As principais notícias sobre aviação e espaço você acompanha aqui. Acidentes, incidentes, negócios, tecnologia, novidades, curiosidades, fotos, vídeos e assuntos relacionados.
Visite o site Desastres Aéreos, o maior banco de dados de acidentes e incidentes aéreos do Brasil.
Os Canards desempenharam um papel distinto na história da aviação, oferecendo benefícios e desafios únicos ao design e desempenho das aeronaves.
No mundo do design de aeronaves, a inovação nunca para. Uma das configurações mais intrigantes que capturou a imaginação dos entusiastas da aviação é o canard. Este estabilizador horizontal inclinado para frente, posicionado à frente das asas principais, foi implementado em uma variedade de aeronaves, desde projetos experimentais até jatos militares avançados. Estamos examinando mais de perto a história, a tecnologia e as aplicações dos canards na aviação.
Compreendendo os canards
O termo "canard" vem de um dicionário aviário totalmente diferente; origina-se da palavra francesa para "pato", refletindo sua extensão para frente e semelhança na aparência. Este design incomum difere das configurações convencionais por colocar a superfície horizontal estabilizadora à frente da asa principal, melhorando o controle e a sustentação. Surgiram dois tipos principais de configurações de canard: canard de elevação e controle.
O Vari-EZ é um canard caseiro (cauda primeiro) com design de Burt Rutan (Foto: Richard Thorton/Shutterstock)
A configuração do canard de elevação, como a usada no Rutan Long-EZ e no Vari-EZ, é projetada para compartilhar o peso da aeronave entre a asa principal e o canard dianteiro, ambos produzindo sustentação positiva. Esta interação entre as superfícies pode melhorar a estabilidade e reduzir o arrasto geral, mas traz o desafio de ter que garantir que o canard pare antes da asa principal para uma recuperação segura.
Canard de controle
O projeto do canard de controle, visto em aeronaves militares modernas como o Eurofighter Typhoon, usa o canard principalmente para controle de inclinação. Nesta configuração, a asa principal suporta o peso da aeronave enquanto o canard opera em ângulo de ataque zero, proporcionando principalmente manobrabilidade de inclinação.
Eurofighter Typhoon com canards (Foto: Matthew Troke/Shutterstock)
A ascensão e queda dos canards
Vantagens dos canards
A inclusão de canards no projeto de aeronaves trouxe diversas vantagens segundo Bolt Flight:
Manobrabilidade aprimorada: Com o canard fornecendo controle de inclinação para frente, as aeronaves podem realizar curvas mais fechadas e respostas de inclinação mais rápidas, o que é particularmente vantajoso para jatos de combate e aeronaves acrobáticas.
Distribuição de sustentação aprimorada: A sustentação adicional do canard poderia melhorar a eficiência geral da asa, distribuindo o peso entre o canard e a asa principal.
Arrasto reduzido: Canards podem ajudar a otimizar o fluxo de ar em algumas configurações, reduzindo o arrasto geral. Essa eficiência aerodinâmica pode levar a um melhor consumo de combustível e maior alcance, tornando os canards uma vantagem para aeronaves que priorizam a eficiência de combustível.
Redução do peso total: Alguns designs com canards ajudam a reduzir o peso total, eliminando a necessidade de um estabilizador de cauda e compensando com a sustentação dos canards.
Aeronave turboélice executiva privada Avanti Piaggio com canards (Foto: Chris H. Galbraith/Shutterstock)
Os Canards têm desempenho diferente com base nos cenários de voo; em baixas velocidades, eles melhoram a manobrabilidade, fornecendo elevação adicional. Em altas velocidades, contribuem para a estabilidade e o controle, cruciais em aeronaves de alto desempenho.
Desvantagens dos canards
Apesar de seu design inovador, os canards enfrentam alguns desafios notáveis, de acordo com o Aviationfile:
Problemas de estabilidade: Manter a estabilidade do campo requer projeto e engenharia precisos para evitar problemas de controle. Canards podem tornar a aeronave mais sensível aos comandos de inclinação, o que exige um controle cuidadoso dos pilotos, especialmente em condições onde a turbulência pode afetar as superfícies de controle.
Altas margens de estol: Canards devem estolar antes da asa principal, necessitando de dimensionamento e design cuidadosos. Este requisito complica o processo de projeto e pode limitar o desempenho geral da aeronave. Um canard que estola antes da asa principal garante que o nariz da aeronave caia, recuperando a velocidade no ar, mas as restrições estritas do projeto podem tornar o canard menos eficaz em algumas configurações.
Capacidade de carga limitada: Canards geralmente não conseguem acomodar cargas significativas devido ao tamanho e posição. Esta limitação os torna menos adequados para aeronaves grandes e pesadas. O projeto da asa também deve acomodar a distribuição de sustentação alterada, exigindo potencialmente mais reforço estrutural que acrescente peso.
Arrasto induzido: Em certas condições de voo, os canards podem contribuir para um maior arrasto induzido em comparação com projetos convencionais, especialmente quando a sustentação do canard não está totalmente otimizada, o que pode, por sua vez, afetar negativamente a eficiência do combustível.
Aeronaves mais notáveis com canards:
Wright Flyer: O Wright Flyer original, criado em 1903, apresentava um design canard para controle de pitch.
Piaggio P.180 Avanti: Esta aeronave inovadora combinou aerodinâmica avançada e um design canard para maior eficiência.
Eurofighter Typhoon: Um jato militar moderno que utiliza canards de controle para manobrabilidade superior. Os canards do Eurofighter permitem um manuseio rápido, tornando-o altamente eficaz em combate aéreo.
Rutan Long-EZ: Este design tornou-se popular entre os 'construtores de casas' e DIYers devido à sua simplicidade e características inovadoras.
Dassault Rafale: Um dos poucos caças modernos com design canard dedicado, demonstrando sua utilidade no aprimoramento da manobrabilidade e agilidade em combate.
O declínio no uso de canard
À medida que a aviação evoluiu, os designs mais recentes ofuscaram o uso de canards:
Sistemas avançados de controle de voo: Os modernos sistemas fly-by-wire reduziram a necessidade de superfícies de controle avançadas, pois os controles de voo assistidos por computador podem manter a estabilidade de forma mais eficaz.
Projetos de asas otimizados: Os designs de asas aprimorados tornaram os canards menos necessários para a distribuição de sustentação – as asas modernas podem alcançar eficiência aerodinâmica semelhante sem eles.
Complexidade de fabricação: De acordo com a Aeroclass, os canards acrescentam complexidade de fabricação, reduzindo ainda mais seu apelo em projetos de aeronaves modernas. Os fabricantes de aeronaves pretendem simplificar a produção, e a adição de canards aumenta o número de componentes e etapas de montagem.
Embora a popularidade dos canards tenha diminuído nos últimos anos, seu papel na história da aviação não diminuiu. Desde melhorar a estabilidade inicial do voo até melhorar a manobrabilidade das aeronaves de combate modernas, os canards deixaram sua marca no design da aviação.
Potencial futuro dos canards
Embora os canards não sejam comumente usados em aeronaves comerciais, eles ainda têm potencial em funções especializadas na aviação moderna:
Dassault Rafale com canards (Foto: Dassault)
Aeronaves acrobáticas: Aeronaves projetadas para competições acrobáticas se beneficiam do manuseio aprimorado que os canards proporcionam.
UAVs experimentais: Alguns veículos aéreos não tripulados (UAVs) incorporam canards para melhorar a estabilidade, o desempenho de alta intensidade e a capacidade de manobra, melhorando sua capacidade de executar tarefas complexas de forma autônoma.
Protótipos e projetos experimentais: Às vezes, Canards são usados em protótipos para testar novos conceitos aerodinâmicos.
No dia 26 de junho de 1988, um novo Air France Airbus A320 em um voo charter com 136 pessoas a bordo realizou um sobrevoo em baixa velocidade em um airshow na cidade de Mulhouse.
Mas, à medida que centenas de espectadores olhavam, o avião se chocou contra uma floresta e caiu, espalhando fogo sobre o campo de aviação. Surpreendentemente, quase todos a bordo conseguiram escapar antes que o avião queimasse, mas três passageiros - incluindo duas crianças - morreram na fumaça e nas chamas.
O acidente colocou piloto contra avião: o Airbus e seu novo design radical fly-by-wire estavam errados ou o capitão Michel Asseline julgou mal a manobra?
O acidente gerou décadas de teorias da conspiração mal informadas, muitas delas propagadas pelo próprio Asseline, que ainda hoje são amplamente aceitas. Esta é a verdadeira história do voo 296 da Air France e suas consequências controversas.
No início da década de 1980, com a McDonnell Douglas em apuros financeiros e a Lockheed tendo deixado o mercado, a Boeing estava posicionada para dominar a indústria de fabricação de aviões comerciais nos próximos anos.
Claro, havia também o Airbus: um consórcio estatal fundado em 1970 pelos governos da França e da Alemanha Ocidental. Mas as duas aeronaves que produziu até então - o wide body A300 e seu derivado mais curto, o A310 - não causaram muito impacto no mercado global, e a empresa não foi levada muito a sério por seus concorrentes.
Nos círculos mais altos da empresa, havia a sensação de que precisariam de algo radicalmente novo para evitar que a Boeing monopolizasse permanentemente o mercado de jatos de passageiros. Algo como o Airbus A320.
O A320 foi uma partida corajosa da filosofia de design adotada por praticamente todos os aviões comerciais que vieram antes dele. Do lado de fora, o A320 não parecia tão especial: tinha duas asas de aparência normal, dois motores, uma cauda, uma cabine de dois pilotos e espaço para cerca de 150 passageiros, o que o colocava em concorrência com o Boeing 737, já um dos aviões de passageiros mais comuns no céu.
A verdadeira magia estava sob o capô. Em vez de ligações mecânicas entre as culatras e as superfícies de controle (ou seus atuadores hidráulicos), o A320 incorporava um sistema fly-by-wire, onde os pilotos faziam entradas para um banco de computadores que, por sua vez, fazia o avião voar.
Em vez de uma coluna de controle tradicional, o A320 tinha uma alavanca lateral, que ficava ao lado do piloto em vez de na frente dele. Em vez de criar artificialmente forças de feedback nos controles para ajudar os pilotos a intuir mudanças na sensibilidade do controle em diferentes velocidades e configurações, os projetistas do A320 concluíram que isso era uma muleta e eliminaram totalmente o feedback; os pilotos agora podiam mover o stick lateral o quanto quisessem, e os computadores determinariam até que ponto as superfícies de controle reais poderiam ser movidas com segurança naquele momento preciso.
A peça central desse projeto foi uma série de proteções contra falhas internas chamadas proteções de envelope de voo. O princípio por trás das proteções de envelope de voo era que, enquanto os controles estivessem funcionando corretamente, seria impossível para os pilotos perderem o controle do avião, por mais que tentassem.
Se o piloto empurrasse o manche lateral totalmente para a direita, o avião rolaria cerca de 67 graus, a encosta mais íngreme que ele poderia manter com segurança. Qualquer outro lançamento para a direita simplesmente não era permitido.
Se o piloto puxasse totalmente o manche lateral, o avião se inclinaria cerca de 30 graus e puxaria 2,5 Gs, mas não mais. E se o piloto diminuísse a velocidade e subisse na tentativa de estolar o avião, as proteções do envelope de voo acelerariam os motores e empurrariam suavemente o nariz para baixo para manter o ângulo de ataque abaixo do ponto crítico.
Em teoria, o avião seria impossível de estolar. Este projeto reconheceu o que nenhum outro fabricante estava disposto a apontar publicamente: que a maioria dos acidentes foi causada pelo piloto, não pelo avião.
O A320 não foi o primeiro avião a incorporar a tecnologia fly-by-wire; na verdade, o Concorde já havia feito isso no início dos anos 70, e alguns jatos militares o fizeram antes mesmo. Até o Tupolev Tu-154 soviético tinha uma espécie de pseudo-fly-by-wire, na forma de um piloto automático sempre ligado que corrigia as terríveis características de voo manual do avião.
Mas o A320 foi o primeiro jato a não ter backup manual, e o primeiro a incluir proteções de envelope de voo que não poderiam ser substituídas pelo piloto. O motivo era simples: as proteções do envelope de voo definiam os limites mais externos do voo seguro, além dos quais não havia razão para ir. Por que um piloto deve ser capaz de substituí-los?
Embora possa parecer senso comum, essa proposição resultou em uma reação massiva dos pilotos e um ceticismo considerável do público voador. Os pilotos gostavam de sentir que eram eles que estavam no controle, e os passageiros não confiavam nos computadores por princípio.
A tentativa da Airbus de reduzir drasticamente os acidentes por erro do piloto, impedindo fisicamente que os pilotos colidissem com seus aviões foi impopular não porque os pilotos quisessem derrubar aviões, mas porque era indelicado reconhecer que às vezes o faziam de qualquer maneira.
Felizmente para a Airbus, as companhias aéreas estavam um pouco mais abertas à ideia do que os pilotos na época; caso contrário, o A320 estaria morto na água. Mesmo assim, a empresa ainda precisava provar ao mundo que o A320 realmente representava o futuro da aviação comercial.
Vários pedidos já haviam sido feitos quando o programa foi oficialmente divulgado em 1984, mas muitos mais eram necessários. A Airbus e seus clientes lançaram uma campanha de marketing agressiva baseada nos novos recursos radicais do A320, que continuou até a entrada do avião em serviço comercial com a Air France em 18 de abril de 1988.
Foi pouco mais de dois meses depois, em 26 de junho de 1988, que os pilotos da Air France Michel Asseline e Pierre Mazières embarcaram em um A320 totalmente novo para aquele que viria a ser um dos voos mais incomuns de suas longas carreiras.
O voo foi fretado da Air France em curto prazo por um aeroclube local na cidade oriental de Mulhouse como um "batismo aéreo" com um voo panorâmico ao redor do Mont Blanc.
Os passageiros ganharam passagens no voo como parte de um evento promocional organizado por empresas locais, e muitos deles (incluindo várias crianças desacompanhadas) nunca haviam viajado de avião.
O outro objetivo do voo era como uma atração de show aéreo. O clube voador de Mulhouse havia organizado um show aéreo no aeroporto de Mulhouse-Habsheim para o dia 26 de junho, e eles queriam que o novo A320 empolgante aparecesse.
F-GFKC, o A320 envolvido no acidente
O avião que iriam voar era o F-GFKC, o nono Airbus A320-111 a sair da linha de montagem e o terceiro entregue à Air France. O capitão Michel Asseline o retirou da fábrica dois dias antes e ele havia acumulado apenas 22 horas de voo.
Asseline, um ex-piloto da Força Aérea, fez questão de demonstrar suas capacidades: ele ocupou uma posição de alto nível na equipe da Air France encarregada de apresentar o A320 à sua frota e ficou impressionado com suas capacidades. Ele até vinha fazendo aparições frequentes na TV e nos jornais para promover o avião.
Juntando-se a ele no cockpit estava o capitão Pierre Mazières, ele próprio um capitão sênior da Air France com mais de 10.000 horas de voo, semelhante a Asseline.
Depois de transportar o avião vazio de Paris, Asseline e Mazières chegaram a Mulhouse no início da tarde, onde supervisionaram o embarque de 130 passageiros. Os passageiros incluíam jornalistas, aviadores de primeira viagem e várias crianças, uma das quais era tetraplégica. Eles foram assistidos por uma empresa padrão de quatro comissários de bordo, elevando o número total de ocupantes para 136.
Um dos passageiros também era comissário de bordo em outra companhia aérea, e ela e outra passageira foram aparentemente convidadas a se sentar na cabine do piloto, onde eles brincaram com o capitão Asseline sobre um jato “pré-histórico” da primeira geração que estava passando por eles no pátio.
Aeroporto de Mulhouse-Habsheim
Depois de terminar a sequência de inicialização, Asseline retirou o plano de voo que havia sido fornecido a ele pela Air France e passou a resumir o plano para os dois sobrevoos no campo de aviação de Habsheim.
O plano de voo era bastante básico: previa um sobrevoo de baixa velocidade ao longo da pista 02, a única pista pavimentada do campo de aviação, seguido por um sobrevoo de alta velocidade na direção oposta, e deixou os detalhes para o capitão Asseline, que foi considerado capaz de fazer o resto sozinho.
O que ele descobriu foi mais ou menos assim: eles voariam para o norte do aeroporto Basel-Mulhouse a 300 metros acima do solo até avistarem o aeroporto Mulhouse-Habsheim, ponto em que desceriam na linha da pista 02 a uma altura de 100 pés com os flaps na posição 3 e o trem de pouso abaixado. Asseline então puxaria o manche lateral para aumentar o ângulo de ataque até atingir “alfa máximo”, o maior ângulo de ataque permitido pelas proteções do envelope de voo.
Eles então voariam nivelados em alfa máx até que Asseline instruísse Mazières a aplicar potência de decolagem/arremesso (TOGA), ponto em que eles subiriam e circulariam para o segundo sobrevoo. Asseline notou que ele precisaria desengatar o “piso alfa”, uma proteção de envelope de voo secundária que tentaria iniciar uma volta automática conforme eles se aproximassem de alfa máximo. Isso pode ser feito mantendo pressionado um botão nas alavancas do acelerador por 30 segundos em um ponto anterior do voo.
Depois de dar uma versão menos técnica do briefing ao comissário de bordo líder (incluindo um pedido para que todos os passageiros prendessem os cintos de segurança para o voo), Asseline foi ao sistema de som público para informar os passageiros.
“Senhoras e senhores, olá e bem-vindos a bordo deste Airbus A320, número três da série da Air France, e que está em serviço há apenas dois dias. Em breve decolaremos para um curto voo turístico a partir do Aeroclube Habsheim, onde faremos dois sobrevoos para demonstrar a continuidade da aviação francesa, e depois faremos um tour pelo Monte Branco, dependendo das condições climáticas e do tráfego aéreo. Desejo a todos um voo muito agradável.” Ele então repetiu o anúncio em alemão.
Às 14h41, O voo 296 da Air France decolou da pista do aeroporto Basel-Mulhouse e virou para o norte para voar para Habsheim, que ficava a apenas cinco minutos de voo. Sua tarefa imediata era fazer contato visual com o campo de aviação a tempo de descer de 1.000 pés para a altura do sobrevoo de 100 pés.
O tempo estava bom, com uma fina camada de céu encoberto - nada que pudesse complicar as coisas de alguma forma. Mas os pilotos pareciam não ter certeza sobre a localização do campo de aviação.
“Você está a oito milhas náuticas lá, logo verá, ali está a rodovia”, disse Mazières. Uma rodovia passava pelos dois aeroportos e eles pretendiam segui-la até Habsheim.
“Vamos deixar a rodovia à esquerda, não vamos... é à esquerda... não, à direita da rodovia”, disse Asseline.
“É um pouco à direita da rodovia, então você... você sai da rodovia à esquerda.”
"Ok, assim que nos identificarmos, desceremos rapidamente."
A Pista 34R é destacada em vermelho com a pista 02 em primeiro plano
Um minuto depois, às 14h44, Asseline anunciou: “Lá está o campo de aviação, está lá, entendeu?”
Nesse ponto, eles estavam a apenas um minuto da pista, então Asseline puxou os manetes de volta para a marcha lenta e colocou o avião em uma descida rápida. Apressando-se para se preparar, Mazières ajustou os flaps 3, baixou o trem de pouso e entrou na leitura da pressão barométrica local.
Foi nesse momento que Asseline observou que os espectadores não estavam alinhados ao longo da pista 02 - eles estavam todos parados ao lado da pista 34R, uma pista de grama muito mais curta que cruzava a pista 02 em um ângulo de 40 graus.
No último minuto, ele virou ligeiramente para a esquerda para se alinhar com a pista 34R, passando por cima da floresta ao redor do aeroporto. Ainda descendo a 600 pés por minuto, o voo 296 se alinhou com a pista.
“MUITO BAIXO, TERRENO", o sistema de alerta de proximidade do solo disparou. “Duzentos pés”, anunciou a voz robótica do rádio-altímetro.
Mazières fez um comentário sobre um oficial de segurança de voo da Air France que estava encarregado de determinar se as tripulações estavam observando as margens de segurança exigidas. Isso pode ter sido uma referência indireta ao fato de que eles estavam atualmente excedendo várias das margens acima mencionadas.
Segundos depois, o A320 se aproximou de 30 metros e o Asseline não havia freado sua taxa de descida.
“Ok, você está a 30 metros, observe o altímetro”, disse Mazières.
“30 metros”, disse o rádio-altímetro.
"Cinquenta. Quarenta."
"Cuidado com os postes à frente, os vê?", Mazières avisou.
“Sim, sim, não se preocupe”, disse Asseline.
“Trinta”, disse o rádio-altímetro.
Asseline saiu da descida a apenas 30 pés acima do solo. Era óbvio para passageiros e espectadores que o avião estava mais baixo do que deveria. Com o piso alfa desativado e os motores ainda em marcha lenta, Asseline puxou o manche lateral para trás, desacelerando rapidamente o avião conforme o ângulo de ataque subia em direção ao alfa máximo. A velocidade do ar caiu abaixo de 120 nós.
De repente, Asseline e Mazières perceberam que havia uma floresta logo além do final da pista e foram direto para ela.
Asseline pressionou os aceleradores direto para a potência máxima e Mazières gritou: "Volte para a pista!"
Mas leva cerca de oito segundos para os motores do A320 acelerarem da marcha lenta para a potência de rotação, e eles não tinham oito segundos.
Com uma graça surreal, o avião passou pela multidão de espectadores e foi direto para a floresta. "Merde!" Asseline gritou, a última palavra capturada no gravador de voz da cabine.
Acima: vídeo real do acidente
Enquanto espectadores incrédulos olhavam com as câmeras rodando, o A320 desceu suavemente por entre as árvores, seus jatos de jato lançando nuvens duplas de poeira e galhos quebrados enquanto desapareciam na vegetação.
Por alguns segundos, o nariz do avião pôde ser visto estendendo-se por entre as árvores, como se se esforçasse para escapar do abraço frondoso da floresta. Mas também escorregou para baixo do dossel e, momentos depois, uma enorme nuvem de fumaça e fogo irrompeu de trás da linha das árvores, enrolando-se no céu de verão como uma nuvem em forma de cogumelo.
Acima: ângulo alternativo da colisão
O voo 296 da Air France caiu. A bordo do avião, o impacto com as árvores a princípio se assemelhou a um pouso forçado, mas logo piorou muito. Troncos e galhos rasgaram a fuselagem; ambos os motores ingeriram folhas e falharam catastroficamente.
No impacto com o solo, a asa direita se partiu, ejetando combustível como um lança-chamas enquanto o avião derrapava e parava. O avião parou depois de apenas algumas centenas de metros, essencialmente intacto, exceto pela asa direita, mas cercado por fogo.
A bordo, o sistema elétrico falhou e todas as luzes de emergência apagaram. Os corredores foram iluminados principalmente pela luz das chamas. Muitos passageiros foram atirados contra os assentos à sua frente com o impacto, resultando em ferimentos generalizados na cabeça; havia ossos quebrados, lacerações e hematomas - mas, em geral, os ferimentos não eram graves. Na verdade, todos os 136 passageiros e tripulantes sobreviveram ao acidente.
Embora todos estivessem vivos, era óbvio que eles não teriam muito tempo para escapar antes que o fogo consumisse o avião. O rompimento dos tanques de combustível da asa direita causou um grande incêndio em todo o lado direito do avião, e um vazamento menor no lado esquerdo desencadeou outro incêndio ao redor da raiz da asa esquerda.
Poucos segundos após a queda, fogo e fumaça começaram a entrar na cabine através de brechas no chão ao redor das linhas 10-15 e um par de janelas quebradas no lado esquerdo das linhas 8 e 9.
O Capitão Asseline tentou pedir uma evacuação, mas o sistema de comunicação estava morto. Na cabine, comissários de bordo e passageiros correram para as portas, apenas para descobrir que seis das oito saídas do avião estavam totalmente inutilizáveis: todas as saídas do lado direito e as duas saídas sobre as asas da esquerda estavam bloqueadas pelas chamas.
Para piorar a situação, os comissários de bordo descobriram que a porta da frente esquerda estava bloqueada por galhos de árvores e não abria totalmente, fazendo com que o escorregador se abrisse parcialmente dentro do avião. Um passageiro e um comissário conseguiram empurrar a porta com força suficiente para liberar o escorregador, que saltou para fora com tanta força que os dois homens foram atirados para fora do avião.
Na parte de trás da cabine, que havia sido separada da frente por uma parede de fogo, os passageiros estavam em boas mãos: o comissário sentado aqui havia realizado uma evacuação de emergência antes, depois que um Air France 747 pegou fogo durante uma decolagem abortada em Mumbai em 1975.
Guiados por sua voz calma e tranquilizadora, os passageiros desceram do avião de maneira ordenada, embora o escorregador de fuga tivesse sido esvaziado quase imediatamente por galhos de árvores afiados.
Na frente, no entanto, os passageiros entraram em pânico, empurrando uns aos outros e saindo pela porta em uma confusão sangrenta de galhos retalhados que podem ter causado mais ferimentos do que o próprio acidente.
Para piorar a situação, nem todos conseguiram se levantar de seus assentos: no calor do momento, ninguém se lembrou de ajudar o menino tetraplégico do assento 4F. Uma menina de sete anos um pouco mais para trás também ficou presa, incapaz de soltar o cinto de segurança depois que o encosto do banco desabou em cima dela.
Seu irmão mais novo tentou libertá-la, mas foi levado pela multidão em pânico. O cabelo de uma mulher pegou fogo; As roupas de outro passageiro pegaram fogo e foram apagadas por um comissário de bordo.
Em poucos minutos - quanto tempo exatamente não pôde ser determinado - os últimos passageiros pareciam ter deixado o avião. Os comissários de bordo tentaram ligar de volta para a cabine cheia de fumaça, mas não houve resposta.
Enquanto os comissários de bordo faziam suas saídas, Asseline pegou Mazières, que havia se ferido no acidente, e o arrastou porta afora. Ele tentou voltar para o avião para verificar mais uma vez se havia retardatários, mas foi derrotado pela fumaça e pelas chamas.
No início, parecia que todos haviam saído. Só horas depois, depois de contabilizar todos os sobreviventes, três pessoas foram encontradas desaparecidas.
Um era o menino tetraplégico; outra era a garota que não conseguia tirar o cinto de segurança. A terceira foi uma mulher que deixou o marido antes de evacuar o avião e voltou para a cabine na tentativa de salvar a menina, apenas para ser vencida pela fumaça.
Todas as três vítimas morreram por inalação de gases tóxicos muito antes de o avião queimar.
A queda espetacular, ocorrida apenas três meses após o lançamento do A320 em serviço, ganhou as manchetes em todo o mundo. As estações de TV reproduziam o vídeo cristalino de um espectador dos segundos finais repetidas vezes.
Os céticos do A320 - e havia muitos - especularam imediatamente que o sistema fly-by-wire era o responsável, que os computadores haviam de alguma forma ignorado os pilotos e impedido que fugissem.
O capitão Asseline, anteriormente um dos maiores proponentes do Airbus, alimentou essa especulação ao relatar que os motores não produziram potência quando ele ordenou que acelerassem. Se as alegações fossem verdadeiras, seria desastroso para a Airbus e, com ela, toda a indústria de aviação europeia.
Após uma análise exaustiva dos dados de voo, o vídeo, a gravação de voz da cabine, vários voos de teste na vida real e uma série de testes de simulador, o BEA determinou que todos os controles de voo e os motores responderam normalmente aos comandos do Capitão Asseline.
A resposta dos motores foi uma questão particularmente importante. Mas, apesar das alegações de Asseline, os dados do FDR, uma análise espectral dos sons do motor no CVR e uma análise semelhante do vídeo do espectador concordaram que Asseline acelerou os motores entre 5 e 5,4 segundos antes do impacto com as árvores, ponto em que os motores aceleraram para 84% da potência, facilmente no caminho certo para atender aos requisitos de certificação, que estipulavam que eles deveriam atingir 94% da potência em oito segundos após terem sido acelerados da marcha lenta.
Uma análise do desempenho geral do avião explicou por que isso foi insuficiente para evitar o acidente. Como os pilotos avistaram o aeroporto tão tarde, eles tiveram que colocar os motores em marcha lenta a fim de descer rápido o suficiente para alcançar a altura planejada do sobrevoo. Consequentemente, ao nivelar e subir para alfa máximo, o avião entrou em um estado de energia extremamente esgotado.
Enquanto as proteções do envelope de voo impediam o avião de estolar, a margem era fina como uma navalha, já que o arrasto do alto ângulo de ataque rapidamente diminuiu a velocidade restante do A320.
Sem altura a perder e pouco impulso dos motores, o avião não tinha nem a energia potencial nem a energia cinética necessária para subir. A única maneira de contornar seria esperar que os motores acelerassem até a potência máxima, mas Asseline aplicou o empuxo TOGA tarde demais para evitar o acidente.
Isso contrastava com os voos anteriores em alpha max que a Asseline havia conduzido no simulador e na vida real. Ele não estava mentindo quando disse a Mazières que já tinha feito isso 20 vezes, mas havia uma diferença fundamental entre aqueles voos e este: a posição dos manetes.
Durante os voos anteriores em alpha max, ele sempre deixou os motores com uma configuração de potência bastante alta. Isso permitiu que os motores desenvolvessem rapidamente a potência máxima quando o Asseline comandava, porque ir de 60% para 100% da potência leva consideravelmente menos tempo do que ir de 20% para 60%.
Essa rápida aceleração permitiu que o avião ganhasse altitude alguns segundos após o início da volta. Não é difícil entender por que Asseline, tendo sempre sido capaz de acelerar fora do alfa máximo com relativa facilidade no passado, teria pensado no momento que algo estava errado quando cinco segundos se passaram sem que o avião subisse depois que ele aplicou a potência do TOGA.
No entanto, quando o BEA internamente chegou a essas conclusões, o capitão Asseline cortou toda a cooperação com a investigação e começou a fazer aparições na televisão nas quais alegava que um encobrimento estava em andamento e que ele estava sendo usado como bode expiatório.
Em uma dessas aparições, ele fez uma nova afirmação: quando ele parou para tentar evitar as árvores, o nariz se inclinou para baixo, o que em sua opinião era um mau funcionamento flagrante do sistema fly-by-wire.
Verificando os dados, os investigadores descobriram que ele estava realmente dizendo a verdade - mas suas declarações sobre o que isso significava eram uma descaracterização grosseira. As proteções do envelope de voo realmente intervieram no último segundo para empurrar o nariz ligeiramente para baixo, porque o avião estava na beira de um estol no momento em que Asseline tentou estacionar.
Na verdade, se ele tivesse tido permissão para subir abruptamente ao tentar fazê-lo, o avião teria estagnado e caído como uma pedra no chão, provavelmente resultando em muito mais baixas do que as infligidas no evento real.
A BEA também explorou as possíveis razões pelas quais o sobrevoo foi conduzido a 30 pés em vez de 100. Embora o rádio altímetro pudesse ser ouvido claramente chamando a altitude no CVR e Mazières parecesse reagir a isso, o capitão Asseline afirmou que não conseguia ouvir isso porque as chamadas não eram transmitidas pelos fones de ouvido dos pilotos.
Ele também afirmou que estava usando seu altímetro barométrico para determinar sua altura acima do solo, em vez de seu rádio-altímetro. O altímetro barométrico mede a altura acima do nível do mar, mas pode ser usado para ler a altura acima do solo comparando o valor a um marcador ou “bug” que representa a elevação do aeroporto.
O rádio altímetro mede diretamente a altura acima do solo e todo piloto é treinado para usá-lo ao voar em baixas altitudes. Embora Asseline afirmasse que o rádio-altímetro digital era muito difícil de ler em comparação com o altímetro barométrico analógico, o altímetro barométrico simplesmente não é preciso o suficiente para ser usado em voos de baixa altitude.
Além das margens de erro do altímetro barométrico natural, outros fatores que poderiam ter influenciado a descida abaixo de 100 pés incluíram o tamanho pequeno do aeroporto, com uma pista curta e uma torre de controle diminuta que poderia ter criado um falso senso de escala; e a atitude do nariz para cima da aeronave, que colocava os pilotos mais acima do solo.
Embora Asseline negasse veementemente, a BEA também sentiu que o desejo de se exibir para os espectadores e para as mulheres na cabine de comando poderia tê-lo levado a correr riscos extras.
No entanto, ficou claro que nenhum dos pilotos sabia sobre a floresta no final da pista até poucos segundos antes do acidente e, se soubesse, eles poderiam ter agido de forma diferente. Além disso, os pilotos pareciam não saber que o sobrevoo seria na pista 34R até que avistaram a localização dos espectadores.
Tudo isso sugeria uma falta de planejamento adequado, especialmente por parte da Air France. No final das contas, o plano da Air France, elaborado apenas dois dias antes do voo, previa um sobrevoo de baixa e alta velocidade, mas incluía muito poucas informações específicas.
A Air France conduziu um estudo de viabilidade para os sobrevoos baseados na pista 02, e não na pista 34R, porque a companhia aérea não perguntou aos organizadores do show aéreo onde o evento aconteceria.
Além disso, porque nenhuma pista era capaz de lidar com um A320, Os regulamentos dos shows aéreos franceses exigiam que os sobrevoos fossem realizados a uma altura de pelo menos 170 pés, mas a Air France vinha usando 100 pés em todos os seus sobrevoos, frequentemente violando a lei.
Os regulamentos também exigiam que a tripulação se reunisse com os organizadores do show aéreo antes do voo de demonstração, mas a Air France nunca organizou tal encontro.
Os organizadores se reuniram com todos os outros pilotos programados para participar do show aéreo, mas eles não estavam preocupados com a ausência dos pilotos do A320 porque a Air France sempre teve um desempenho perfeito em shows aéreos anteriores. E em nenhum momento foi proposto que os pilotos fizessem um voo de reconhecimento para se familiarizar com o aeroporto, onde nunca haviam estado antes.
Isso significava que a maior parte do planejamento tinha que ser feito pelos pilotos no dia do voo. O capitão Asseline escolheu uma altura de 30 metros porque era o que as regras da Air France especificavam; ele não estava ciente do mínimo regulamentar de 170.
Se ele soubesse que estaria voando na pista 34R e que havia uma floresta de 40 pés de altura a poucos metros do final da pista, ele poderia ter incluído um maior margem de segurança, mas a Air France não lhe forneceu essa informação, e a floresta também não apareceu em seus mapas.
A decisão da Asseline de realizar um sobrevoo a 100 pés enquanto em alfa máximo foi, portanto, informada por um conjunto de suposições que não refletiam a realidade. Essa manobra exigia uma pista relativamente longa, sem obstáculos próximos, e a pista 02 poderia ter se qualificado, mas a pista 34R definitivamente não. Quando os pilotos souberam que o sobrevoo seria realizado na pista 34R, era tarde demais para ajustar o plano para compensar.
E a escala real da floresta não se tornou aparente até que eles já estivessem praticamente no mesmo nível dela. Asseline esperava deslizar em alfa máximo por muito mais tempo do que realmente poderia, dado o comprimento da pista, e o súbito aparecimento da floresta o pegou completamente desprevenido. Quando ele entendeu o que estava acontecendo, já era tarde demais para reagir devido ao precário estado de energia do avião.
Mas, no final do dia, a pergunta tinha que ser feita: por que diabos o capitão Asseline achou uma boa ideia realizar um sobrevoo alfa max de baixa altitude em um show aéreo com 130 passageiros a bordo?
Certamente, este foi um grave erro de julgamento. Ele estava em uma posição em que o espetáculo seria recompensado e ele era conhecido como um pouco arriscado (seus colegas às vezes o chamavam de “Rambo”).
Mas parte da resposta também pode ser o próprio A320. O Asseline estava mais familiarizado com seus sistemas e recursos do que quase qualquer outro piloto e provavelmente tinha grande confiança em sua capacidade de mantê-lo e aos passageiros seguros. Isso pode ter obscurecido o perigo inerente da manobra.
Certamente ninguém teria tentado realizar um sobrevoo equivalente a alpha max em um Boeing, mesmo sem passageiros a bordo; o risco de estagnar e cair na pista seria muito grande. Ironicamente, o fato de que o Airbus protegeu os pilotos de ultrapassar os limites do avião pode ter encorajado Asseline a voar muito mais perto desses limites do que jamais teria feito de outra forma.
O relatório final do BEA culpou em grande parte o capitão Asseline pelo acidente, com algumas críticas também reservadas à Air France, que não lhe deu todas as informações de que precisava para planejar o voo.
Asseline e seus apoiadores, que incluíam um importante sindicato de pilotos da França, denunciaram o relatório como resultado de um acobertamento para proteger a reputação da Airbus.
Os apoiadores do Asseline contrataram um instituto suíço de criminologia para examinar a conduta da investigação, enquanto uma equipe de documentários contratou um “consultor de acidentes de aeronaves” britânico chamado Ray Davis para ajudá-los a refutar as descobertas.
A chave para suas afirmações foi a alegação de que os gravadores de voo foram adulterados (ou substituídos por gravadores de voo inteiramente novos) para mascarar quanto tempo realmente levou para os motores responderem quando Asseline pediu energia TOGA.
Este acampamento acreditava que os computadores do A320 detectaram que ele estava em uma configuração de pouso em baixa velocidade se aproximando do solo e entraram em modo de pouso, evitando que Asseline desse a volta.
Não era assim que o modo de pouso funcionava, e os investigadores realizaram testes de voo ao vivo para mostrar que os computadores não entrariam no modo de pouso de qualquer maneira, mas o argumento parecia convincente para as pessoas que não sabiam (ou acreditavam) nas descobertas.
Davis alegou especificamente que faltaram quatro segundos nos momentos finais do voo - o suficiente para colocar a resposta do motor fora dos requisitos de certificação. Sua principal evidência foi uma aparente discordância entre as marcas de tempo na transcrição do ATC e o gravador de dados de voo.
O FDR tinha um parâmetro de "transmissão de rádio", que apareceu nos dados quatro segundos após a transmissão final do controle de tráfego aéreo. Mas isso foi realmente um mal-entendido básico de como o FDR funciona: o parâmetro “transmissão de rádio” só é registrado quando um dos pilotos faz uma transmissão de saída, não quando uma transmissão de entrada é recebida. O ponto de dados correspondeu à resposta de Mazières à transmissão, não à transmissão em si, e combinou perfeitamente com o cronograma oficial.
Davis também afirmou que os dados do voo mostraram o avião desacelerando nos segundos finais antes de atingir as árvores, em vez de acelerar, como aconteceria se os motores estivessem girando normalmente. Este também foi um mal-entendido causado pela falta de conhecimento relevante.
Na França (pelo menos naquela época), a aceleração positiva era escrita com um sinal de menos e a aceleração negativa com um sinal de mais, algo que Davis poderia ter facilmente confirmado olhando os dados para o resto do voo, o que teria feito não sentido de outra forma. O avião estava realmente acelerando nos segundos finais, exatamente como deveria.
Asseline e seus apoiadores também apontaram evidências que pareciam indicar que um ou ambos os motores haviam falhado em produzir potência pouco antes do impacto. A transcrição original da gravação de voz da cabine de comando continha as palavras “boom, boom” pouco antes do final da gravação, que Asseline disse que poderia ser o som de uma parada do compressor.
Um estol do compressor pode ocorrer quando o fluxo de ar nos motores é interrompido em ângulos de ataque elevados, mas se um tivesse ocorrido, teria sido claramente audível no vídeo do espectador, o que não foi. As palavras “boom, boom” eram simplesmente uma tentativa do transcritor de escrever o que estavam ouvindo e, na verdade, descreviam o som dos impactos nas árvores.
Também foi alegado que as medições do BEA das alturas das árvores mostraram que o motor esquerdo estava mais alto do que o motor direito, indicando um desequilíbrio no empuxo do motor - mas os locais dos dois pontos de medição estavam separados por 16 metros, enquanto os motores estavam separados por apenas 11,5 metros. A medição da altura do lado direito foi menor simplesmente porque foi feita em uma área atingida por um dos motores rebaixados do avião, enquanto a medição da esquerda não foi.
Além disso, embora os motores não estivessem mais produzindo energia no momento em que atingiram o solo, a presença de matéria vegetal bem no fundo dos núcleos mostrou que eles estavam funcionando normalmente quando atingiram as árvores pela primeira vez e não haviam falhado durante o voo.
Apesar dessas refutações detalhadas e dos erros gritantes no relatório de Ray Davis, as alegações de que o sistema fly-by-wire do Airbus A320 causou a queda do voo 296 da Air France ainda são amplamente aceitas.
Michel Asseline continua fazendo aparições em programas de TV e em artigos de notícias na tentativa de limpar seu nome, onde normalmente pouco esforço é feito para contestar suas afirmações. Notavelmente, Pierre Mazières, que pode ser ouvido no CVR expressando ceticismo velado sobre a sabedoria do plano de voo de Asseline, nunca falou publicamente sobre o acidente ou sobre as alegações de Asseline.
Felizmente, os investigadores da BEA não perderam de vista sua missão. Depois de determinar a causa do acidente, eles emitiram uma longa lista de recomendações de segurança, incluindo que cada voo de demonstração tem um plano de voo abrangente com os parâmetros de voo esperados e procedimentos de emergência; que os pilotos que voarão em voos de demonstração façam o reconhecimento do destino e (se possível) conduzam uma corrida prática em um simulador; que os voos de demonstração sejam realizados sem passageiros; que as regras internas das companhias aéreas francesas sejam verificadas quanto à conformidade com as regulamentações nacionais; que o treinamento do A320 enfatiza que as limitações de desempenho devem ser consideradas, apesar da existência de proteções de envelope de voo; que as tripulações que realizam voos de demonstração recebam treinamento especial; e que todos os alertas de áudio do A320 sejam reproduzidos através dos fones de ouvido dos pilotos.
Várias recomendações também dizem respeito à segurança da cabine e à sobrevivência dos passageiros, incluindo que os comissários de bordo recebam um treinamento mais detalhado para conversão de aeronaves; que as autoridades estudem como criar simulações de evacuação realistas para o treinamento de comissários de bordo; que os comissários de bordo recebam treinamento sobre como projetar calma durante uma emergência; que as companhias aéreas francesas instruam os passageiros sobre como desatar os cintos de segurança durante as instruções de segurança pré-voo e sobre os cartões de segurança; que as fivelas do cinto de segurança se soltem e se separem fisicamente com uma única ação; e que as costas dos assentos sejam projetadas para diminuir os ferimentos na cabeça dos passageiros durante uma colisão.
A consequência mais duradoura do acidente é provavelmente a proibição total de passageiros a bordo de voos de demonstração em shows aéreos, algo que, em retrospectiva, parece senso comum. Mas, como se costuma dizer, os regulamentos são escritos com sangue.
Pouco depois do acidente, as autoridades francesas retiraram a licença do capitão Asseline de sua licença de piloto, e ele nunca mais voou na França. Após a publicação do relatório final do BEA, os promotores franceses acusaram Michel Asseline, Pierre Mazières, dois funcionários da Air France e o presidente do clube de voo Habsheim de homicídio culposo em conexão com o acidente.
Em 1997, Asseline foi condenado a seis meses de prisão, enquanto os outros quatro foram condenados a penas suspensas de 12 meses (o que significa que eles não teriam tempo de prisão a menos que cometessem outro crime). Mazières aceitou discretamente esse resultado e continuou voando para a Air France, mas Asseline apelou - apenas para que o tribunal de apelações aumentasse sua sentença de seis para dez meses.
Embora a preponderância de evidências sempre sugeriu que Asseline foi o culpado no acidente, não está errado em denunciar a criminalização de suas ações. A Air France efetivamente o preparou para o fracasso, mas ele recebeu o peso da culpa, quando essa culpa deveria ter sido compartilhada de maneira mais equilibrada com seu empregador.
E só podemos imaginar como ele se sente - pego em uma situação em que teve segundos para reagir, chocado com o terrível acidente que ocorreu sob sua supervisão, apenas para ser arrastado pelo desafio por funcionários e pelos tribunais antes que tivesse a chance de curar.
Não é à toa que ele acredita que houve uma campanha de difamação contra ele. E a condenação do Capitão Asseline foi apenas um exemplo de uma tendência de criminalizar erros de julgamento que levam a acidentes com aeronaves, uma prática que não melhora a segurança - afinal, Asseline estava de fato dentro de seus direitos de realizar um sobrevoo alfa max em um show aéreo com 130 passageiros a bordo.
Embora fosse uma ideia terrível, não era um crime, e esse era exatamente o problema. Felizmente, essa lição óbvia de segurança foi aprendida.
Até hoje, muitas pessoas - talvez até a maioria das pessoas - tanto na indústria da aviação quanto entre o público voador acreditam que as autoridades francesas encobriram a verdadeira causa do acidente para proteger a Airbus.
O referido instituto suíço de criminologia é freqüentemente citado em um relatório de 1998 no qual afirmava que as caixas pretas apresentadas no julgamento não eram as mesmas recuperadas do local do acidente em 26 de junho de 1988.
Mas nenhuma evidência convincente foi apresentada que possa desmascarar os dados de voo incluídos no relatório do BEA e com base nos quais Asseline foi condenado.
Na verdade, não há nem mesmo uma linha do tempo alternativa coesa de eventos. Asseline e seus apoiadores alegaram de várias maneiras que o avião entrou em modo de pouso, os motores falharam fisicamente, a automação baixou o nariz em vez de subir, e várias outras teorias sem se estabelecer em uma em particular. Uma coleção de “pegadinhas” não é um argumento convincente para explicar por que um avião caiu!
Grande parte do ceticismo em torno das descobertas oficiais decorre de mal-entendidos generalizados sobre como as investigações são conduzidas. Por exemplo, no livro “Voando na cara da criminalização”, Sofia e Andreas Mateou escreveram que “o fabricante do motor foi solicitado a verificar os motores, apesar do fato de que havia suspeita de mau funcionamento do motor”. Este é o procedimento padrão em todas as investigações de acidentes!
É claro que o fabricante inspeciona os destroços - ele é quem conhece os detalhes intrincados de como o avião funciona, e sua participação é necessária. As inspeções são realizadas por engenheiros com interesse profissional em descobrir o que deu errado e na presença de investigadores.
Etapas investigativas comuns como essas foram em muitos casos retratadas pela mídia como evidência de prevaricação quando, na verdade, são completamente rotineiras e não recebem qualquer tipo de escrutínio em um acidente “normal”.
Embora os fabricantes (notadamente o rival da Airbus, a Boeing) tenham ocasionalmente tentado enganar os investigadores, não há nenhum caso registrado em que os investigadores tenham conspirado com um fabricante para fazê-lo - nem um único.
O local do acidente hoje
Apesar de dezenas de acidentes terem se tornado o assunto de teorias da conspiração ao longo da história, na verdade não há nenhum caso em um país desenvolvido em que uma investigação de acidente de aeronave tenha sido posteriormente revelada ter deliberadamente encoberto a causa de um acidente.
No final do dia, era provavelmente inevitável que esse acidente se tornasse o assunto de teorias da conspiração. Afinal, realmente chegou em um momento ruim para a Airbus, e se o avião fosse considerado culpado, as consequências para a empresa teriam sido graves.
Mas isso não é evidência de um encobrimento por si só. Oitenta por cento ou mais dos acidentes de avião são causados por erro humano, e apenas parte do restante pela aeronave - as chances eram de que Asseline causou o acidente, não o avião. O que os investigadores devem fazer se as evidências começarem a apontar para aqueles 80% - fingir que não?
O BEA estava em uma situação sem saída. E olhando para trás, a história confirmou as conclusões oficiais: o A320 passou a ser o segundo avião mais popular já construído, e nenhum caiu devido a uma falha do sistema fly-by-wire ou uma ativação errônea das proteções do envelope de voo.
Memorial às vítimas do acidente no Aeroporto de Mulhouse-Habsheim
A nova filosofia de design tornou-se tão bem-sucedida que até a Boeing adotou sistemas de controle fly-by-wire para seus modelos mais recentes. A Airbus apresentou o A320 com a intenção de criar um novo tipo de avião que seria mais difícil para os pilotos cairem. Embora os próprios aviões tenham se mostrado seguros o suficiente, a Airbus não atingiu esse objetivo - hoje, seus aviões caem com a mesma frequência que os da Boeing.
O voo 296 da Air France ilustrou o principal motivo: os pilotos muitas vezes pensam que não podem derrubar aviões fly-by-wire, apenas para descobrir que as leis da física, em última análise, ainda se aplicam. Assim como o Titanic “inafundável”, o A320 “intransponível” rapidamente encontrou seu iceberg proverbial: a confiança insuprimível do ego humano.
Edição de texto e imagens por Jorge Tadeu (Site Desastres Aéreos)
Com Admiral Cloudberg, Wikipedia e ASN - Imagens: aeronewstv, AviationChief, Airways Magazine, Google, Mapio, BEA, Mayday, crashdehabsheim.net, Bureau of Aircraft Accidents Archives, Airbus, Franceleaks e Jean-Loup Frommer. Clipes de vídeo cortesia de nh6central no Youtube.
Na manhã de 26 de junho de 1987, o avião Hawker Siddeley HS-748-209 Srs. 2, prefixo RP-C1015, da Philippine Airlines, partiu para realizar o voo 206 do Aeroporto Doméstico de Manila, para o Aeroporto Loakan, em Baguio, cerca de 250 quilômetros (160 milhas; 130 milhas náuticas) ao norte de Manila.
Levando 46 passageiros e quatro tripulantes a bordo, o avião estava programado para chegar às 11h10, horário padrão das Filipinas, em Baguio, uma cidade com altitude de cerca de 1.500 metros (4.900 pés).
Um Hawker Siddeley HS 748 da Philippine Airlines semelhante ao envolvido no acidente
Conforme o avião se aproximava da cidade de Baguio, seu piloto relatou pouca visibilidade. Uma monção também foi relatada na área. O voo 206 desapareceu das telas de radar cerca de dez minutos antes do horário programado para pousar.
Os destroços do avião foram descobertos cinco horas depois de seu desaparecimento. O voo 206 caiu nas encostas envoltas em névoa do Monte Ugu, uma montanha de 2.086 metros de altura (6.844 pés) localizada entre Itogon, Benguet e Kayapa, Nueva Vizcaya.
O local do acidente foi localizado a cerca de 180 metros abaixo do cume do Monte Ugu e 15 quilômetros ao sul do Aeroporto de Loakan.
Não houve sobreviventes entre os 46 passageiros e 4 tripulantes do avião. A maioria das vítimas fatais eram filipinos, incluindo o bispo católico Bienvenido Tudtud, prelado da cidade de Marawi, e Gloria Mapua-Lim, esposa do então vice-presidente executivo da Philippine Airlines, Roberto Lim. Pelo menos um cidadão americano, John Neill, que era então o diretor administrativo da Texas Instruments das Filipinas em Baguio, morreu no acidente.
A queda do voo 206 foi, na época, considerada o segundo pior acidente de aviação comercial da história das Filipinas. No entanto, o relatório do The New York Times provou esse dado ser impreciso, já que o acidente anterior da Philippine Airlines em 1967, na verdade, teve menos mortes do que o voo 206. O número de mortos foi substituído pela queda do voo Cebu Pacific Air 387 em 1998, que foi superado dois anos depois pelo voo 541 da Air Filipinas.
A queda do voo 206 permaneceu como o terceiro acidente mais mortal em solo filipino até 2021, quando um Lockheed C-130 Hercules da Força Aérea das Filipinas caiu em Patikul, Sulu, reivindicando 53 vidas.
Durante a queda do voo 206, a presidente Corazon Aquino e a diretoria da companhia aérea apresentaram condolências às vítimas do voo 206 e seus respectivos familiares.