As principais notícias sobre aviação e espaço você acompanha aqui. Acidentes, incidentes, negócios, tecnologia, novidades, curiosidades, fotos, vídeos e assuntos relacionados.
Visite o site Desastres Aéreos, o maior banco de dados de acidentes e incidentes aéreos do Brasil.
Apollo 11 / Saturn V AS-506 no momento da ignição do primeiro estágio, T -6,9 segundos, 13: 31: 53,9 UTC, 16 de julho de 1969 (NASA)
Na manhã de quarta-feira, 16 de julho de 1969, o veículo de lançamento Apollo 11/Saturn V, AS-506), estava na plataforma do Complexo de Lançamento 39A, Centro Espacial Kennedy, Cabo Canaveral, Flórida. A bordo estavam Neil Alden Armstrong, Comandante da Missão; Michael Collins, Piloto do Módulo de Comando; e Edwin E. Aldrin, Jr., Lunar Module Pilot. O destino deles era o Mare Tranquillitatis, na Lua.
Neil Alden Armstrong, Michael Collins e Edwin E. Aldrin, Jr., tripulação de voo da Apollo 11, 16-23 de julho de 1969 (NASA)
O oxigênio líquido criogênico nos tanques de propelente do foguete resfriou o ar úmido da Flórida a ponto de formar gelo na pele dos tanques.
Saturno V AS-506 atinge impulso total (NASA)
A missão estava dentro do cronograma. Em T -6,1 segundos (13h31 53,9 UTC), o primeiro dos cinco motores F-1 foi ligado, seguido em rápida sucessão pelos outros. Quando os motores atingiram a potência máxima, os braços de contenção da almofada foram liberados. Primeiro movimento -10,47 m/s² (34,35 pés/s²) - 1,07 gs, foi detectado em T +0,3 segundos (13h32:00,3 UTC, 9h32:00,3 am, horário de verão do leste). O umbilical foi liberado em T +0,6 segundos. O Saturn V passou pela torre do pórtico e rolou em seu curso programado.
DECOLAR! A Apollo 11 (AS-506) é lançada do Complexo de Lançamento 39A, Centro Espacial Kennedy, Cabo Canaveral, Flórida, às 13h32h06 UTC, 16 de julho de 1969 (NASA)
O foguete Saturn V era um veículo de lançamento pesado movido a combustível líquido, de três estágios. Totalmente montado com o Módulo de Comando e Serviço Apollo, tinha 363 pés e 0,15 polegadas (110,64621 metros) de altura, da ponta da torre de escape até a parte inferior dos motores F-1. Totalmente carregado e abastecido, o AS-506 pesava 6.477.875 libras (2.938.315 kg).
A Apollo 11 sobe para longe da plataforma (NASA)
O primeiro estágio do Saturn V foi designado S-IC. Ele foi projetado para erguer todo o foguete a uma altitude de 220.000 pés (67.056 metros) e acelerar a uma velocidade de mais de 5.100 milhas por hora (8.280 quilômetros por hora). O palco S-IC foi construído pela Boeing no Michoud Assembly Facility, em New Orleans, Louisiana. Tinha 138 pés (42,062 metros) de altura, 33 pés e 1,2 polegadas (10,089 metros) de diâmetro e um peso vazio de 287.531 libras (130.422 quilogramas).
Totalmente abastecido com 203.400 galões (770.000 litros) de RP-1 e 318.065 galões (1.204.000 litros) de oxigênio líquido, o estágio pesava 5.023.648 libras (2.131.322 quilogramas). Ele era impulsionado por cinco motores Rocketdyne F-1, que foram construídos pela Divisão Rocketdyne da North American Aviation, Inc., em Canoga Park, Califórnia.
Motores de primeiro estágio Rocketdyne F-1 do Saturn V funcionando, produzindo 7,5 milhões de libras de empuxo. Gelo cai do foguete. Os braços de contenção estão se soltando (NASA)
Os cinco motores F-1 do estágio AS-506 S-IC produziram 7.552.000 libras de empuxo (33.593 kilonewtons). De acordo com o relatório de avaliação de voo pós-missão, “os níveis de desempenho dos motores F-1 durante o voo AS-506 mostraram os menores desvios de qualquer voo S-IC”. O motor central desligou em T +135,20 para limitar a aceleração do foguete, e os quatro externos foram desligados em T +161,63 segundos.
O segundo estágio do S-II foi construído pela North American Aviation, Inc., em Seal Beach, Califórnia. Ele tinha 24,87 metros de altura e o mesmo diâmetro do primeiro estágio. O segundo estágio do AS-506 pesava 79.714 libras (36.158 quilogramas), a seco, e 1.058.140 libras (479.964 quilogramas), abastecido. O propelente para o S-II era hidrogênio líquido e oxigênio líquido. O palco era movido por cinco motores Rocketdyne J-2, também construídos em Canoga Park. Cada motor produziu 232.250 libras de empuxo e, combinados, 1.161.250 libras de empuxo.
O terceiro estágio do Saturno V foi denominado S-IVB. Foi construído pela Douglas Aircraft Company em Huntington Beach, Califórnia. O S-IVB tinha 58 pés e 7 polegadas (17,86 metros) de altura e um diâmetro de 21 pés e 8 polegadas (6,604 metros). O terceiro estágio do AS-506 S-IVB tinha um peso seco de 24.852 libras (11.273 kg) e totalmente abastecido, pesava 262.613 libras (119.119 kg). O terceiro estágio tinha um motor J-2 que também usava hidrogênio líquido e oxigênio líquido como propulsor. Na primeira queima, o J-2 produziu 202.603 libras de empuxo (901,223 kilonewtons). O S-IVB colocaria o Módulo de Comando e Serviço na Órbita Terrestre Baixa, então, quando tudo estivesse pronto, o J-2 seria reiniciado para a injeção Trans Lunar. Nesta segunda queima, ele produziu 201.061 libras de empuxo (894.364 kilonewtons).
Módulo de Comando e Serviço da Apollo 11 CSM-107 sendo montado no SA-506 Saturn V no Edifício de Montagem de Veículos, abril de 1969 (NASA)
O Módulo de Comando/Serviço Apollo foi construído pela Divisão de Sistemas de Informação e Espaço da North American Aviation, Inc., em Downey, Califórnia. O Módulo de Comando e Serviço da Apollo 11, CSM-107, pesava 109.646 libras (49.735 kg).
O motor SPS era um AJ10-137, construído pela Aerojet General Corporation de Azusa, Califórnia. Queimou uma combinação de combustível hipergólico de Aerozine 50 e tetraóxido de nitrogênio, produzindo 20.500 libras de empuxo (91,19 kilonewtons). Ele foi projetado para uma queima de 750 segundos, ou 50 reinicializações durante um vôo.
O Módulo Lunar Apollo foi construído pela Grumman Aerospace Corporation para transportar dois astronautas da órbita lunar para a superfície e retornar. Houve uma etapa de descida e uma etapa de subida. O LM foi projetado apenas para operação no vácuo do espaço e foi gasto após o uso.
O LM tinha 23 pés e 1 polegada (7.036 metros) de altura com uma extensão máxima do trem de pouso de 31 pés (9.449 metros). Ele pesava 33.500 libras (15.195 kg). A espaçonave foi projetada para apoiar a tripulação por 48 horas, embora em missões posteriores, isso foi estendido para 75 horas.
O estágio de descida foi alimentado por um único motor de descida TRW LM. O LMDE usava combustível hipergoloco e era regulável. Ele produziu de 1.050 libras de empuxo (4,67 kilonewtons) a 10.125 libras (45,04 kilonewtons). O Ascent Stage foi equipado com um motor de ascensão Bell Aerospace Lunar Module. Isso também usava combustíveis hipergólicos. Ele produziu 3.500 libras de empuxo (15,57 kilonewtons).
13h33m06s UTC, T +1m06,3
Um minuto, seis segundos após a decolagem, a Apollo 11/Saturn V atingiu Mach 1 a uma altitude de 4 milhas (6,4 quilômetros). À medida que se torna supersônico, nuvens de condensação, chamadas de “coleiras de choque”, se formam em torno do segundo estágio do S-II.
13h34m30s UTC, T +2m30
A Apollo 11/Saturn V AS-506 acelera com todos os cinco motores Rocketdyne F-1 acesos. Conforme o foguete sobe através de uma atmosfera mais fina, os motores se tornam mais eficientes e o empuxo total para o primeiro estágio S-IC aumenta de 7.648.000 libras de empuxo para 9.180.000 libras de empuxo em cerca de T +1m23,0.
Para limitar a aceleração, um sinal pré-planejado para desligar o motor central é enviado em T +2m15,2 (Corte do motor central, “CECO”). Como o primeiro estágio queima combustível a uma taxa de 13 toneladas por segundo, o peso rapidamente diminuindo do Saturn V e a eficiência crescente dos motores F-1 podem fazer com que os limites de aceleração do veículo sejam excedidos.
Por T +2m30, o Saturn V atingiu uma altitude de 39 milhas (62,8 quilômetros) e está 55 milhas (88,5 quilômetros) downrange.
13h34m42,30s UTC, T +2m42,30
Às 13h34m42,30s UTC, 2 minutos e 42,30 segundos após o lançamento, o primeiro estágio S-IC da Apollo 11/Saturn V se apagou e foi descartado. A Apollo 11 atingiu uma altitude de 42 milhas (68 quilômetros) e uma velocidade de 6.164 milhas por hora (9.920 quilômetros por hora). Os cinco motores Rocketdyne F-1 queimaram 4.700.000 libras (2.132.000 kg) de oxigênio líquido e propelente RP-1.
Após a separação, o primeiro estágio S-IC continuou para cima em uma trajetória balística até aproximadamente 68 milhas (109,4 quilômetros) de altitude, alcançando seu ápice em T +4m29,1, e então caiu de volta para a Terra. Ele pousou no Oceano Atlântico a aproximadamente 350 milhas (563,3 quilômetros) a jusante.
16h16m16s UTC, T +02h44m16,2
Às 16h16m16s UTC, T +02h44m16.2, o motor de terceiro estágio da Apollo 11 S-IVB reacendeu para a manobra de injeção Trans Lunar. Um dos recursos necessários do motor Rocketdyne J-2 era sua capacidade de reiniciar uma segunda vez.
O terceiro estágio foi usado pela primeira vez para colocar a espaçonave Apollo 11 na órbita da Terra e foi então desligado. Quando a missão estava pronta para prosseguir em direção à Lua, o J-2 foi reiniciado. Usando hidrogênio líquido e oxigênio líquido como propelente, o S-IVB da Apollo 11 queimou por 5 minutos, 41,01 segundos, com a espaçonave atingindo um máximo de 1,45 Gs pouco antes do motor desligar. O motor foi desligado em T +02h50m03,03s. A injeção Trans Lunar foi às 16h22m13a UTC.
Dezoito foguetes Saturn V foram construídos. Eles foram as máquinas mais poderosas já construídas pelo homem.
Todos nós já ouvimos falar de colisões com pássaros de vez em quando, mas e os pássaros pegando carona?
(Imagem: @funforandy/TikTok)
Um pássaro que de alguma forma entrou em uma aeronave da Cathay Pacific causou muita emoção e comoção em um voo do Aeroporto Internacional de Hong Kong (HKG) para o Aeroporto Internacional Tribhuvan de Kathmandu (KTM).
(Imagem: @funforandy/TikTok)
Um videoclipe do voo foi postado nas redes sociais, no qual a tripulação de cabine pode ser vista lutando e pulando na tentativa de pegar o pássaro.
“Senhoras e senhores, é o capitão falando aqui. Um pássaro foi encontrado na cabine e nossa equipe de engenharia agora está tentando pegá-lo”, pode-se ouvir o capitão do voo anunciando pelo sistema de som da aeronave.
A certa altura, o pássaro pode ser visto voando freneticamente em direção à parte de trás da aeronave, mas depois voou para a frente, perto da cabine, onde a tripulação de cabine se reuniu com cobertores na esperança de pegá-la.
O Grupo LATAM e a Airbus realizaram seu primeiro voo de balsa com combustível de aviação sustentável (SAF), entre as cidades de Toulouse (França) e Fortaleza (Brasil).
O voo, que utilizou uma mistura de combustível com 30% de SAF produzido a partir de óleo de cozinha usado, foi realizado em um A320neo, aeronave com tecnologia avançada para reduzir o consumo de combustível e as emissões de CO2, e faz parte do projeto de renovação da frota LATAM que permitirá ao grupo ter mais de 100 aeronaves da família A320neo em operação até o final desta década.
Até o final deste ano, a LATAM espera ter 31 aeronaves da família A320neo em operação como parte do plano de renovação, com o grupo atingindo uma frota total de 323 aeronaves até o final de 2023. Isso permitirá não apenas complementar sua atual frota de aeronaves de nova geração, mas também se tornar uma das frotas mais modernas e eficientes da América do Sul, melhorando ainda mais sua conectividade. Atualmente, o grupo opera 1.500 voos diários para 147 destinos em 24 países.
O Combustível de Aviação Sustentável (SAF) é um tipo de combustível que provém de matérias-primas alternativas, como resíduos, gorduras e óleos, entre outros, que são processados para produzir um combustível com baixo teor de CO2 durante o seu ciclo de vida. Nesse caso, os 30% de SAF utilizados no voo tiveram atribuído um fator de redução de cerca de 80% de CO2 em seu ciclo de vida, em relação ao combustível convencional. (De acordo com a ICAO "Valores de Emissões do Ciclo de Vida Padrão para Combustíveis Elegíveis CORSIA")
“Este voo é um esforço conjunto entre a LATAM e a Airbus e representa um dos nossos avanços mais concretos na agenda do grupo em relação ao uso do SAF. No ano passado, anunciamos nosso interesse em atingir 5% de utilização de SAF até 2030, priorizando sua produção na América do Sul, e o fizemos porque estamos convencidos de que os combustíveis de aviação sustentáveis terão um papel importante na descarbonização da indústria.” afirmou o CFO do Grupo LATAM, Ramiro Alfonsín.
O executivo acrescentou que “hoje as quantidades de SAF disponíveis no mundo são muito limitadas, e o acesso a esse tipo de combustível na América do Sul continua sendo um dos grandes desafios para a descarbonização da indústria. A América do Sul tem um grande potencial para produzir SAF e, assim, dar uma contribuição muito significativa para a ação climática, por isso é importante avançar uma agenda que envolva diferentes partes interessadas para promover a produção de SAF em nossa região”.
A aeronave A320neo oferece uma economia média de combustível, em relação à tecnologia anterior, de 15%, podendo chegar a 20% nas viagens mais longas. Segundo dados da fabricante, desde sua entrada em operação, a Família A320neo conseguiu evitar a geração de aproximadamente 20 milhões de toneladas de CO2 e uma redução de até 50% em sua pegada acústica.
Em maio de 2021, o grupo LATAM lançou sua renovada estratégia de sustentabilidade na qual estabeleceu metas desafiadoras: alcançar a neutralidade de carbono até 2050, eliminar os plásticos descartáveis até 2023; e tornar-se um grupo de resíduos zero para aterros sanitários em 2027, a fim de contribuir para a proteção dos ecossistemas sul-americanos pelos próximos 30 anos.
Aeroportos em todo o mundo atualizaram suas áreas de compras de varejo nos últimos anos.
Um A380 da Emirates taxiando no Aeroporto Internacional de Dubai (Foto: Emirates)
Os aeroportos utilizam lojas duty-free em seus terminais para incentivar os passageiros a fazer compras. As lojas de varejo duty-free permitem que os passageiros desfrutem de compras isentas de impostos enquanto aguardam a partida de seus aviões. Aeroportos em todo o mundo utilizam experiências únicas de compras duty-free no varejo para incentivar mais compras. Abaixo estão alguns dos principais aeroportos que oferecem ótimas experiências e negócios de compras no varejo.
5 - Aeroporto Internacional de Londres Heathrow (LHR)
O aeroporto de Londres é conhecido como um dos mais famosos do mundo. A Skytrax lista o Aeroporto Internacional de Londres Heathrow (LHR) como o número quatro em sua lista de "Melhor Aeroporto do Mundo para Compras" em 2023.
A maior parte de sua rede de compras fica no Terminal 5. Isso inclui uma grande variedade de lojas de luxo e lojas de varejo sofisticadas, como Burberry, Chanel e Louis Vuitton. Além disso, há uma filial da Harrods, varejista de alto luxo, que permite aos passageiros encontrar marcas como Dior e Hermes.
Além disso, experiências divertidas oferecidas no aeroporto incluem a Harry Potter Shop. Esta loja oferece mercadorias exclusivas de Harry Potter e até lenços e varinhas personalizados.
4 - Aeroporto Changi de Singapura (SIN)
O Aeroporto de Changi tem uma das maiores seleções de opções de varejo do mundo. Além disso, o The Points Guy considerou o Aeroporto Changi de Cingapura (SIN) um dos aeroportos internacionais mais baratos para compras duty-free.
O Aeroporto Changi de Singapura (Foto: EQRoy/Shutterstock)
O shopping center Changi Airport tem mais de 125 lojas diferentes listadas, incluindo fornecedores de gadgets, joias, cosméticos, fragrâncias e muito mais. Uma opção única de compras é o Pokémon Center, que vende mercadorias exclusivas de um dos animes mais populares do mundo.
Além da infinidade de opções de compras, o Aeroporto de Changi abriga o HSBC Rain Vortex, a cachoeira coberta mais alta do mundo.
3 - Aeroporto Internacional John F. Kennedy (JFK)
O aeroporto de Nova York é um dos maiores aeroportos dos Estados Unidos e, portanto, possui várias áreas comerciais diferentes em seus cinco terminais ativos. O Aeroporto Internacional John F. Kennedy (JFK) também oferece várias opções de compras antes de passar pela segurança.
Muitas de suas lojas de luxo estão no Terminal 1 e no Terminal 4, com marcas como Cartier, Coach e Michael Kors. O aeroporto também está em construção nos próximos anos, o que levará a uma lista expandida de varejistas em todo o aeroporto.
2 - Aeroporto Internacional de Hong Kong (HKG)
O aeroporto responsável por atender Hong Kong é considerado um dos melhores aeroportos para trânsito do mundo. Também abriga uma seleção de lojas de varejo 24 horas de classe mundial espalhadas por dois shoppings e outros pontos de venda.
Avião da Cathay Pacific na área de embarque no aeroporto de Hong Kong (Foto: Shutterstock)
O Aeroporto Internacional de Hong Kong (HKG) tem mais de 300 varejistas, sendo quase 50 apenas no Terminal 1. Além de marcas como Bose, Calvin Klein, Armani e Chanel, o aeroporto também oferece diversas outras experiências. Os passageiros podem relaxar em um dos vários spas ou até mesmo assistir a um filme em sua sala IMAX, se houver tempo suficiente antes do voo.
1 - Aeroporto Internacional de Dubai (DXB)
Este aeroporto nos Emirados Árabes Unidos é frequentemente considerado um dos mais luxuosos para se viajar. Parte disso se deve à sua extensa lista de varejistas duty-free. O Aeroporto Internacional de Dubai (DXB) permite que os passageiros façam compras em muitas lojas de luxo, como Versace, Montblanc e muitas outras. O aeroporto também é especializado em lojas de eletrônicos que oferecem promoções em smartphones, câmeras e muito mais.
Além dessas opções de compras, o Aeroporto de Dubai oferece muitas outras ótimas experiências, como o jardim zen local e várias opções de academia.
Pesquisadores descobrem que alienígenas de outro mundo ajudaram na evolução do homem e foram a gênese de uma linhagem muito real que permanece intacta até hoje. Os Aliens deixaram a Terra há milênios, mas os sinais estão crescendo diariamente.
Voar percorreu um longo caminho desde o primeiro voo de passageiros programado. No dia de Ano Novo de 1914, o Benoist Airboat Model XIV decolou de São Petersburgo e voou a curta distância de aproximadamente 21 milhas até Tampa, Flórida. O voo transportou um único passageiro e abriu o caminho para voar como o conhecemos hoje.
Avanço rápido de 90 anos até 28 de junho de 2004, quando a Singapore Airlines lançou o primeiro voo programado de passageiros para cobrir uma distância terrestre de mais de 10.000 milhas.
Em seu lançamento, SQ21 e SQ22 eram os dois voos diretos mais longos do mundo, voando entre Newark, Nova York e Cingapura.
Os voos utilizaram o Airbus A340-500, capaz de voar até 10.358 milhas com duração de voo de até 18 horas.
História de longa distância
Durante a década de 1930, barcos voadores como o Martin M-130 e o Boeing Clipper impulsionaram os voos de longa distância. Capaz de pousar na água, a enorme aeronave poderia voar para destinos sem precisar de uma infraestrutura aeroportuária significativa. A Pan American Airways realizou os primeiros voos transatlânticos e transpacíficos que cobriram distâncias de mais de 2.000 milhas.
Martin 130 Clipper (Imagem: Arquivos SDASM/Domínio Público)
Os limites dos voos de longa distância foram ampliados ainda mais durante o período da Segunda Guerra Mundial, quando, após a queda de Cingapura em 1942, a RAAF e a Qantas começaram a operar entre Perth, Austrália e RAF Koggala no Sri Lanka - agora SLAF Koggala - transportando correspondência essencial e até três passageiros.
O voo sem escalas de 4.000 milhas foi programado para cruzar o território japonês durante a escuridão, e com um tempo de voo entre 27 e 33 horas, aqueles a bordo observaram dois nasceres do sol, levando ao nome 'Double Sunrise'.
No final da guerra, o serviço da Qantas ficou conhecido como a rota do canguru e marcou a primeira aparição do agora famoso logotipo do canguru apresentado nas aeronaves da Qantas. Até hoje, os voos 'Double Sunrise' continuam sendo os voos comerciais mais longos da história por duração.
Em 1952, o primeiro uso comercial da corrente de jato começou pela Pan Am, voando de Tóquio a Honolulu, reduzindo o tempo de voo em mais de um terço. Hoje, a corrente de jato é usada tanto para tempo de voo quanto para economia de combustível.
Com a chegada de aviões a jato, como o Boeing 707 e o 747, a aviação passou a conectar mais cidades e continentes com voos diretos, estabelecendo novos recordes de distâncias e tempos de voo. Em 1959, pela primeira vez, mais pessoas atravessaram o Oceano Atlântico por via aérea do que por mar.
À medida que as aeronaves e os motores se tornaram mais confiáveis, as viagens de longo curso tornaram-se mais econômicas para as companhias aéreas por meio do ETOPS - Padrões de Desempenho de Operações de Bimotor de Longo Alcance.
As aeronaves recebem classificações ETOPS que variam de 90 a 370 minutos com base no desempenho de uma aeronave em caso de falha do motor sobre a água ou áreas remotas de terra.
Uma classificação de 90 minutos, por exemplo, significa que a aeronave deve permanecer dentro de 90 minutos de um aeródromo de desvio adequado em plena carga útil e velocidade de voo monomotor.
Anteriormente, apenas aeronaves de três ou quatro motores tinham permissão para voar em rotas remotas devido à redundância de vários motores, enquanto as aeronaves bimotores tinham que voar distâncias maiores para manter o alcance de aeródromos de desvio adequados.
Em 1977, o Airbus A300 tornou-se o primeiro avião ETOPS bimotor e na década de 1990 o Boeing 777 recebeu um ETOPS de 180 minutos, que cobre 95% da superfície do mundo. Atualmente, o Airbus A350 possui uma classificação ETOPS de 370 minutos, suficiente para cobrir 99,7% de toda a superfície do mundo.
Em 15 de março de 2020, durante a pandemia do COVID-19, a Air Tahiti Nui quebrou o recorde de voo programado mais longo ao voar sem escalas entre Papeete, capital da Polinésia Francesa, e Paris usando uma aeronave Boeing 787. O voo percorreu 9.765 milhas em 16 horas e 20 minutos, estabelecendo um novo recorde para o voo mais longo e o voo doméstico mais longo.
Hoje, o voo programado mais longo do mundo ainda é realizado pela Singapore Airlines com seus voos SQ23/24 entre Cingapura e JFK, NY operados pelo Airbus A350-900URL. A rota, que foi lançada em 2020, cobre mais de 9.500 milhas com um tempo de voo programado de quase 19 horas.
A Qantas também se comprometeu com os planos para seu 'Projeto Sunrise', selecionando 12 aeronaves Airbus A350-1000 para operar voos diretos entre Austrália e Londres, Paris e Nova York até 2025. Atualmente, a Qantas opera voos diretos entre Perth e Londres usando o Boeing 787 Dreamliner.
O voo 7908 da Caspian Airlines foi um voo comercial programado de Teerã, no Irã, para Yerevan, na Armênia, que caiu perto da vila de Jannatabad, fora da cidade de Qazvin, no noroeste do Irã, em 15 de julho de 2009. Todos os 153 passageiros e 15 tripulantes a bordo morreram.
O acidente foi o mais mortal da aviação no Irã desde a queda em 2003 de um Ilyushin Il-76 operado por militares, no qual 275 pessoas morreram. Foi o segundo incidente de aviação mais mortal em 2009, atrás do voo 447 da Air France.
A aeronave envolvida no acidente era o Tupolev Tu-154M, prefixo EP-CPG, da empresa iraniana Caspian Airlines (foto acima), que entrou em serviço em 20 de abril de 1987 como YA-TAR para Bakhtar Afghan Airlines e foi vendida para Ariana Afghan Airlines em 1988. A YA-TAR serviu com Ariana Afghan até ser vendida para Caspian Airlines em 15 de março de 1998, 11 anos após sua construção. Foi registrada novamente como EP-CPG em 1999.
A segurança da aeronave foi verificada em junho de 2009 e recebeu licença de voo até 2010. Isso também foi afirmado por um oficial da aviação armênia, dizendo que o avião havia passado pelo controle técnico no Aeroporto Mineralnye Vody, no sul da Rússia, em junho.
A tripulação de voo era composta pelo capitão Ali Asghar Shir Akbari, o primeiro oficial Javad Masoumi Hesari, o navegador Mahdi Firouse Souheil e a engenheira de voo Nima Salehie Rezve.
A aeronave de três motores partiu do aeroporto Teerã-Imam Khomeiny às 11h17 em um voo regular para Yerevan, transportando 158 passageiros e 10 membros da tripulação.
Dezesseis minutos após a decolagem, durante o cruzeiro sobre Qazvin no FL340, a aeronave mudou repentinamente sua direção para 270° e entrou em uma descida rápida, perdendo 20.000 pés em 90 segundos.
O piloto circulou, tentando encontrar um local seguro para pousar, mas sem sucesso.
A aeronave caiu às 11h33, horário de verão do Irã (7h03 UTC), 16 minutos após a decolagem do Aeroporto Internacional Teerã Imam Khomeini.
De acordo com as autoridades, a cauda da aeronave pegou fogo repentinamente. A aeronave foi destruída após colidir com um campo, abrindo uma cratera de até 10 metros (33 pés) de profundidade.
Três horas após o acidente, ainda restavam incêndios em uma área de 200 metros quadrados (2.200 pés quadrados). Uma testemunha contou a Agência de Notícias Fars: "Eu vi o avião quando ele estava acima do solo. Suas rodas estavam descendo e havia fogo ardendo nas partes inferiores. Parecia que o piloto estava tentando pousar e, momentos depois, o avião atingiu o solo e se partiu em pedaços que se espalharam por toda parte."
O gravador de voz da cabine da aeronave e o gravador de dados de voo foram encontrados em 16 de julho. No entanto, uma das "caixas pretas" foi relatada pelo investigador-chefe Ahmad Majidi como danificada. No entanto, ambos os gravadores de voo foram acessados com sucesso e contribuíram com dados para a investigação do acidente.
Foi relatado que 38 pessoas (incluindo dois membros da tripulação) dos 168 ocupantes da aeronave eram cidadãos iranianos. Quarenta passageiros eram cidadãos da Armênia. Também havia dois georgianos a bordo, dois canadenses e dois australianos iranianos com dupla nacionalidade. Havia também dois iraniano-americanos com dupla nacionalidade.
Oito integrantes da seleção júnior de judô do Irã e dois técnicos estavam no voo, indo para o treinamento com a seleção armênia.
As equipes de busca vasculharam uma área de 200 metros (660 pés) de largura em um campo na vila de Jannatabad, onde o avião abriu uma enorme cratera fumegante.
Um trabalhador humanitário, ao lado de um saco de corpo humano, disse à agência de notícias AFP: "Não há uma única peça que possa ser identificada." Mostafa Babashahverdi, um agricultor local, disse à agência de notícias Reuters: "Encontramos cabeças decepadas, dedos e passaportes dos passageiros."
O presidente iraniano, Mahmoud Ahmadinejad, expressou sua simpatia pelos falecidos e suas famílias. O presidente da Armênia, Serzh Sargsyan, assinou um decreto em 15 de julho de 2009, declarando no dia seguinte um Dia de Luto na Armênia.
O presidente da Armênia, Serzh Sargsyan, anunciou em 15 de julho que uma comissão governamental foi criada para investigar o acidente. Seria chefiado pelo vice-primeiro-ministro Armen Gevorgyan.
Autoridades iranianas culparam o acidente por razões técnicas. Foi alegado que o principal motivo do acidente foi uma falha do motor e destruição devido a uma colisão de pássaros, que resultou em um incêndio que levou à perda de controle e queda do avião.
Em 23 de dezembro de 2014 foi publicada uma cronologia dos eventos: Durante a subida à altitude de 9.700 metros (31.800 pés), a tripulação enviou uma mensagem sobre um incêndio no motor número um. A subida foi interrompida a 8.700 metros (28.500 pés). O avião, três minutos antes da queda, fez uma curva de 270 graus e começou a descer rapidamente a uma alta velocidade vertical de cerca de 70 metros (230 pés) por segundo. 16 minutos após a decolagem, o Tu-154M, em alta velocidade, colidiu com o solo em um campo próximo à vila de Džannatabad, a aproximadamente 120 quilômetros (75 mi; 65 nm) do aeroporto de Khomeini. A aeronave foi destruída com o impacto. No local do desastre, formou-se uma cratera cuja profundidade era de aproximadamente 10 metros (33 pés).
O relatório final do acidente foi provavelmente divulgado pelas autoridades iranianas em 2011, embora não tenha recebido grande atenção até que foi parcialmente traduzido para o inglês em 2019.
O relatório concluiu que o acidente foi causado por falha por fadigado rotor do primeiro estágio do compressor de baixa pressão no motor nº 1, que resultou na desintegração do disco do rotor. Fragmentos do disco do rotor destruíram o motor nº 1, cortaram os sistemas hidráulicos nº 1 e nº 3 e cortaram parcialmente as tubulações de combustível do motor nº 2.
Componentes quentes e fluido hidráulico inflamou o combustível derramado das tubulações de combustível danificadas, e rapidamente causou um grande incêndio na cauda do avião. Este fogo, por sua vez, destruiu as hastes que acionavam as superfícies de controle traseiras (elevadores e leme), fazendo com que os pilotos perdessem o controle da aeronave.
Antes do acidente, o fabricante da aeronave, a Tupolev, divulgou um boletim de serviço exigindo testes mais rigorosos dos componentes do compressor de baixa pressão. No entanto, isso só foi fornecido em russo para os operadores russos. Seis dias após a queda do EP-CPG, a Tupolev lançou boletins de serviço equivalentes para todas as operadoras.
As frotas de aviões civis e militares do Irã são formadas por aeronaves antigas e em condições precárias por conta de sua idade e da falta de manutenção. Desde a revolução islâmica de 1979, o embargo comercial do Ocidente contra o Irã forçou o país a comprar principalmente aeronaves de origem russa, como o Tupolev, para complementar a frota existente de aviões americanos e europeus.
Memorial às vítimas no cemitério de Burastan em Teerã
Em 15 de julho de 1996, a aeronave Lockheed C-130H Hercules, prefixo CH-06, da Força Aérea da Bélgica (Belgische Luchtmacht), foi fretada pela Força Aérea Holandesa (Koninklijke Luchtmacht) para transportar a banda de música da Força Aérea Holandesa da Itália de volta à Holanda.
O avião de transporte chegou a Verona-Villafranca às 13h33. Quarenta passageiros embarcaram no avião e às 15h04 o Hércules decolou de Villafranca para um curto voo com destino a Rimini, na Itália, onde pousou às 15h31.
Três passageiros desembarcaram em Rimini e o Hércules estava de volta ao ar às 15h55 rumo a Eindhoven, levando a bordo 37 passageiros e quatro tripulantes.
O Hércules desceu em Eindhoven e contatou a Torre de Eindhoven às 18h00. A Torre de Eindhoven autorizou o voo para a aproximação: "Ok, você pode continuar a descida para 1000, como o número um no tráfego, para uma pista de curso final direto 04, QNH 1027."
Depois de informado a pista à vista, o Hercules foi liberado para pousar: “610 está liberado para pousar a pista 04, vento de 360° 10 nós."
Possivelmente, devido à presença de um grande número de pássaros próximo à pista, o copiloto deu uma volta. As aves foram ingeridas por ambos os motores esquerdos (n ° 1 e 2), causando a perda de potência de ambos os motores.
Por razões desconhecidas, a tripulação desligou o motor nº 3 e embandeirou a hélice. O avião então virou à esquerda e caiu do lado esquerdo da pista do Aeroporto de Eindhoven, na Holanda.
Em segundos, um incêndio irrompeu, alimentado pelo sistema de oxigênio do avião. Algumas saídas de emergência na cabine principal ficaram inacessíveis por causa do incêndio, enquanto outras saídas não puderam ser abertas devido à torção da fuselagem.
O fato de haver um grande número de passageiros a bordo do avião não ficou claro para os bombeiros. Demorou cerca de 23 minutos antes que os passageiros fossem notados na cabine principal.
Das 41 pessoas a bordo, 30 passageiros e os quatro tripulantes morreram no acidente.
A causa provável da queda foi aponta como: "o acidente foi iniciado, muito provavelmente como uma reação à observação de pássaros, pela volta feita a baixa altitude durante a qual um bando de pássaros não podia mais ser evitado. O acidente tornou-se inevitável quando: a ingestão de pássaros nos dois motores esquerdos ocorreu devido à perda de potência desses dois motores e como resultado da perda de potência, a aeronave ficou incontrolável a uma altitude muito baixa e caiu. A relativa baixa experiência da tripulação foi um fator contribuinte.
Um Douglas C-47 Skytrain semelhante à aeronave acidentada
Em 15 de julho de 1960, às 09h04, o Douglas C-47A-20-DK (DC-3), prefixo ET-T-18, da Ethiopian Air Lines, decolou de Bulki, na Etiópia, em um voo de curta distância para o Aeroporto de Aba Segud, Jimma, também Etiópia realizando o voo 372. Havia oito passageiros, três tripulantes e uma carga de café a bordo.
Às 09h40, o piloto solicitou o acionamento do farol não direcional Jimma (NDB) para auxiliar sua navegação. Não houve mais contato com o voo.
Logo se descobriu que a aeronave caiu a 9.400 pés na encosta de uma montanha 27,5 km (17,1 milhas) ao sul de Jimma, matando um dos pilotos e deixando os passageiros e a tripulação restante feridos. A aeronave foi danificada além do reparo.
Foi determinado que o acidente foi causado pelo seguinte:
O piloto avaliou mal as condições meteorológicas, pois continuou a voar em condições meteorológicas deterioradas enquanto tentava manter as regras de voo visual.
O piloto avaliou mal as capacidades de desempenho da aeronave, na medida em que tentou subir a uma velocidade inferior à velocidade mínima segura de subida da aeronave.
Um pequeno deslize acabou levando a uma tragédia com um helicóptero nos EUA, que estava em missão de combate à incêndio. O acidente aconteceu com uma aeronave Boeing CH-47 Chinook, de origem militar, mas operado por uma empresa civil, para combate a incêndios no estado do Idaho, no ano passado.
A aeronave estava reabastecendo seu cesto de água quando entrou num parafuso e caiu no Rio Salmão, ferindo gravemente os dois pilotos que morreram depois já no hospital.
(Foto: Divulgação/NTSB)
Uma investigação foi aberta pela NTSB, que encontrou um iPad entre os destroços. Uma análise detalhada apontou que o aparelho estava preso entre os pedais da aeronave.
Os iPads são um equipamento padrão na aviação hoje, usados com aplicativos de suporte à navegação multi-função, com cartas, mapas, GPS, recursos para cálculo de performance e outras funções úteis.
(Foto: Divulgação/NTSB)
Enquanto em aeronaves maiores ele fica fixo na estrutura da cabine ou numa ventosa grudada no para-brisa, num helicóptero, de cabine menor, os espaços são limitados. Nesse caso, os pilotos envolvidos no acidente acabaram deixando o dispositivo na perna, segundo os investigadores.
No entanto, o cinto que segurava o aparelho acabou fazendo ele se soltar e ele caiu entre os pedais do lado do copiloto. O aviador, inclusive, poderia ter tentado alcançar o iPad, mas devido à profundidade que ele estava, assim como o painel e o capacete impedindo de se abaixar mais, ele não conseguiu alcançá-lo.
(Foto: Divulgação/NTSB)
O pior aconteceu quando o pedal foi movimentado e o iPad travou o mecanismo que é interligado entre os dois pilotos. Com isso, o pedal ficou travado numa posição e, como ele controla a direção do helicóptero, que no caso do Chinook são motores contra rotativos, os pilotos perderam o controle.
No ato seguinte, o CH-47 moveu-se para um lado e os pilotos não conseguiam corrigir a inclinação. Em seguida, o equipamento começou a fazer uma curva mais fechada, entrando em espiral e caindo no rio, como mostra o vídeo abaixo gravado por uma testemunha.
As informações são da NTSB, órgão responsável pela investigação, que teve apenas seu relatório preliminar divulgado hoje, e outros detalhes serão feitos no relatório final.
O Embraer 195 E2 da Azul Linhas Aéreas envolvido no incidente
A aeronave Embraer 190-400STD (E195 E2), prefixo PR-PJN, da Azul Linhas Aéreas, precisou pousar com apenas um dos motores funcionando, após apresentar problemas técnicos. A ocorrência foi reportada ao Centro de Investigação e Prevenção de Acidentes Aeronáuticos (CENIPA).
Segundo os dados públicos disponibilizados pelo CENIPA, a ocorrência se desenvolveu com a aeronave registrada sob a matrícula PR-PJN, que estava realizando o voo regular entre Goiânia e Confins, na Grande Belo Horizonte, no último dia 24 de junho.
A aeronave, que transportava 137 passageiros e 5 tripulantes, decolou do Aeroporto de Goiânia no voo AD-4016 às 10h43 locais. O voo ocorreu dentro da normalidade e sem nenhuma ocorrência quase que na sua totalidade.
No entanto, durante a fase de descida, o jato apresentou falha de baixa pressão de óleo do motor #1 e os pilotos precisaram realizar as tratativas com base nos procedimentos previstos em manual do fabricante.
A tripulação realizou o desligamento do referido motor e o pouso no Aeroporto Internacional de Belo Horizonte, em Confins, seguramente e sem novas intercorrências. Segundo os dados da plataforma online de rastreio de voos RadarBox, a aeronave voltou à malha aérea da Azul somente no dia 28 de junho, tendo realizado um voo para Curitiba, no Paraná.
Trajetória da aeronave envolvida na ocorrência (Imagem: RadarBox)
A NASA segue trabalhando para colocar nos céus o X-59, avião supersônico capaz de sobrevoar áreas civis sem o incômodo "sonic boom", e realizou novos testes.
(Foto: Divulgação/NASA/Canaltech)
Os trabalhos das equipes da General Electric Aviation e da Lockheed Martin Skunk Works no desenvolvimento de um motor supersônico e silencioso para equipar o avião X-59 da NASA (Administração Nacional de Aeronáutica e Espaço) não param.
A Lockheed Martin divulgou em suas redes sociais que o X-59 completou com sucesso mais um passo importante da fase de testes e, com isso, está ainda mais perto de realizar seu voo inaugural.
A fabricante informou que a aeronave deixou sua "garagem" pela primeira vez e, agora, está posicionada na linha de voo, área que fica localizada entre o hangar e a pista da Lockheed Martin Skunk Works, em Palmdale, Califórnia.
What's the X-59 been up to recently? We're glad you asked. 👇
We moved the aircraft to a run stall on the flight line for further ground testing, including vibration testing.
It's aiming to quiet the sonic boom and shape the future of supersonic commercial flight travel. pic.twitter.com/yMwZteyd7H
Segundo a NASA, o movimento, apesar de aparentemente simples, é fundamental para dar início aos testes que serão realizados ainda em solo, incluindo o acionamento do motor e o taxiamento da pista.
A agência espacial quer se certificar de que o avião supersônico esteja "seguro e pronto para voar" antes de definir uma data exata para que ele possa cruzar os céus sobre áreas civis, algo que foi proibido para esse tipo de aeronave nos Estados Unidos há cinco décadas, em 1973.
A missão do X-59 da NASA
A NASA vem trabalhando no desenvolvimento do avião supersônico silencioso há mais de dois anos, em um projeto inicialmente chamado Low-Boom Flight Demonstration, rebatizado em maio de 2022 como Quesst (sigla para "Quiet SuperSonic Technology").
A intenção da agência espacial é desenvolver aeronaves com capacidade de voar em velocidade Mach 1 e quebrar a barreira do som, mas sem o incômodo sonic boom, ou estampido sônico, em bom português.
O avião supersônico silencioso da NASA ainda tem algumas fases do projeto a serem cumpridas. O X-59 fará, no futuro, uma série de voos sobre diversas cidades dos Estados Unidos entre 2024 e 2026.
A ideia é realizar a coleta de dados junto à população desses locais para entender o que as pessoas pensam sobre o som do X-59, e se ele é realmente menos danoso do que o de um avião supersônico comum. A previsão é que a missão seja concluída em 2027.
Avião no aeroporto Salgado FIlho, em Porto Alegre: Sistema ILS permite pouso sob condições meteorológicas adversas (Imagem: Suboficial Johson Barros/FAB)
O Brasil tem 36 aeroportos que possuem sistemas de pouso para situações de baixíssima visibilidade, como em nevoeiros fortes. Chamado de ILS, ele não é obrigatório.
O que é o sistema
O ILS (Instrument Landing System, ou, Sistema de Pouso por Instrumentos) orienta o voo do avião até bem próximo do solo, permitindo pousos onde há dificuldades em visualizar a pista.
O sistema leva em consideração a altura do avião em relação à pista e a visibilidade à frente da aeronave.Ele é dividido em três categorias, cada uma com requisitos mínimos.
Caso os pilotos estejam pousando e atinjam uma certa altura em relação ao solo e ainda não estejam vendo a pista, devem arremeter. Ao mesmo tempo, precisam ter uma visão mínima à sua frente para poder manter o alinhamento com a pista.
Cada categoria de sistema ILS possui as seguintes especificações segundo a FAB (Força Aérea Brasileira):
Cat I: Altura de decisão mínima de 60 metros acima da pista e visibilidade entre 800 e 550 metros
Cat II: Altura de decisão mínima de 30 metros acima da pista e visibilidade de ao menos 300 metros
Cat IIIa: Altura de decisão mínima de 30 metros acima da pista e visibilidade de ao menos 175 metros
Cat IIIb: Altura de decisão mínima de 15 metros acima da pista e visibilidade de 175 metros
Cat IIIc: Zero de visibilidade.
Como funciona
Antena do sistema ILS para pouso sob baixa visibilidade é calibrada em aeroporto (Imagem: Carlos Eduardo Schaefer/FAB)
Antenas nos aeroportos emitem sinais de rádio alinhados com a pista de pouso. Eles traçam uma espécie de linha, tanto na horizontal quanto na vertical, que mantém a aeronave na melhor trajetória de descida para o toque no solo.
Os aviões captam as ondas enviadas na horizontal e na vertical. Com isso, o sistema de piloto automático se orienta para o pouso na melhor posição possível
Sistema é usado mesmo em dias de sol. Ele facilita o alinhamento e a trajetória de descida mesmo quando a visibilidade é boa.
Pista pode ter equipamento apenas em um lado. Como tem custo elevado de aquisição e manutenção, aeroportos podem optar por manter o sistema ILS apenas em uma das cabeceiras da pista —geralmente, a que é utilizada com mais frequência.
O terreno em volta do aeroporto também pode interferir. Se houver elevações muito altas, por exemplo, o sistema pode ser ineficiente em alguns casos, já que não haveria como orientar o avião adequadamente.
Os requisitos
Avião da Aeronáutica voa sobre antena de sistema de pouso sob baixa visibilidade, o ILS (Imagem: Carlos Eduardo Schaeffer/FAB)
Não basta apenas ter a antena emitindo sinais de rádio. Cada categoria de ILS exige, ainda, luzes e dispositivos no solo para orientar e detectar a movimentação do avião.
As aeronaves precisam ser compatíveis com a tecnologia e serem homologadas para seu uso. Junto a isso, pilotos também têm de ser treinados para operar esse tipo de pouso.
Os equipamentos devem ser calibrados. No Brasil, esse procedimento costuma ser feito por aviões do Grupo Especial de Inspeção em Voo da FAB (Força Aérea Brasileira).
Onde existe no Brasil
Belém (PA) - Val de Cans/Júlio Cezar Ribeiro: Cat I
Belo Horizonte (MG) - Pampulha: Cat I
Belo Horizonte (MG) - Tancredo Neves/Confins: Cat I
Boa Vista (RR) - Atlas Brasil Cantanhede: Cat I
Brasília (DF) - Juscelino Kubitschek: Cat I
Campinas (SP) - Viracopos: Cat I
Campo Grande (MS): Cat I
Cuiabá (MT) - Marechal Rondon/Várzea Grande: Cat I
Curitiba (PR) - Afonso Pena/São José dos Pinhais: Cat II e Cat I
Florianópolis (SC) - Hercílio Luz: Cat I
Fortaleza (CE) - Pinto Martins: Cat I
Foz do Iguaçu (PR) - Cataratas: Cat I
Guarulhos (SP) - Cumbica/Governador André Franco Montoro: Cat I, Cat II e Cat IIIa
Joinville (SC) - Lauro Carneiro de Loyola: Cat I
Maceió (AL) - Zumbi dos Palmares/Rio Largo: Cat I
Manaus (AM) - Eduardo Gomes: Cat I
Natal (RN) - São Gonçalo do Amarante: Cat I
Porto Alegre (RS) - Salgado Filho: Cat II
Porto Velho (RO) - Governador Jorge Teixeira de Oliveira: Cat I
Recife (PE) - Guararapes: Cat I
Rio Branco (AC) - Plácido de Castro: Cat I
Rio de Janeiro (RJ) - Galeão: Cat I e Cat II
Salvador (BA) - Deputado Luís Eduardo Magalhães: Cat I
Santa Maria (RS): Cat I
Santarém (PA) - Maestro Wilson Fonseca: Cat I
São José dos Campos (SP) - Professor Urbano Ernesto Stumpf: Cat I
São Luís (MA) - Marechal Cunha Machado: Cat I
São Paulo (SP) - Congonhas: Cat I
Uberlândia (MG) - Tenente Coronel Aviador César Bombonato: Cat I
Vitória (ES) - Eurico de Aguiar Salles: Cat I
Ainda é possível encontrar o sistema ILS em outros locais, como bases militares. É o caso da pista do aeroporto do Campo Fontenelle, onde fica localizada a AFA (Acadamia da Força Aérea), em Pirassununga (SP).
O levantamento foi feito a partir de documentação aeronáutica e informações disponibilizadas pela FAB.
Guarulhos tem sistema mais moderno
O aeroporto internacional Governador André Franco Montoro, em Guarulhos, costuma enfrentar muitos problemas devido às neblinas. A região onde se encontra é a do bairro de Cumbica, que também dá nome ao local.
Esse nome é uma expressão tupi-guarani que significa "nuvem baixa", segundo interpretações mais recorrentes. O entorno do sítio aeroportuário é naturalmente úmido, o que facilita na formação da neblina.
O ILS Cat III foi instalado em 2011 em Guarulhos ao custo de R$ 8,9 milhões à época, mas só foi certificado para operação em 2015. A proposta era que ele estivesse operacional para melhorar o fluxo de voos para a Copa do Mundo de 2014.
Guarulhos é o único aeroporto do país a operar o sistema ILS Cat IIIa. Ainda assim, fechamentos ocorrem até hoje, mas em frequência menor.
Embora a quantidade de horas que o aeroporto ficava fechado durante o ano representasse menos de 1% do total, o transtorno era grande. Hoje, Guarulhos tem capacidade declarada para 60 pousos e decolagens por hora, frente a 47 em 2015.
Fontes: Paulo Calazans, piloto e advogado especializado em direito aeronáutico; FAA (Administração Federal de Aviação dos Estados Unidos), Anac (Agência Nacional de Aviação Civil), Decea (Departamento de Controle do Espaço Aéreo, órgão ligado à FAB)
Avião da TAP pousa no aeroporto Cristiano Ronaldo, na Ilha da Madeira, em Portugal (Imagem: YouTube/Madeira Airport Spotting)
O vídeo de um avião pousando bem depois do normal, já no meio da pista, ganhou repercussão nos últimos dias nas redes sociais. A aeronave "flutua" ao se aproximar do pouso, fazendo com que o toque no solo ocorra mais próximo do fim da pista.
O que aconteceu?
Um avião da companhia aérea portuguesa TAP tocou o solo na hora do pouso depois do habitual, segundo as imagens. Isso ocorreu no aeroporto Cristiano Ronaldo, na ilha da Madeira, pertencente a Portugal.
O avião "flutuou", apenas tocando o chão quando já passava da metade da pista — em vez de pousar próximo às marcações de segurança específicas para isso.
Veja abaixo como foi o pouso:
Efeito solo seria o motivo
Essa sensação de o avião "não querer pousar" não é incomum. Ela se deve, principalmente, ao que é chamado efeito solo.
Isso acontece quando parte do ar que está oferecendo a resistência para o avanço do avião se desloca para a ponta da asa e gera um vórtice, que é como um redemoinho de vento. Ele bate no solo e volta para a asa, gerando mais sustentação para o avião, fazendo com que ele dê a impressão de flutuar.
Para pousar de fato é preciso quebrar essa sustentação. Caso ainda haja pista suficiente para o pouso, os pilotos podem comandar o avião para que ele desça e "fure" essa camada extra de ar que está mantendo o avião "flutuando".
Em alguns casos, fortes ventos podem fazer com que o avião fique mais tempo voando próximo ao solo nessas horas. Esse poderia ser o caso do aeroporto da Madeira, conhecido pelos ventos fortes que atingem a região.
É normal pousar ali?
As pistas possuem marcas para auxiliar os pilotos a pousarem no local ideal. São áreas chamadas de aiming point (ponto de visada) ou marca de 1.000, que se refere aos mil pés (aproximadamente 300 metros) de distância do início da pista.
É recomendado que o toque no solo aconteça desde um pouco antes da marca de visada até um pouco depois. No caso, é possível observar pelo vídeo que ele teria pousado após a metade da pista, longe dessa marca.
O comandante deve analisar se a distância restante na pista é suficiente para pousar o avião. Para isso, ele pondera o peso da aeronave, características do avião, entre outros fatores, e observa marcações na pista que mostram quantos metros faltam até o seu fim.
Caso o piloto julgue que não seja possível pousar, ele arremete o avião e tenta realizar um novo pouso em segurança.
Veja como alguns aviões "flutuam" antes de tocarem o solo no aeroporto de Birmingham (Reino Unido):
Ação pede o reconhecimento de vínculo empregatício de Henrique Bahia com a cantora. Informação foi confirmada pela equipe de Marília.
Marília e Henrique durante gravação do espetáculo As Patroas (Foto: Reprodução/Redes Sociais)
A família do produtor Henrique Bahia processou a equipe de Marília Mendonça para reconhecimento de vínculo trabalhista. Ao g1, a equipe da cantora disse que a ação trabalhista na justiça do trabalho é proposta proposta pelo filho de Henrique Bahia, representado pela mãe.
Em audiência realizada no dia 7 deste mês, a Justiça analisou se o processo deve tramitar junto à Vara do Trabalho de Divinópolis, em Minas Gerais, ou se perante uma das Varas do Trabalho de Goiânia. O resultado da audiência não foi divulgado.
A equipe de Marília disse que não pode fornecer mais detalhes do caso, porque o processo está em segredo de justiça. No entanto, a “Sentimento Louco Produções Artísticas” e o Espólio de Marília, disseram que desde o princípio buscou o diálogo e a resolução do caso “pela via conciliatória” (leia nota completa no fim da reportagem).
Desabafo
Pelas redes sociais, George Freitas, pai de Henrique, compartilhou uma publicação que dizia que Henrique não trabalhava apenas por um escritório, mas vivia 24 horas em função do trabalho.
“Que a justiça seja feita e que reconheçam o seu vínculo empregatício, em nome do seu legado, do seu profissionalismo, e de tudo que você representou para os profissionais que trabalharam e conviveram com você”, escreveu a publicação.
George disse que o filho do produtor, com o processo, poderá ter algum direito como herdeiro.
“Você deu seu sangue em tudo que fez! Essa luta será até o fim de todos seus familiares e amigos, meu gordo”, finaliza o post.
Henrique Ribeiro, produtor de Marília Mendonça (Foto: Reprodução/Redes Sociais)
O acidente
Marília e Henrique morreram no dia 5 de novembro de 2021 em um acidente aéreo quando estavam a caminho de um show em Caratinga (MG). A poucos quilômetros do destino, o avião que eles viajavam também com o tio de Marília, Abicelí Silveira, caiu próximo a uma cachoeira. Além dos três, morreram o piloto e o copiloto.
Avião em que estava Marília Mendonça, após queda, em 2021 (Foto: Jornal Nacional)
Nota equipe Marília Mendonça
É verdadeira a informação que existe uma ação trabalhista em curso perante a justiça do trabalho proposta pelo filho do Henrique Bahia, representado pela sua mãe.
Esclarecemos que a audiência realizada no último dia 07/07/2023 tinha como única finalidade de definir se o processo deve tramitar junto a Vara do Trabalho de Divinópolis-MG ou se perante uma das Varas do Trabalho de Goiânia-Goiás.
Contudo, não podemos fornecer maiores detalhes sobre o processo, uma vez que ele tramita em segredo de justiça.
De todo modo, a Sentimento Louco Produções Artisticas, bem como o Espólio da Marilia Mendonça, por meio do seu corpo jurídico desde o principio buscou o diálogo e a resolução do caso pela via conciliatória.