quarta-feira, 10 de janeiro de 2024

Aconteceu em 10 de janeiro de 1945: Acidente com o voo American Airlines 6001 - Névoa fatal


O voo 6001 da American Airlines foi um voo transcontinental do Aeroporto LaGuardia, em Nova York, para o Aeroporto Hollywood Burbank. Na manhã de 10 de janeiro de 1945, durante uma aproximação perdida ao aeroporto de Hollywood Burbank, o American Airlines Douglas DC-3-277B que operava o voo caiu nas proximidades de Verdugo Hills. Todos os 21 passageiros e 3 tripulantes morreram no acidente.

Um Douglas DC-3 da American Airlines, semelhante à aeronave do acidente
A aeronave envolvida no acidente era o Douglas DC-3-277B, prefixo NC25684da American Airlines, que foi fabricado em maio de 1940 e entregue à empresa aérea no mesmo mês. Ela teve 14.888 horas de voo e passou na última inspeção em 6 de janeiro de 1945.

O voo 6001 da American Airlines decolou de Nova York-LaGuardia às 19h23 EST do dia 9 de janeiro de 1945. Uma mudança de tripulação ocorreu em El Paso às 1h46 CST da manhã de 10 de janeiro. 

A tripulação então era composta por três integrantes: o capitão Joseph Russell McCauley (33), que acumulava 6.315 horas de voo, 4.660 das quais no DC-3. Ele trabalhava na American Airlines desde março de 1940; o primeiro oficial Robert Gaylord Eitner (25), que tinha 2.143 horas de voo, 1.729 das quais no DC-3. Ele trabalhava na American Airlines desde setembro de 1942; e a aeromoça Lila Agnes Docken (22), que trabalhava para a American Airlines desde abril de 1944.

A tripulação do voo American Airlines 6001
Após partir de Phoenix, o voo foi liberado para Newhall, na Califórnia, devido às condições climáticas desfavoráveis em Burbank. Às 3 da manhã PST, o boletim meteorológico mostrava um teto de 700 pés, nublado, visibilidade de três quilômetros e leve neblina.

Às 3h06, o voo foi autorizado pelo Controle de Tráfego Aéreo de Los Angeles para seguir para Burbank conforme planejado originalmente, levando os três tripulantes e 21 passageiros a bordo da aeronave.

Às 3h42, o piloto recebeu o boletim meteorológico das 3h30 de Burbank. O voo foi então liberado para uma aproximação padrão por instrumentos para Burbank. O avião iniciou sua aproximação inicial às 3h55. Às 4h06, o avião foi visto voando pelo aeroporto, iniciando uma curva à esquerda e depois desaparecendo de vista. 

Às 4h07, o capitão comunicou por rádio ao Controle de Tráfego Aéreo que não conseguia manter contato e estava seguindo para Palmdale. Todas as tentativas subsequentes de contatar o avião a partir da torre, da American Airlines e de outras estações de rádio foram infrutíferas.

Aproximadamente às 9h30, a torre de controle avistou os destroços em uma encosta a cerca de 4,4 quilômetros a nordeste do aeroporto. Todos os 21 passageiros e três tripulantes morreram na destruição da aeronave por impacto e fogo.


Os investigadores apuraram que depois de fazer a aproximação padrão de descida por instrumentos para o aeroporto de Burbank, o avião foi observado cruzando o aeroporto na base irregular das nuvens e iniciando uma curva à esquerda como se estivesse circulando para pousar. Logo após fazer a curva, o capitão comunicou por rádio à torre de controle que não conseguia manter contato visual com o solo e seguiu para seu substituto, Palmdale. 


As observações do United States Weather Bureau revelaram que estavam abaixo do mínimo se as condições existiam em Burbank no momento. O piloto não foi devidamente informado sobre os últimos boletins meteorológicos. O avião não foi ouvido ou visto novamente até depois do amanhecer, quando os destroços foram avistados no sopé próximo, aproximadamente 2-3/4 milhas a nordeste do aeroporto.


É evidente que depois de fazer esta curva à esquerda o piloto decidiu executar o procedimento padrão de “aproximação falhada”, mas ao fazê-lo não conseguiu modificar o procedimento de acordo com a sua posição e rumo. Como resultado, ele fez uma curva ascendente em direção aos contrafortes próximos, em vez de qualquer um deles, como teria sido o caso se o procedimento padrão de "aproximação perdida" tivesse sido executado a partir da posição normal.

A possibilidade de acidente tornou-se uma potencialidade quando o pessoal de terra da empresa não conseguiu obter e transmitir informações meteorológicas importantes ao piloto. A não obtenção e transmissão desta informação ao piloto constitui negligência por parte da empresa. Isto, no entanto, não eximiu o piloto da sua responsabilidade de conduzir um voo seguro, embora o tenha colocado numa posição de desvantagem. Se o procedimento de “aproximação perdida” tivesse sido executado corretamente, é improvável que o acidente tivesse ocorrido.


De acordo com o relatório do Conselho de Aeronáutica Civil, a causa provável foi: "o Conselho, portanto, determina que a causa provável deste acidente foi "a tentativa do piloto de usar o procedimento padrão de 'aproximação falhada' depois de ter seguido outro curso até um ponto em que foi impossível aplicar este procedimento com segurança".

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipédia, ASN e baaa-acro

Aconteceu em 10 de janeiro de 1938: A queda do Super Electra no voo Northwest Airlines 2


Em 10 de janeiro de 1938, o avião Lockheed 14-H Super Electra, prefixo NC17388, da Northwest Airlines (foto abaixo), realizava o voo 2, uma rota de Seattle, no estado de Washington, para Chicago, em Illinois, com paradas intermediárias em Spokane, Butte e Billings, em Montana.


O voo da tarde daquela segunda-feira havia acabado de sair de Butte e sobrevoava Belgrado quando desviou para o norte para evitar uma tempestade de poeira sobre Bozeman Pass.A bordo estavam oito passageiros e dois tripulantes. 


O voo 2 foi pilotado por Nick Mamer (foto acima), um conhecido pioneiro da aviação no noroeste do Pacífico que voou mais de um milhão de milhas (1,6 milhão de km). O primeiro oficial (copiloto) era Fred West, e dois dos passageiros eram funcionários da companhia aérea.

O primeiro oficial contatou o operador de rádio da Northwest Airlines às 15h05 MST para informar que o voo 2 havia atingido a altitude de cruzeiro de 9.000 pés (2.740 m) às 14h53. 

Testemunhas terrestres relataram que, ao passar sobre a cordilheira Bridger (que no momento a aeronave passou por uma elevação de aproximadamente 8.500 pés (2.590 m) acima do nível do mar), a aeronave caiu imediatamente, entrou em estol, deslizou por um curto período de tempo e depois girou no solo a nordeste de Bozeman. Os destroços pegaram fogo e todos os dez ocupantes a bordo morreram imediatamente.

Jornal Spokane Daily Chronicle - 11.01.1938
A edição do dia seguinte do The New York Times trouxe a história no topo de sua primeira página e relatou em parte: "BOZEMAN, Mont., 10 de janeiro - Um avião de transporte da Northwest Airlines caiu em um pico coberto de neve no alto do Bridger Montanhas quatorze milhas a nordeste daqui na noite de hoje, levando para a morte dez pessoas listadas como estando a bordo. Xerife Lovitt I. Westlake de Bozeman, que liderou um grupo em trenós para a cena do acidente, disse que contou nove corpos e eles foram carbonizados além do reconhecimento. Funcionários da Northwest Airlines relataram que oito passageiros e uma tripulação de dois estavam a bordo. A fuselagem do avião foi queimada em uma massa retorcida de aço. O xerife Westlake disse que o avião parecia ter mergulhado de nariz na encosta da montanha em uma pequena clareira. Dois fazendeiros, cortando madeira na encosta acidentada da montanha, disseram ter visto o avião explodir em chamas ao atingir o solo."

Jornal The Bulletin - 11.01.1938
Investigadores da Civil Aeronautics Authority (CAA), uma organização predecessora da Federal Aviation Administration (FAA) e do National Transportation Safety Board (NTSB), determinaram que ambas as aletas verticais e ambos os lemes estavam faltando na aeronave de cauda dupla. Eles acreditavam que a empenagem havia falhado devido à vibração . Relatórios meteorológicos de comunidades vizinhas, bem como a existência da tempestade de poeira em Bozeman Pass, levaram os investigadores a acreditar que a aeronave provavelmente encontrou turbulência severa a extrema que pode ter iniciado a vibração.

No intervalo de 24 horas após o acidente, o Departamento de Comércio (autoridade governamental da CAA) ordenou que todos os Lockheed Super Electras fossem imediatamente aterrados e que testes fossem realizados para confirmar que os valores obtidos nos testes de vibração originais da aeronave eram precisos. 

Descobriu-se que a máquina usada pela Lockheed (e autorizada pelo Departamento de Comércio) para medir os períodos de vibração natural dos componentes da aeronave deu aos engenheiros da Lockheed resultados enganosos. O Departamento ordenou que os lemes de todos os Super Electras fossem modificados para eliminar a possibilidade de que a vibração pudesse causar uma ruptura em voo.


A Northwest foi a primeira companhia aérea dos Estados Unidos a receber o Super Electra, mas vendeu a maior parte de sua frota Electra restante em 1939, após três acidentes subsequentes que colocaram em questão a aeronavegabilidade e o potencial comercial da aeronave. 

Este foi o primeiro acidente fatal de uma aeronave Lockheed Super Electra da Northwest Airlines. Um Electra caiu no sul da Califórnia enquanto estava sendo entregue à companhia aérea em Minnesota, e os outros dois no leste de Montana. O segundo, o voo 4, caiu em Billings depois que o piloto parou a aeronave na decolagem. O terceiro, Flight 1, caiu logo após a decolagem de Miles City depois que um erro de projeto e fabricação permitiu que um incêndio intenso se desenvolvesse na cabine.


Em 1939, uma grande torre do relógio Moderne foi erguida em Felts Field em Spokane, Washington (foto acima), como um memorial às vítimas do acidente do Voo 2 em Bozeman. A área de esqui de Bridger Bowl fica ao sul do local do acidente.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipédia, baaa-acro e ASN

Vídeo: Mayday Desastres Aéreos - Voo Crossair 498 Interferências no Voo


Hoje na História: 10 de janeiro de 1935 - Primeiro voo do hidroavião Latécoère 521

Em 10 de janeiro de 1935, em Biscarosse, na costa atlântica da França, o Latécoère 521 fez seu primeiro voo. Os testes de voo foram supervisionados pelo Capitaine de Corvette Jean Marie Henry Roger Bonnot, que havia estabelecido um recorde mundial de distância em outro hidroavião Latécoère, o Croix-du-Sud, no ano anterior. Os pilotos foram Pierre Crespy e Jean Gonord.

O hidroavião Latécoère 521 (NYT/Revue & Bulletin Technique de la Société Française Hispano-Suiza)
Projetado pelo engenheiro aeronáutico Marcel Moine, o avião foi construído em seções na fábrica da Société industrielle d'aviation Latécoère em Montaudran, Toulouse, e depois transportado por terra para a base de hidroaviões em Biscarosse para montagem final e teste. O avião havia sido nomeado "Tenente de Vaisseau Paris" em homenagem a um piloto francês recordista, Paulin Louis Gérôme Paris.

O barco voador foi projetado para transportar 72 passageiros em serviço trans-mediterrâneo. Tinha um comandante de aeronave (capitaine-du-bord), dois pilotos, um navegador, operador de rádio e três mecânicos. (Os motores podiam ser acessados ​​em voo). O convés principal incluía a cabine do capitão, um salão para 20 pessoas; seis cabines para 2 passageiros; e uma cabine de passageiros na popa para 22 passageiros. O convés superior incluía convés de voo, uma cozinha e bar e uma cabine de passageiros para 18.

O arranjo do casco (National Advisory Committee for Aeronautics)
O Latécoère 521 era um barco voador sesquiplano de seis motores, principalmente de construção metálica. O casco de duas etapas foi construído de duralumínio, uma liga de alumínio endurecido pelo tempo; e a folha de alumínio laminada e ligada resistente à corrosão Alclad (conhecida como Verdal na França). Os painéis externos das asas eram cobertos por tecido. O casco tinha dois conveses, com sete compartimentos estanques.

O 521 tinha 31,62 metros (103,74 pés) de comprimento, envergadura de 49,30 metros (161,75 pés) e altura de 9,07 metros (29,76 pés). As asas foram varridas para trás 5° 20′ e tinham 5° diédrico. A área era de 330 metros quadrados (3.552 pés quadrados). Uma série de escoras em V prendia a asa ao casco e às asas do toco, que tinham um vão de 14,70 metros (48,23 pés) e área de 48 metros quadrados (517 pés quadrados). Cada ponta de asa carregava 11.000 litros (2.906 galões americanos) de gasolina. Com um peso bruto de 37.409 kg (82.473 libras), o barco voador tinha um calado de 1,20 metros (3,94 pés).

O hidroavião Latécoère 521 (Revue & Bulletin Technique de la Société Française Hispano-Suiza)
O Latécoère 521 era movido por seis motores Hispano-Suiza 12 Ydrs1 com árvore de cames única 60° V-12, resfriados a líquido, supercharged, 36,050 litros (2.199,892 polegadas cúbicas). Quatro motores foram colocados nas idades principais das asas na configuração de trator, com mais dois como empurradores. Esses V-12s voltados para a esquerda tinham uma taxa de compressão de 5,8:1 e acionavam hélices de três pás por meio de uma redução de engrenagem de 3:2. Eles foram avaliados em 880 cheval vapeur a 2400 rpm e 890 cv para decolagem. O 12 Ydrs1 pesava 470 kg (1.036 libras).

Com um peso bruto de 40 toneladas, o Latécoère 521 atingiu 256 quilômetros por hora (159 milhas por hora) a 3.100 metros (10.171 pés). Sua velocidade de cruzeiro era de 210 quilômetros por hora (130 milhas por hora) e seu teto era de 5.800 metros (19.029 pés).

O hidroavião Latécoère 521 (AP/ Revue & Bulletin Technique de la Société Française Hispano-Suiza)
Em Biscarosse, 27 de dezembro de 1937, o Latécoère 521, pilotado por Henri Guillaumet com os Messieurs LeClaire, Le Duff, Le Morvan e Chapaton, estabeleceu um recorde mundial da Fédération Aéronautique Internationale (FAI) para velocidade acima de 1.000 quilômetros (621,37 milhas estatutárias) com 15.000 quilograma (33.069 libras) de carga útil de 211,00 quilômetros por hora (131,109 milhas por hora).

Dois dias depois, 29 de dezembro de 1937, Guillaumet e sua tripulação voaram o 521 em um circuito fechado de 1.000 quilômetros entre Luçon e Aurelihan com uma carga útil de 15.000 quilogramas, para uma velocidade média de 189,74 quilômetros por hora (117,899 milhas por hora).

Em 30 de dezembro de 1937, Guillaumet e sua tripulação estabeleceram mais dois recordes mundiais FAI quando transportaram uma carga útil de 18.040 kg (39.771 libras) a uma altura de 2.000 metros (6.562 pés); e 15.000 kg (33.069 libras) a uma altitude de 3.508 metros (11.509 pés).

Latécoère 521 F-NORD (Rudy Arnold Photographic Collection)
O 521, com registro civil F-NORD, fez uma série de voos cruzando o Atlântico para a cidade de Nova York. Em um deles, o barco voador foi danificado por uma tempestade. Foi desmontado e devolvido à França a bordo de um navio.

Depois dos reparos, o Latécoère 521 continuou no serviço aéreo. Com o início da Segunda Guerra Mundial, foi modificado para uma aeronave de patrulha marítima. Quando a França se rendeu à Alemanha, o barco voador foi armazenado perto de Marselha. Quando a Alemanha recuou em 1944, eles destruíram o avião recorde.

Edição de texto e imagens por Jorge Tadeu (com thisdayinaviation.com)

Por que nenhum avião voa sobre o Polo Sul?


O Polo Sul sempre teve uma reputação formidável. Gelado, montanhoso e geralmente não muito acolhedor para os seres humanos. Mas quando você está voando alto em um avião, geralmente não percebe o que está acontecendo no nível do solo. No entanto, aeronaves raramente, sobrevoam a região.

Historicamente, voar perto ou sobre a Antártida era proibido pelas regras dos Padrões Operacionais de Desempenho Bimotor de Alcance Estendido, ou para abreviar, ETOPS.

O ETOPS determina a distância com que os aviões bimotores podem voar para longe de um aeroporto em que podem pousar, ou seja, se um dos motores falha, o avião tem que estar a uma distância máxima de algum aeroporto para que ele possa chegar a tempo. Normalmente, eles não podem se afastar mais do que 2 ou 3 horas de um local adequado para pouso.

Sobre a terra há muitos, e isso não é problema. Mesmo sobre os mares, várias ilhas estruturadas com longas pistas permitem uma travessia transoceânica.

No entanto, as coisas se tornam complicadas sobre a Antártida. Hoje, existem 50 pistas de pouso no continente gelado, mas nenhum aeroporto estruturado capaz de receber um voo comercial. Para colocar as coisas em perspectiva, o aeroporto de desvio potencial mais próximo do Polo Sul é o Ushuaia, na Argentina, porém ainda está a cerca 4 mil quilômetros de distância.

Mas essa não é a única razão, e não, não estamos falando sobre uma muralha de gelo que impede a travessia de aviões. Em primeiro lugar, há uma falta de qualquer necessidade real de sobrevoar a Antártida. Há muito menos tráfego aéreo nos confins do hemisfério sul do que no hemisfério norte.

Por exemplo, ali não há o equivalente àquelas rotas subpolares tipicamente movimentadas entre a América do Norte e a Ásia. E embora nenhum avião sobrevoe exatamente o Polo Sul, algumas rotas seguem pela costa do continente gelado, como os voos entre Sydney e Santiago ou Joanesburgo.

E recentemente, a companhia aérea portuguesa Hi Fly fez história ao pousar pela primeira vez um Airbus A340 em uma pista de gelo na Antártida.

O voo, que durou mais de 5 horas em novembro de 2021, partiu da Cidade do Cabo, na África do Sul, transportando 23 passageiros e vários equipamentos para um acampamento onde um pequeno grupo de turistas e cientistas estavam alojados.

Entenda o que é exigido para viajar de avião com menor de idade

Férias escolares, hora de viajar com a criançada. Mas, atenção, é preciso ter cuidados redobrados (Foto: Reprodução)
Viajar de férias com criança nunca será um problema. Pelo contrário, os pequenos são sempre sinônimos de mais diversão. Mas, com certeza isso exige preparação para que nada dê errado. Por exemplo, não esquecer de documentos normalmente solicitados pelas autoridades, como o RG, a certidão de nascimento, que eventualmente pode precisar, documento que comprove o parentesco, além do passaporte do menor, claro, se a viagem for para o exterior. É melhor ter tudo isso em mãos.

Viagem de avião dentro do Brasil


Quando o menor, entre 0 e 15 anos, estiver acompanhado dos pais ou responsáveis, apenas serão necessários um documento que comprove a filiação ou o vínculo entre eles e um documento da criança, que pode ser certidão de nascimento, original ou cópia autenticada, e documento de identificação, como RG. Estes documentos também são solicitados se os acompanhantes forem os avós ou parentes maiores de 18 anos, até o terceiro grau, como tios.

Caso a criança esteja desacompanhada ou acompanhada de uma pessoa maior de 18 anos que não se encaixe nas categorias anteriores, além da certidão de nascimento e da documentação, será preciso uma Autorização de Viagem Judicial ou Extrajudicial. No caso de Extrajudicial, o documento deve ser feito a mão pelo pai, mãe ou responsável, com firma reconhecida em cartório. Essa autorização pode ser solicitada via Internet, mais precisamente no link EAV (Autorização Eletronica de Viagem).

Segundo as normas da Agência Nacional de Aviação Civil (ANAC), o serviço de assistência ao menor desacompanhado é obrigatório para crianças de 8 até 15 anos e 11 meses e não está disponível para voos com conexões.

Viagem para o exterior


Para viagens internacionais, outros documentos e comprovantes são necessários. Quando o menor de 0 a 17 anos estiver acompanhado dos pais ou responsáveis basta o passaporte brasileiro válido para viajar. Se apenas um dos pais estiver presente, será preciso também uma autorização expressa do outro responsável, por meio de documento com firma reconhecida.

Caso nenhum dos pais ou responsáveis estiver presente, ambos precisam produzir um documento com firma reconhecida autorizando a viagem. Em ambos os casos, este tipo de certidão é dispensado quando o menor apresentar passaporte válido com autorização expressa para viajar desacompanhado para o exterior. Se a criança ou o adolescente morar no exterior, não precisa da autorização, desde que comprove o local da residência, usando um Atestado de Residência emitido há menos de dois anos por Repartição Consular Brasileira, e que esteja viajando com um dos pais. 

Outros cuidados


Além de documentos, outros itens são também importantes em uma viagem com criança. Em nota da Agência de Notícias do Turismo, o MinTur apresenta uma lista de dicas para tornar a viagem mais tranquila e segura. Sugere que levar alguns brinquedos favoritos para distração no trajeto da viagem, se de avião, ônibus, carro ou trem, e cuidar da alimentação. “Água e algumas opções de lanches tipo os que são consumidos em casa tornam o ambiente mais familiar”, ressalta.

Na bagagem também não podem faltar itens que proporcionem conforto e garantam a temperatura correta para a viagem, como roupas extras, casacos e bonés. Se tem criança, tem que ter kit de primeiros socorros, com curativos, soro fisiológico, algodão e até alguns remédios para dor e para febre, sempre respeitando a prescrição do médico.

Ainda de acordo com as dicas do Ministério do Turismo, no destino da viagem é importante identificar as crianças com o seu nome, o nome do responsável e o telefone para contato. Se possível, informe também o nome e o endereço do hotel. A criança deve ser orientada, caso se perca, mostrar o dispositivo de identificação para policiais, seguranças ou funcionários de algum estabelecimento comercial. No caso de crianças maiores, marcar um ponto de encontro também facilita.

Por que a Airbus foi criada para construir o A300?

O A300 fez seu primeiro voo em 1972, marcando o início da linha de aeronaves
de sucesso da Airbus (Foto: Getty Images)
A Airbus foi formada em 18 de dezembro de 1970 por duas empresas aeroespaciais europeias apoiadas pela França, Alemanha e Reino Unido. O novo fabricante há muito tinha planos para uma nova aeronave de corpo largo, conhecida como A300. Então, por que fazer uma nova aeronave exigiu a formação do Airbus?

Concorrente


A Airbus foi formada como uma resposta direta ao domínio das empresas aeroespaciais dos EUA no espaço da aviação comercial pós-Segunda Guerra Mundial. Empresas como Boeing, Lockheed Martin e McDonnell Douglas lideravam em termos de vendas e novos tipos de aeronaves, com as empresas europeias ficando para trás.

No entanto, alguns países europeus decidiram que seria melhor fundir seus principais fabricantes em um. Dada a formação da Comunidade Econômica Europeia (predecessora da UE), uma fusão era viável e uma boa forma de garantir que o continente tivesse seu próprio ecossistema de aviação robusto.

Henri Ziegler foi um dos fundadores da Airbus e foi o primeiro presidente da empresa (Foto: Getty Images)
O negócio entre França, Alemanha e Reino Unido viu a formação da Airbus, criada pela fusão da Aérospatiale e da Deutsche Airbus em 1970. No entanto, o A300 tem suas raízes alguns anos antes disso.

Um projeto político


Antes mesmo de as negociações para formar uma empresa europeia conjunta estarem concluídas, os ministros dos três principais países já estavam trabalhando na fabricação de uma nova aeronave. Em particular, a Alemanha, a França e o Reino Unido identificaram um mercado para uma aeronave de corpo largo bimotor, com cerca de 250 lugares sentados.

Em setembro de 1967, o trio concordou em colaborar nessa aeronave, que ficou conhecida como o programa A300 . Henri Zeigler era o gerente geral do programa, enquanto Roger Béteille liderava o desenvolvimento técnico. A dupla se tornou os fundadores da Airbus alguns anos depois. Em 1969, o A300 foi formalmente apresentado pela França e Alemanha.

A Air France foi uma das primeiras a adotar o A300, o que não é surpreendente,
dada a política antes da formação do avião (Foto: Getty Images)
Após meses de trabalho no projeto, ficou claro que reunir as empresas europeias era a maneira mais econômica de desenvolver o A300 e competir com os gigantes americanos. No entanto, convencer as três nações não foi fácil. O governo do Reino Unido retirou-se em 1969 devido ao medo de grandes perdas, enquanto a França ameaçou retirar-se devido à sua maior parte do investimento.

Veio junto


Apesar de todas as tensões políticas, França e Alemanha decidiram formar a 'Airbus', com a empresa de cada país possuindo 50% da empresa. O carro-chefe da nova empresa era o A300, uma aeronave de corpo largo que foi criada para ser uma das tecnologias mais avançadas do mundo.

O A300 ainda está em operação hoje com algumas operadoras e por dezenas de operadores
de carga como o A300-600 (Foto: Airbus)
O A300 foi criado para ser uma aeronave inovadora e tinha novos recursos, como materiais compostos. A partir de então, o resto é história, com a Airbus passando a se tornar uma das maiores fabricantes de jatos do mundo.

Por Jorge Tadeu com informações do Simple Flying

terça-feira, 9 de janeiro de 2024

Helicóptero que resgatava vítima de acidente faz pouso forçado em BH

Aeronave da PRF transportava uma pessoa que havia se ferido em um acidente de caminhão.


O helicóptero Leonardo Helicopters AW119Kx Koala, prefixo PR-FKCda Polícia Rodoviária Federal (PRF), fez um pouso forçado na zona oeste de Belo Horizonte na manhã desta segunda-feira (8) logo após decolar. A aeronave fazia o resgate de uma vítima de acidente automotivo quando precisou fazer a manobra de emergência.

A bordo da aeronave estavam o comandante Aurélio Leal, o operador da PRF Lucas Puppim, o copiloto Marlus Paiva, o médico do Serviço de Atendimento Móvel de Urgência (Samu) Júlio Guerra e o enfermeiro Alexsandro Marcos, além da vítima do acidente entre as carretas.

Segundo o Corpo de Bombeiros de Minas Gerais, além da vítima que estava sendo transportada, não há registro de feridos, apenas danos na aeronave.

O helicóptero após o pouso forçado (Imagem: Reprodução/TV Globo)
A aeronave prestava socorro às vítimas de um grave acidente envolvendo um caminhão e uma carreta carregada de minério no Anel Rodoviário. Os dois veículos colidiram de frente e deixaram três feridos.

Uma das vítimas foi socorrida pelo Corpo de Bombeiros, outra pela Via040, concessionária que administra a via, e a terceira, que ficou presa às ferragens e estava em estado mais grave, estava sendo transportada pelo helicóptero até o hospital João XVIII quando ocorreu o pouso de emergência.

Novas imagens mostram o momento exato da queda do helicóptero da Polícia Rodoviária Federal (PRF) no Anel Rodoviário de Belo Horizonte. Uma câmera em um carro registrou a cena.


Segundo os bombeiros, a aeronave decolou do local da ocorrência na pista do anel rodoviário, mas, logo no início da subida houve uma pane e foi necessário o pouso de emergência na avenida Tereza Cristina. A força da corrente de vento gerada pela hélice acabou destelhando algumas residências próximas.

"Na hora que ele subiu, as telhas caíram tudo dentro de casa. Para não machucar meu filho, eu pulei em cima dele. O helicóptero saiu com um barulho esquisito e do nada começou a cair tudo", contou a auxiliar administrativo Elisa Loures.

O motorista Vitor Fabiano passava próximo ao local do resgate e viu o pouso forçado bem de perto. "Um susto, né? Logo na minha frente. Coisa de segundos que eu não passava por baixo, foi Deus mesmo", falou.


Com o impacto do pouso, a aeronave sofreu danos no rotor de cauda e ficou atravessa na via. A vítima que estava sendo resgatada foi levada por uma equipe da concessionária para o hospital João XVIII.

"Nós estávamos em seis. Todo mundo bem, ninguém se feriu, graças a Deus, o local foi o melhor possível depois que a gente teve a queda de rotação. Infelizmente, a cauda bateu na cerca", disse o comandante da PRF Aurélio Leal.

Em nota, a PRF afirmou que a aeronave envolvida na ocorrência está com a manutenção e documentação regulares.

"As aeronaves da Polícia Rodoviária Federal passam por rigoroso processo de aquisição, guarda e manutenção e operam com tripulantes também rigorosamente selecionados, treinados e checados", disse a instituição.

O helicóptero da Polícia Rodoviária Federal (PRF)  foi retirado da avenida, na madrugada desta terça-feira (09). A retirada aconteceu 12 horas após o acidente.


A operação para retirada da aeronave começou no início da noite de segunda, após autorização do Serviço Regional de Investigação e Prevenção de Acidentes Aeronáuticos (SERIPA).

A aeronave vai ser levada para o hangar da PRF no Aeroporto da Pampulha. Lá, técnicos do Cenipa vão fazer a perícia para tentar descobrir o que provocou a pane que obrigou o piloto a fazer o pouso forçado.

Via CNN, g1, Terra, Diário do Nordeste, Record Minas e ASN

História: A crise dos mísseis de Cuba: as fotos de aviões espiões que ajudaram a revelar armamento

As imagens captadas em voos de baixa altitude pelo capitão William Eckner foram as primeiras a confirmar, sem margem para dúvidas, a presença de mísseis soviéticos em Cuba com alto nível de preparação para seu lançamento (imagem: National Security Archive)
A primeira pergunta do presidente americano John F. Kennedy para o funcionário da CIA Sidney Graybeal naquela manhã deixava clara sua principal preocupação: "Isso está pronto para ser disparado?"

"Isso" eram os mísseis que a União Soviética (URSS) havia secretamente transportado para Cuba. Seu alcance de 1.770 km permitiria atingir com bombas nucleares todo o sudeste de Estados Unidos - e até alcançar a capital do país.

O clima em Washington, com seus agradáveis 23 °C, estava longe de refletir o aumento brutal da temperatura política que acabava de ocorrer naquele 16 de setembro de 1962. E esse clima perduraria por várias semanas, quando o mundo viveu seu momento mais próximo da 3ª Guerra Mundial.

Graybeal era o chefe da Divisão Espacial e de Mísseis da CIA. Naquele dia, ele havia chegado à Casa Branca às 7h, junto com Art Lundahl, então diretor do Centro de Interpretação Fotográfica (NPIC, na sigla em inglês), que era o precursor da atual Agência Nacional de Inteligência Geoespacial.

Eles levaram grandes quadros, preparados para sua exposição sobre a existência dos mísseis soviéticos em Cuba, perante o Comitê Executivo do Conselho de Segurança Nacional (EXCOMM, na sigla em inglês), que era o grupo de funcionários que viria a assessorar Kennedy ao longo da crise.

O presidente americano John F. Kennedy e seu ministro da Defesa, Robert McNamara, em sessão do Conselho Executivo do Conselho de Segurança Nacional

O presidente americano John F. Kennedy e seu ministro da Defesa, Robert McNamara, em sessão do Conselho Executivo do Conselho de Segurança Nacional (Crédito: Biblioteca Presidencial John F. Kennedy)
Mas, antes disso, eles passaram a manhã informando altos funcionários sobre a gravidade da situação.

Eles falaram com o conselheiro de Segurança Nacional, McGeorge Bundy; com o secretário do Tesouro, Clarence Douglas Dillon; e, depois, com o então procurador-geral da república, Bobby Kennedy, irmão do presidente, que subiu imediatamente até o quarto pessoal de John Kennedy para informá-lo.

Por volta das 11h, os funcionários passaram para o salão do gabinete. E, perto de meio-dia, o presidente Kennedy reuniu-se a eles.

Após a breve introdução do então diretor em exercício da CIA, o general Marshall "Pat" Carter, Lundahl abriu os enormes quadros sobre a mesa, bem em frente ao presidente. Ao lado de Kennedy, estavam o então secretário da Defesa, Robert McNamara, e de Estado, Dean Rusk.

Lundahl começou a detalhar as imagens aéreas que mostravam os acampamentos sendo montados na ilha para instalação das armas soviéticas.

Comboio soviético perto de San Cristóbal, em imagem do major Steve Heyser a bordo de um avião U-2 - a primeira a mostrar a existência de mísseis soviéticos em Cuba (Crédito: USAF)
Segundo grupo de mísseis soviéticos identificados em Cuba (Crédito: USAF)
Mas os mísseis, as plataformas de lançamento, outros objetos e estruturas que haviam sido fotografados estavam cobertos por grandes lonas, o que levou Kennedy a perguntar como eles sabiam que ali havia mísseis balísticos de médio alcance. Foi quando chegou a vez de Graybeal intervir como especialista em mísseis

Anos depois, ele explicaria que as conclusões a que eles haviam chegado sobre o tipo de mísseis a serem lançados, bem como as condições e o tempo necessário para o seu disparo, eram o resultado da análise de um conjunto de elementos que combinava informações de inteligência obtidas por fontes humanas e a análise das fotografias aéreas.

A chave fotográfica


As imagens feitas pelos aviões de reconhecimento tiveram papel fundamental.

"As fotografias aéreas foram a chave de toda a crise dos mísseis cubanos", afirmou Dorothy Cochrane, curadora do Museu Nacional do Ar e Espaço do Instituto Smithsoniano, à BBC News Mundo (o serviço em espanhol da BBC).

Para essas tarefas, foram utilizados dois tipos de aeronaves. Um deles foi o avião de reconhecimento U-2 da empresa Lockheed Martin, que tirava fotografias em grande altitude. E havia os aviões Vought RF-8 Crusader e RF-101, que podiam realizar voos de baixa altitude, por cima das copas das árvores, a cerca de 30 metros do solo.

Cochrane indica que os aviões de reconhecimento U-2 possibilitaram detectar o que estava acontecendo em Cuba, permitindo a Kennedy confrontar o primeiro-ministro soviético, Nikita Khrushchev, que inicialmente negou as ações da URSS na ilha.

"Kennedy então pediu que se fizessem fotografias de baixa altitude, que realmente confirmaram a presença desses mísseis", diz Cochrane. "Por isso, foram as imagens de baixa altitude feitas pelo capitão William Eckner, da Marinha americana, no seu avião RF-8A, que confirmaram a presença da base de mísseis soviética e seu nível de preparação para o lançamento."

Ela explica que essas imagens foram mostradas para Kennedy como prova de um possível ataque iminente e também serviram para que o presidente refutasse a negativa de Khrushchev sobre o envio dos mísseis soviéticos para Cuba.

Posteriormente, houve um momento em que as imagens dos aviões de reconhecimento foram mostradas para o mundo na Organização das Nações Unidas (ONU), de forma que a URSS já não poderia continuar negando o que estava acontecendo.

'Teoria do louco': como Nixon tentou convencer soviéticos que usaria bomba nuclear

Das suspeitas até a crise


No verão de 1962, a inteligência americana começou a receber informações sobre a entrada sem precedentes de armas soviéticas em Cuba.

Uma missão do avião de reconhecimento U-2 em 29 de agosto descobriu a presença de mísseis terra-ar SA-2, o que gerou preocupação junto ao chefe da CIA, John McCone. Ele enviou uma nota a Kennedy, expressando sua apreensão de que a URSS pudesse tentar instalar mísseis ofensivos em Cuba.

O avião U-2 foi projetado para espionar o território soviético e acompanhar seu desenvolvimento militar. Ele acabou servindo também para espionar os acontecimentos em Cuba (Foto: Getty Images)
Mas o presidente, da mesma forma que a maior parte da comunidade americana de inteligência, estava inclinado a acreditar que esses mísseis estivessem desmontados com fins defensivos, para evitar outra ação como a invasão da Baía dos Porcos.

Enquanto isso, a CIA vinha recebendo diversos relatórios de inteligência humana provenientes de Cuba através de Miami, na Flórida, nos Estados Unidos, sobre o transporte de mísseis por diferentes partes da ilha.

"Analisei detalhadamente esses relatórios e a maior parte deles poderia referir-se a mísseis terra-ar, pois, segundo as descrições, eles não eram suficientemente grandes para serem mísseis ofensivos. Noventa por cento desses relatórios podiam ser explicados dessa forma, como não sendo mísseis ofensivos", afirmou Sidney Graybeal em uma entrevista concedida em 1999, mantida no Arquivo de Segurança Nacional da Universidade George Washington, nos Estados Unidos.

Mas o ex-funcionário explicou que, dentre todos esses relatórios, cinco eram realmente preocupantes, pois descreviam um objeto coberto com uma lona, que era sempre transportado em altas horas da noite. Ele era levado em um trailer que não conseguia dobrar as esquinas e, por isso, precisava retroceder e avançar, devido às suas dimensões similares às de um poste telefônico.

"Um míssil terra-ar não teria enfrentado problemas [para dobrar as esquinas], de forma que esse relatório e outros similares foram a base que usamos, quando os U-2 começaram a voar, para tentar orientar onde eles deveriam procurar", explicou Graybeal.

Foi assim que uma missão conduzida no dia 14 de outubro de 1962 encontrou as primeiras imagens que foram analisadas no dia seguinte pelos especialistas do NPIC e apresentadas a Kennedy na reunião de 16 de outubro.

Naquela primeira sessão do EXCOMM, as imagens mostravam, entre outras coisas, comboios soviéticos transportando mísseis perto de San Cristóbal e a existência de um provável complexo de lançamento de mísseis balísticos de médio alcance em Guanajay, ambas na região centro-oeste de Cuba.

Mapa apresentado na primeira sessão do EXCOMM, mostrando o alcance dos mísseis nucleares soviéticos sendo instalados em Cuba (imagem: National Security Archive)
Segundo o relatório inicial apresentado pelo general Carter, foram identificados no local de lançamento 14 trailers de mísseis cobertos com lonas, com cerca de 20 metros de comprimento. Este viria a ser um dado fundamental para determinar o tipo de míssil, embora não fosse o único.

Graybeal explicou para Kennedy naquela reunião que havia dois tipos de mísseis balísticos soviéticos envolvidos - o SS-3, que media cerca de 20 metros e podia ter alcance de 1.014 km a 1.126 km, e o SS-4, que media cerca de 22 metros e tinha alcance de até 1.770 km.

Os mísseis SS-4 detectados em Cuba estavam sem o cone na ponta, o que justificava a diferença entre os 20 metros de comprimento dos trailers e os 22 metros dos mísseis já montados.

Na entrevista concedida em 1999, Graybeal explicou que, para identificar esses mísseis, foram empregadas as fotografias tiradas pelos aviões U-2 sobre Cuba, além de imagens captadas quanto esses mísseis eram exibidos nos desfiles militares em Moscou e outras em lugares onde eles sabiam que esses mísseis haviam sido testados.

"Nós tínhamos excelentes informações de telemetria, que nos forneciam as características internas do míssil", afirmou ele, salientando que, desta forma, eles conheciam o alcance e a capacidade de carga, entre outros detalhes.

Outra informação crítica muito importante, embora não fosse proveniente das fotografias aéreas, vinha dos manuais de funcionamento daqueles mísseis, que os Estados Unidos haviam conseguido por meio de Oleg Penkovsky, alto oficial da inteligência soviética que colaborou com a CIA e com o Serviço Secreto de Inteligência britânico (o MI6).

Com esses dados, era possível saber o que faltava e quanto tempo seria necessário para instalar um míssil daquele tipo e deixá-lo pronto para ser disparado.

A crise, foto a foto


Após aquela primeira reunião do EXCOMM, os aviões de reconhecimento norte-americanos continuaram realizando missões para acompanhar a situação no local.

Foi assim, por exemplo, que um voo permitiu identificar, em 16 de outubro de 1962, o local onde provavelmente estavam armazenadas as ogivas nucleares, próximo a um dos locais de lançamento. E, no dia seguinte, outra missão detectou a presença na ilha de caças soviéticos MIG-21.

Primeira fotografia da construção de um campo de lançamento de mísseis balísticos de alcance intermediário em Cuba (Crédito: USAF)
Fotografia de um avião MIG-21, conhecido como 'rede de pesca' nos Estados Unidos, confirmando a existência deste tipo de avião em Cuba (Crédito: Agência Nacional De Inteligência Geoespacial)
As imagens forneceram indicações sobre a presença de tropas perto dos locais onde estavam localizados os mísseis. Isso ajudou a avaliar a quantidade de militares soviéticos enviados para a ilha e a rapidez com que eles poderiam deixar os mísseis prontos para disparo.

As fotografias aéreas permitiram localizar os mísseis, bem como a disposição das tropas
próximas a eles (Crédito: Agência Nacional De Inteligência Geoespacial)
Os aviões de reconhecimento também localizaram as defesas instaladas pelos soviéticos para proteger seus mísseis balísticos. A presença de mísseis terra-ar dificultava as operações de vigilância americanas e reduzia a probabilidade de uma ação militar sobre a ilha.

Os aviões de reconhecimento também ajudaram a determinar a localização dos mísseis ]defensivos SAM terra-ar (Crédito: Agência Nacional De Inteligência Geoespacial)
Eles também permitiram descobrir como a URSS estava reforçando sua presença militar em Cuba com o envio, em partes, de aviões bombardeiros Ilyushin-28, para que fossem montados na ilha.

A URSS enviou para Cuba partes para montagem dos aviões bombardeiros Ilyushin-28
na ilha (Crédito: Agência Nacional De Inteligência Geoespacial)
As fotografias aéreas possibilitaram aos Estados Unidos acompanhar os avanços soviéticos para a instalação dos mísseis de médio alcance, como se pode observar na imagem de 25 de outubro de 1962. Nela, estão presentes todos os elementos necessários para o lançamento de um desses mísseis, segundo os analistas do NPIC.

Os rastros no terreno que levam até uma das tendas onde os mísseis estavam abrigados indicam que ali havia uma arma quase pronta para ser usada.

Imagem de 28 de outubro de 1962, demonstrando que os soviéticos já mantinham mísseis em estado de preparação bastante avançado em Cuba (Crédito: Agência Nacional De Inteligência Geoespacial)
Após a resolução da crise pela via diplomática, quando os soviéticos aceitaram retirar os mísseis de Cuba, as fotografias dos aviões de reconhecimento permitiram acompanhar a desmontagem dos acampamentos e a retirada do material bélico até seu embarque de volta para a União Soviética.

Após o acordo diplomático que pôs fim à crise, os aviões de reconhecimento ajudaram a confirmar que a União Soviética estava cumprindo com sua parte de acordo, retirando os mísseis de Cuba (Crédito: Agência Nacional De Inteligência Geoespacial)
E, seis décadas depois da crise dos mísseis, os aviões de reconhecimento U-2 continuam em operação. Eles sobreviveram ao desenvolvimento dos satélites de vigilância e dos drones não tripulados, que se acreditava que fossem torná-los obsoletos.

Via BBC

Vídeo: Entrevista - Comemorando 150 anos de Santos Dumont


O professor, historiador e confeiteiro de mão cheia Ricardo Jacob Magalhães é de fato uma das maiores sumidades quando tratamos em falar do Pai da aviação, o genial Alberto Santos Dumont. Aqui tratamos mais uma vez do assunto já que estamos comemorando o aniversário de 150 anos daquele que nos possibilita voar.

Via Canal Porta de Hangar de Ricardo Beccari


Aconteceu em 9 de janeiro de 2021: A queda do voo Sriwijaya Air 182 - Segurança dentro do orçamento


Em 9 de janeiro de 2021, um velho Boeing 737 voando para uma companhia aérea de baixo custo da Indonésia desapareceu do radar minutos após a decolagem de Jacarta. Dados de rastreamento de voo revelaram que o voo aparentemente normal chegou a um fim surpreendentemente repentino, virando e mergulhando direto no mar de 10.000 pés em menos de 30 segundos. 

Quando as equipes de resgate chegaram ao local nas águas próximas às Mil Ilhas, os únicos sinais do avião eram pedaços de detritos pulverizados flutuando na superfície do mar de Java – nenhuma das 62 pessoas a bordo havia sobrevivido.

Depois de uma busca meticulosa pelas caixas-pretas, um mergulho profundo nos aviônicos do avião e uma análise especulativa frustrante de algumas das ações mais desconcertantes dos pilotos, os investigadores indonésios divulgaram seu relatório final em novembro de 2022, finalmente revelando ao mundo como Sriwijaya 

O voo aéreo 182 terminou em desastre. A história não deve inspirar confiança na indústria aeronáutica do estado da Indonésia, já considerada uma das mais perigosas do mundo. É uma história de convergência de falhas em todos os níveis, da companhia aérea aos pilotos e ao próprio avião, o que nunca deveria ter acontecido em 2021, apresentando uma denúncia sombria da capacidade da Indonésia de aplicar as lições de inúmeros acidentes anteriores. .

Um cronograma de 2009 para Sriwijaya Air parece ter sido um exercício de colocar
tantas fontes diferentes em um pôster quanto possível
Em 2003, no alvorecer do boom da aviação na Indonésia, um grupo de empresários adquiriu um velho Boeing 737-200 e prometeu abrir uma companhia aérea de baixo custo. Eles batizaram sua empresa de Sriwijaya Air, um nome que transmitia as grandiosas ambições de seus fundadores, invocando o reino medieval de Srivijaya, que já governou grande parte do que hoje é a Indonésia e a Malásia. 

Como o reino, a companhia aérea começou pequena, usando seu único 737 para transportar passageiros entre Jacarta e Pangkal Pinang, cidade natal dos cofundadores Chandra e Hendry Lie. 

Em meados dos anos 2000, era quase impossível perder dinheiro operando uma companhia aérea na Indonésia, então a Sriwijaya Air começou a crescer rapidamente, levando um serviço de balsa concorrente à falência em alguns meses, à medida que expandia sua frota e sua programação. 

Na verdade, cresceu tão rapidamente que em 2011, oito anos após sua fundação, era a terceira maior companhia aérea da Indonésia e estava dando uma corrida pelo seu dinheiro à transportadora de bandeira Garuda. Tudo isso foi conseguido com base nos preços dos ingressos, que geralmente ficavam bem abaixo de 20 dólares.

Nos bastidores, no entanto, nem tudo estava bem. As finanças da Sriwijaya Air eram consideradas opacas, em grande parte porque a empresa ainda era propriedade de seus fundadores e rejeitou repetidamente os rumores de um IPO pendente. 

Em 2017, a companhia aérea estava perdendo dinheiro em grande escala, um fato que só se tornou aparente em novembro de 2018, quando Garuda anunciou uma aquisição por atacado das finanças e operações da Sriwijaya Air. Isso foi mais um resgate do que uma aquisição - o plano parecia ser reformar a empresa até que ela pudesse se tornar lucrativa e depois deixá-la ir. 

Mas a Sriwijaya Air não era um assunto fácil para a reforma, já que seus gerentes parecem ter concordado com o acordo apenas com relutância, e não estava claro quem pagaria uma dívida de $ 175 milhões que a companhia aérea havia acumulado em taxas não pagas para a estatal aeroportos, companhias de petróleo e a própria Garuda.

PK-CLC, o avião envolvido no acidente, visto aqui em 2019 (Foto: Leony Eka Prakasa)
A parceria entre Garuda e Sriwijaya Air era instável desde o início e, em setembro de 2019, parecia estar à beira do colapso. Em 25 de setembro, a Sriwijaya Air ameaçou desistir do negócio depois de demitir vários diretores da Garuda que alegou terem sido nomeados sem aprovação prévia. 

A Garuda respondeu na mesma moeda, removendo seus logotipos dos aviões da Sriwijaya Air, enquanto a empreiteira de manutenção da Sriwijaya Air, com sede em Cingapura, encerrou seus serviços por causa de dívidas não pagas. Os dois lados conseguiram se reconciliar brevemente, mas o negócio se desfez novamente em novembro de 2019, desta vez para sempre. Os detalhes são obscuros, mas foi alegado que a Sriwijaya Air não pagou sua dívida e ocultou isso de Garuda.

A Sriwijaya Air, de fato, saiu da parceria Garuda como uma casca de si mesma, sem gerenciamento sênior, empreiteiros de manutenção, engenheiros qualificados, instalações de manutenção, um manual de manutenção, peças sobressalentes, prestadores de serviços de assistência em terra e catering e muito mais, além de receitas insuficientes e grandes dívidas pendentes. 

Uma análise de risco interna concluiu que todos esses problemas precisavam ser corrigidos antes que a companhia aérea pudesse operar um único voo com segurança. A empresa parece ter se esforçado para preencher essas lacunas com velocidade notável, pois parece que seus serviços nunca foram completamente suspensos. A Diretoria Geral de Aviação Civil da Indonésia, ou DGCA, anunciou inspeções de emergência da companhia aérea após seu divórcio de Garuda, mas não está claro o que eles encontraram, já que nenhum relatório público surgiu.

De qualquer forma, quando 2019 passou para 2020, a Sriwijaya Air provavelmente estava em más condições, tanto financeira quanto operacionalmente. E então, do nada, veio a pandemia de Covid-19, fazendo com que as viagens aéreas despencassem em todo o mundo. Considerando essa confluência de eventos, é notável que a Sriwijaya Air tenha sobrevivido para ver o ano de 2021.

Os seis tripulantes do voo 182. Embora as fotos não estejam identificadas, o capitão Afwan e
o primeiro oficial Mamahit parecem ser o primeiro e o segundo da esquerda, respectivamente
Em dezembro de 2020, as viagens aéreas estavam começando a aumentar novamente, e a Sriwijaya Air, como as companhias aéreas de todo o mundo, estava chamando de volta a aeronave que havia sido aterrada durante a pandemia. 

Um desses aviões era o PK-CLC, um Boeing 737-524 (WL) de 26 anos construído em 1994 e transferido para a Sriwijaya Air em 2012. O PK-CLC ficou parado de 23 de março a 20 de dezembro de 2020, provavelmente devido ao coronavírus - o relatório oficial diz que estava em manutenção, mas a duração e o tempo do aterramento sugerem o contrário.

O PK-CLC estava de volta ao serviço há apenas três semanas quando voltou do portão em Jacarta na tarde de 9 de janeiro de 2021. O 737, com destino à cidade de Pontianak, estava com menos da metade, com apenas 56 passageiros a bordo, incluindo seis funcionários de Sriwijaya. Teriam sido 57, mas um passageiro teria sido recusado porque testou positivo para Covid-19.

Além dos 56 passageiros, o voo contava com seis tripulantes, incluindo quatro comissários de bordo e dois pilotos. No comando estavam o capitão Afwan, de 54 anos (que, como muitos indonésios, usa apenas um nome) e o primeiro oficial Diego Mamahit, de 34 anos. Ambos eram altamente experientes no Boeing 737, com quase 14.000 horas combinadas no tipo, de um total de 22.000 horas.

A rota do voo 182 da Sriwijaya Air
Às 14h36, horário local, o voo 182 decolou de Jacarta e começou a subir para 29.000 pés, conforme autorizado pelo Controle de Tráfego Aéreo. O tempo estava nublado com algumas trovoadas esparsas, mas fora isso normal. Assim como os eventos a bordo do avião, pois os pilotos realizavam checklists de rotina e monitoravam os sistemas de voo automático.

De acordo com os procedimentos padrão, os pilotos voaram com o piloto automático e o acelerador automático acionados logo após a decolagem. Em vez de manipular diretamente os controles, eles enviaram comandos para o piloto automático (que por sua vez se comunicava com o acelerador automático) usando o Painel de Controle de Modo, ou MCP. Usando o MCP, eles podiam inserir rumos, altitudes, velocidades e taxas de subida, e o piloto automático e o acelerador automático trabalhavam juntos automaticamente para atingir e manter esses valores-alvo.

Dois minutos após a decolagem, enquanto o voo 182 subia 5.400 pés, os pilotos usaram o Painel de Controle de Modo para alterar o modo vertical do piloto automático para “velocidade vertical” a fim de reduzir sua taxa de subida para a transição entre as fases de subida inicial e intermediária . Usando o botão de velocidade vertical no MCP, eles definiram uma taxa de subida de aproximadamente 2.000 pés por minuto.

Momentos depois, os pilotos avistaram uma tempestade à distância, e o primeiro oficial Mamahit perguntou ao capitão Afwan se eles deveriam virar à direita na direção nordeste de 070 graus para contorná-la. O gravador de voz da cabine não capturou a maioria das declarações do capitão Afwan, mas ele deve ter sugerido uma ligeira modificação do plano, já que Mamahit finalmente pediu ao controle de tráfego aéreo um desvio para 075 graus. O pedido foi concedido imediatamente. Com o modo lateral do piloto automático definido como “seleção de rumo”, o capitão Afwan usou o botão de rumo para inserir um valor alvo de 075˚ e o piloto automático começou a virar o avião para a direita.

Um exemplo de como seriam as alavancas de empuxo em um Boeing 737-500 durante uma condição de empuxo assimétrico. Observe que na foto o motor esquerdo está em alta potência, não o direito
Enquanto isso, a redução na taxa de subida comandada significava que menos potência do motor era necessária para manter a mesma velocidade no ar. Como resultado, o autothrottle começou a reduzir a potência do motor para evitar que a velocidade do avião aumentasse.

O acelerador automático do Boeing 737 controla automaticamente o empuxo do motor, acionando fisicamente as alavancas de empuxo no cockpit. Não há sistema de controle de motor separado - o sistema automático move as alavancas como um piloto faria, e a saída de empuxo é determinada pela posição das alavancas de empuxo, exatamente como no voo manual.

Quando o autothrottle comandava uma diminuição na potência do motor, um motor acionava para acionar as alavancas de empuxo para trás da posição de subida máxima. Normalmente as alavancas devem se mover juntas, mas desta vez, algo inesperado aconteceu: a alavanca de empuxo esquerda começou a rolar para trás, mas a manete de empuxo direita não se moveu. Como resultado, a configuração de potência do motor direito, medida em termos de velocidade de rotação do ventilador, ou N1, permaneceu em 91,8%, enquanto N1 no motor esquerdo começou a diminuir continuamente.

A princípio, ninguém notou. Enquanto isso ocorria, o controlador contatou o voo e instruiu os pilotos a nivelar a 11.000 pés para abrir espaço para o tráfego cruzado. Em resposta, o capitão Afwan redefiniu a altitude alvo no MCP para 11.000 pés. Trinta segundos depois, um toque soou para informar à tripulação que eles estavam a 1.000 pés de sua altitude alvo, e o primeiro oficial Mamahit anunciou que eles estavam se aproximando de 11.000.

O tempo todo, o avião permaneceu em uma curva para a direita, passando pelo norte em seu caminho para um rumo de 075. Mas com o motor direito ainda na subida máxima e o motor esquerdo ainda rolando para trás, a assimetria de empuxo tentou cada vez mais empurrar o avião para o outro lado, para a esquerda. Para neutralizar essa tendência, o piloto automático tinha que girar as rodas de controle dos pilotos cada vez mais para a direita.

A trajetória do voo 182, com suas principais mudanças de direção destacadas
Aproximadamente 40 segundos depois que as posições da alavanca de empuxo começaram a divergir, a velocidade N1 do motor esquerdo era de 62,7% e estava diminuindo, enquanto a velocidade N1 do motor direito ainda era de 91,8%. Nesse ponto, a assimetria tornou-se tão grande que o piloto automático teve que usar toda a sua autoridade de rolagem para manter o avião virando à direita. 

As colunas de controle dos pilotos atingiram 19 graus de deflexão para a direita e então pararam - embora os próprios pilotos pudessem ter virado muito mais longe, 19 graus de deflexão da roda de controle era o máximo que o piloto automático poderia comandar. Ainda assim, o tamanho da assimetria de empuxo continuou aumentando, até dominar o piloto automático. O avião atingiu uma proa de 046 graus, nivelou e começou a virar para a esquerda, mesmo com o piloto automático continuando seus esforços inúteis para virar para a direita.

Ainda aparentemente alheio ao problema, o primeiro oficial Mamahit gritou “definir padrão”, mudando a configuração da pressão barométrica da leitura local para o valor padrão. O avião estava rolando para a esquerda a uma taxa de cerca de um grau por segundo e aumentando, enquanto a alavanca de empuxo esquerda ainda estava rolando para trás, mas ninguém percebeu.

Naquele momento, o ATC instruiu o voo 182 a subir para 13.000 pés, e Mamahit leu a instrução. Esta seria a última comunicação do voo - na verdade, o desastre já estava a apenas alguns segundos de distância.

Capturado em meio ao ruído de fundo no microfone do primeiro oficial, o capitão Afwan podia ser ouvido dizendo: “Um três zero”.

“Um três zero”, Mamahit repetiu. O ângulo de inclinação ainda aumentava, passando 30 graus para a esquerda. A direção do avião passou de volta para o norte e começou a seguir na direção noroeste.

De repente, às 14h40 e três segundos, uma voz automática começou a gritar: “BANK ANGLE! BANK ANGLE!”

"Eh!?" exclamou o capitão Afwan.

"Ei, desculpe!" disse o primeiro oficial Mamahit.

“BANK ANGLE!” o alerta soou novamente.

“Bank angle!” Mamahit gritou.

O avião já estava inclinado 37 graus para a esquerda, além do ângulo máximo de rolagem normalmente usado em voo, quando soou o alerta de ângulo de inclinação. O alerta imediatamente capturou a atenção dos pilotos, e o capitão Afwan alcançou sua coluna de controle, desconectando o piloto automático com um alto alarme de carga de cavalaria. E então, aparentemente sem pensar, ele tentou se recuperar - virando ainda mais para a esquerda!

Este diagrama produzido com base na transmissão de dados ADS-B do voo mostra a
rapidez com que ele mergulhou no mar (Imagem via AFP e Flightradar24)
Afwan segurou o volante para a esquerda por apenas quatro segundos, mas quando percebeu seu erro e virou para o outro lado, o estrago já havia sido feito. Inclinando-se noventa graus para a esquerda, as asas perderam sustentação e o avião começou a descer. Quando eles viraram para um mergulho invertido, o primeiro oficial Mamahit gritou freneticamente: “Capitão, capitão! Chateado, chateado!”

Por um momento, 62 vidas estavam em jogo - e então o capitão Afwan selou seu destino. Desesperado para impedir o mergulho do avião, ele puxou o nariz para cima bruscamente, apenas para descobrir que puxar para cima enquanto invertido envia o avião direto para o solo. 

Em um piscar de olhos, o 737 mergulhou em espiral invertida, mergulhando em direção ao oceano apenas alguns milhares de pés abaixo. O rápido e arrepiante 'clackclackclack' do aviso de excesso de velocidade ganhou vida repentinamente ao exceder a velocidade máxima do 737. 

"Capitão! Capitão!", o primeiro oficial Mamahit gritou, enquanto o avião girava 360 graus, de cabeça para baixo e de volta para o lado direito. 

Segundos depois, o capitão Afwan conseguiu nivelar as asas e puxou o nariz quase nivelado, mas já era tarde demais. Com um rugido poderoso, o voo 182 da Sriwijaya Air mergulhou de barriga nas águas rasas do mar de Java a uma velocidade imensa, destruindo instantaneamente o avião e matando todos os 62 passageiros e tripulantes. Apenas 25 segundos se passaram desde o primeiro aviso de ângulo de inclinação.

;

Na ilha vizinha de Lancang, o enorme impacto sacudiu as janelas com um som semelhante ao de um trovão. Na água, os pescadores se abaixaram para se proteger quando o acidente enviou estilhaços de metal e compósitos voando sobre suas cabeças, deixando o mar azul brilhante coberto com os restos retorcidos do 737. 

Alguns estavam tão perto que avistaram vermelho e vermelho. - detritos amarelos voando pela água diretamente abaixo deles. Essas e outras testemunhas correram para o local em seus barcos, esperando desesperadamente por sobreviventes, mas mal conseguiram encontrar algo maior que um metro quadrado. Era óbvio que ninguém havia sobrevivido.

Equipes de resgate retiram pedaços do 737 do mar de Java (Foto via New York Times)
Quando os serviços de resgate chegaram ao local, o resgate já era uma recuperação. Poucos, se é que algum corpo foi encontrado intacto. A destruição foi tão extensa que algumas vítimas nunca foram identificadas e os testes toxicológicos dos tecidos dos pilotos se mostraram impossíveis.

A investigação da causa do acidente coube ao Comitê Nacional de Segurança nos Transportes, conhecido pela sigla indonésia KNKT. Infelizmente, o cenário era muito familiar: esta era a terceira vez em pouco mais de seis anos que eles eram enviados para investigar a queda de um avião no mar de Java.

A primeira prioridade em qualquer investigação é encontrar as caixas-pretas, e neste caso não foi diferente. O gravador de dados de voo foi encontrado em poucos dias, mas quando os mergulhadores alcançaram o farol localizador do gravador de voz da cabine, descobriram que o gravador havia se desintegrado e o cartão de memória não estava à vista. 

Os investigadores do KNKT examinam um pedaço não identificado dos destroços (Foto: Reuters)
A única solução era vasculhar metodicamente o fundo do mar nas proximidades do local do acidente até que o cartão de memória fosse encontrado, não importa quanto tempo levasse - e até então, os investigadores teriam que aprender o que pudessem com o FDR.

Os dados revelaram que os primeiros três minutos de voo foram normais, até que o autothrottle tentou reduzir o empuxo para atingir a razão de subida mais baixa selecionada pela tripulação. Quando isso aconteceu, algo deu errado: o manete de potência direito não se moveu, enquanto o manete de potência esquerdo continuou girando até atingir a posição de marcha lenta de voo. 

O autothrottle parecia ter diminuído o empuxo no motor esquerdo para um nível bem abaixo do valor normal para aquela fase de voo, a fim de compensar o fato de que o motor direito ainda estava na potência máxima de subida. Mas isso não deveria ter acontecido - o autothrottle deveria ter se desconectado automaticamente bem antes disso, assim que uma grande diferença entre as posições da manete de potência fosse detectada. Isso deixou o KNKT com duas questões mecânicas: por que a alavanca de empuxo direita não se moveu quando foi comandada para fazê-lo e por que o autothrottle não desligou imediatamente?

Entre os escombros dispostos no cais, é possível ver uma peça com parte da
matrícula do avião, PK-CLC (Foto: ABC News)
Responder à segunda pergunta exigia que os investigadores mergulhassem na história e no projeto de um obscuro sistema de segurança chamado Cruise Thrust Split Monitor, ou CTSM. O Boeing 737–500 não saiu de fábrica com o CTSM instalado, mas a Boeing introduziu o sistema após uma série de incidentes envolvendo empuxo assimétrico com o autothrottle ativado, e sua instalação foi tornada obrigatória por uma diretriz de aeronavegabilidade da FAA em 2000. O avião do acidente estava entre os equipados com o sistema.

O CTSM foi projetado para desconectar o autothrottle se o autothrottle não puder corrigir uma assimetria de empuxo. Ele seria ativado apenas quando três critérios fossem satisfeitos. Primeiro, os sensores de posição do manete de empuxo tinham que detectar uma diferença significativa entre as posições dos dois manetes de empuxo, com o tamanho exato da diferença necessária dependendo de vários fatores, incluindo ajuste de flap e velocidade no ar. 

Em segundo lugar, o autothrottle não pode estar no modo dar a volta. E terceiro, como forma de redundância, os spoilers de voo – que são ativados para auxiliar os ailerons quando o piloto inclina o avião – precisavam ser desviados em mais de 2,5 graus. O movimento dos spoilers de voo indicaria que o piloto ou o piloto automático estava tentando compensar a assimetria de empuxo rolando contra ele, confirmando assim que a assimetria era, antes de tudo, real; e segundo, indesejável.

O tamanho médio das peças dos destroços fornece alguma indicação quanto à força do impacto (Foto: Reuters)
Se o sistema tivesse operado de acordo com suas especificações de projeto, deveria ter causado a desconexão do autothrottle dentro de alguns segundos após a diferença nas posições da alavanca de empuxo começar a se desenvolver por volta das 14h39:00. Em vez disso, o autothrottle permaneceu engatado, continuando a rolar para trás a alavanca de potência esquerda, tornando a assimetria progressivamente pior, até que finalmente desligou às 14h40:10. 

O fato de que acabou desativando sugeria que o sistema estava funcionando, embora com um atraso, e o tempo preciso forneceu uma pista do porquê. Na verdade, o acelerador automático foi desativado assim que o capitão Afwan girou o manche além dos 19 graus comandados pelo piloto automático. Isso sugeriu que o problema era que o sensor de posição do spoiler estava fornecendo ao CTSM um valor muito baixo. 

;

Embora os spoilers tenham desviado mais de 2,5 graus quando o piloto automático girou o manche 19 graus para a direita, o valor enviado ao CTSM foi inferior a 2,5 graus, portanto o sistema não foi ativado. Quando o capitão Afwan moveu o manche ainda mais, a deflexão do spoiler aumentou, o valor transmitido ultrapassou 2,5 graus e o autothrottle foi desconectado. Mas a essa altura o motor esquerdo já estava em marcha lenta e o avião já estava fora de controle.

No final, os componentes relevantes da aeronave nunca foram encontrados, então o KNKT não conseguiu determinar por que os valores de deflexão do spoiler transmitidos ao CTSM eram muito baixos. A explicação mais provável, no entanto, era que o sensor havia sido manipulado incorretamente na última vez em que foi reparado. 

A Sriwijaya Air disse que nunca tocou no sensor de posição do spoiler, portanto, se esse fosse o caso, o problema provavelmente havia sido introduzido antes de 2012, quando o avião ainda estava em serviço nos Estados Unidos. A falta de qualquer exigência para inspecionar o sensor teria impedido a descoberta do problema até que ele se tornasse aparente durante o voo do acidente.

Algumas peças escolhidas foram apresentadas aos jornalistas em uma coletiva de imprensa
A segunda questão mecânica que os investigadores enfrentaram foi por que a alavanca de empuxo direita não se moveu da posição de subida máxima.

Como se viu, os investigadores do KNKT não foram os primeiros a perguntar. De fato, o histórico de manutenção do PK-CLC mostrou que, desde o primeiro relatório desse tipo em novembro de 2013, os pilotos registraram 65 falhas no autothrottle no registro técnico do avião e houve 61 relatos de empuxo assimétrico em voo, começando mais ou menos na mesma época. Esses relatórios continuaram periodicamente pelos próximos sete anos, até o acidente em 2021, embora os engenheiros realizassem ações corretivas todas as vezes.

Como os componentes do sistema de autothrottle foram quebrados em inúmeros pedaços no fundo do mar, a melhor maneira para os investigadores do KNKT reduzirem a causa das recorrentes dificuldades do autothrottle era examinando o que não poderiaser a causa, com base nas ações tomadas pelos engenheiros. 

Os investigadores observaram que a maioria das “ações corretivas” tomadas em resposta aos problemas do autothrottle consistiam em limpar os conectores no computador do autothrottle, reinstalar o computador e testar a integridade do software e hardware do computador usando seu teste integrado equipamento (BITE). Em cada caso, os testes BITE foram aprovados e o sistema voltou a funcionar. 

Obviamente, o fato de que o mau funcionamento continuou a ocorrer sugere fortemente que os conectores sujos não eram o problema. E, no entanto, os engenheiros continuaram a executar essas correções rápidas básicas repetidas vezes, aparentemente sem saber que esse era um problema crônico e que tudo o que estavam fazendo já havia sido tentado. 

Em seu relatório, o KNKT especulou abertamente que os engenheiros optaram por limpar os conectores e executar os testes BITE porque era fácil, não porque achavam que provavelmente resolveria o problema.

Um núcleo de motor muito danificado estava entre as maiores peças recuperadas (Foto: Tempo.co)
De acordo com os livros de registro, esses problemas ressurgiram quase imediatamente depois que o avião foi retirado do armazenamento pandêmico em dezembro de 2020. Em resposta, o computador do autothrottle foi substituído em 30 de dezembro. 

Portanto, o fato de o problema ter ocorrido novamente no voo do acidente provou que as repetidas avarias não eram resultado de um problema de computador. O servo autothrottle — motor que movimenta as alavancas de potência — também foi descartado, pois foi recuperado após o acidente e não foi encontrado nenhum defeito. O problema também não poderia estar no motor certo, já que foi substituído várias vezes entre 2013 e 2021.

Havia, no entanto, mais um grande suspeito: as ligações entre o servomotor e as próprias alavancas de empuxo. Embora essas articulações não tenham sido recuperadas, o atrito excessivo na articulação da alavanca de empuxo direita explicaria a recorrente assimetria de empuxo.

O motivo estava em um dispositivo chamado interruptor de torque do acelerador automático. O objetivo do interruptor de torque é permitir que o piloto anule o autothrottle aplicando força à alavanca de empuxo. 

Se o autothrottle encontrar mais de 2 libras de resistência ao tentar mover a alavanca de empuxo, a chave de torque irá desarmar, desconectando o servo motor da alavanca de empuxo afetada para que o piloto possa mover a alavanca sem lutar contra o motor. 

No entanto, se houver fricção excessiva na articulação, o interruptor de torque pode ser acionado mesmo quando o piloto não estiver cancelando o autothrottle, fazendo com que a alavanca de empuxo afetada pare inesperadamente de se mover durante a operação normal do autothrottle. Se apenas a articulação da alavanca de empuxo direita fosse afetada, a alavanca de empuxo esquerda teria continuado a se mover, criando a assimetria de empuxo.

Imagens subaquáticas mostram destroços de aviões misturados com objetos pessoais,
como uma mochila infantil da Marvel
Como se viu, havia um procedimento de solução de problemas no manual que acabaria levando os engenheiros de manutenção à origem do problema, mas durante todo o período de sete anos desde o início do mau funcionamento, ninguém jamais se referiu a ele. Esse tipo de falha não era inesperado; de fato, foi antecipado e contabilizado na árvore de solução de problemas produzida pelo fabricante. 

Mas, em vez de sentar e levar um dia para passar por todas as etapas, os engenheiros continuaram limpando os conectores, executando os testes BITE e chamando o problema de resolvido. Os registros indicaram que menos de 50% dos engenheiros sequer consultaram o manual de manutenção durante a solução de problemas do autothrottle e, quando o fizeram, referiram-se apenas às seções relacionadas aos testes BITE. Claro, os testes BITE no computador sempre passaram, porque o computador não era o problema.

A falha em realizar uma solução de problemas mais intensiva ocorreu porque o pessoal de manutenção da Sriwijaya Air não sabia que estava lidando com uma falha crônica e recorrente. Se tivessem, seria óbvio que suas ações foram inadequadas. Isso pode ter ocorrido devido ao mau estado dos serviços de manutenção da Sriwijaya Air após seu divórcio sangrento da Garuda, mas mesmo que tudo tivesse sido feito de acordo com as regras, a definição da companhia aérea de um “defeito recorrente” poderia ter obscurecido o problema. 

De acordo com a política da empresa, um defeito recorrente sujeito a medidas aprimoradas de solução de problemas foi aquele que ocorreu pelo menos três vezes durante um período de 15 voos ou menos. Como os aviões da Sriwijaya Air operavam voos frequentes de curta distância, esse limite era excessivamente restritivo, uma vez que 15 voos não somaram horas de voo suficientes para que a maioria dos defeitos ocorresse três vezes. O problema do autothrottle, que só foi relatado uma vez a cada poucas semanas, certamente não se qualificou.

Na superfície desse pedaço surrado de pele da fuselagem, cada sulco conta uma história (Foto: Reuters)
Dito isto, descobriu-se que os incidentes de assimetria de impulso no PK-CLC eram muito mais comuns do que os investigadores inicialmente foram levados a acreditar.

A Sriwijaya Air tinha um programa de monitoramento de dados de voo que procurava excedências nos dados baixados do Quick Access Recorder de cada avião, um gravador de dados de voo alternativo que não é protegido contra colisões e destina-se a fins de monitoramento e diagnóstico. 

A companhia aérea baixava regularmente os dados QAR do PK-CLC, mas não foi possível analisá-los porque não possuía os quadros de dados necessários para convertê-los em um formato legível. O KNKT o fez, no entanto, e quando leram os dados, ficaram surpresos ao descobrir que eventos de assimetria de empuxo ocorreram várias vezes em março de 2020, dezembro de 2020 e janeiro de 2021, todos sem serem relatados.

O padrão geral da maioria desses incidentes foi o mesmo: devido a uma mudança na fase de voo, o autothrottle tentaria reduzir o empuxo, mas o manete de empuxo direito travaria enquanto o manete de empuxo esquerdo continuava em movimento. 

Em alguns desses incidentes, o autothrottle se desconectava, mas na maioria das vezes não, provavelmente devido ao sensor de posição do spoiler com defeito. Os períodos resultantes de assimetria de empuxo duraram de 30 segundos a sete minutos antes que as alavancas de empuxo finalmente voltassem à sincronia. 

O KNKT entrevistou as tripulações que estavam voando PK-CLC durante sete desses incidentes e descobriu que cinco das sete tripulações não se lembravam de ter notado a assimetria de empuxo, nem nenhuma das tripulações registrou o evento no registro técnico do avião ou o relatou. para a companhia aérea.

Investigadores do KNKT examinam peças de um motor (Foto via New York Times)
Um desses casos em particular merece ser explorado com mais detalhes. O incidente ocorreu em 15 de março de 2020, oito dias antes da suspensão do PK-CLC devido à pandemia de Covid-19. 

Durante a subida inicial, o autothrottle tentou reduzir o empuxo, mas o manete de empuxo direito travou enquanto o manete de empuxo esquerdo continuou em movimento. A assimetria cresceu até que o piloto automático atingiu seu limite de autoridade, desviando o manche 19 graus para a direita; no entanto, isso foi insuficiente e o avião começou a inclinar para a esquerda. 

O comandante ordenou ao copiloto que virasse à direita, mas ao entrar na nova proa para o MCP, o avião não virou. Momentos depois, o ângulo de inclinação atingiu 41 graus para a esquerda, bem fora do envelope operacional normal, acionando avisos automáticos de “BANK ANGLE”. 

O capitão então assumiu o controle manual do avião, desativando o piloto automático e o acelerador automático, mas ele corrigiu demais, inclinando 28 graus para a direita antes de retornar ao nível das asas. Só agora o capitão percebeu o empuxo assimétrico e ajustou as alavancas de empuxo. Incrivelmente, nenhum dos pilotos relatou o grave incidente à companhia aérea ou o registrou no registro técnico.

A história acima foi relatada ao KNKT por meio dos dados do QAR e durante uma entrevista com o primeiro oficial. O capitão daquele voo, no entanto, não pôde ser entrevistado – porque era o mesmo capitão Afwan que morreu na queda do voo 182.

A polícia carrega um pedaço de destroços para o cais em Jacarta (Foto: ABC News)
Desnecessário dizer que este incidente e todos os outros levantaram sérias questões sobre as habilidades de pilotagem dos pilotos da Sriwijaya Air. Várias tripulações não perceberam o empuxo assimétrico do motor que persistiu por vários minutos, e alguns até permitiram que aumentasse a ponto de o piloto automático não conseguir controlar o avião. 

E, denunciando a cultura de segurança da empresa, a maioria desses pilotos não relatou os eventos, mesmo que percebessem, contribuindo para que a companhia aérea não identificasse a tendência. Embora as tripulações tenham relatado problemas de assimetria de propulsão 61 vezes entre 2013 e 2021, o número real de incidentes deve ter sido uma ordem de magnitude maior.

Claro, uma assimetria de impulso não é uma emergência. A solução é simplesmente desconectar o autothrottle, equalizar as alavancas de empuxo e continuar o voo. O fato de que existe uma assimetria deve tornar-se aparente para o piloto não voador durante a varredura normal dos instrumentos, seja observando a posição das próprias alavancas, detectando uma diferença nos parâmetros do motor ou captando o piloto automático movendo a roda de controle para compensar. 

O fato de que muitos pilotos nunca notaram ou notaram apenas quando os avisos de ângulo de inclinação soaram foi uma enorme bandeira vermelha sugerindo que os pilotos da Sriwijaya Air não estavam realizando suas varreduras normais de instrumentos nem perto do grau que seria esperado.

Um pedaço de destroços é transportado a bordo de um navio de recuperação (Foto: AFP)
Para saber mais sobre o que exatamente os pilotos do voo 182 estavam fazendo durante os 63 segundos entre o surgimento da assimetria e o primeiro aviso de ângulo de inclinação, o KNKT precisava encontrar o cartão de memória do gravador de voz da cabine que faltava. 

Por algum tempo após o acidente, houve dúvidas de que algum dia seria encontrado - mas no final, seus esforços valeram a pena. Em 30 de março de 2021, quase três meses após o acidente, os mergulhadores localizaram o cartão de memória perto da borda do campo de destroços e ele foi levado às pressas para uma instalação da KNKT para análise.

Infelizmente, se os investigadores esperavam uma descoberta da gravação do CVR, eles não conseguiram. O microfone do capitão Afwan sofreu um defeito não identificado que deixou seu canal no CVR em branco. A voz de Afwan só podia ser ouvida quando ele fazia chamadas de rádio ou quando falava alto o suficiente para ser captado pelo microfone do primeiro oficial. Na maior parte, a transcrição do CVR consistia em declarações desconexas do primeiro oficial Mamahit, com as respostas presumidas do capitão Afwan visivelmente ausentes.

O que a gravação deixou claro, no entanto, foi que nenhum dos pilotos estava ocupado com tarefas óbvias durante o período em que o avião rolou pelo nível das asas e começou a virar para a esquerda. Quando o primeiro oficial Mamahit gritou “aproximando-se de 11.000”, o avião ainda estava inclinado para a direita e, quando ele gritou “definir padrão” 17 segundos depois, ele estava inclinado para a esquerda. Durante esses 17 segundos, ele deveria ter tido tempo de sobra para olhar para sua exibição de voo principal e observar que o avião estava virando na direção errada. Por alguma razão, no entanto, ele não o fez - e provavelmente nunca saberemos exatamente o porquê.

As equipes de resgate transportam a bordo o que parece ser parte de uma roda de trem de pouso (Foto: Bloomberg)
De qualquer forma, a primeira vez que um dos pilotos notou que algo estava errado foi quando a margem esquerda ultrapassou 35 graus, acionando os avisos automáticos de “BANK ANGLE”. Nenhuma tripulação competente deveria ter permitido que o avião se desviasse tanto de seu caminho pretendido, mas o KNKT, no entanto, identificou vários fatores que poderiam ter contribuído para a falha em perceber o problema antes. 

Em primeiro lugar, o avião voava entre nuvens - não haveria um horizonte visível, cujo movimento em sua visão periférica poderia, de outra forma, alertá-los para o fato de que o avião estava girando. O fato de o avião estar se inclinando para a esquerda deve ter sido percebido observando-se os indicadores de atitude. 

No entanto, havia algumas pistas conflitantes, ou seja, que suas rodas de controle teriam sido desviadas para a direita quando o piloto automático tentou parar a curva à esquerda. Como eles esperavam que o avião estivesse virando à direita, as rodas de controle pareciam estar exatamente onde deveriam estar, e o viés de confirmação poderia ter levado os pilotos a subconscientemente ponderar essa indicação sobre outras indicações de que eles estavam realmente virando à esquerda.

Os investigadores do KNKT examinam um estágio de ventilador do motor (Foto: Bloomberg)
Mesmo quando o alarme de ângulo de inclinação soou, eles ainda não estavam em uma situação de emergência. O problema poderia ter sido facilmente corrigido rolando para a direita, desconectando o autothrottle e restaurando as alavancas de empuxo para suas posições corretas. 

Foi isso que o capitão Afwan fez no incidente de 15 de março. Mas desta vez, algo o pegou desprevenido, e ele imediatamente reagiu virando para o lado errado por quatro segundos, fazendo o avião rolar invertido. Agora eles realmente estavam em uma emergência.

O mesmo viés de confirmação que fez com que os pilotos não percebessem o aumento da margem esquerda provavelmente contribuiu para esse erro crítico. Se ele acreditasse que eles estavam se inclinando para a direita, como ele havia instruído a aeronave a fazer, então, quando os avisos de ângulo de inclinação soassem, o instinto do capitão Afwan teria lhe dito que o avião provavelmente estava se inclinando muito para a direita, não muito para a esquerda. 

Assustado com os avisos, sua resposta de luta ou fuga foi ativada e ele reagiu ao perigo percebido sem parar para avaliar se suas entradas eram razoáveis. Quando percebeu o erro e parou de virar à esquerda, o avião já estava de cabeça para baixo.

Nesse ponto, os dados do FDR mostraram que Afwan começou a voltar para a direita. Se isso fosse tudo o que ele tivesse feito, o controle provavelmente teria sido recuperado e este artigo teria sido escrito sobre algum outro acidente. Mas, em vez disso, Afwan cometeu um dos erros mais comuns - e mortais - ao se recuperar de atitudes incomuns: ele tentou puxar o nariz para cima enquanto o avião ainda estava de cabeça para baixo.

Um slide de uma apresentação promocional sobre UPRT no final dos anos 90 ou início dos anos 2000
A situação em que o capitão Afwan se encontrava era um cenário clássico do campo de Treinamento de Prevenção e Recuperação de Transtornos, ou UPRT. Pioneiro na década de 1990 e agora obrigatório em grande parte do mundo, incluindo a Indonésia, o UPRT foi projetado para apresentar aos pilotos atitudes perigosas de aeronaves, como combinações de pitch alto ou baixo, ângulos de inclinação altos e velocidade baixa ou alta, e fornece estratégias para ajudá-los a voar para fora.

Uma das lições que um piloto deve aprender no primeiro dia de treinamento de recuperação é que, quando o ângulo de inclinação é maior que 60 graus, o nivelamento das asas deve vir primeiro, não importa o que mais o avião esteja fazendo. Mesmo que o avião esteja perdendo altitude rapidamente, o piloto não pode levantar o nariz até que as asas estejam niveladas. 

Se for feita uma tentativa de puxar para cima quando o avião estiver inclinado entre 60 e 90 graus, o avião experimentará um estol acelerado, um evento terrível que não precisa ser descrito aqui em detalhes, mas você pode usar sua imaginação. E se o ângulo de inclinação for maior que 90 graus - isto é, se o avião estiver invertido - puxar para cima irá, logicamente, enviar o avião para o mergulho direto em direção ao solo.

Em vez de seguir esse conselho, no entanto, o capitão Afwan puxou o nariz bruscamente para cima enquanto invertido, fazendo com que o avião entrasse em um mergulho em espiral. O avião deu uma volta completa, seu ângulo de inclinação passando por 180 graus e saindo do outro lado, antes de rolar com o nariz apontado mais ou menos para baixo, mergulhando como um dardo em direção ao mar com uma taxa de descida máxima de -45.000 pés. por minuto. Nesse ponto, o voo estava condenado; embora o capitão Afwan tenha tentado se recuperar, simplesmente não havia espaço suficiente.

Outra visão de pedaços de destroços dispostos no cais (Foto via New York Times)
O KNKT achou preocupante que Afwan cometesse um erro tão básico, embora seus registros indicassem que ele havia passado por um treinamento de recuperação de transtornos, que era obrigatório na Indonésia desde 2018. 

Embora comentários em seu histórico de treinamento sugerissem que Afwan era um piloto abaixo da média - ele mal havia passado por vários exames com a nota de aprovação mais baixa possível - provavelmente ainda havia mais na história. 

Essa suposição foi confirmada quando os investigadores do KNKT observaram uma sessão UPRT no Sriwijaya Air. Quando eles se sentaram em um cenário de “recuperação de nariz baixo”, uma das primeiras coisas que notaram foi que a Sriwijaya Air havia feito modificações questionáveis ​​nas chamadas obrigatórias. 

Os procedimentos do fabricante para lidar com um problema de nariz baixo — definido como um ângulo de arfagem de -10 graus ou menos — exigia que o piloto não voador anunciasse “nariz baixo” e sugerisse ações corretivas. 

Por razões pouco claras, a Sriwijaya Air renomeou o nariz baixo para “Upset Brown”, presumivelmente referindo-se à cor da tela principal do voo durante tal perturbação, e bizarramente pediu que o piloto não voador fizesse uma chamada de socorro ao controle de tráfego aéreo antes de ajudar na recuperação.

Durante a sessão de treinamento real, mais problemas foram observados. O briefing do instrutor não explicou por que certos passos eram necessários e não mencionou que o ângulo de inclinação deve ser inferior a 60 graus antes de tentar recuperar o pitch. Erros comuns da tripulação e estratégias para evitá-los não foram discutidos. E nunca foi exibido um vídeo sobre a recuperação de transtornos descrito no programa.

Depois que a simulação começou, o desempenho dos 'traines' foi ruim. Durante um cenário de nariz baixo e alto ângulo de inclinação, o piloto estagiário tentou nivelar o nariz antes de nivelar as asas, resultando em um estol acelerado. A recuperação do estol acelerado só foi realizada por insistência do instrutor. 

E durante uma segunda execução do mesmo cenário, o piloto em treinamento permitiu que a aeronave entrasse em uma condição de excesso de velocidade, que novamente exigiu a intervenção do instrutor antes que pudesse ser corrigida. A conclusão geral foi que nem os instrutores nem os alunos entenderam para que servia o UPRT, por que era importante ou como realizar as manobras de recuperação corretamente. 

Não é de admirar, então, que o capitão Afwan não tenha conseguido se recuperar do transtorno a bordo do voo 182 - aplicar os cenários de treinamento incoerentes a um piloto já abaixo da média foi simplesmente uma receita para o desastre.

Trabalhadores de recuperação transportam um corpo de um dos navios de salvamento (Foto: Reuters)
No final, o KNKT apontou o dedo diretamente para a companhia aérea pelas falhas mecânicas e humanas que levaram ao acidente. As práticas inadequadas de manutenção da empresa, a falta de ênfase em relatórios de incidentes e os engenheiros mal treinados permitiram que um problema recorrente persistisse por sete anos, e seu treinamento de pilotos de má qualidade deixou muitas tripulações despreparadas para lidar até mesmo com os menores transtornos durante o voo. Na verdade, foi um milagre que a companhia aérea tivesse operado por tanto tempo sem um acidente grave.

Vale a pena parar para observar que o voo 182 da Sriwijaya Air foi o único acidente fatal de um jato de passageiros em qualquer lugar do mundo em 2021. A maior parte do mundo conseguiu acumular recordes de segurança impressionantes nos últimos anos, mas a Indonésia continua a experimentar um grande perda de um jato de passageiros aproximadamente a cada dois anos, dos quais o voo 182 da Sriwijaya Air é apenas o último. 

Para piorar a situação, muitos desses acidentes são bastante semelhantes: ocorre um problema mecânico administrável ou mesmo trivial, os pilotos permitem que ele se agrave até se encontrarem em uma situação complicada, e então entram em pânico e jogam seu avião no mar. Todas as vezes, o KNKT conduz uma investigação bastante decente, recomendações são emitidas e a DGCA promete reformas - mas nada realmente muda. Então, por que devemos acreditar que desta vez é diferente? A única resposta real é que não deveríamos.

Outro corpo é retirado do local (Foto: Republika)
A reação inicial da DGCA à queda do voo 182 foi a mesma de sempre - fazer um show para o público, ordenando inspeções arbitrárias de um conjunto arbitrário de aviões sem saber por que o avião caiu e sem dizer aos inspetores para olhar para qualquer coisa em particular. Essas inspeções são um flagrante teatro de segurança e são realizadas apenas porque a DGCA não quer ou não pode tomar ações mais substanciais. 

No papel, pelo menos, algumas mudanças foram feitas - uma força-tarefa da DGCA foi estabelecida para garantir que as companhias aéreas implementassem adequadamente seus programas de treinamento de recuperação de problemas, e a Sriwijaya Air fez uma série de reformas, desde a revisão de seu programa UPRT até a melhoria do treinamento de solução de problemas para engenheiros.

A Boeing também anunciou um boletim de serviço pendente, que deve ser apoiado por uma diretiva vinculativa de aeronavegabilidade, o que exigiria inspeções recorrentes dos sensores de posição do spoiler nos aviões da série Boeing 737 Classic. Mas, no final, os sinais de uma revisão sistêmica do sistema regulatório na Indonésia permanecem praticamente ausentes.

Parentes das vítimas espalharam flores no local do acidente em Thousand Islands (Foto: AP)
Como dito em artigos anteriores, o problema na Indonésia não é realmente a falta de regras - no papel, suas normas de segurança não são muito diferentes das de qualquer outro país. A questão é uma falta generalizada de fiscalização e um sentimento de impunidade entre os executivos das companhias aéreas, que muitas vezes desfrutam de amplas conexões políticas. 

Depois de tantos acidentes causados ​​pelo mesmo conjunto de fatores em uma companhia aérea disfuncional após outra, fica-se com a sensação de que ninguém, dos executivos aos pilotos e aos inspetores da DGCA, realmente sabe o que está fazendo, e aqueles que sabem provavelmente estão sendo subornados para fingir que não. O resultado é a Sriwijaya Air, uma companhia aérea que, em qualquer país em funcionamento, teria sido suspensa quando se separou de Garuda, mas que, por estar na Indonésia, ainda voa hoje,

Embora este artigo gaste muito tempo mergulhando nos detalhes do que os sistemas automatizados estavam fazendo e o que os pilotos poderiam estar pensando, é impossível escapar do fato de que este foi um acidente que nunca deveria ter acontecido em 2021. 

Sabemos como evitar acidentes como este, e sabemos disso há décadas. Sabemos treinar pilotos que não perdem o controle de aviões perfeitamente controláveis ​​por falta de atenção. Sabemos como detectar defeitos mecânicos recorrentes e como corrigi-los. Sriwijaya Air simplesmente não se preocupou em aprender. 

E se a DGCA não puder aprender por eles, então em algum momento no próximo ano ou dois outro avião cairá na Indonésia, e outros artigos como este estarão sendo escritos novamente. Se não forem, considere isso uma vitória. Enquanto isso, no entanto, um aviso será suficiente: "se você tiver que voar em uma companhia aérea de baixo custo na Indonésia, cuidado - você pode apenas obter o que você paga".

Edição de texto e imagens por Jorge Tadeu (Site Desastres Aéreos)

Com informações de Admiral Cloudberg, ASN e Agências de Notícias.