domingo, 30 de junho de 2024

Aconteceu em 30 de junho de 2009: A tragédia com o voo 626 da Yemenia - 152 mortos e uma única sobrevivente


O voo 626 da Yemenia era um avião a jato bimotor Airbus A310-324, operado pela Yemenia, voando em um serviço internacional regular de Sana'a, no Iêmen, para Moroni, em Comores, no leste da África, que caiu em 30 de junho de 2009 por volta de 1h50, horário local (22h50 em 29 de junho - UTC) durante a aproximação do Aeroporto Internacional Príncipe Said Ibrahim, matando todos, exceto um dos 153 passageiros e tripulantes a bordo.


A única sobrevivente, Bahia Bakari, de 14 anos (fotos acima), foi encontrada agarrada aos destroços, após flutuar no oceano por treze horas. Bakari recebeu alta do hospital em 23 de julho de 2009.

Aeronave



O avião era um Airbus A310-324, prefixo 7O-ADJ, da Yemenia (foto acima), fabricado em 1990, como número de série 535. Ele estava em serviço há 19 anos e 3 meses, e tinha acumulado 53,587 horas de voo em 18,129 ciclos de voo no momento do acidente. 

Propriedade da International Lease Finance Corporation (ILFC), a aeronave entrou em serviço pela primeira vez com a Air Liberté em 30 de maio de 1990. Após arrendamentos para sucessivos operadores, foi alugada para a Iêmenia em setembro de 1999, registrou novamente 7O-ADJ e permaneceu em serviço até o acidente.

Dominique Bussereau, o Ministro dos Transportes da França, relatou que o avião foi inspecionado em 2007 pela Diretoria Geral da Aviação Civil da França e que apresentava uma série de defeitos; desde então, porém, a aeronave não havia retornado à França, portanto nunca mais foi inspecionada pela mesma autoridade.

Histórico do voo


A maioria dos passageiros era originária de Paris, onde embarcaram no voo 749 da Yemenia, operado em um Airbus A330-200. Houve uma escala no aeroporto de Marseille Provence em Marselha, França, onde passageiros e tripulantes adicionais embarcaram. Depois de chegar ao Aeroporto Internacional de Sana'a em Sana'a, Iêmen, os passageiros foram transferidos para um Airbus A310 para o voo 626, que deveria chegar ao Aeroporto Internacional Prince Said Ibrahim em Moroni, em Comores, às 2h30 local do dia 30 Junho.

Os membros da tripulação, todos iemenitas, eram o capitão Khalid Hajeb (44), o primeiro oficial Ali Atif (50) e o engenheiro de vôo Ali Salem. Da tripulação de cabine, três eram iemenitas, dois eram filipinos, dois eram marroquinos, um era etíope e um era indonésio.

O capitão Hajeb trabalhava para a Iêmenia desde 1989 e se tornou capitão do A310 em 2005. Ele tinha 7.936 horas de voo, incluindo 5.314 horas no Airbus A310. Hajeb já havia voado para Morôni 25 vezes. O primeiro oficial Atif estava na companhia aérea desde 1980 e estava qualificado para voar no Airbus A310 em 2004. Atif tinha 3.641 horas de voo, sendo 3.076 no Airbus A310 e já havia voado para Moroni 13 vezes.

Acidente


O acidente ocorreu à noite, na costa norte de Grande Comore , Comores, no Oceano Índico, a vários minutos do aeroporto. A aeronave estava se aproximando do aeroporto e deveria pousar na pista 2. No entanto, a aeronave continuou além do ponto em que a aproximação exigia que ela fizesse uma curva e, em seguida, fez uma curva à esquerda em direção ao norte, saindo do curso. A aeronave então estagnou e caiu no mar. 


Um funcionário não identificado das Nações Unidas no aeroporto disse que a torre de controle havia recebido uma notificação de que o avião estava se aproximando para pousar antes de perder contato. 

Uma frente fria excepcionalmente forte havia se movido através das Ilhas Comores, trazendo ventos com rajadas de 64 km/h (40 mph; 35 kn) e condições favoráveis ​​para turbulência leve a moderada. O vice-chefe da aviação civil do Iêmen, Mohammed Abdul Qader, disse que a velocidade do vento era de 61 km/h (38 mph; 33 kn) no momento em que a aeronave estava pousando.

As autoridades iemenitas não suspeitaram de crime. Este foi o terceiro acidente na Iêmenia; os dois anteriores foram incursões na pista sem fatalidades, embora uma aeronave tenha sido cancelada.

Pesquisa e recuperação


De acordo com a polícia comorense, a nação não possui capacidades de resgate marítimo. Dois aviões militares franceses e um navio começaram a busca formal pelo voo 626. Eles foram enviados de Reunião e Mayotte. As Comores consistem em três ilhas vulcânicas, Grande Comore, a ilha principal; Anjouan; e Moheli. Ele está localizado no Canal de Moçambique, 190 milhas (310 km) a noroeste de Madagascar e uma distância semelhante a leste do continente africano. 


O arquipélago de Comores inclui Mayotte, que é território francêse não faz parte da União das Comores. Os destroços foram localizados na costa da cidade de Mitsamiouli, incluindo alguns corpos e grandes quantidades de destroços flutuantes no oceano.

Sobrevivente encontrada



Uma menina de 14 anos, Bahia Bakari (foto acima, no hospital após o acidente), foi resgatada após ser flagrada agarrada a um pedaço de entulho entre corpos e destroços. Ela foi recolhida durante os esforços de resgate por pescadores locais e lanchas enviadas pelas autoridades em Grande Comore. Ela estava segurando os destroços por 13 horas. Bakari estava viajando com sua mãe, que não sobreviveu. 

Apelidada pela imprensa de a Menina Milagrosa, Bahia apresentou algumas lesões como a clavícula e a pélvis fraturadas, além de queimaduras nos joelhos e machucados no rosto. Contudo, ela foi liberada do hospital depois de três semanas, após alguns procedimentos cirúrgicos e tratamentos. Bahia teve alta do hospital em Paris em 23 de julho de 2009.


Pesquisas continuadas


Cinco corpos foram recuperados ao mesmo tempo em que o único sobrevivente foi resgatado. Outros 22 corpos foram recuperados da Ilha da Máfia na Tanzânia durante a segunda semana de julho de 2009 e transferidos para hospitais em Dar es Salaam.

Em 5 de julho de 2009, os sinais dos gravadores de voo da aeronave foram detectados. O navio oceanográfico francês Beautemps-Beaupré chegou às Comores em 15 de julho de 2009 e, em 23 de julho de 2009, concluiu um mapeamento do fundo do oceano ao redor da área do acidente, o que ajudou a localizar a localização exata dos gravadores.

Devido à grande profundidade da localização atual dos gravadores, a marinha francesa anunciou que empregaria robôs subaquáticos para a operação de recuperação, que começou em agosto de 2009. O gravador de dados de voo (FDR) foi recuperado em 28 de agosto do Oceano Índico a uma profundidade de 1.200 metros (3.900 pés), enquanto o gravador de voz da cabine (CVR) foi recuperado em 29 de agosto.

Investigação


A investigação foi feita pela Agence Nationale de l'Aviation Civile et de la Météorologie (ANACM) das Comores. O Bureau de Inquérito e Análise para Segurança da Aviação Civil (BEA) enviou uma equipe investigativa, acompanhada por especialistas da Airbus, para auxiliar na investigação das causas. 

O Iêmen também enviou uma equipe técnica para Morôni, enquanto um comitê, chefiado pelo Ministro dos Transportes do Iêmen, foi formado. O BEA observou que, devido a danos de corrosão nos cartões de memória, nem todos os dados do CVR puderam ser recuperados. 

As conclusões preliminares da investigação apontaram para o erro do piloto como a causa do acidente, trazendo objeções das autoridades de Comores e do Iêmen. Em novembro de 2009, a Iêmenia anunciou que estava procurando um terceiro para investigar o acidente, acusando os franceses de atacar a Iêmen "dia e noite" e de "assédio". A Iêmenia afirmou que a investigação estava "afetando a reputação do Iêmen". Em 2011, o BEA criticou as autoridades comorianas, dizendo que não estavam divulgando o relatório em tempo hábil.


Em 25 de junho de 2013, o diretor da comissão investigativa de Comores, Bourhane Ahmed Bourhane, anunciou que "o acidente foi devido a uma ação inadequada da tripulação" durante "uma manobra desestabilizada". Um grupo de familiares das vítimas convocou uma manifestação em Paris em 28 de junho de 2013 para protestar contra o relatório final. De acordo com o Iêmen Post, o Iêmen suspeita que o avião foi derrubado, apesar da falta de qualquer evidência que indique crime.

A investigação apurou que o acidente foi causado por ações inadequadas da tripulação que levaram a um estol do qual a aeronave não se recuperou. A abordagem foi desestabilizada, disparando vários alarmes para proximidade do solo, configuração da aeronave e aproximação para estol. 

A tripulação estava concentrada na navegação, estava estressada e não respondia adequadamente aos diferentes alarmes. Contribuíram para o acidente as condições meteorológicas ventosas, a falta de treinamento, a falta de um briefing da tripulação antes do voo e a falha em responder corretamente ao alarme de pull up.

Passageiros e tripulantes


Havia 142 passageiros e 11 tripulantes a bordo. Acredita-se que a maioria dos passageiros seja de nacionalidade francesa ou comoriana. Também estavam a bordo cidadãos do Canadá, Etiópia, Indonésia , Marrocos, árabes israelenses , Filipinas e Iêmen. 

Bahia Bakari (à esquerda do centro, em preto) em cerimônia de aniversário de um ano em Paris - Também na foto estão Daniel Goldberg , Annick Lepetit e Stéphane Troussel
Uma fonte do aeroporto afirmou que 66 dos passageiros possuíam cidadania francesa, mas muitos deles poderiam ter dupla cidadania franco-comoriana. Muitos podem ter residido em Marselha, uma cidade francesa com uma grande população comoriana, voltando para casa para passar férias; a semana do acidente marca o início das férias de verão para os alunos franceses. As outras duas pessoas a bordo seriam europeias. 

Os três membros da tripulação de voo eram todos iemenitas. Da tripulação de cabina, 3 eram iemenitas, 2 eram filipinos, 2 eram marroquinos, 1 era etíope e 1 era indonésio.

Controvérsia


O ministro francês dos Transportes, Dominique Bussereau, disse que a França proibiu este avião de seu território há vários anos porque "acreditamos que ele apresentava um certo número de irregularidades em seu equipamento técnico". 

No entanto, o Ministro dos Transportes do Iêmen, Khaled Ibrahim Alwazir, declarou que o avião estava de acordo com os padrões internacionais e que uma "inspeção abrangente" foi realizada no Iêmen com especialistas da Airbus. 


A comunidade comorense na França marchou em Paris, em homenagem às vítimas do vôo 626. Eles também interromperam os voos da Yemenia, protestando em aeroportos franceses contra o registro de segurança da companhia aérea e impedindo os passageiros de embarcar ou fazer o check-in. Como resultado, a Iêmenia cancelou indefinidamente todos os seus voos de e para Marselha e todos os voos adicionais entre Sana'a e Moroni.

Sepultamento e repatriação de corpos


Na terça-feira, 1º de dezembro de 2009, restos mortais de nove membros da tripulação foram resgatados e chegaram a Sana'a . Os tripulantes encontrados foram o capitão Khalid Hajeb, o primeiro oficial Ali Atif, os três tripulantes de cabine iemenitas, os dois tripulantes marroquinos e o tripulante etíope. Um membro da tripulação de cabine, Hamdi Wazea, foi enterrado em Sana'a, enquanto os outros iemenitas encontrados foram enterrados em Aden. 

Os corpos dos marroquinos foram enviados para o Marrocos, enquanto o etíope foi enviado para Addis Abeba. Os membros da tripulação que não foram encontrados incluíam o engenheiro iemenita Ali Salem, os dois tripulantes de cabine filipinos e os tripulantes de cabine indonésios. Nos últimos dois dias antes de 1º de dezembro, 54 corpos foram enterrados em Morôni.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipedia, ASN e baaa-acro

Aconteceu em 30 de junho de 1994: Acidente com o voo teste 129 da Airbus Industrie na França


O voo 129 da Airbus Industrie foi um voo de teste de A330-321 pela Airbus Industrie que terminou em um acidente em 30 de junho de 1994 no aeroporto de Toulouse-Blagnac, na França, matando todas as sete pessoas a bordo.

O último teste realizado foi para certificar a capacidade de decolagem do avião com uma única falha de motor. Foi o primeiro acidente fatal envolvendo um Airbus A330, bem como a primeira perda de casco do tipo. Permaneceu o único acidente fatal envolvendo um A330 até a queda do voo 447 da Air France em 1º de junho de 2009.

Aeronave



A aeronave envolvida no acidente era o Airbus A330-321, prefixo F-WWKH, c/n 42, emprestado pela Thai Airways (foto acima). O avião era equipado com dois motores Pratt & Whitney PW4164 e voou pela primeira vez em 14 de outubro de 1993. 

O avião tinha 259 dias de idade no momento do acidente. A aeronave pertencia à Thai Airways International e estava sendo testada em voo com o acordo do proprietário. A Airbus Industrie já devia uma compensação à Thai Airways pela perda do casco de outro avião que havia danificado durante os testes em dezembro de 1993.

Objetivos do teste


O objetivo do voo era testar o desempenho da aeronave em simulações de falha de motor após a decolagem , o que significava desacelerar um dos motores da aeronave para ponto morto e desligar um circuito hidráulico. 

Durante a maioria dos testes, o piloto automático da aeronave seria configurado para voar a uma altitude de 2.000 pés (610 m). O teste específico que levou ao acidente voou em uma configuração com o centro de gravidade do avião próximo ao limite de popa, alcançado pelo transporte de toneladas de água em bexigas na parte traseira da cabine da aeronave.


O capitão era o piloto de testes-chefe da Airbus, Nick Warner. O copiloto era Michel Cais, um capitão de treinamento da Air Inter que trabalhava com a organização de treinamento da Airbus, Aeroformation. Um engenheiro de teste de voo, Jean-Pierre Petit, estava a bordo como o terceiro membro da tripulação.

A administração da Airbus estava interessada em promover o avião para clientes em potencial e não considerou o teste arriscado, então convidou quatro passageiros para o avião: dois executivos da Airbus (Philippe Tournoux e Keith Hulse) e dois pilotos da Alitalia, Alberto Nassetti e Pier Paolo Racchetti, que estavam em Toulouse para um programa de treinamento comercial na sede da Airbus.

Acidente


A aeronave havia acabado de realizar o pouso com sucesso, após o comandante realizar duas simulações de perda de motor, com duração total de 55 minutos. A segunda decolagem seria feita com o centro de gravidade da aeronave localizado em posição extrema à ré.

Desta vez, a aeronave foi pilotada pelo copiloto, enquanto as ações para desligar o motor e o circuito hidráulico, e engatar o piloto automático, foram realizadas pelo capitão. A decolagem foi concluída com sucesso e o capitão desligou o motor e o circuito hidráulico. 

Três tentativas foram necessárias para engajar o piloto automático e a aeronave começou a subir a 2.000 pés (600 m). A aeronave subiu muito abruptamente, diminuindo a velocidade no ara 100 nós (120 mph; 190 km/h), abaixo dos 118 nós mínimos necessários para manter o controle.

A aeronave começou a girar, então a tripulação reduziu a potência do motor em operação para conter a assimetria de empuxo. Isso agravou o problema e a aeronave caiu 15 graus e logo depois caiu no solo. Todas as sete pessoas a bordo morreram e a aeronave foi destruída.


Investigação


O acidente foi investigado por uma comissão de inquérito da Direction Générale de l'Armement (DGA), a agência de compras e tecnologia do governo francês responsável pela investigação de acidentes em testes de vôo. A comissão concluiu que o acidente foi devido a "uma combinação de vários fatores, nenhum dos quais, isoladamente, teria causado o acidente". Estes incluíram:
  • O cansaço do capitão Warner após um "dia extremamente agitado" que incluiu um vôo de demonstração do A321, supervisão de uma sessão de simulador e duas reuniões, incluindo uma coletiva de imprensa;
  • Falta de briefing pré-voo completo, ocasionada pelo cronograma da Warner, e possível complacência decorrente do sucesso dos testes até a decolagem anterior;
  • Escolha do empuxo máximo de decolagem/arremesso (TOGA) em vez da configuração "Flex 49" ligeiramente inferior, que causou assimetria de empuxo maior do que o planejado durante a falha do motor esquerdo simulado;
  • Escolha de configuração de compensação em 2,2 ° nariz para cima; embora dentro de limites aceitáveis, isso era inapropriado para a configuração do CG de popa extrema.
  • O piloto automático deixou inadvertidamente definido em captura de altitude de 2.000 pés (610 m) do teste anterior;
  • Ausência de proteção de atitude no modo de captura de altitude do piloto automático;
  • Incerteza na distribuição de tarefas entre o comandante e o co-piloto; o co-piloto girou a aeronave "firmemente e muito rápido" para uma atitude de decolagem de mais de 25°, em comparação com os 14,5° usuais usados ​​para a primeira decolagem bem-sucedida;
  • O capitão executou procedimentos de teste imediatamente após a decolagem: piloto automático acionado, acelerando o motor esquerdo e desligando o disjuntor hidráulico; isso o tirou temporariamente do ciclo de pilotagem.
  • Ausência de indicação visual do modo de piloto automático, obscurecido pela atitude extrema de pitch;
  • Excesso de confiança da tripulação na resposta esperada da aeronave;
  • Reação retardada do engenheiro de teste às mudanças nos parâmetros de voo, particularmente na velocidade do ar;
  • A lentidão do Capitão em reagir ao desenvolvimento de uma situação anormal.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipedia e ASN

Aconteceu em 30 de junho de 1962: Voo Aeroflot 902 Acidente ou ataque por míssil?

Em 30 de junho de 1962, O voo 902 era um serviço doméstico regular de transporte de passageiros entre Khabarovsk e Moscou, na Rússia (então União Soviética), com escalas intermediárias em Irkutsk e Omsk. 

Um Tupolev Tu-104A, semelhante à aeronave do acidente
O voo foi operado pela aeronave Tupolev Tu-104A, prefixo CCCP-42370da Aeroflot, com 76 passageiros (incluindo 14 crianças) e 8 membros da tripulação a bordo.

O voo partiu de Irkutsk no horário programado e fez um relatório oportuno a 50 quilômetros de Krasnoyarsk. Poucos minutos depois, uma voz agitada posteriormente identificada como a do copiloto fez uma transmissão de emergência incoerente com um fundo de um ruído incomum. As tentativas subsequentes repetidas de contatar o voo falharam.

Os destroços da aeronave foram encontrados 28 km a leste do aeroporto de Krasnoyarsk , em terreno plano com pequenas áreas de floresta. Os investigadores determinaram posteriormente que o avião havia impactado o solo de cabeça para baixo em um ângulo de 40°. Não houve sobreviventes entre as 84 pessoas a bordo.

Céu perigoso



A queda do avião do passageiro Tu-104, que aconteceu perto de Krasnoyarsk-26 em julho de 1962, manteve seu chocante segredo por quase meio século. Após a publicação na edição de "Krasnoyarsk Rabochy" de 3 de abril, uma carta de o leitor Sergei Orlovsky, membro da comissão que se ocupou do esclarecimento das causas do desastre dirigiu-se ao conselho editorial. O piloto de primeira classe Gennady Domenyak ficou em silêncio sobre o que aconteceu por 46 anos, cumprindo sua promessa feita uma vez de não falar sobre as descobertas oficiais. Mas agora, de acordo com a convicção de Gennady Vladimirovich, chegou a hora de remover o selo do segredo desnecessário.

“Eu era bom em desenho, conhecia cartografia, portanto, já sendo piloto do 188º esquadrão aéreo de Krasnoyarsk, fui nomeado para essa comissão”, começou sua história. "Então tive a chance de trabalhar junto com o vice-chefe do escritório de design em homenagem a V.I.S. Tupolev pelo Major General Zelensky. Foi ele quem descobriu um achado importante no local do acidente, o que em grande parte explicava por que uma aeronave em condições de uso, pilotada por uma tripulação experiente do esquadrão aéreo de Khabarovsk, repentinamente perdeu o controle e caiu no chão."

O Tu-104, realizando um voo de Khabarovsk a Moscou com um pouso intermediário em Irkutsk (o segundo avião seria realizado em Omsk), mesmo em uma emergência, não poderia ir "em uma emergência" para Krasnoyarsk. Naqueles anos, o centro regional ainda não possuía pista longa o suficiente para receber aeronaves dessa classe. Afinal, o Tu-104 foi o primeiro jato de passageiros do país.


Porém, os pilotos do avião não possuíam pré-requisitos para ações emergenciais - o comandante da tripulação da Maznitsa pilotava o avião a um escalão de 9 mil metros em velocidade de cruzeiro. Como o Tu-104 voou acima da borda superior das nuvens, a frente da tempestade que eclodiu na superfície da terra permaneceu sob as asas e não causou problemas para os pilotos. O vôo prosseguiu com calma. Até aqueles momentos fatídicos em que o transatlântico começou a perder altura e se espatifar. Todos os passageiros e membros da tripulação foram mortos. A tragédia ocorreu pouco mais de 10 horas da manhã.

“Os soldados que chegaram ao local do acidente com os membros da comissão tiveram que isolar a área da queda, uma vez que alguns dos residentes locais já haviam tentado saquear,” Gennady Domenyak continuou a história. "A área do cordão acabou sendo decente. Parte dos destroços, incluindo um dos motores, foi espalhada em um raio de 500 metros. Especialistas da comissão começaram a estudar a pilha de metal retorcido. Esbocei a coisa mais importante. Ouvi dizer que uma criança foi encontrada entre os corpos dos mortos."


O avião caiu em uma depressão arborizada. Com base nos topos derrubados dos pinheiros, a comissão estabeleceu que não caía verticalmente, mas ao longo de uma trajetória suave. Atingindo árvores, a fuselagem do forro quebrou. Essas circunstâncias também explicaram a grande área dos destroços.

No processo de estudo dos destroços da aeronave, o Major General Zelensky descobriu um estranho fragmento da pele carbonizada da fuselagem no lado esquerdo. Inicialmente, esta parte da estrutura localizava-se na área do vigésimo marco das vitrines do primeiro salão. Este pedaço de metal parecia incomum porque um buraco com um diâmetro de 20 centímetros estava aberto nele. 

Além disso, não foi o lado externo da pele que foi queimado, mas o interno. Ao mesmo tempo, o fragmento foi danificado mecanicamente por dentro. Ficou com a impressão de que algum objeto estranho perfurou a pele do forro e explodiu ou causou um incêndio dentro do avião. Lembro-me de como Zelensky, voltando-se para mim, reagiu ao achado: "Filho, agora não temos mais nada para fazer aqui." Ele embalou um pedaço de invólucro e o levou consigo para Moscou.

Depois de algum tempo, os resultados do trabalho da comissão foram conhecidos por um estreito círculo de especialistas, militares e pilotos. As conclusões foram chocantes - o avião foi abatido por um míssil antiaéreo. Foi no dia da tragédia nas primeiras horas da manhã que a unidade de mísseis de defesa aérea localizada perto de Magansk realizou lançamentos de treinamento. 

Como decorria das explicações da comissão, um dos mísseis, atingindo uma nuvem de tempestade, "se perdeu" e atingiu não um alvo convencional, mas sim um alvo muito real. Este alvo acabou sendo o passageiro Tu-104, que, infelizmente, estava sobrevoando a área malfadada da taiga siberiana naquela época.

Gennady Vladimirovich admitiu: ele e outros membros da comissão foram instados pela administração a não divulgar as informações recebidas. O que essas solicitações significavam naquele momento é fácil de adivinhar. Em caso de violação do "tabu", pode-se facilmente dizer adeus à carreira profissional.

“Mas o incidente com o Tu-104 não foi o único nesses anos”, o interlocutor compartilhou sua revelação. "Por exemplo, nos anos 60, não muito longe de Kazan, um passageiro de um Il-18, voando de Moscou a Krasnoyarsk, era pilotado pelo comandante da aeronave Anatoly Khilov, a tripulação era de nossa unidade de voo. Mais tarde, soube-se que o avião também foi abatido por um míssil antiaéreo doméstico."

"Sim, e na minha prática de voo, um incidente típico ocorreu uma vez. Quando eu estava dirigindo Tu-154 de Krasnoyarsk para a capital com a tripulação, na região de Tobolsk, recebi uma mensagem interessante do despachante. A "Terra" disse que estava observando pelos radares atrás de nosso avião, na mesma altitude, algum alvo seguindo persistentemente. Tendo recebido permissão para mudar o curso em 20 graus, "torci" a trajetória de voo, na esperança de ver e identificar o "perseguidor" durante as manobras da aeronave. Mas nem eu nem meus colegas na cabine conseguimos ver nada suspeito no ar. Então voamos normalmente. No entanto, eu soube mais tarde que um "alvo" não identificado seguiu nosso avião por 150 quilômetros, depois dos quais foi "perdido" com segurança.", relatou Vasily Kasatkin, ao site krasrab.com.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipedia e ASN

Aconteceu em 30 de junho de 1956: Voo TWA 2 x Voo United 718 - A Colisão Aérea do Grand Canyon


Em 1956, a aviação ainda estava em seu apogeu. Voar era um privilégio que acabava de ser posto à disposição da classe média, e os voos comerciais estavam sujeitos a poucas regras. Refeições completas eram servidas regularmente, era permitido fumar e os pilotos eram livres para voar da maneira que quisessem, para proporcionar aos passageiros uma experiência mais glamorosa.


Mas no dia 30 de junho daquele ano, um desastre atingiu os céus do Arizona: dois aviões de duas das mais prestigiadas companhias aéreas da América colidiram no ar e mergulharam no Grand Canyon, ceifando 128 vidas no que foi na época o pior acidente de avião de todos os tempos . O desastre cativou o público e levou a mudanças radicais na forma como a aviação era conduzida em todo o mundo.


O voo 718 da United Airlines, o McDonnell-Douglas DC-7, prefixo N6324C (foto acima), e o voo 2 da Trans World Airlines - TWA, um Lockheed L-1049-54-80 Super Constellation, prefixo N6902C (foto abaixo), decolaram de Los Angeles com menos de três minutos de intervalo. 


O DC-7 estava indo para Chicago e o Constellation para Kansas City, mas, embora suas rotas fossem semelhantes, os pilotos basicamente tinham rédea solta sobre suas rotas de voo exatas. Esperava-se que a aeronave se reportasse ao controle de tráfego aéreo - que não tinha radar de longo alcance na época - apenas ao cruzar certas linhas dispostas longitudinalmente. 

Isso permitiu que os pilotos voassem rotineiramente em rotas mais longas para oferecer aos passageiros oportunidades de passeios turísticos. As tripulações do voo 718 e do voo 2 decidiram separadamente fazer desvios panorâmicos para o Grand Canyon.


O voo 718 foi liberado para 21.000 pés e manteve essa altitude ao se aproximar do Grand Canyon. No entanto, nuvens de tempestade estavam se formando na área, então o voo 2 também solicitou a escalada para 21.000 pés - um pedido que foi negado porque o voo 718 já estava lá. 

Jack Gandy, capitão do voo 2 da TWA, solicitou “1.000 no topo” - significando 1.000 pés acima da camada de nuvens, uma designação permitida pelo ATC para dar aos pilotos mais flexibilidade para evitar o mau tempo. Este pedido foi atendido e o voo 2 ascendeu a 21.000 pés. 

A liberação para “1.000 no topo” significou que o ATC renunciou a toda a sua responsabilidade já limitada de manter a separação dos dois aviões, que agora estavam voando no Visual Flight Rules, ou VFR. VFR significava que os pilotos eram responsáveis ​​por identificar visualmente os obstáculos, incluindo outras aeronaves, e navegar ao redor deles. 

Em 1956, voar em VFR era extremamente comum. Ambas as tripulações disseram ao controle de tráfego aéreo que cruzariam o próximo ponto de check-in - a linha Painted Desert - às 10h31.

Com ambos os aviões agora a 21.000 pés e responsáveis ​​por manter sua própria separação, as duas tripulações começaram a navegar em torno de uma grande nuvem cumulonimbus. O voo 2 passou pelo lado norte enquanto o voo 718 passou pelo lado sul. 

Quando eles deram a volta para o outro lado da nuvem, o voo 718 estava se aproximando do voo 2 por trás e ligeiramente à direita. Com sua visão obstruída pela nuvem, o capitão do voo 718, Robert Shirley, não tinha ideia de que estava em rota de colisão. 


Às 10h30, quando as nuvens se dissiparam, a Super Constelação apareceu de repente à sua frente e, com apenas alguns segundos para reagir, ele empurrou o nariz bruscamente para baixo e inclinou-se fortemente para a direita. Mas era tarde demais.

A asa esquerda do DC-7 cortou o estabilizador vertical do Constellation e impactou o topo da empenagem, enquanto a hélice esquerda cortou cortes na pele da aeronave. 


A cauda do Constellation separou-se da fuselagem e o voo 2 mergulhou quase em linha reta em direção ao solo, expelindo detritos leves e possivelmente passageiros. O avião bateu em uma ravina perto do fundo do Grand Canyon a mais de 760 km/h (472 mph) e foi destruído no impacto, matando instantaneamente todos os 70 passageiros e a tripulação.

Enquanto isso, o voo 718 havia perdido seu motor número um e a vários metros da extremidade de sua asa esquerda. Ele voou por mais alguns minutos, descendo em espiral enquanto os pilotos lutavam para mantê-lo acima da borda do cânion. 

Uma última transmissão distorcida chegou a duas operadoras de rádio da United: “Salt Lake, uh, 718 - estamos entrando!” Ao fundo, podia-se ouvir a capitã Shirley gritando: “Sobe! Puxar para cima!" 

Mas os danos foram muito graves, e o avião mergulhou no Grand Canyon, atingindo uma saliência no meio da face vertical de 1000 metros (3.300 pés) de Chuar Butte e matando todas as 58 pessoas a bordo.


Uma hora depois, depois que nenhum dos aviões relatou cruzar a linha do Deserto Pintado e o contato não pôde ser restabelecido, uma operação de busca e resgate foi lançada para encontrar os aviões. 

Mais tarde naquele dia, os destroços foram descobertos em uma área remota do Parque Nacional do Grand Canyon, perto da confluência dos rios Colorado e Little Colorado. Ficou imediatamente claro que ninguém havia sobrevivido e um árduo esforço de recuperação começou. 


Devido aos locais de queda extremamente acidentados - particularmente o do DC-7, que era quase inacessível - um grupo de resgate nas montanhas suíças teve que ser chamado apenas para alcançá-los. Por fim, nenhum corpo foi encontrado intacto e muitos nunca foram recuperados.


Sem rastros de radar da aeronave, sem testemunhas e sem caixas pretas (aviões comerciais geralmente não transportavam nenhuma em 1956), a investigação revelou-se extremamente difícil. 

A investigação deste acidente foi particularmente desafiadora devido ao afastamento e topografia dos locais do acidente, bem como à extensão da destruição dos dois aviões e à falta de dados de voo em tempo real, que podem ser derivados de um gravador de dados de voo moderno. 


Apesar das dificuldades consideráveis, os especialistas da CAB foram capazes de determinar com notável grau de certeza o que havia acontecido e, em seu relatório, emitiram a seguinte declaração como causa provável do acidente: 

"O Conselho determina que a causa provável desta colisão no ar foi que os pilotos não se viram a tempo de evitar a colisão. Não é possível determinar por que os pilotos não se viam, mas as evidências sugerem que isso resultou de qualquer um ou uma combinação dos seguintes fatores: Nuvens intervenientes reduzindo o tempo de separação visual, limitações visuais devido à visibilidade da cabine e preocupação com as tarefas normais da cabine, preocupação com questões não relacionadas às tarefas da cabine, como tentar fornecer aos passageiros uma visão mais panorâmica da área do Grand Canyon, limites fisiológicos para a visão humana reduzindo o tempo de oportunidade de ver e evitar a outra aeronave, ou insuficiência de informações de aviso de tráfego aéreo durante a rota devido à inadequação das instalações e à falta de pessoal no controle de tráfego aéreo."


No relatório final, o clima e a aeronavegabilidade dos dois aviões não tiveram qualquer influência no acidente. Na falta de testemunhas oculares credíveis e com alguma incerteza quanto à visibilidade em grande altitude no momento da colisão, não foi possível determinar de forma conclusiva quanta oportunidade estava disponível para os pilotos da TWA e da United se verem e evitarem um ao outro.

Nenhuma tripulação de voo foi especificamente implicada na descoberta da causa provável do CAB, embora a decisão do Capitão Gandy da TWA de cancelar seu plano de voo IFR e voar "1.000 no topo" tenha sido o provável catalisador para o acidente. 


Também digno de nota foi que a investigação em si foi minuciosa em todos os aspectos, mas o relatório final se concentrou em questões técnicas e ignorou em grande parte fatores humanos contributivos, como por que as companhias aéreas permitiram que seus pilotos executassem manobras exclusivamente destinadas a melhorar a visão dos passageiros sobre o canyon. Somente no final da década de 1970 os fatores humanos seriam investigados tão profundamente quanto as questões técnicas após acidentes aéreos.

Durante a investigação, Milford "Mel" Hunter, um ilustrador científico e técnico da revista Life, teve acesso antecipado e irrestrito aos dados e descobertas preliminares do CAB, o que lhe permitiu produzir uma ilustração do que provavelmente ocorreu no momento da colisão (imagem abaixo). 


A pintura a guache finamente detalhada de Hunter apareceu pela primeira vez em Life 29 de abril de 1957, edição e foi subsequentemente incluída na edição de 1996 de David Gero de Aviation Disasters II.

Em uma carta a Gero em 1995, Hunter escreveu: "Consegui traçar as duas trajetórias de voo que se cruzam e o fato de que os dois aviões estavam no ponto cego um do outro. Lembro-me de ter mostrado que as hélices da aeronave em descida sofreram uma série de cortes ao longo do topo da fuselagem da aeronave em ascensão. Eu fiz muito esse tipo de recriação factual para a Life. Eles sempre foram extremamente difíceis de montar, para a satisfação de todos os editores, diretores de arte e pesquisadores diversos que foram designados para esses projetos. Mas foi um trabalho extremamente interessante."

A lembrança de Hunter de sua ilustração não era totalmente precisa. A pintura mostrava o DC-7 abaixo do Constelação, com o motor número um do primeiro abaixo da fuselagem do último, o que estava de acordo com as conclusões técnicas do CAB.

A partir das evidências nos destroços, do testemunho do controlador de tráfego aéreo e da matemática pura, os investigadores foram finalmente capazes de determinar que os pilotos do DC-7 não tiveram tempo suficiente depois de avistar o Constellation para executar qualquer tipo de manobra evasiva bem-sucedida. 


Isso colocou em questão todo o conceito de ver e evitar que havia sido o método estabelecido de prevenção de colisões no ar. O público também soube da natureza básica do sistema de controle de tráfego aéreo, que tinha cobertura de radar muito limitada e era incapaz de controlar o número crescente de aviões no céu.

Em 1957, o presidente Eisenhower deu início a uma campanha massiva para reformar todo o sistema de aviação americano. O Congresso aprovou a Lei de Modernização das Vias Aéreas no final daquele ano, mas na primavera de 1958, mais duas colisões no ar (matando um total de 60 pessoas) forçaram ações adicionais. 

Em agosto, Eisenhower assinou a Lei Federal de Aviação de 1958, que instituiu a Administração Federal de Aviação, “para regulamentar e promover a aviação civil de forma a melhor promover seu desenvolvimento e segurança, e fornecer segurança e eficiência uso do espaço aéreo por aeronaves civis e militares, e para outros fins.” 

A série de acidentes também resultou na construção de um sistema de radar em todo o país para garantir que os controladores sempre soubessem onde os aviões estavam, sem ter que depender dos pilotos periodicamente para retransmitir suas posições.


Hoje, o acidente é lembrado por ser fundamental na formulação de conceitos modernos de segurança da aviação. Os pilotos não se desviam mais das rotas planejadas para levar seus passageiros aos pontos turísticos, e as regras de voo visual são conhecidas por serem inadequadas para garantir a separação das aeronaves. 

Passados ​​65 anos desde o desastre, no entanto, é importante manter suas memórias vivas antes que sejam relegadas aos anais da história. Ray Cook tinha 12 anos quando seu pai morreu a bordo do United 718.

[Ele] disse que o acidente destruiu sua família. Sua mãe morreu 14 anos depois, quando dirigia bêbada de uma barragem, e seu irmão cometeu suicídio aos 37 anos. Cook, que se livrou do álcool após 25 anos, não conseguiu aceitar a morte por vários anos.

"Eu costumava pensar todas as noites que meu pai sairia do Grand Canyon, queimado de sol e desgrenhado, dizendo: 'Eles estragaram tudo, estou bem, aqui estou'", disse ele, a CBS News. 


Em 22 de abril de 2014, o local do acidente foi declarado Patrimônio Histórico Nacional, tornando-se o primeiro marco para um evento que aconteceu no ar. O local, em uma parte remota do cânion acessível apenas para caminhantes, está fechado ao público desde a década de 1950 (foto acima).


Muitos dos destroços foram removidos durante uma missão de resgate em 1976, mas uma quantidade não trivial de destroços - principalmente do voo 718 - ainda permanece, espalhada pelas encostas do talude e alojada em rachaduras e nas bordas do penhasco, junto com os restos mortais de muitos dos vítimas. 


Para qualquer pessoa interessada em aprender mais sobre os locais do acidente e os destroços, clique neste link para ver uma compilação fotográfica, incluindo dezenas de fotos raras com anotações de antes e depois da operação de limpeza de 1976.

Edição de texto e imagens por Jorge Tadeu (site Desastres Aéreos)

Com Admiral Cloudberg, Wikipedia e ASN - Imagens: Reprodução, baaa-acro, Wikimedia)

Aconteceu em 30 de junho de 1951: A queda do voo 610 da United Airlines no Colorado (EUA)

O DC-6 N5414 da United, avião irmão da aeronave envolvida no acidente
Em 30 de junho de 1951, o voo 610 entre São Francisco, Oakland, Salt Lake City, Denver e Chicago, operado pelo Douglas DC-6, prefixo N37543, da United Airlinesdepois de completar seus dois primeiros segmentos, partiu de Salt Lake City às 12h11 a caminho de Denver.

Levando a bordo 45 passageiros e cinco tripulantes, a tripulação da aeronave, por volta de 1h47, informou ao controle de tráfego aéreo que havia passado pela estação de alcance de rádio de Cheyenne e solicitou uma altitude inferior, que foi concedida até 8.500 pés.

Nesse ponto, o voo 610 estava programado para fazer uma curva à direita para interceptar a linha de curso de 168° da faixa de baixa frequência do DEN, e então prosseguir para a interseção WONT, seu próximo limite de liberação. 

Para interceptar essa linha de curso, o avião girou para um rumo de aproximadamente 210°, que era um ângulo de interceptação adequado de quase 45°. Se o piloto tivesse configurado seus interruptores seletores de áudio corretamente, ele seria capaz de ouvir o identificador de código Morse auditivo de "A", para o lado norte dessa faixa de baixa frequência. 

Ao se aproximar da linha do curso propriamente dito, ele teria começado a ouvir o identificador "N", o sinal para virar à esquerda novamente, e poderia rastrear a linha do curso 168° até a interseção WONT.

No entanto, o avião não virou à esquerda, permanecendo em um rumo de interceptação de 210° até o impacto. Às 2h00, o DC-6 colidiu com a Crystal Mountain, em Larimer County, a  cerca de 50 milhas a noroeste de Denver, no Colorado. O avião derrapou até parar e explodir em chamas. Todos os 50 a bordo morreram.


Pensou-se que o piloto, em uma cabine escura, poderia ter selecionado as chaves de frequência de áudio erradas. Isso, em vez de dar a ele os sinais de alcance de rádio de baixa frequência de Denver, deu-lhe os sinais de curso de Denver Visual Audio Range (VAR). 

Ambos os intervalos de navegação usaram o mesmo identificador de código morse de áudio de "DEN". Ambos os intervalos precisavam ser recebidos para apontar a interseção WONT - a posição para a qual o voo foi autorizado pelo ATC. 


Se o capitão tivesse colocado essas chaves em posições incorretas, de forma que ele estava ouvindo os identificadores auditivos para o curso VAR, ele teria ouvido apenas o identificador "A", mas não o identificador "N", que era necessário para diga a ele quando chegar a hora de virar à esquerda novamente.

Após essa investigação, a letra "V" foi adicionada ao identificador de código Morse "DEN" para o curso VAR, para evitar confusão com a faixa de baixa frequência DEN.


De acordo com a edição de 1º de julho do New York Times, Robert M. Byers, repórter da United Press International, observou os destroços de um avião e relatou que a aeronave abriu um caminho de 150' de comprimento por 50' de largura através da madeira pesada, cerca de 8.600 pés acima da Crystal Mountain. Ele também indicou que a fumaça subia do corte rasgado nas árvores pelo avião que se estilhaçava.


O Conselho determinou que a causa provável deste acidente foi que, após passar por Cheyenne, o voo por motivos indeterminados deixou de seguir a rota prescrita para Denver e continuou além do limite da via aérea em um curso que resultou na aeronave colidindo com terreno montanhoso.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipedia e ASN

Hoje na História: 30 de junho - Dia Internacional do Asteroide


O Dia Internacional do Asteroide (ou ainda Dia Mundial ou Dia Internacional dos Asteroides) é uma data internacional estabelecida pela Assembleia Geral das Nações Unidas, como sendo o dia 30 de junho de cada ano e destina-se a alertar a comunidade planetária sobre a ameaça de um impacto catastrófico por um asteroide.

A data lembra o episódio ocorrido na Sibéria no dia 30 de junho de 1908, conhecido como Evento Tunguska, que destruiu oitenta milhões de árvores em uma área de dois mil quilômetros quadrados (veja matéria que será publicada neste Blog ainda hoje, às 17h00).

Histórico

A primeira realização da data ocorreu em 2015; na ocasião um de seus idealizadores Grigorij Richters declarou que “Asteroides são o único desastre natural que nós sabemos como prevenir. Proteger nosso planeta, nossas famílias e comunidades são o objetivo do Dia do Asteroide”, enfatizando que “Asteroides nos ensinam sobre as origens da vida, mas também podem afetar o futuro de nossa espécie e vida na Terra”.

Objetivo

Embora a probabilidade alguém morrer vitimado por um asteroide seja de uma para setecentas mil, uma taxa maior do que a possibilidade de ser atingido por um raio, é entretanto menor do que a de ser morto por tubarão; a Terra esporadicamente é atingida por grandes corpos celestes e, segundo Rüdiger Jehn, da Agência Espacial Europeia (ESA), a "taxa de detecção atual é de 200 asteroides por mês. 

Ao lado, Imagem do asteroide Ryugu.

Entre 3 e 5 são objetos que podem atingir a Terra. Por isso, existem 740 objetos sobre os quais não sabemos se irão atingir ou não a Terra"; a despeito disso a maioria dos asteroides maiores já foram identificados e não representam risco iminente, de modo que o foco do Dia Internacional é a descoberta de corpos menores, como o meteoro de Cheliabinsk, também na Rússia, em 2013.

Ações científicas

A ESA possui o telescópio Fly Eye, e coopera com a NASA no sentido de preparar missões futuras que visem o redirecionamento de asteroide, sendo este um dos tópicos debatidos nesta efeméride.

Já em janeiro de 2015 um imenso asteroide orbitou a 1,2 milhão de quilômetros da Terra, sendo esta a menor distância que um corpo assim até que o 1999 AN10 cruze o planeta, em 2027, e em junho daquele ano a NASA celebrou uma parceria com a agência nuclear dos Estados Unidos com o fim de facilitar o uso de explosões atômicas para o desvio eventual de tal ameaça; a ESA, por seu lado, cogita o desvio por meio de raio laser.

Por Jorge Tadeu com informações da Wikipedia

A história do HFB 320 Hansa Jet, avião conhecido por suas asas para a frente

O Hansa Jet foi um jato executivo que nunca atingiu todo o seu potencial.


O HFB 320 Hansa Jet foi o primeiro jato executivo da Alemanha e o primeiro jato executivo com asas voltadas para a frente. Essa foi uma de suas muitas peculiaridades, que acabou limitando seu sucesso e diminuindo a segurança da aeronave.

Design e desenvolvimento


As asas inclinadas para a frente características do Hansa Jet eram equivalentes à revolução de colocar os motores do Boeing 737 sob as asas em vez de atrás da cabine. Colocar a caixa de asa do Hansa Jet atrás da cabine foi projetado para maximizar o espaço da cabine .

Seu primeiro voo foi em 21 de abril de 1964. Por cerca de um ano, os testes transcorreram sem problemas, até 12 de maio de 1965, quando durante os testes para certificação, a aeronave entrou em estol profundo e caiu. A causa do acidente foi determinada devido a uma cauda em T mal projetada. Uma das correções instaladas foi um empurrador de vara. Análogo ao Boeing 737 MAX e seu agora infame Maneuvering Characteristics Augmentation System, ou MCAS, o stick pusher é ativado quando o ângulo de ataque de uma aeronave é muito alto para a aerodinâmica da fuselagem lidar com segurança.

O design tinha outra falha que contribuiria para a falta de vendas. Mesmo com asas de enflechamento para a frente que normalmente aumentam a manobrabilidade, o Hansa Jet exigia uma corrida de decolagem de 5.900 pés, o que limitaria severamente o número de aeroportos que o Hansa Jet poderia usar. Ele também teve problemas de frenagem, mas isso acabaria sendo resolvido por melhores unidades de freio e reversores de empuxo.

Uso pela Luftwaffe


Uma foto de uma versão do jato de ligação da Luftwaffe do Hansa Jet em Koln-Bonn
em junho de 1986 (Foto: Rob Schleiffert via Flickr)
O Hansa Jet foi originalmente comprado pela Força Aérea da Alemanha Ocidental - a Luftwaffe - para tarefas de ligação. Mas à medida que a guerra eletrônica se tornou mais importante, a aeronave provou ser uma plataforma digna para fornecer treinamento de guerra eletrônica/contramedidas eletrônicas (ECM) até 1994.

Hansa Jet no serviço aéreo comercial


Uma foto do Hansa Jet no serviço Golden West Airlines (Fonte: John Proctor)
Duas companhias aéreas tentaram colocar o Hansa Jet em serviço. Primeiro, a Golden West Airlines fez isso em 1969 com dez assentos de passageiros do Aeroporto de Burbank (agora Aeroporto Bob Hope) para Santa Barbara e Palm Springs. A companhia aérea da Califórnia foi, no entanto, incapaz de continuar o serviço aéreo com o jato, recorrendo a turboélices testados e comprovados.

Em segundo lugar, a Modern Air Transport na Alemanha fez outra tentativa, mas achou o jato antieconômico no serviço aéreo em uma rota de ônibus de três voos diários Tegel-Saarbrücken entre maio e novembro de 1971. A demanda de passageiros por serviço aéreo levaria ao uso de jatos maiores.

Muito barulhento para a aviação comercial


Um dos fatores que levaram à aposentadoria do Hansa Jet não foi apenas a pequena frota e a incapacidade de ser rentável no serviço aéreo, mas também a característica de dois motores turbojato General Electric CJ610. Esses motores barulhentos eram muito pequenos fisicamente - pequenos demais para aceitar um kit de silêncio para reduzir a poluição sonora.

Pequenos, mas barulhentos, os motores do Hansa Jet foram uma de suas ruínas (Foto: Mike Freer)
A poluição sonora tornou os moradores próximos aos aeroportos contra as operações de voos do aeroporto, criando toques de recolher nos aeroportos e, em alguns casos, mudando os padrões de abordagem ou fechando o aeroporto em determinadas horas. Como resultado, os padrões de poluição sonora na aviação comercial – tanto jatos executivos quanto comerciais – aumentaram ao longo das décadas.

Eventualmente, o tempo alcançou o número limitado de fuselagens restantes e em meados dos anos 2000, o Hansa Jet parou de voar porque o custo de adaptar os Hansa Jets restantes com motores mais silenciosos ou um kit especial de silêncio era muito alto. Giz-se uma vitória para os queixosos de ruído de aeronaves.

Jatos com motor traseiro: por que as companhias aéreas não usam mais aviões com motor traseiro?

Lembra deles? O McDonnell Douglas DC9, o Boeing 727, o Vickers VC10, o Sud Aviation Caravelle?


McDonnell Douglas DC-10-30, PP-VMB, da Varig (Foto: Wikimedia Commons)
Quando começamos a viajar pelo mundo a bordo de um avião de passageiros a jato, nas décadas de 1950 e 60, você quase podia ter certeza de que seu avião teria seus dois motores na parte traseira.

Houve exceções. O Boeing 707 e o Douglas DC8 entraram em serviço comercial no final dos anos 1950, ambos com quatro motores montados sob as asas, mas para aeronaves bimotoras, a montagem traseira era o modo padrão.

As razões


Naquela época, os aeroportos regionais não tinham muitos dos equipamentos de apoio em solo que agora consideramos garantidos. Os carregadores de correia que levam a bagagem para o porão, pontes aéreas que nos levam entre a aeronave e o terminal, as unidades de partida aérea que acionam os motores e muito mais não estavam por aí fora dos aeroportos internacionais maiores. A bagagem teve que ser carregada a bordo da aeronave de um caminhão ou mesmo de uma carreta com rodas.

Um aeroporto remoto poderia nem ter um lance de escada para a porta da aeronave, e assim a aeronave precisava ter uma escada de ar, uma escada que pudesse ser desdobrada de dentro da própria aeronave, como no Boeing 727. Após o carregamento, e em um aeroporto sem um rebocador pushback, uma aeronave pode até ter que se retirar de sua estação por conta própria, e esse é um truque estranho que uma aeronave com motor traseiro pode fazer. Tudo isso significava que uma aeronave tinha que estar baixa no solo, e isso não poderia acontecer se os motores estivessem pendurados sob as asas.

Motores montados na parte traseira - as vantagens...


As asas em uma aeronave com motores montados na parte traseira podem ser mais simples, pois não precisam suportar o peso estranho. Além disso, como os motores estão mais altos, eles são menos suscetíveis a FOD - danos por objetos estranhos - detritos ou rochas que podem ser sugados para dentro do motor quando a aeronave está decolando ou pousando. Se um motor falhar, é mais fácil para o piloto pilotar a aeronave em linha reta, pois o impulso do motor restante está mais próximo da linha central da aeronave. Aeronaves com motores sob as asas tendem a guinar nessa situação, pois o impulso do motor restante está empurrando a aeronave na direção do motor morto.

... e os pontos negativos


Eles são mais difíceis de trabalhar. Mesmo trabalhos simples como lubrificação são mais difíceis, portanto, mais custos e tempo de inatividade. Como o motor traseiro fica próximo à fuselagem, no caso de uma falha explosiva como a que aconteceu recentemente no caso de um Boeing 777 sobrevoando Denver, ele poderia romper o revestimento da aeronave. Os tanques de combustível geralmente estão localizados nas asas e, como os motores estão acima das asas, se a bomba de combustível falhar, não há possibilidade de contar com a gravidade para manter os motores girando.

As características de vôo também são diferentes de uma aeronave com motores pendurados sob as asas. O nariz de uma aeronave com motor traseiro empurra para baixo durante a aceleração e isso causa arrasto, que não é o que você quer na decolagem. A cauda é em forma de T, com o estabilizador horizontal montado na parte superior da barbatana em vez de na parte inferior. Essas aeronaves estão sujeitas a um super stall, quando o nariz da aeronave fica alto quando a velocidade no ar está caindo, um evento potencialmente catastrófico. Por fim, uma aeronave com motores na parte traseira exige uma estrutura mais rígida do que uma com motores sob as asas, o que aumenta o peso, inimigo do consumo de combustível, e o combustível é o segundo maior custo variável nos balanços das companhias aéreas.

Por volta da década de 1970, as companhias aéreas começaram a mudar de motores turbo-jato estreitos em forma de charuto para motores turbofan mais econômicos e potentes de alto bypass. Estes são muito maiores. Um adulto pode ficar de pé na frente das pás da turbina de um Boeing 747, e esses motores são grandes demais para serem amarrados na parte traseira. O Vickers VC10 é um raro exemplo de aeronave com quatro motores montados na parte traseira, embora esses fossem comparativamente pequenos.

Um estranho interlúdio - os três gigantes do motor


Os motores a jato são caros para comprar e manter, e no final da década de 1960, novos motores estavam sendo lançados com mais potência. Isso abriu uma possibilidade intrigante para projetistas de aeronaves - por que não ter três motores em vez de quatro?

O resultado foi o design triplo de guloseimas, um motor sob cada asa e outro na cauda, ​​como no Lockheed TriStar, que surgiu em 1972, o McDonnell Douglas DC 10 - 1970 - e o McDonnell Douglas MD-11, que entrou em serviço em 1990.

Estas são aeronaves grandes. O DC 10 e o TriStar podiam transportar mais de 350 passageiros, o MD11 cerca de 300 e tinha um alcance de mais de 12.000 quilômetros. Bastante grande para voos transatlânticos, mas no início dos anos 1990 os eventos mudaram o jogo para os grandes triplos.

Até então, os aviões bimotores não eram certificados para operar por mais de 60 minutos de uma pista de pouso para a qual poderiam desviar se um de seus motores falhasse. Isso significava que as aeronaves bimotoras não podiam fazer longos voos sobre a água - uma grande vantagem para os triplos, que não estavam sob tais restrições. Mas naquela época os motores estavam se tornando muito mais potentes e confiáveis, e os fabricantes de motores convenceram os reguladores a estender o alcance em que podiam voar com um único motor, a chamada classificação ETOPS.

A partir de meados da década de 1990, aeronaves bimotores como o Boeing 777 e o Airbus A330 ofereciam a mesma carga útil, o mesmo alcance e custo operacional mais baixo que os triplos, e esse foi o fim da estrada para os gigantes triplos como passageiros aeronave. Hoje em dia, os triplos restantes são quase exclusivamente usados ​​como cargueiros, especialmente o MD-11.

Então, as aeronaves com motores montados na parte traseira desapareceram?


Definitivamente não. Motores montados na traseira são comuns em jatos executivos pelos mesmos motivos pelos quais surgiram pela primeira vez. Quando o Dessault Falcon 8X pousar em sua pista de pouso particular fora de Montreux, na Suíça, você vai desembarcar por uma escada que se abre de dentro da aeronave. Portanto, ele precisa estar próximo ao solo e, portanto, os motores são montados na parte traseira. Além disso, é provável que você voe para pistas remotas em sua operação de mineração na África, em sua fazenda de gado argentino e em sua ilha particular do Caribe, e esses motores mais altos significam menos chance de um incidente de FOD.

Algumas companhias aéreas ainda voam com o Boeing 717, que começou como McDonnell Douglas MD95 antes que a Boeing adquirisse a empresa em 1997. A aeronave é usada em rotas de curta distância que não exigem aviões de maior capacidade. A QantasLink é uma das três companhias aéreas (as outras são Delta e Hawaiian Airlines) que atualmente usam o 717. A versão QantasLink pode transportar 110 passageiros.

O Boom Supersonic, a aeronave experimental de asa delta super elegante que promete nos levar de volta aos dias do vôo supersônico de passageiros, tem motores montados na traseira, assim como o Boeing Hypersonic e todas as outras aeronaves supersônicas atualmente nas pranchetas. Um dos desenvolvimentos potenciais mais empolgantes para o futuro da aviação pode ser uma explosão do passado.

Via Michael Gebicki (Traveller)

Combustível para aeronaves: examinando 5 tipos diferentes

Embora o querosene reine supremo hoje, muitos esforços estão sendo feitos para desenvolver métodos alternativos de propulsão de aeronaves.


Hoje, existe efetivamente apenas um combustível para transporte - combustível de aviação . No entanto, nem sempre é esse o caso, e está provado que as aeronaves podem ser adaptadas para voar com outras fontes de combustível. A transição do querosene para aviação é um dos fundamentos que impulsionam o desenvolvimento das futuras gerações de aeronaves hoje. A tendência para o hidrogénio está mesmo a impulsionar o desenvolvimento do H2 Clipper – um dirigível gigante concebido para ser o gasoduto dos céus que transporta hidrogénio.

1. Combustível de aviação ou querosene


O combustível de aviação ou querosene é o combustível da aviação hoje, mas é responsável pela maior parte das emissões de gases de efeito estufa da indústria.
  • Prós: tecnologia e infraestrutura existentes, densas em energia e comparativamente baratas
  • Contras: responsável pela maior parte dos gases de efeito estufa da aviação
  • Observação: o combustível que alimenta basicamente todas as aeronaves comerciais
Por enquanto, o combustível de aviação ou querosene é o combustível da indústria da aviação. É usado em todas as aeronaves movidas a turbina e, segundo a BP , é responsável por cerca de 6% da produção global total de combustível de refinaria. Quase todos os combustíveis de aviação são derivados do petróleo bruto nas refinarias.

(Foto: Airbus)
Os dois principais tipos de combustível de aviação são Jet A e Jet A1 (embora as operações de voo possam usar ambos de forma intercambiável). O Jet A1 é o mais comum nos EUA e pode ser usado para alimentar todos os aviões a jato. Outro tipo de gás de aviação é o AVGAS, usado para alimentar aeronaves tradicionais a hélice e pequenos aviões com motor a pistão. AVGAS é o mais caro dos combustíveis porque requer mais refino.

2. Hidrogênio


O hidrogénio é visto como o combustível de aviação do futuro e a melhor oportunidade para descarbonizar substancialmente.
  • Prós: só emite água
  • Contras: caro, pouca infraestrutura existente, menos denso em energia
  • Observação: Airbus ZEROe atualmente em desenvolvimento
O hidrogénio é visto como o combustível do futuro e a chave para a descarbonização da aviação. A Airbus espera trazer ao mercado uma aeronave comercial de baixo carbono movida a hidrogénio até 2035. O hidrogénio enfrenta muitos problemas de desenvolvimento desafiadores (incluindo o facto de o combustível de aviação ser quatro a cinco vezes mais denso em energia).

Aeronave Airbus ZEROe Concept (Foto: Airbus)
A Airbus afirma que a aparência visual das futuras aeronaves provavelmente mudará para acomodar a necessidade de transportar tanques muito maiores para transportar hidrogênio. Pode levar algum tempo até que os aviões a hidrogénio possam servir rotas de longo curso, e é provável que sejam introduzidos primeiro em rotas de curto curso.

3. Elétrico e híbrido-elétrico


Embora os voos totalmente elétricos sejam provavelmente limitados a aeronaves pequenas em voos curtos, os híbridos elétricos podem ter lugar em aeronaves maiores.
  • Prós: reduzir o consumo de combustível e aumentar a eficiência
  • Contras: peso extra, apenas economias incrementais
  • Observação: Airbus revelou primeiro motor híbrido em 2022
A Airbus observa que “a propulsão elétrica e elétrica híbrida está revolucionando rapidamente as tecnologias de mobilidade em todas as indústrias” e afirma que seu objetivo é trazer isso para a aviação. A Airbus quer ajudar a desenvolver propulsão elétrica para aeronaves, helicópteros e veículos aéreos urbanos. No entanto, alimentar aeronaves com baterias é excepcionalmente desafiador. A energia elétrica provavelmente será usada apenas em voos curtos em aeronaves pequenas.

Aeronave de teste da Airbus (Foto: Airbus)
Assim como um carro elétrico híbrido, a Airbus também está desenvolvendo uma aeronave híbrida que pode usar diversas fontes de energia em conjunto ou alternadamente. A propulsão elétrica híbrida pode reduzir o consumo de combustível em até 5% em comparação com um voo padrão. A eletricidade pode vir de baterias ou células de combustível que convertem hidrogênio em eletricidade.

4. Combustível de aviação sustentável


O combustível SAF pode ser visto como uma medida provisória e pode ser misturado com combustível de aviação tradicional.
  • Prós: pode reduzir as emissões de CO2 em 80%
  • Contras: caro, possíveis efeitos colaterais ambientais negativos
  • Observação: 0,2% de todo o combustível de aviação utilizado em 2023
O querosene tem sido o principal combustível de aviação desde o seu início. O combustível de aviação sustentável (SAF) é uma tentativa de ajudar a preencher a lacuna entre as futuras aeronaves a hidrogênio e as atuais aeronaves tradicionais a combustível de aviação. É um tipo de combustível de aviação que é uma mistura de combustíveis fósseis convencionais e componentes sintéticos criados a partir de uma variedade de “matérias-primas” renováveis. Matéria-prima" inclui óleos de cozinha, gorduras, óleos vegetais e vários resíduos.

Combustível de aviação sustentável SAF (Foto: Scharfsinn)
A Airbus afirma que todas as aeronaves Airbus podem operar com uma mistura máxima de 50% de SAF, e está planejado que todas as aeronaves Airbus possam voar com até 100% de SAF até 2030. Embora o mundo tenha usado 600 milhões de litros de SAF em 2023 (o dobro do 300 milhões de litros em 2022), ainda representa uma quantidade minúscula do consumo total de combustível de aviação. Existem também desafios no fornecimento de óleos vegetais e outros recursos para tornar o SAF sustentável e não criar um mercado que ameace as florestas tropicais através da plantação de plantações de óleo de palma.

5. Solar


Embora seja possível pilotar aeronaves com energia solar, sua maior contribuição é para a indústria da aviação em terra.
  • Prós: nunca precisa de reabastecimento, energia limpa e gratuita
  • Contras: não está claro se tem um aplicativo de passageiro comercial
  • Observação: também poderia ser usado para alimentar aeronaves - como o Solar One
O mundo recebe diariamente uma grande quantidade de energia do sol (885 milhões de terawatts-hora anualmente). Várias empresas (incluindo Solar Flight e Airbus) estão trabalhando para desenvolver aeronaves que possam voar com energia solar. A Airbus está desenvolvendo tecnologia de células solares para pilotar veículos aéreos não tripulados e permanecer no alto da estratosfera por longos períodos.

Solar Impulse, aeronave experimental movida a energia solar (Foto: Frederic Legrand)
Aeronaves solares nunca precisam de reabastecimento. No entanto, não está claro se esta tecnologia poderá algum dia ser integrada com sucesso em voos tripulados (e de passageiros) - embora uma ideia nova seja fabricar dirigíveis movidos a energia solar. Embora seja possível pilotar aeronaves (ou pelo menos aeronaves não tripuladas) utilizando energia solar, a energia solar tem uma aplicação muito mais importante: gerar eletricidade para aeroportos e outras infraestruturas. No futuro, a energia solar pode ser fundamental para a produção de hidrogénio verde para aeronaves.

Edição de texto e imagens por Jorge Tadeu com informações do Simple Flying