sexta-feira, 24 de maio de 2024

Corredor simples x corredor duplo: as vantagens e desvantagens que os fabricantes de aeronaves devem avaliar

Massa da fuselagem, arrasto, tempo de resposta e requisitos de carga devem ser considerados durante a fase de projeto da fuselagem.

Dentro da cabine da classe econômica do Boeing 787-9 da Korean Air (Foto: David McKelvey via flickr)
Uma das fases fundamentais do projeto de uma nova aeronave inclui o projeto da fuselagem. O projeto da fuselagem determina essencialmente a forma que a nova aeronave terá, juntamente com o dimensionamento e a localização de outros componentes principais. Independentemente da carga útil que os fabricantes pretendem transportar pelo ar, eles sempre se deparam com as compensações entre o projeto de fuselagem de corredor único ou corredor duplo.

Normalmente, aeronaves comerciais de menor capacidade (50-200 passageiros) compreendem fuselagens de corredor único. Aeronaves maiores com capacidade de 220 a 380 passageiros apresentam um design de fuselagem de corredor duplo. Exigir uma capacidade de passageiros de mais de 400 passageiros complica ainda mais o projeto.

Dentro da categoria de corredor duplo, aeronaves muito grandes apresentam um semi adicional (Boeing 747) ou um deck completo (Airbus A380). Como a capacidade de passageiros é apenas uma medida para o tamanho e a forma da fuselagem, os fabricantes devem encontrar um equilíbrio único entre arrasto da fuselagem, massa da fuselagem e possíveis tempos de retorno ao projetar a fuselagem.

Parâmetros de projeto


Para determinar se a fuselagem deve ser de corredor único ou corredor duplo, as equipes de projeto consideram vários parâmetros de projeto diferentes. Os principais parâmetros de projeto incluem massa da fuselagem, arrasto da fuselagem e tempo de retorno potencial para a aeronave. A massa da fuselagem influencia vários componentes principais da aeronave, incluindo o tamanho e a localização das asas, motores e trens de pouso, e determina o arrasto total que incorrerá durante o voo.

O arrasto da fuselagem determina essencialmente o consumo de combustível da aeronave. O arrasto total que a aeronave incorre durante o voo é uma combinação de arrasto parasita e arrasto induzido pela sustentação. O arrasto parasita inclui arrasto de forma, arrasto de fricção da pele e arrasto de interferência.

Um Airbus A380 da Lufthansa (Foto: Tom Boon)
O arrasto de forma é gerado como resultado do formato da aeronave. À medida que o fluxo de ar livre atinge a face frontal (diâmetro) da aeronave, o coeficiente de arrasto de forma é criado. Corpos mais finos e esguios geram menos arrasto de forma do que corpos de grande diâmetro. O perfil da aeronave (principalmente a fuselagem) determina a continuidade do fluxo livre sem separação da camada limite. O componente dominante do arrasto parasita é o arrasto de fricção da pele. É a força de arrasto criada quando o ar entra em contato com a superfície da aeronave. O arrasto de atrito superficial também pode ser rotulado como arrasto devido ao tamanho da fuselagem.

O arrasto de interferência é criado quando as forças de arrasto de duas ou mais superfícies da aeronave interferem no voo. A instabilidade do fluxo cria arrasto de interferência quando o fluxo que passa sobre a fuselagem encontra o fluxo sobre as asas. Um fluxo mais rápido é gerado nos pontos de fusão na região de fluxo transônico sobre a asa. Em condições típicas de cruzeiro, a fuselagem e as asas da aeronave são responsáveis ​​pela maior parte do arrasto parasita ocorrido durante o voo.

O arrasto induzido pela sustentação, como o nome sugere, é gerado devido à sustentação produzida pelas asas. O fluxo de ar rolando da superfície inferior da asa (maior pressão) para a superfície superior (menor pressão) causa vórtices nas pontas das asas. O arrasto induzido pela sustentação é um subproduto do downwash dos vórtices, o que afeta significativamente a eficiência aerodinâmica da aeronave. Dependendo do tipo de aeronave e da fase do voo, aproximadamente 35 a 40% do arrasto total pode estar associado ao arrasto induzido pela sustentação.

O arrasto induzido depende da envergadura da asa e da elipticidade da distribuição de sustentação no sentido da envergadura. A área da seção transversal de uma fuselagem tem um efeito menor no arrasto da fuselagem. O ar é muito flexível e facilmente se curva em torno de uma forma bulbosa, causando apenas pequenas quantidades de arrasto de pressão.

Um Airbus A350-1000 (Foto: Tom Boon)
O tempo de retorno da aeronave influencia significativamente a produtividade diária da aeronave. O desenho da fuselagem, em relação ao número de passageiros para o qual foi projetada, influencia na escolha do projeto de corredor único ou corredor duplo.

Arrasto total e velocidade


O arrasto total da aeronave varia com a velocidade. Em baixas velocidades e altos ângulos de ataque, como durante a decolagem e a subida inicial, o arrasto induzido pela sustentação é dominante. Durante esse tempo, o arrasto induzido pela sustentação é tipicamente 90% do arrasto total. Em um cruzeiro nivelado, a velocidade da aeronave é muito maior, resultando no domínio do arrasto parasita. O atrito do ar diminui com o ar mais rarefeito em grandes altitudes.

Como as aeronaves comerciais gastam quase 90% de seu tempo operacional em cruzeiro, o arrasto de atrito dominante é atendido por meio do projeto da fuselagem. O arrasto de fricção da pele depende da área exposta (área molhada). Áreas molhadas de diferentes tipos e tamanhos de fuselagem são testadas para identificar os efeitos no arrasto de fricção da pele em cruzeiro. Um projeto de fuselagem com a menor quantidade de área molhada por passageiro transportado (ou outra unidade de carga) fornecerá um resultado favorável.

Requisitos de carga


A seção transversal da fuselagem também depende dos requisitos de carga definidos para a aeronave. O tipo de contêiner de carga selecionado para os requisitos da missão determina a altura, largura e diâmetro da fuselagem. Por exemplo, a fuselagem do Airbus A300B (uma versão reduzida do A300 original com 250 passageiros) foi projetada em torno do onipresente contêiner de carga LD3, criando a bem-sucedida seção transversal oito lado a lado do A300/A330.

Um voo de carga de vacina COVID-19 da American Airlines (Foto: American Airlines)
Aeronaves estreitas (corredor único) mais recentes, como o Airbus A320 , podem acomodar contêineres LD3-45 (LD3 de altura reduzida). Por outro lado, um Boeing 777 de corredor duplo pode transportar contêineres LD3 regulares em seu convés de carga. Notavelmente, o Boeing 767 de corredor duplo usa os contêineres menores LD2 e LD8 devido à seção transversal da fuselagem mais estreita.

Uma fuselagem de corredor duplo de oito lados, como a do Airbus A330, usa mais comprimento de circunferência por assento lado a lado do que uma seção transversal de corredor único com assentos de seis lados. O conforto do passageiro e um menor tempo de resposta de uma fuselagem de corredor duplo podem resultar em desperdício de espaço na cabine e maior arrasto da fuselagem devido ao aumento da área molhada.

Uma fuselagem elíptica de corredor duplo pode ser promissora, mas tal projeto apresenta momentos de flexão indutores de fadiga. O fabricante deve considerar todas as compensações para permanecer o mais fiel possível aos requisitos de missão da aeronave projetada.

Com informações do Simple Flying

Nenhum comentário: