos viajantes em seu TikTok. Ale Pedroza, californiana que vive em Orlando, na Flórida, região famosa pelos parques da Disney, explicou em um de seus vídeos por que passageiros não devem dormir antes da decolagem de seus voos.

A prática é perigosa, frisou na mensagem que já acumula mais de 675 mil visualizações desde sua publicação, há três semanas.


"Sei que viajar pode ser exaustivo e às vezes você só quer chegar ao avião e dormir direto. Mas não só não é bom para os seus ouvidos dormir antes da decolagem como também você deve lembrar que taxiar é uma das mais cruciais fases dos voos. Você vai querer garantir que está completamente consciente e acordado em caso de emergência ou caso tenha que evacuar", destacou.

O risco é real, segundo o site do médico Dráuzio Varella, parceiro do UOL: O barotrauma da orelha média, também conhecido por barotite média, "ouvido entupido" ou "orelha de avião", é uma lesão no tímpano provocada pelo descompasso entre a pressão do ar que ocupa a cavidade oca da orelha média e a pressão atmosférica, no ambiente externo. Atingir esse equilíbrio é fundamental para que a membrana timpânica vibre e não haja comprometimento da audição.

Em entrevista à revista especializada em viagem Travel & Leisure, o professor Dan Bubb, da Universidade de Nevada (EUA), explicou que "quando estamos dormindo, não engolimos [saliva] tanto quanto [ao estarmos acordados] para equilibrar a pressão nos nossos ouvidos". Ou seja, é preciso estar acordado para recorrer aos truques que "destampam" o ouvido — como engolir algo ou mascar chiclete — e evitar uma lesão grave e bastante dolorosa.

Uma seguidora de Ale confessou nos comentários que passou por este tipo de problema. "Eu caí no sono sem querer antes de decolar e meus ouvidos doíam tanto quando eu acordei e durante todo o voo que parecia que eu tinha sido apunhalada na orelha", escreveu a mulher identificada apenas como Megan.

Portanto, deixar a soneca para depois que se está voando é mesmo a melhor estratégia — e dá a oportunidade de prestar atenção às instruções de segurança para o voo.

Outras dicas da comissária


"A próxima é não consumir sua própria bebida alcóolica". Ale lembra que, em alguns países como os EUA, é crime levar sua própria cerveja para tomar a bordo do voo, por exemplo, já que é função dos profissionais de bordo monitorar os passageiros para garantir que não estejam se embriagando e colocando a segurança do voo em risco.

A terceira dica oferecida pela comissária, que tem quase 10 anos de experiência, é uma daquelas que ela considera "óbvia": não andar descalço no avião.

"Se você decidir tirar seus sapatos no seu assento, é uma outra história, mas não ande até o banheiro descalço. Você nunca sabe no que pode estar pisando e o chão nem sempre é o mais limpo, entregou.

Em uma sequência, Ale pediu aos seguidores que não se levantem das poltronas assim que o avião pousa. "Como eu disse no primeiro vídeo, o momento de taxiar é um dos mais cruciais do voo e você vai querer garantir que está seguro. Levantar para pegar a sua mala, em primeiro lugar, não vai te ajudar a sair do avião mais rápido, mas também não é a coisa mais segura a fazer", lembrou.

@wonderfullyale What not to do on an airplane from a flight attendant ✈️ #flightattendant #traveltips #flightattendanttips #traveldonts ♬ original sound - Ale

Outra seguidora, Gabby, relatou que em uma de suas últimas viagens o avião taxiava até o portão logo após pousar e fez uma parada abrupta, derrubando no corredor diversas pessoas que já estavam de pé.

O lixo a bordo do avião também é uma questão sensível, segundo a comissária, e é preciso seguir uma certa etiqueta ao descartá-lo. Por exemplo, não é higiênico entregar o seu lixo a um comissário enquanto ele entrega refeições a outros passageiros.

E se por algum motivo você acabar vomitando no seu assento, usando uma daquelas sacolinhas plásticas, avise o comissário. Não simplesmente nos entregue porque precisamos jogar fora de um certo jeito, é considerado um risco biológico a a esta altura.

Ale também fez um último apelo a quem viaja com bebês: não troque as fraldas das crianças no assento.

"Primeiro porque as mesinhas podem quebrar. E temos mesas para troca de fraldas nos banheiros, uma área designada para que você possa trocar a fralda do seu bebê. As pessoas usam aquelas mesinhas para comer, é bom lembrar", finalizou.

Como uma aeronave navega?

Veículos diferentes têm diferentes níveis de liberdade de navegação. Os trens são muito restritos, com seus movimentos ditados pelos trilhos nos quais viajam. Os automóveis e outros veículos rodoviários gozam de maior flexibilidade, com a liberdade de fazer vários percursos consoante a preferência do condutor. Mas e quanto ao fator altitude entra em jogo? As aeronaves viajam mais longe e mais rápido do que esses veículos e em uma variedade de alturas diferentes. Então, como exatamente eles navegam?

Quais são as várias maneiras pelas quais as aeronaves navegam? (Foto: Getty Images)

No ar


O modo como a aeronave navega no ar é influenciado pelo fato de estar voando sob as regras de voo por instrumentos (IFR) ou visual (VFR). Ao voar em IFR, os pilotos navegarão em suas aeronaves utilizando aspectos como rádio e navegação por satélite (GPS), além, como o nome sugere, dos instrumentos de cabine do avião.

Enquanto isso, ao voar sob VFR, esses auxílios geralmente são usados ​​apenas como recursos complementares. Em grande parte, o vôo VFR tende a se basear na navegação observacional, na qual os pilotos calculam visualmente sua posição em relação a outro ponto fixo, às vezes com o auxílio de mapas.

A maneira como as aeronaves navegam a bordo depende se estão voando em IFR ou VFR. (Foto: Getty Images)
No passado, as tripulações às vezes apresentavam um navegador dedicado, além dos dois pilotos (e às vezes também um engenheiro de voo). No entanto, como a tecnologia melhorou ao longo dos anos, a necessidade dessa função foi eliminada. A presença do navegador permitiria aos pilotos se concentrarem em outras tarefas, em um momento em que menos aspectos eram automatizados do que hoje.

No chão


Os pilotos também precisam saber como se locomover ao taxiar sua aeronave entre o portão e a pista. Em aeroportos menores, ou com os quais a tripulação está familiarizada, essa pode não ser a tarefa mais desafiadora. No entanto, em aeroportos grandes ou desconhecidos, é fundamental que os pilotos ainda consigam se orientar sem fazer uma curva errada que poderia causar atrasos.

As aeronaves às vezes têm ajuda adicional de navegação de veículos terrestres, como
carros 'Siga-me', durante o taxiamento (Foto: Jake Hardiman/Simple Flying)
O site The Points Guy relata que as aeronaves geralmente recebem um mapa em papel do aeroporto em questão. Isso contará com portões e pistas de taxiamento claramente identificados para garantir que mesmo os visitantes de primeira viagem saibam para onde estão indo.

Além disso, as aeronaves modernas também costumam ter um mapa móvel computadorizado para movimentos de solo, semelhante ao GPS de um carro. Isso é útil quando há pouca visibilidade, seja durante as horas de escuridão ou devido ao mau tempo.

Um aspecto crucial de segurança


O sistema de navegação de um avião é um dos muitos aspectos da configuração da cabine
que ajuda a garantir que ele voe com segurança (Foto: Jake Hardiman/Simple Flying)
Os sistemas de navegação de uma aeronave são um aspecto vital para garantir sua operação segura. Como tal, as falhas são frequentemente levadas muito a sério, resultando em desvios. Observe esses dois incidentes:

O primeiro deles, em agosto daquele ano, envolveu um Boeing 757 da Icelandair. Essa aeronave estava a caminho de Reykjavík-Keflavík (KEF) para Seattle-Tacoma International (SEA). Neste caso, a aeronave encontrou problemas com seus sistemas LNAV (navegação lateral) e VNAV (navegação vertical) enquanto navegava a 34.000 pés perto da Groenlândia. Ele finalmente pousou em segurança em Reykjavík.

Então, em novembro de 2019, um incidente semelhante se abateu sobre um Airbus A220 da Delta Air Lines. Curiosamente, esse voo também tinha como destino Seattle, embora sua origem neste caso tenha sido Denver, Colorado. Tendo encontrado problemas com os sistemas de navegação 36.000 pés acima de Idaho, a tripulação decidiu desviar para Salt Lake City, Utah, onde, felizmente, eles também pousaram em segurança.

segunda-feira, 17 de junho de 2024

Estol de aeronaves: por que acontecem e como podem ser evitadas

Tecnicamente, você pode estolar uma aeronave em qualquer velocidade. Vamos dar uma olhada em como eles acontecem e alguns casos em que a recuperação não foi bem-sucedida.

Airbus A330-200 da Air France (Foto: Telsek/Shutterstock)
Em 1º de junho de 2009, o voo 447 da Air France estava em rota do Rio de Janeiro para Paris quando desapareceu do radar sobre o Atlântico durante uma tempestade. De acordo com o relatório da investigação francesa, os sensores de velocidade, também conhecidos como tubos de pitot, do Airbus A330 congelaram, resultando em leituras incorretas e no desligamento do piloto automático.

O Bureau d'Enquêtes et d'Analyses (BEA) disse que, embora os pilotos pudessem ter salvado o avião, eles fizeram o contrário do que seria necessário, puxando o avião até um ponto em que ele estolou. A Air France e a Airbus escaparam recentemente da acusação de homicídio culposo em relação ao acidente. Não importa quem foi o culpado, não há como negar a tragédia de um dos piores desastres aéreos da história moderna. Mas o que exatamente é um estol e o que o causa?

Um estol é uma condição em que a aeronave perde altitude e controle. É um dos fenômenos mais incompreendidos. Muitos acreditam que um estol é causado por uma perda de velocidade, mas isso é incorreto. A velocidade da aeronave não tem nada a ver com estol. Tecnicamente, você pode estolar uma aeronave em qualquer velocidade. Vamos dar uma olhada mais de perto nos fatores envolvidos.

Compreendendo o aerofólio, a camada limite e o ângulo de ataque


As asas de uma aeronave são essencialmente aerofólios. Um aerofólio pode produzir sustentação com grande eficiência. O ponto inicial de um aerofólio é conhecido como bordo de ataque e o final dele é conhecido como bordo de fuga. Tem a forma de uma lágrima e tem uma área de espessura máxima onde o elevador está mais concentrado. Ele também possui uma linha de corda, que é essencialmente uma linha reta que une a borda de ataque e a borda de fuga.

Aerofólio (Imagem: Oxford ATPL)
À medida que o ar flui sobre um aerofólio, as partículas em contato com o aerofólio são levadas com ele e têm uma velocidade de zero. As partículas adjacentes aceleram para a velocidade do fluxo livre em uma magnitude crescente à medida que se afastam do aerofólio. Da superfície do aerofólio até o ponto onde a viscosidade do ar não afeta mais o fluxo de ar é conhecida como camada limite. Para poder gerar sustentação, a asa ou o aerofólio precisa de uma camada limite anexada.

Conforme discutido anteriormente, a sustentação e, portanto, a pressão mais baixa em um aerofólio ocorre na região de espessura máxima. O fluxo de ar à frente da espessura e atrás da espessura geralmente experimenta uma pressão maior. É importante entender que o ar gosta de fluir de uma região de maior pressão para uma região de menor pressão.

Assim, na frente do aerofólio existe uma região de pressão favorável e logo atrás dela existe uma região de pressão desfavorável. Essa pressão desfavorável é conhecida como gradiente de pressão adverso. À medida que o ar se move do ponto de espessura máxima, a velocidade do fluxo de ar diminui, o que também reduz a energia cinética do fluxo. Isso acontece devido ao atrito da pele. Devido à velocidade de fluxo reduzida, o gradiente de pressão adverso continua a aumentar.

O fluxo de ar não pode continuar seu caminho contra um gradiente de pressão adverso crescente. O gradiente de pressão adverso faz com que as partículas de ar mais lentas (aquelas mais próximas do aerofólio) parem de se mover e, em algum ponto, o fluxo se separa do aerofólio. Isso é chamado de ponto de separação. Além desse ponto, ocorre a reversão do fluxo. Esta é a física de uma tenda.

A separação do fluxo ocorre quando a camada limite carece de energia cinética para lutar
contra o aumento do gradiente adverso de pressão (Imagem: tec-science)
O ângulo entre o fluxo de ar relativo e a corda do aerofólio é conhecido como ângulo de ataque. À medida que o ângulo de ataque aumenta, a sustentação gerada pela asa aumenta à medida que as linhas de corrente se aproximam. O outro efeito do aumento do ângulo de ataque é que ele faz com que a região de pressão mínima se mova para frente no aerofólio.

Como resultado, uma parte maior da asa fica exposta ao gradiente de pressão adverso e, assim, com o aumento do ângulo de ataque, o aerofólio se aproxima de um estol. O ângulo de ataque no qual ocorre o estol é conhecido como ângulo de ataque crítico. Este é o único fator que pode resultar em estol. Portanto, um estol em uma aeronave é um problema de ângulo de ataque.

Curva de elevação (Imagem: Oxford ATPL)

O que acontece com uma aeronave durante um estol e como os pilotos se recuperam?


Quando o ângulo de ataque da asa é aumentado além do ângulo de ataque crítico, a aeronave entra em estol, onde a asa não gera mais sustentação. O comportamento de uma aeronave durante um estol varia de aeronave para aeronave. Mas existem algumas indicações comuns. Uma das primeiras indicações de um estol iminente é o golpe aerodinâmico, o que significa que o avião vibra. Este buffet é causado pelo ar separado que atinge a cauda da aeronave.

A recuperação de um estol é bastante direta. Tudo o que um piloto deve fazer é empurrar o nariz para baixo e nivelar as asas se a aeronave estiver inclinada. Essa ação reduz o ângulo de ataque e reconecta o fluxo de ar sobre a asa. Uma vez recuperada, a aeronave pode ser puxada para trás da atitude de nariz para baixo e a potência adicionada para voltar à trajetória de voo anterior.


Um dos tipos de estol mais difíceis de se recuperar é o estol de alta altitude. Em grandes altitudes, o ar é mais rarefeito. Portanto, quando uma aeronave entra em estol nessas altitudes, leva muito tempo para se recuperar. A recuperação é a mesma. Empurre o nariz para baixo até que o fluxo de ar seja restabelecido. No entanto, devido ao ar muito rarefeito, pode ser necessária uma grande perda de altitude para finalmente sair do estol. Pode levar cerca de 10.000 a 12.000 pés para se recuperar se uma aeronave entrar em estol, digamos a cerca de 35.000 pés.

Recomenda-se deixar o empuxo do motor em marcha lenta durante a recuperação, principalmente naquelas aeronaves com motores acoplados sob as asas. Como o vetor de empuxo desses motores atua abaixo do centro de gravidade (CG) da aeronave, o acréscimo de empuxo do motor pode fazer com que o ângulo de ataque aumente, o que pode piorar a situação. Como discutido anteriormente, o voo 447 da Air France caiu depois de entrar em um estol em grande altitude.

Em algumas aeronaves a hélice, o uso da potência do motor na recuperação do estol pode ser benéfico. Isso ocorre porque a hélice causa aceleração do fluxo de ar sobre a asa e, às vezes, ajuda a recolocar o fluxo de ar nas asas. O Airbus A400M tem uma velocidade de estol 20 nós mais lenta quando estolado com todos os seus motores de 32.000 cavalos de potência ajustados em potência de subida.

Airbus A400M (Foto: Julian Herzog via Wikimedia Commons)

Dispositivos de alerta de estol e sistemas de recuperação de estol


A maioria das aeronaves de transporte modernas são equipadas com dispositivos de alerta de estol. Os sistemas de alerta são projetados de forma que um aviso de estol iminente seja dado ao piloto antes que a aeronave entre em estol. Os regulamentos dizem que tais avisos devem ocorrer 5 nós antes que a aeronave atinja sua velocidade de estol de referência (Vsr).

Um dos métodos mais comuns usados ​​para avisar os pilotos de um estol é o shaker do manche. O stick shaker sacode os controles do piloto usando um motor para chamar a atenção do piloto.

Piloto na cabine (Foto: lightpoet/Shutterstock)
O stick shaker funciona em ligação com um sistema que detecta uma parada. Muitas aeronaves utilizam uma palheta de ângulo de ataque, que é fixada na fuselagem. A parte da palheta está livre para flutuar. À medida que o ar flui sobre a palheta, ela se move e registra o ângulo de ataque. Esses dados são continuamente enviados para os computadores de alerta de travamento. Quando o ângulo de ataque excede o limite definido, o stick shaker é ativado.

Sensor AOA (Foto: JCV127 via Wikimedia Commons)
Às vezes, os aviões também são equipados com empurradores de alavanca. O sistema pusher empurra fisicamente os controles se a aeronave chegar perto de um estol.

Como os aviões são projetados para atrasar o estol


O retardo de estol é importante, pois permite que os fabricantes construam uma aeronave com melhor desempenho. Não é apenas importante retardar o estol, mas também projetar uma aeronave com características de estol favoráveis.

Um dos tipos mais perigosos de estol é conhecido como estol de ponta, onde as pontas das asas estolam antes da raiz. Os estols de ponta podem causar quedas das asas e reduzir a eficácia dos ailerons , o que ajuda a controlar o rolamento. Em asas retas, isso não é um problema. No entanto, a maioria dos transportes tem asas cônicas ou enflechadas, que em sua forma natural, tendem a estolar nas pontas.

Para evitar estol de ponta, alguns fabricantes prendem as asas à fuselagem de forma que a raiz da asa esteja em um ângulo de incidência maior do que a ponta. Isso garante que a raiz da asa atinja um ângulo crítico mais rápido que a ponta, promovendo um estol de raiz. Uma outra maneira é usar uma faixa de estol. A tira é um pequeno aerofólio (triangular) preso à raiz da asa. Isso estimula a separação precoce do fluxo na raiz e força a raiz a parar mais rápido do que as pontas.

Geradores de vórtice nas asas de um Boeing 737 NG (Foto: FathirLeone por Wikimedia)
Para atrasar o estol, os projetistas de aeronaves tiveram muitas ideias inteligentes. Uma delas é o uso de geradores de vórtice. Esses geradores de vórtice são pequenas estruturas semelhantes a lâminas que estão presas às asas. Eles geram vórtices, causando um fluxo turbulento. Como o fluxo turbulento tem mais energia cinética, isso dá uma chance de luta da asa contra o gradiente de pressão adverso e, com isso, o fluxo de ar pode permanecer preso à asa por períodos mais longos.

Os strakes nos motores ajudam a retardar um estol (Foto: Aeroporto Internacional de Denver)
O uso de strakes do motor também atrasa as paradas. Os motores muito grandes de alta taxa de desvio usados ​​hoje às vezes afetam a capacidade de elevação das asas. Quando os strakes são encaixados na nacele do motor, o strake gera vórtices e adiciona energia à camada limite em um alto ângulo de ataque, assim como os geradores de vórtice. Isso mantém o fluxo de ar preso à asa e evita a entrada em estol precoce.

Outros acidentes causados ​​por estol


Outra grande tragédia causada por um estol ocorreu em 28 de dezembro de 2014, quando o AirAsia QZ8501 transportando 162 pessoas de Surabaya, na Indonésia, para Cingapura, caiu no mar de Java logo após subir para evitar grandes nuvens de tempestade. Uma rachadura em um minúsculo módulo eletrônico causou alertas repetidos aos pilotos, que responderam reiniciando o sistema. Como resultado, o piloto automático foi desativado e o Airbus A320 desviou para a esquerda.

A tripulação lutou para endireitar o avião, que parou e caiu. As investigações descobriram que a equipe de manutenção estava ciente do problema, que ocorreu nada menos que 23 vezes durante o ano, e redefinir o sistema foi um método de resolvê-lo.

Em 4 de abril de 1994, o voo KLM Cityhopper 433 caiu após a perda de controle da aeronave durante uma arremetida durante um pouso de emergência. O voo foi operado por um Saab 340. O acidente foi atribuído a um erro do piloto devido ao uso inadequado dos controles de voo durante uma aceleração desigual após um curto-circuito que forneceu leituras defeituosas da pressão do óleo para um dos motores. Isso resultou na morte de três pessoas, incluindo o capitão e dois passageiros.

Em 2005, em 16 de agosto, um McDonnell Douglas MD-82 pertencente à West Caribbean Airlines caiu após um estol, matando todos os 160 ocupantes. O avião estava indo do Panamá para a Martinica quando a velocidade da aeronave diminuiu gradualmente para 33.000 pés. Isso ocorreu porque a aeronave estava operando muito alto, uma vez que o sistema antigelo estava ligado, utilizando o ar sangrado dos motores e reduzindo assim a quantidade de empuxo que eles podem produzir.

Um boletim explicando como lidar com a situação foi compartilhado com a companhia aérea pelo fabricante, mas nunca chegou aos pilotos. Outros erros agravaram a gravidade da situação, e o avião caiu em uma fazenda de gado na Venezuela.

Por Jorge Tadeu com Simple Flying

Vídeo: O que tem em comum os combates nas Malvinas e os Mi-35M brasileiros?


E aí, sabe a resposta?

O que será que um jato como o A-4C Skyhawk usado pela Argentina tem a ver com os Mil Mi-35M que operaram na Força Aérea Brasileira?

A resposta, com certeza, vai te surpreender! E vai ser uma boa surpresa, ou não!?

Assista o episódio e descubra! Com Claudio Lucchesi e Kowalski, no Canal Revista Asas – o melhor da Aviação, da História Militar, e da sua Cultura e Arte no YouTube!

Aconteceu em 17 de junho de 1989: Grave acidente no Aeroporto de Berlim com o voo 102 da Interflug


Em 17 de junho de 1989, às 6h20, horário de Berlim, a aeronave Ilyushin IL 62M, prefixo DDR-SEW, da Interflug (foto acima), deu partida em seus quatro motores Soloviev D-30KU para se preparar para a decolagem para o voo 102 do Aeroporto Schönefeld de Berlim, na então Alemanha Oriental, em direção ao Aeroporto Sheremetyevo, em Moscou, na Rússia, na então União Soviética. A bordo da aeronave estavam 103 passageiros e 10 tripulantes.

Posteriormente, o desbloqueio dos controles de voo aconteceria imediatamente. De acordo com o gravador de voz da cabine (CVR), a tripulação não executou essa tarefa. A tripulação não verificou o painel de avisos das condições do elevador. Quando o capitão estava taxiando para a pista, ele verificou uma segunda vez para o movimento do elevador. Ele não percebeu que os elevadores estavam trancados e não podiam se mover.

A aeronave foi liberada para decolagem na pista 25L e os motores foram ajustados para a potência reduzida, pois o avião pesava 113 toneladas. Às 06h28m05s, horário local, a aeronave atingiu a velocidade de rotação (VR). 

A tripulação puxou o manche, mas o avião não respondeu. Quatro segundos depois, o capitão decidiu abortar a decolagem. Neste momento, a velocidade do avião era de 293 km/h (182 mph). O engenheiro de voo desligou todos os quatro motores, o que impediu o uso de empuxo reverso. O avião agora viajava a 303 km/h (188 mph), a 940 m (3.080 pés) do final da pista.

O avião ultrapassou a pista a 262 km/h e saiu da linha central. Durante a frenagem de emergência, cinco pneus do trem de pouso principal foram destruídos. O avião entrou em um poço de construção com 40 cm (16 pol.) de profundidade, causando o colapso do trem de pouso principal. A direção ativa não estava disponível neste momento. 

Em seguida, quebrou-se em três pedaços e o avião pegou fogo depois de atingir um tanque de água, estacas de concreto da cerca que cerca o aeroporto, um aterro de estrada e seis árvores. Às 06h28m37s, hora local, o avião parou.


Equipes de resgate chegaram às 6h38, e 82 passageiros foram resgatados da fuselagem nos primeiros 2 minutos. A parte frontal da fuselagem estava intacta e parte da tripulação pôde usar as janelas da cabine para escapar do avião em chamas. A tripulação ajudou na evacuação dos passageiros. As chamas foram extintas às 8h09. 

O acidente custou 21 vidas; dois morreriam devido aos ferimentos no hospital, todos eles passageiros.


As investigações não conseguiram determinar a causa exata do acidente. Não foi possível excluir um problema técnico com os controles ou componentes do leme e não foi possível comprovar um erro por parte da tripulação.

Mas foi levantado que contribuiu para o acidente o travamento de alguns dos controles de voo. Se isso foi devido a um problema mecânico ou a erro de checagem por parte da tripulação, isso não pôde ser provado.


Todos os Il-62s da Interflug foram temporariamente aterrados. Nove dos 11 Il-62s restantes da Interflug foram liberados no dia seguinte ao acidente.

Por Jorge Tadeu (Site Desastres Aéreos) com ASN, Wikipedia e baaa-acro

Aconteceu em 17 de junho de 1979: A queda do voo 248 da Air New England em Massachusetts (EUA)


Em 
17 de junho de 1979, o avião de Havilland Canada DHC-6 Twin Otter 300, prefixo N383EX, da Air New England (foto acima), estava programado para realizar o voo 248, entre o Aeroporto LaGuardia, em Nova Iorque, e o Aeroporto Hyannis-Barnstable, em Massachusetts, ambas localidades dos EUA.

Antes de carregar a aeronave para decolagem de LaGuardia, a tripulação de voo verificou o clima em rota para o voo de volta a Hyannis e descobriu que um pouso na parada de rota em New Bedford pode não ser possível. Ao serem avisados ​​da situação do tempo, os passageiros com destino a New Bedford decidiram permanecer em LaGuardia.

Às 21h32, o voo 248 partiu de LaGuardia para Hyannis na última etapa do dia. Havia oito passageiros e dois tripulantes a bordo.  A aeronave, era pilotada pelo co-fundador da Air New England, George Parmenter. 

Às 22h34min08s, o voo 248 contatou o Controle de Aproximação da Otis e reportou nível a 5.000 pés. Às 22h39min05s, o voo recebeu o clima atual de Hyannis, que incluía um teto indefinido de 200 pés, céu obscurecido, visibilidade de 3/4 de milha no nevoeiro, vento de 210° a 10 nós. Ele também incluiu uma visibilidade de 1 1/8 na garoa leve na pista 24. 

Às 22h44:36, o voo 248 estava 4 milhas náuticas ao norte-nordeste do marcador externo quando o Controle de Aproximação Otis deu ao voo um vetor de 210° para interceptar o localizador a 1.700 pés para uma aproximação ILS para a pista 24 no Aeroporto de Barnstable. 

Às 22h45min34s, o voo 248 foi instruído a entrar em contato com a torre do Aeroporto de Barnstable. Por volta de 22h47, o voo atendeu a esta solicitação e relatou cruzar o marcador externo. 

O voo foi liberado para pousar, no entanto, nenhuma outra transmissão foi ouvida da aeronave. O Centro de Controle de Tráfego da Rota Aérea de Boston (Boston Center) conseguiu rastrear o voo 248 com precisão de 2,8 milhas náuticas do ponto de pouso pretendido na pista 24. 

A impressão do computador do Boston Center mostrou a posição do voo às 22h46:51, cerca de 0,35 milhas náuticas a nordeste do marcador externo ILS a 1.700 pés. Também mostrou o voo a cerca de 0,15 milhas náuticas a sudoeste do marcador externo a 1.500 pés às 22h47:03. 

A última posição do radar mostrada para o voo foi de cerca de 1,1 milhas náuticas a sudoeste do marcador externo às 22h47:27 a 1.100 pés. O primeiro oficial afirmou que o capitão estava pilotando a aeronave durante a aproximação a Hyannis. Ele disse que fez as seguintes chamadas: localizador ativo, marcador externo, 500 pés acima, 200 pés acima, 100 pés acima, mínimos e 100 pés abaixo. Ele disse que o capitão não atendeu a nenhuma dessas ligações. 

O primeiro oficial disse que quando chamou 'mínimos', a aeronave estava um ponto abaixo do glidepath do ILS. O primeiro oficial disse que parecia que a aeronave estava em uma descida contínua sem taxas de afundamento excessivas ou ângulos de descida de 5.000 pés até o impacto, com a velocidade no ar próxima a 130 nós durante toda a aproximação. Ele afirmou que, ao chamar '100 pés abaixo', olhou para fora da cabine porque acreditava que o capitão tinha as luzes de aproximação à vista. 

O primeiro oficial disse ainda que não viu o solo antes de a aeronave cair por volta das 22h48 em uma área densamente arborizada localizada a 1,5 milhas náuticas do final da pista 24, no prolongamento da linha central da pista. 


O acidente ocorreu durante as horas de escuridão. O capitão morreu, enquanto todos os outros ocupantes ficaram feridos, alguns deles gravemente. A aeronave caiu no meio de Camp Greenough, um acampamento de escoteiros da América densamente arborizado. 

Uma passageira escapou ilesa conseguindo abrir caminho através de mata fechada até a Rodovia Mid Cape (Rota 6) e lá sinalizou para um carro que passava. O motorista a levou ao aeroporto, onde ela alertou as autoridades sobre o acidente. As equipes de resgate, com a ajuda de um caminhão de remoção de mato, conseguiram abrir caminho no mato até o local do acidente e ajudar os sobreviventes.



O National Transportation Safety Board determinou que a causa provável do acidente foi a falha da tripulação em reconhecer e reagir em tempo hábil ao desvio grosseiro dos parâmetros de aproximação aceitáveis, resultando na continuação da descida bem abaixo da altura de decisão durante uma precisão aproximação sem contato visual com o ambiente da pista. 


Embora o Conselho não tenha conseguido determinar conclusivamente o motivo da falha em reconhecer e reagir ao desvio grosseiro, acredita-se que a condição fisiológica degradada do capitão prejudicou seriamente seu desempenho. Além disso, a falta de práticas e procedimentos adequados de coordenação da tripulação contribuiu para que o primeiro oficial não detectasse e reagisse à situação em tempo hábil.

Em junho de 2009, o autor Robert Sabbag, um dos passageiros a bordo do voo 248 da Air New England, lançou um livro chamado "Down Around Midnight", um relato em primeira mão da acidente de sobreviventes e equipes de resgate.


Por Jorge Tadeu (Site Desastres Aéreos) com ASN, Wikipedia e baaa-acro

Aconteceu em 17 de junho de 1975: Voo Varig 236 Acidente em Pedro Afonso


Em 17 de junho de 1975, o avião Hawker Siddeley HS-748-235 Srs. 2A, prefixo PP-VDN, da VARIG (foto acima), operava o 
voo 236, que partiu às 7h05min de São Paulo, com destino a Belém, no estado do Pará, com escalas nas cidades de Porto Nacional e Pedro Afonso, ambas – na época – no estado de Goiás.

Após o embarque de mais cinco passageiros, o avião de prefixo PP-VND, decolou do Aeroporto de Pedro Afonso, às margens do Rio Tocantins, para cumprir a etapa final de seu voo, levando a bordo estavam três tripulantes e doze passageiros.

Pouco depois de levantar voo, a aeronave apresentou problemas e teve que retornar para realizar uma aterrissagem forçada.

O avião aproximou-se com o excesso de velocidade e tocou a pista apenas nos seus últimos 300 metros, a ultrapassando, atravessando a rua e indo ao encontro de uma residência.


Os três ocupantes da casa morreram na hora, assim como o copiloto Nilo Sérgio Lemos, que morreu com o choque.

O piloto, Fayet, sofreu fratura numa das pernas. O comissário J. Nelson e os 12 passageiros nada sofreram.


Esta mesma aeronave já havia se acidentado em 1971, tendo sido recuperada.

Por Jorge Tadeu (Site Desastres Aéreos) com ASN e baaa-acro

Aconteceu em 17 de junho de 1948: Voo United Airlines 624 - Falso alarme de incêndio


Em 17 de junho de 1948, o avião DC-6 da United Airlines caiu perto de Mount Carmel, na Pensilvânia, depois que os pilotos relataram um incêndio no porão de carga. Todas as 43 pessoas a bordo morreram quando os pilotos foram atingidos pelo CO2 do sistema de extinção de incêndio, fazendo com que perdessem o controle do avião.

No início de 1948, os engenheiros da Douglas estavam testando a interação do novo sistema de ventilação com os bancos aprimorados de extintores de CO2 do DC-6 quando ocorreu um incidente perturbador. Após acionar os extintores para apagar um incêndio simulado, altas concentrações de dióxido de carbono retornaram do compartimento de bagagem para a cabine, causando a incapacitação parcial da tripulação, que quase perdeu o controle do avião antes de recuperar a consciência. Um inspetor da CAA e um representante do sindicato dos pilotos também estavam no avião no momento e testemunharam a quase catástrofe. 

O incidente levou Douglas a instalar uma válvula de alívio no sistema de ventilação que poderia ser acionada antes da liberação dos extintores de incêndio, a fim de reduzir a quantidade de CO2 que entrava na cabine. A empresa também contratou o Dr. Clayton White, um médico especialista, para revisar os testes e compilar pesquisas conhecidas sobre os efeitos do CO2 no corpo humano.

Alguns pequenos pedaços do DC-6 ainda podem ser encontrados no local do acidente no
Parque Nacional Bryce Canyon (Michael McComb/Lost Flights)
O CO2 desloca o oxigênio do ar, causando asfixia, e também é tóxico em grandes concentrações. No entanto, em 1948, não se sabia com certeza quanto CO2 deveria estar presente no ar antes que as condições se tornassem inseguras. Dr. White concluiu que os dados mais confiáveis ​​pareciam indicar que concentrações de CO2 acima de 5% seriam perigosas. 

Ele também concluiu que os testes de Douglas após a instalação da nova válvula de alívio foram lamentavelmente inadequados para determinar se as concentrações de CO2 permaneceriam abaixo desse limite, porque Douglas não monitorou as concentrações com cuidado suficiente, não acionou todos os extintores simultaneamente e não realizou testes em todas as configurações de descida de emergência aprovadas. White escreveu que Douglas deveria refazer os testes com mais cuidado para “evitar algum constrangimento no futuro” e recomendou que Douglas compartilhasse o relatório com a CAA, a Airline Medical Doctors' Association e a Air Transport Association.

Mas em vez de seguir o conselho do Dr. White, o principal piloto de testes de Douglas escreveu “não discuta com a CAA” na capa do relatório e arquivou-o longe de olhares indiscretos. Posteriormente, a CAA aprovou as alterações no projeto do DC-6, certificando que atendiam aos requisitos federais, sem perceber que um consultor contratado por Douglas havia considerado seus testes insuficientes para demonstrar a conformidade. As únicas salvaguardas eram as válvulas de alívio e uma linha na lista de verificação de resposta a incêndios lembrando os pilotos de abrir as válvulas antes de liberar o agente extintor, a fim de evitar o acúmulo “excessivo” de CO2 dentro do avião. 

A CAA originalmente queria que usassem a palavra “letal”, mas Douglas convenceu a agência a deixá-los usar “excessivo”, aparentemente para evitar a impressão de que o sistema de extinção de incêndio era perigoso.

Um Lockheed Constellation da TWA, semelhante à envolvida no incidente de 13 de maio de 1948
(The Aviation History Online Museum)
Então, em 13 de maio de 1948, um Lockheed Constellation da TWA recebeu um falso aviso de incêndio que levou a tripulação a ativar os extintores de CO2 no compartimento de bagagem dianteiro. Ao entrarem em uma descida de emergência, o CO2 vazou do porão e se acumulou na cabine, fazendo com que os pilotos ficassem parcialmente incapacitados. 

Felizmente, eles conseguiram se recuperar e pousar com segurança em Chillicothe, Missouri. Após uma investigação que durou um mês, a Air Transport Association, grupo de interesse das companhias aéreas, enviou um telegrama a todos os operadores do Douglas DC-6, informando-os das circunstâncias do incidente, discutindo o que poderia ser feito para se recuperar de tal situação. e alertando que eles tinham motivos para acreditar que um evento semelhante poderia ocorrer no DC-6. O telegrama terminava recomendando que as operadoras realizassem testes para saber se isso de fato acontecia.

Um trecho da resposta de Douglas ao telegrama da ATA (Department of Trransportation)
Em 15 de junho, a Douglas Aircraft Company respondeu com um telegrama conciso de sua autoria. Douglas exigiu que a ATA contatasse todos os destinatários do telegrama original a fim de retirar qualquer referência ao DC-6, uma vez que Douglas já havia realizado tais testes com “resultados totalmente satisfatórios”; além disso, argumentou, os testes eram bastante perigosos e não era sensato recomendar que as companhias aéreas os realizassem. 

A empresa concluiu escrevendo que as suas próprias recomendações para lidar com o CO2 no cockpit foram “baseadas em testes extensivos realizados sob condições variadas, com aprovação da CAA”, e que a ATA não deveria recomendar soluções que possam não ser igualmente aplicáveis ​​a diferentes aeronaves. Mais tarde naquele dia, a ATA cedeu às exigências de Douglas e enviou um novo telegrama informando a todos os operadores do DC-6 que o avião havia sido testado adequadamente para garantir que concentrações perigosas de CO2 não pudessem ocorrer.

Um DC-6 da United Airlines semelhante ao envolvido no acidente do voo 624
Dois dias depois, em 17 de junho de 1948, o avião Douglas DC-6, prefixo NC37506, da United Airlines, operando o voo 624, partiu de Chicago com destino a Nova York. No comando estavam o capitão George Warner, que tinha apenas cerca de 30 horas no DC-6, e o primeiro oficial Richard Schember, que tinha 129. Dois comissários de bordo e 39 passageiros também embarcaram no voo do meio-dia. Devido à ofuscação de Douglas, nenhum deles tinha o menor conhecimento da falha mortal que se escondia no DC-6 modificado.

As primeiras horas de voo transcorreram sem incidentes, até que o avião chegou ao leste da Pensilvânia. Enquanto navegavam a 17.000 pés, os pilotos repentinamente receberam um aviso de incêndio no compartimento de bagagem dianteiro. Na verdade não houve incêndio, mas eles não poderiam saber disso.

Um dos pilotos conseguiu enviar uma mensagem distorcida e de pânico para LaGuardia: “624… 624… Fogo. Descarregando o poço de bagagem dianteiro [ininteligível]…”

“Não consigo ouvir, tente novamente, por favor”, disse o controlador.

“624, emergência!”

Outro piloto ouviu o que parecia ser um grito, seguido por alguém gritando: “Esta é uma descida de emergência!”

“Não consigo ouvir, tente VHF!” o controlador disse novamente.

“624”, disse o piloto, “descendo, eu… ah… ah…” E então houve silêncio.

Nenhuma outra transmissão foi ouvida do voo 624 da United Airlines, mas o avião continuou voando por mais dez minutos. O DC-6 passou sobre o aeroporto de Sunbury a 4.000 pés, mas não fez nenhuma tentativa de pousar, depois virou à esquerda perto da cidade de Shamokin enquanto descia entre 500 e 1.000 pés acima do solo, em direção a uma área montanhosa. 

O avião foi visto novamente vários minutos depois, perto do Monte Carmelo, onde voou a 60 metros do solo e, em seguida, entrou em uma curva ascendente à direita em direção a terreno elevado. Momentos depois, o avião bateu em uma clareira de linha de transmissão na encosta de uma montanha arborizada, destruindo um transformador de 66 mil volts e cortando linhas de energia antes de atingir o solo e se desintegrar, espalhando destroços várias centenas de metros montanha acima. 

Testemunhas correram para o local para ajudar, mas era óbvio que ninguém poderia ter sobrevivido; todos os 43 passageiros e tripulantes morreram no impacto do fogo.

No LaGuardia, o controlador perguntou a um voo próximo da United se eles conseguiam ver o voo 624, pois o avião não estava respondendo às transmissões. De forma assustadora, o piloto respondeu: “O voo 624 não precisa mais de assistência – naufragou no Monte Carmelo”.

O avião impactou uma subestação elétrica ao atingir a montanha
(Mount Carmel Community Organization)
Com base nas transmissões captadas pelo LaGuardia, ficou claro que os pilotos pensaram que havia um incêndio na bagagem e haviam descarregado os extintores. No entanto, o exame dos destroços mostrou que nenhum incêndio ocorreu antes do impacto; o aviso era de fato falso. Isto não era incomum; já em 1948, tinham havido 22 avisos falsos de incêndio em aviões norte-americanos e mais de 280 avisos falsos de fumaça, muito mais do que o número de eventos reais de incêndio e fumo. 

Na verdade, foi a tentativa de extinguir esse incêndio imaginário que originou o acidente. Marcas de testemunhas deixadas nas válvulas de alívio no momento do impacto mostraram que elas estavam fechadas – em pânico para extinguir o fogo, a tripulação esqueceu de abri-las. 

Tragicamente, a versão da lista de verificação de incêndio da United Airlines omitiu o aviso sobre as consequências de não abrir as válvulas, tornando esta etapa muito mais fácil de encobrir. Não havia como saber exatamente o que aconteceu a bordo do avião após esse erro, mas a ausência de novas transmissões, a trajetória de voo errática e o fato de a tripulação aparentemente ter sobrevoado vários locais de pouso adequados sugeriram que a tripulação estava parcial ou totalmente incapacitada por CO2 durante aqueles angustiantes minutos finais.

A primeira página do New York Times do dia seguinte ao acidente
A investigação subsequente do CAB mostrou que mesmo com as válvulas de alívio abertas, em certas configurações de descida as concentrações de CO2 na cabine ainda poderiam atingir níveis perigosos. 

No caso do voo 624, as válvulas provavelmente estavam fechadas e as evidências sugeriam que o avião provavelmente não estava na configuração mencionada, mas as descobertas apenas reforçaram a advertência do Dr. Clayton White de que os testes de Douglas foram inadequados para garantir que o avião era seguro. 

Só muito mais tarde, durante uma ação movida contra Douglas e United pela família de uma das vítimas, o relatório de White foi revelado. A sua apresentação como prova levou a um escândalo próprio, quando o juiz penalizou o advogado de defesa de Douglas por tentar apagar as palavras “não discuta com a CAA” da capa.

Equipes de resgate trabalham no local do acidente do voo 624
(Bureau of Aircraft Accidents Archives)
A investigação também descobriu que, em março de 1948, a Air Line Pilots' Association pressionou a CAA para exigir máscaras faciais de oxigênio puro para os pilotos de linha aérea, citando o fato de que as máscaras existentes do tipo rebreather, que misturam oxigênio no ar circundante, poderiam não protege contra fumaça ou gases tóxicos como o CO2. 

No entanto, a CAA rejeitou a proposta, argumentando que os procedimentos existentes para a remoção de fumos e gases do cockpit já eram suficientes e que máscaras de oxigénio puro não eram necessárias. Após a tragédia no Monte Carmelo, a CAA rapidamente reverteu o rumo, exigindo que todos os aviões fossem equipados com máscaras de oxigénio puro e exigindo que os pilotos as colocassem antes de ativarem os sistemas de supressão de incêndios. Essas máscaras ainda são padrão em todas as aeronaves hoje, mas chegaram tarde demais para evitar a queda do voo 624.

O avião caiu a cerca de dois quilômetros do município de Centralia, que hoje é conhecido como uma cidade fantasma abandonada desde 1962 devido a um incêndio de longa duração em um poço de carvão sob a cidade (Bloomsburg Archives)
Após o acidente, a Douglas Aircraft mudou o design do DC-6 para que puxar as alças do extintor abrisse automaticamente as válvulas de alívio para manter o CO2 fora da cabine. 

No seu relatório final, o CAB fez a observação astuta de que não se pode confiar nos seres humanos para seguir perfeitamente um procedimento de múltiplas etapas numa situação de emergência intensa, e que um único botão que ativa múltiplos sistemas de emergência, como o instalado por Douglas após o acidente, é uma forma muito mais eficaz de prevenir erros humanos. Por esta razão, todos os sistemas de aeronaves hoje são projetados desde o início com este princípio em mente.

Outra visão da área de destroços até a zona de impacto inicial (Bloomsburg Archives)
Numa época diferente, esta sequência de acidentes evitáveis ​​poderia ter prejudicado irreversivelmente a reputação do avião. Mas em poucos anos, o papel de Douglas nos acidentes foi esquecido, e o DC-6 tornou-se um dos aviões de maior sucesso de sua época, com mais de 700 unidades construídas antes do término da produção em 1958. 


Alguns deles ainda são voando hoje com a Everts Air Cargo no extremo norte do Alasca, aparentemente com bastante segurança. Mas permanece o facto de que a Douglas Aircraft escolheu chegar lá da maneira mais difícil, lutando a todo o custo para manter uma impressão de segurança sem garantir que o seu avião principal era realmente seguro. 


Melhores testes do sistema de combustível poderiam ter evitado a queda do voo 608, e a queda do voo 624 também poderia ter sido evitada se a Douglas tivesse ouvido os especialistas que contratou. Douglas aparentemente aprendeu muito pouco com essas lições, já que seus aviões continuaram a sofrer de falhas de projeto catastróficas e evitáveis ​​até a era dos jatos. 


Por outro lado, a indústria da aviação como um todo aprendeu bastante, levando a mudanças na forma como cada avião é equipado e projetado. Naquela época, a segurança da aviação era uma vasta fronteira inexplorada, cheia de perigos mortais e soluções inovadoras. E quando olhamos para aquela era da aviação, uma era que dentro de poucos anos até os mais velhos entre nós deixarão de lembrar, vale a pena avaliar o quão longe chegamos.

Por Jorge Tadeu (Site Desastres Aéreos) com Admiral Cloudberg, ASN e Wikipédia

Aconteceu em em 17 de junho de 1929: A queda do avião da Imperial Airways no Canal da Mancha

O acidente de 1929 com o  Handley Page W.10 da Imperial Airways ocorreu em 17 de junho de 1929, quando o avião sofreu uma falha de motor e posteriormente se afundou no Canal da Mancha em Dungeness, com a perda de sete vidas. A aeronave operava em um voo internacional programado de Croydon para o Aeroporto Le Bourget , em Paris, França.

Um Handley Page W.10 similar ao envolvido no acidente
A aeronave do acidente foi o Handley Page W.10, prefixo G-EBMT, da Imperial Airways, batizada de "Cidade de Ottawa", que foi entregue à empresa aérea em 25 de dezembro de 1925.

O G-EBMT estava operando um voo internacional programado do aeroporto de Croydon para o aeroporto de Zurique, na Suíça, via Paris - Aeroporto Le Bourget e Aeroporto de Basileia, na Suíça. 

Tendo partido de Croydon às 10h30, a aeronave estava a cerca de 15 milhas (24 km) sobre o Canal da Mancha, voando a uma altitude de 2.500 pés (760 m), quando uma biela do motor de estibordo quebrou.


Um mayday foi transmitido por rádio e o piloto tentou desviar para o aeroporto de Lympne. Como ele não conseguiu chegar à terra, o piloto pousou no mar a cerca de 50 jardas (46 m) da traineira belga Gaby e a 12 milhas (19 km) da costa.

O nariz da aeronave mergulhou na água ao pousar. Os passageiros da frente da aeronave foram lançados de seus assentos e presos. Quatro passageiros sentados na cauda da aeronave escaparam, assim como os dois tripulantes. 

Uma equipe de resgate foi ajudar o avião atingido e resgatou os seis sobreviventes. O corpo de uma das vítimas também foi recuperado. Eles foram transferidos para a embarcação Dover que os levou para Folkestone. O navio entrou no porto de Folkestone às 14h45 enviando o sinal EDY, significando que as ambulâncias eram necessárias, e com sua bandeira vermelha a meio mastro. 


Os sobreviventes feridos foram levados para o Royal Victoria Hospital, em Folkestone. O corpo da vítima foi desembarcado em Folkestone, mas mais tarde foi transferido para Lydd.  

Foram recuperados mais três corpos naquele dia. Eles foram transferidos para uma lancha de propriedade do postmaster Lydd e levados para um necrotério em Lydd. Após o resgate dos destroços do G-EBMT, os mesmos foram rebocados para Dungeness, onde uma busca revelou apenas bagagens e pertences pessoais dos passageiros. Três vítimas não foram encontradas nessa fase.

Um inquérito foi aberto pelo Lydd Coroner em 19 de junho na Prefeitura de Lydd sobre as mortes das quatro vítimas cujos corpos foram recuperados.


Foram apresentadas evidências de que o piloto, Capitão Brailli era experiente, com 1.000 horas de voo. Ele trabalhava para a Imperial Airways há um ano. A aeronave mostrou estar em condições de navegar na partida de Croydon. O piloto foi o último sobrevivente a deixar a aeronave, por insistência dele. Todas as quatro vítimas morreram afogadas. Vereditos de "morte acidental" foram devolvidos em todos os casos.

O Ministério da Aeronáutica abriu uma investigação sobre o acidente de acordo com os Regulamentos de Navegação Aérea (Investigação de Acidentes) de 1922. A investigação foi iniciada em 25 de junho no Royal Courts of Justice de Londres, com Sir Arthur Colefax no comando. 

A causa da falha do motor foi a fratura da biela nº 4 do motor de estibordo. O motor funcionou por 126 horas desde a última revisão, sendo o tempo permitido entre as revisões de 300 horas. A biela havia falhado devido à falha dos pinos do rolamento da extremidade grande.


O Certificado de Aeronavegabilidade da aeronave havia sido renovado pela última vez em novembro de 1928 e era válido por um ano. Sua carga máxima permitida era de 2.946 libras (1.336 kg); a carga da aeronave era 2.494 libras (1.131 kg) na partida de Croydon. 

A prova foi dada por três dos quatro passageiros sobreviventes e ambos os tripulantes. O quarto passageiro sobrevivente não foi chamado porque era legalmente menor na época e havia perdido o pai no acidente. 

O inquérito foi encerrado em 3 de julho. A Imperial Airways e a Napier, o fabricante do motor, foram inocentados de qualquer culpa pelo acidente. O relatório da investigação foi publicado em 12 de julho. Entre as recomendações estavam que os passageiros deveriam receber cintos de segurança e que as aeronaves incapazes de manter voo nivelado com um motor inoperante e não projetadas para pousar na água deveriam ser retiradas das rotas continentais após 1º de julho de 1930.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipedia e ASN