sábado, 9 de dezembro de 2023

Aconteceu em 9 de dezembro de 1936: Avião da KLM cai sobre casas após decolar em Londres


Em 9 de dezembro de 1936, o avião Douglas DC-2-115E, prefixo PH-AKL, da KLM - Royal Dutch Airlines (foto abaixo), batizada como "Lijster", operava um voo internacional de passageiros do Porto Aéreo de Croydon (como era conhecido na época), em Londres, para Amsterdã, na Holanda.


Naquele dia, o Porto Aéreo de Croydon estava envolto em neblina com visibilidade flutuando em cerca de 50 m (55 jardas); e todas as aeronaves operavam sob as chamadas condições "QBI" (um código Q que denota que todas as operações devem ser realizadas sob regras de voo por instrumentos).

As tripulações das aeronaves seguiam uma linha branca traçada aproximadamente leste-oeste pintada na superfície gramada da área de pouso de Croydon durante suas corridas de decolagem (um procedimento normal em vários aeroportos do Reino Unido na época, que estava em uso em Croydon desde 1931). 

Várias partidas por este método já haviam sido feitas naquele dia no momento em que o KLM DC-2 decolou, incluindo um DC-2 da Swissair, cerca de 25 minutos antes. 

Levando a bordo 13 passageiros e quatro tripulantes, o DC-2 da KLM iniciou sua decolagem ao longo da linha branca, mas após cerca de 200 jardas (183 m), o comandante Hautzman  desviou o avião da linha para a esquerda e, ao decolar, rumou para o sul em direção ao terreno ascendente, em vez de na direção oeste normal.

Depois de sobrevoar o limite sul do aeroporto, a aeronave atingiu a chaminé de uma casa em Hillcrest Road, Purley, em Londres, e depois colidiu com uma casa vazia no lado oposto da rua.

A aeronave, a casa e uma casa adjacente (também vazia na época) foram destruídas no acidente e no incêndio que se seguiu.


Treze passageiros e dois tripulantes morreram no momento do acidente. O único passageiro sobrevivente encontrado no local do acidente, morreu mais tarde no Hospital Purley. A comissária de bordo, Srta. Bongertmann, e o operador de rádio sobreviveram.

Dois dos passageiros que morreram foram Arvid Lindman, ex- primeiro-ministro da Suécia, e Juan de la Cierva, o inventor espanhol do autogiro.


Um relato notável de um médico que correu para ajudar o acidente a sobreviver sobrevive em um relatório de um inquérito sobre o acidente feito por um legista no Belfast News Letter de 16 de dezembro de 1936. Diz: "Dr. Lankester de Hillcrest Road, Purley, disse que ele chegou ao local do acidente dois minutos após o acidente. Naquela época, o número 25 da Hillcrest Road estava em chamas furiosamente, assim como o corpo do avião.

"O avião parecia estar quase verticalmente contra a casa. Os telefones próximos estavam com defeito, mas em menos de um minuto uma mensagem foi transmitida aos bombeiros e ambulâncias. O médico atendeu o Sr. Walter Schubach - um sobrevivente alemão - cambaleando pela estrada e foi ajudá-lo. 


Ele também foi chamado para ver uma garota que havia saído do avião. Depois de acompanhar algumas das vítimas ao Hospital Purley, ele voltou para Hillcrest Road e atendeu a sobrevivente restante - Srta. Bongertmann, a aeromoça que sobreviveu e voltou à Holanda de avião.

“Com exceção do homem que ele viu primeiro e da menina, nenhum dos ocupantes do avião mostrou o menor sinal de consciência.” O médico disse que os moradores lhe perguntaram se algo poderia ser feito para impedir que os aviões decolassem de Croydon com tão baixa visibilidade, mas o legista disse que isso seria assunto para um inquérito completo, que ocorreria mais tarde.


O cirurgião da divisão da polícia, Dr. Gardner, que inspecionou os corpos das vítimas, disse que os passageiros estavam todos gravemente queimados nos braços e nas pernas, mas seus corpos, que estavam até certo ponto protegidos por roupas, estavam menos queimados. 

Ele disse: "Eu entendo que cerca de 500 galões de gasolina foram acesos, gás monóxido de carbono suficiente teria sido liberado pela gasolina para causar inconsciência em um curto espaço de tempo ao ar livre. Em uma atmosfera como a da cabine do avião, a inconsciência aconteceria em questão de segundos."


O legista disse que foi um consolo o fato de as vidas valiosas terem saído “sem um longo período de sofrimento”. Então, com bastante tristeza, o jornal relatou: “Uma cena patética ocorreu no final do inquérito, quando parentes e representantes das vítimas fizeram fila em frente ao esquife e receberam pertences pessoais encontrados nos destroços”.

Na época, este foi o pior acidente aéreo no Reino Unido em termos de número de vítimas fatais. Esta foi a segunda queda de uma aeronave usando a linha branca para decolar em Croydon sob neblina. 


Em 31 de maio de 1934, uma aeronave da Air France que transportava jornais para Paris caiu após atingir o mastro de um farol de radionavegação de aeronave que havia sido erguido no final da rota de decolagem da linha branca, matando os dois tripulantes.

Foi determinado pela Divisão de Investigação de Acidentes do Reino Unido que o piloto no acidente de Purley não conseguiu manter o controle direcional da aeronave e também demonstrou "mau julgamento" ao não desacelerar os motores e abandonar a decolagem após a partida. pista. Porém, a investigação oficial do acidente foi encerrada em 16 de dezembro sem chegar a um veredito decisivo sobre as causas do acidente.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipédia, My London, ASN e baaa-acro

Asfalto esfarela e prende avião na pista do aeroporto de Congonhas, em SP

Segundo a Aena, concessionária responsável pela gestão do aeroporto, passageiros tiveram de ser retirados e irão embarcar em outra aeronave da companhia. Aeroporto seguiu em operação.


O avião Boeing 737-8EH, prefixo PR-GGR, da Gol, que iria para Vitória (ES) ficou preso no asfalto, que esfarelou no fim da tarde desta sexta-feira (8), na pista de taxiamento do aeroporto de Congonhas, na zona sul de São Paulo.

Os passageiros tiveram que desembarcar do avião, que estava prestes a decolar e a aeronave teve de ser rebocada.

O canal Golf Oscar Romeo, que faz transmissão ao vivo de Congonhas no YouTube, registrou, às 17h30, quando o piloto do voo da Gol questionou à torre de controle se havia algum avião atrás para ver se algum pneu havia esvaziado. "Acho que estamos presos em um buraco", afirmou.

A torre chegou a perguntar para o piloto de um voo da Azul que estava atrás se via o problema, mas o outro comandante disse que não.

Mesmo assim, o piloto da Gol continuou reclamando. "A gente está colocando potência aqui e não sai do lugar", disse ele, que em seguida afirmou que iria precisar de ajuda da empresa aérea.

Com as rodas do trem de pouso traseiro esquerdo presas, os passageiros tiveram de descer do avião na pista, por uma escada colocada na porta dianteira.


Em nota, a Aena, concessionária que administra Congonhas desde outubro, afirmou que uma das pistas de taxiamento do aeroporto sofreu uma desagregação do pavimento, impedindo a movimentação de uma aeronave da Gol.

"A aeronave já foi retirada do local e as operações seguem sem grande impacto, utilizando outra pista de taxiamento para acesso e saída da pista de pouso e decolagem principal", disse a concessionária.

A empresa não disse quando o asfalto será reparado e o que provocou o afundamento.

Segundo a Gol, os passageiros, que desembarcaram em segurança, irão viajar em outra aeronave da companhia.

Problemas recentes no aeroporto

Este é o quarto problema registrado em Congonhas, confira os anteriores:
  • Em 3 de novembro, um avião de pequeno porte parou na pista principal do aeroporto e interditou o local. Segundo a concessionária Aena, pousos e decolagens da pista principal ficaram suspensos entre 16h13 e 17h30, quando a situação foi normalizada. Houve 12 voos cancelados e 14 desviados para outros aeroportos. De acordo com a Aena, o jato executivo de modelo Cessna Citation vinha da cidade de Estrela D'Oeste, no interior de SP. A aeronave teve problemas com o sistema de freios durante a aterrissagem por volta das 16h13. Não houve feridos.
  • Em 1º de novembro, outro avião de pequeno porte também teve problemas no trem de pouso durante a noite e bloqueou temporariamente o aeroporto. A pane aconteceu com uma aeronave modelo Piper Aircraft PA-42, procedente de Cuiabá, que pousou na pista principal às 19h50. A operação na pista principal só foi retomada às 21h49 e causou atrasos em várias chegadas e partidas. Também nesse caso, não houve feridos.
  • Em 29 de outubro, Congonhas ficou igualmente fechado para pousos e decolagens depois que uma aeronave particular teve um pneu furado. A operação foi normalizada às 21h14 e estendida por meia hora, seguindo até as 23h30, segundo informações da Aena, concessionária responsável pela gestão do aeroporto. A aeronave, modelo Cirrus G2 e com capacidade para seis passageiros, pousava em São Paulo vinda de Goiânia quando o pneu furou e precisou de auxílio. Não houve feridos.
Via Folha de S.Paulo, Aeroin e g1

Vídeo: Motor de avião cargueiro Tu-204 pega fogo na decolagem

Um avião russo pegou fogo durante a decolagem da cidade de Ulan-Ude, na Buriácia, na Rússia.


"O avião aterrissou. Não houve feridos”, disse o chefe da Buriácia, Alexey Tsydenov, em seu canal Telegram sobre o avião de carga Tu-204, que voava para Zhangzhou, na China.

O motor da aeronave Tupolev TU-204 pegou fogo durante a decolagem no Aeroporto Internacional de Baikal, disse ele, acrescentando que o avião conseguiu pousar com segurança e que não houve feridos entre os cinco tripulantes que estavam a bordo do voo.


A Agência Federal de Transporte Aéreo da Rússia disse que a aeronave Tu-204 foi suspensa de voar para permitir que as autoridades avaliassem sua condição técnica.

A indústria da aviação do país foi duramente atingida pelas sanções ocidentais impostas pela invasão em grande escala da Ucrânia pelo presidente Vladimir Putin. Os aviões operados pela Rússia foram sancionados pelo governo dos EUA e os fabricantes de aeronaves pararam de fornecer peças sobressalentes e novos aviões ao país.

Via Airlive

História: Pulqui - o jato argentino que surpreendeu o mundo há 75 anos


Pulqui. Era esse o nome da aeronave que há 75 anos surpreendeu o mundo. Isso porque naquele 9 de agosto de 1947 decolou pela primeira vez o primeiro jato desenvolvido e construído na América Latina. O feito fez da Argentina o quinto país do mundo com esse tipo de tecnologia.

Sob o comando de Juan Perón, o Instituto Aerotécnico de Córdoba ficou responsável pelo desenvolvimento da aeronave. Entre os principais engenheiros envolvidos estava o francês Emile Dewoitine, que havia deixado seu país por ser acusado de colaborar com os nazistas.


O desenvolvimento do Pulqui foi rápido: o protótipo ficou pronto em pouco mais de um ano do início do projeto. O primeiro voo aconteceu a partir da Escuela de Paracaidistas de Córdoba, tendo nos comandos o tenente Edmundo “Pincho” Weiss.

Nos meses seguintes, uma série de voos de teste e de demonstração foram realizados, inclusive diante de Perón. A expectativa era armá-lo com quatro canhões de 20mm e iniciar uma produção em série. Porém, logo ficou claro que a aeronave não seria militarmente útil.


Equipado com um único motor Rolls Royce Derwent 5, o Pulqui teve um desempenho menor que o originalmente esperado. A velocidade máxima não passou dos 720 km/h e a autonomia estava limitada a 1h30, com 1.200 litros de comb. Se armado, o avião seria lento, de baixo alcance e pouco ágil.

A partir dos conhecimentos adquiridos, o Instituto Aerotécnico de Córdoba construiu o Pulqui II, que contou a colaboração do engenheiro alemão Kurt Tank. O novo jato argentino foi fortemente baseado no projeto do Focke-Wulf Ta 183, desenvolvido no fim da Segunda Guerra Mundial, mas jamais construído.

O Pulqui II voou em 27 de junho de 1950 e também não teve sucesso. Cinco protótipos foram construídos, sem que a produção em série tenha sido iniciada. Em 1955, o golpe de estado que destituiu Perón também significou o fim dos projetos de caças argentinos.

O céu é o limite? Quais as altitudes máximas que os aviões podem alcançar?


Cada modelo de aeronave tem um limite de altitude, e esse limite depende praticamente da potência do motor. Monomotores, por exemplo, são os aviões menos potentes do mundo. O popular modelo agrícola Ipanema, da Embraer, chega a atingir 938 metros de altura. Já a maior altitude registrada foi de um potente supersônico militar soviético modificado, o MIG-25 'Foxbat': em 1977, o piloto Alexandr Fedotov subiu a 37 quilômetros na atmosfera —um recorde na aviação mundial. Os aviões nem sempre voam na altitude máxima. A altitude depende do tipo de viagem. O motor de um Airbus A350-800 pode subir a 13 quilômetros, por exemplo. Só que voos de modelos comerciais operam em altitude de cruzeiro —uma faixa entre os 10 e os 12 quilômetros de altura.

Essa altitude padrão é uma norma internacional baseada nos caprichos da natureza: a cada quilômetro que subimos, a temperatura da atmosfera cai cerca de 7°C. Essa diminuição drástica gera turbulência em voos. Só que, entre 10 e 12 quilômetros, a temperatura média é de -55°C —ela é praticamente constante nesses dois quilômetros. Por isso, essa faixa é a menos turbulenta, e é ali que os aviões comerciais trafegam. A altitude de cruzeiro ainda é ideal para a economia de combustível. A velocidade é constante, e a resistência do ar é menor do que em lugares mais baixos - quanto mais alto, menos denso é o ar.

Como há milhares de aviões voando em uma faixa estreita ao mesmo tempo no planeta inteiro, todos devem respeitar uma norma internacional que prevê a separação de 300 metros entre uma aeronave e outra. Tanto na lateral quanto acima e abaixo. Essa separação é controlada por radares (nos aviões) e em solo (nas torres de controle). Como o número de aviões só aumenta, já existem estudos para diminuir a separação para 100 metros. Mas não há motivo de preocupação: junto com estes estudos, as aeronaves estão cada vez mais modernas, equipadas com radares supersensíveis. Além disso, aviões comerciais trafegam em rotas pré-definidas —isso reduz a chance de colisão no ar.

Monomotores sofrem muita turbulência justamente porque a potência é tão inferior que eles não podem alcançar a faixa dos 11 quilômetros. É preciso encarar as diminuições drásticas de temperatura, os ventos inconstantes e a densidade atmosférica para voar abaixo da altitude de cruzeiro. E os aviões militares costumam ter motores mais poderosos - só que a altura do voo depende da missão que a aeronave vai cumprir. Escapar dos radares, por exemplo, pode exigir altitudes maiores. Mas existe um truque mais eficiente para fugir do radar inimigo. Os aviões invisíveis são cobertos por um material (o nome e o tipo do material é um segredo da aeronáutica) que absorve o sinal e não o reflete de volta.

Potência máxima do motor


A não ser que o piloto queira bater um recorde de altitude, para qualquer avião decolar, é preciso que o motor esteja a pleno funcionamento. Afinal, as pistas de aeroportos não são infinitas, e em um determinado momento o avião precisará ter um motor potente para vencer o seu próprio peso (e consequentemente a força da gravidade) para subir.

O motor de um avião (independente do modelo) consegue ficar até dois minutos funcionando em sua potência máxima - a partir de dois minutos, ele pode esquentar-se a ponto de fundir. Repare na próxima vez em que você estiver em um voo comercial: dois minutos após a decolagem, o barulho do motor diminui. O piloto costuma reduzir a potência do motor para cerca de 80% da capacidade máxima. Quando o avião alcança a altitude de cruzeiro, a potência diminui mais um pouco - vai para 65%. Ela continua constante até a aterrissagem, quando é reduzida ainda mais, e o comandante deixa a força da gravidade terrestre ajudar o avião a descer.

Teto operacional


Se o piloto é mais corajoso que o russo Alexandr Fedotov e sonha em bater o recorde de altitude (insuperável desde 1977), ele não vai decolar usando 100% da capacidade do motor. Senão, teria de acabar com a brincadeira aos dois minutos de voo, e o avião ainda poderia estar longe do seu teto operacional - a altitude máxima que ele consegue alcançar. Para bater um recorde de altitude, ou pelo menos chegar ao teto operacional do avião, o piloto decola usando 80% ou 90% da capacidade máxima. Na cabine, ele fica de olho em dois indicadores do painel: um mostra a velocidade de subida, e outro define a altitude do avião naquele momento.

Quanto mais alto está o avião, mais rarefeito é o ar, e mais difícil fica para ele continuar subindo naquelas condições. Afinal, a densidade do ar ajuda o avião a subir. Se ele está rarefeito, é preciso usar o motor para continuar. Se o motor não é potente o suficiente, o avião vai perdendo velocidade e fica mais difícil avançar para o alto. Invariavelmente, chega um momento em que o painel mostra que o avião parou de subir. É neste momento que o piloto aumenta gradualmente a potência do motor até chegar a 100%. Depois de dois minutos na capacidade máxima, a aeronave atinge o seu teto operacional e a potência tem de ser reduzida, ou senão o motor pode pifar - aí, só um paraquedas salva.

Via Til (UOL) - Consultoria: Mauricio Pazini Brandão, engenheiro aeronáutico do Instituto Tecnológico de Aeronáutica (ITA), de São José do Campos (SP) - Imagem: Getty Images/iStockphoto

História: Perdida no oceano: os mais de 120 pedidos de socorro de Amelia Earhart

Apesar de suas fascinantes contribuições para o mundo da aeronáutica, Amelia passou a ganhar fama depois que desapareceu em uma viagem onde tentava dar a volta no globo.

Amelia Earhart em 1935 (Crédito: Wikimedia Commons)

Amelia Earhart foi uma pioneira na aviação dos Estados Unidos. Ela foi a primeira mulher a pilotar sozinha um avião sobre o Oceâno Atlântico, fato que lhe rendeu uma condecoração. Suas experiências de voo, descritas por ela em diversos livros, foi essencial para promover o direito das mulheres à pilotagem, e a formação de organizações de aviação que passaram a incluir pilotas femininas.

 Apesar de suas fascinantes contribuições para o mundo da aeronáutica, Amelia passou a ganhar fama depois que desapareceu em uma viagem onde tentava dar a volta no globo, em 1937, tendo a mulher desaparecido pelo Oceano Pacífico, perto da Ilha Howland. Depois de muitas transmissões de rádio, investigações e buscas sem sucesso, a sua morte foi declarada no dia 5 de janeiro de 1939.

 No entanto, o mistério por trás de seu sumiço ainda intriga a todos, e em 2018, mais de 80 anos após a sua morte, uma nova pesquisa sobre o caso foi aberta, na tentativa de recuperar os fatos que decorreram em seus últimos dias.

Uma semana depois de seu desaparecimento, mais de 120 denúncias começaram a ser relatadas por pessoas do mundo todo que diziam terem ouvido através de seus sinais nos rádios diversos pedidos de socorro, que acreditavam ser de Earhart, depois de o avião dela ter sumido dos radares. Entre as 120 declarações, 57 foram consideradas válidas.

Richard Gillespie, o diretor executivo do Grupo Internacional para Recuperação Histórica de Aeronaves, foi o principal autor do estudo recente que analisou essas supostas transmissões. Seu objetivo foi traçar uma linha do tempo, de hora a hora, da semana em que antecede a sua morte, refletindo sobre os acontecimentos ocorridos após a queda do avião.

A aeronave Lockheed Electra de Amelia Earhart (Crédito: Wikimedia Commons)

Os pedidos de socorro

Diferente do que foi apontado durante os últimos anos, Gillespie acredita que a moça teria sobrevivido à queda do avião, que ele diz que não desapareceu no mar imediatamente após o acidente. “Avião caído numa ilha que não está nos mapas. Pequena e desabitada. Parte do avião em terra”. Essa teria sido umas das mensagem que Earhart transmitiu após o seu Lockheed Electra ter caído.

Em outra transmissão, ocorrida no mesmo dia da queda e dessa vez interceptada por uma mulher do Texas, a pioneira avisa que o seu navegador, Fred Noona, estava em estado crítico, e tenta pedir ajuda médica. No mesmo dia, Nina Paxton, uma mulher de Ashland, também afirma que ouviu Earhart, numa mensagem em que dizia que o seu avião estava “no oceano, perto de uma ilha pequena“.

Segundo o seu relato na Daily Mail, a voz de Amelia ecoava no rádio da mulher com as falas: “Daqui é KHAQQ [o código de identificação do seu avião]. O nosso avião está quase sem gasolina. Há água a cercar tudo que está à sua volta. Está muito escuro”. Sem respostas, ela continua, “temos que sair daqui. Não podemos ficar muito mais tempo”, expondo que uma grande tempestade estava por vir.

Esta é a gravação mais atribuída à aviadora norte-americana, e a mais leal com a história. No entanto, Paxton demorou sete dias para avisar as autoridades e o jornal local que teria interceptado o pedido de ajuda.

Na pesquisa de Gillespie, ele propõe que os sinais de socorro teriam acontecido a noite, quando a água ainda não havia atingido a hélice do avião, o que corresponderia ao período em que a água no recife da Ilha Gardner ainda se encontrava baixa, o que permitiu sua comunicação.

“Os rádios dependiam das baterias do avião, mas as baterias eram necessárias para dar a partida no motor de estibordo que é equipado com um gerador que recarrega as baterias”, explica o estudioso. “Se os pilotos perdidos descarregassem as baterias ao enviar chamadas de socorro, não seriam capazes de ligar o motor”, acrescenta. “A única coisa sensata a fazer era enviar chamadas de rádio quando o motor estava a funcionar e a carregar as baterias. Mas no recife, a maré sobe e a maré baixa”, e portanto o sinal só seria enviado quando a maré estivesse a cerca de 30 centímetros.

De acordo com o pesquisador, o período em que Amelia transmitia os pedidos de socorro duravam cerca de uma hora, dando uma pausa entre uma transmissão e outra que durava mais ou menos uma hora e meia em silêncio, voltando a repetir esse processo até amanhecer o dia.

Em 4 de julho, Dana Randolph, que na época tinha somente 16 anos, relatou ter tido comunicação com alguém que se dizia ser Amelia Earhart. "O avião está um pouco a sul do equador”, dizia a voz do rádio, enquanto tentava descrever a sua localização. Infelizmente, a garota disse que o sinal se perdeu antes que conseguisse ouvir o resto da mensagem.

Amelia Earhart, Los Angeles, 1928 (Crédito: Wikimedia Commons)

Nos dias seguintes, as transmissões continuaram, mas cada vez estavam mais decadentes de sinal. “Ainda vivos. Têm que vir rápido. Digam ao meu marido que estou bem”, segue o relato de Howard Coons, em São Francisco. No dia 7, Thelma Lovelace, em New Brunswick, Canadá, ouviu o que seria a última comunicação perceptível de Amelia: “Alguém me consegue ouvir? Alguém me consegue ouvir aí? Daqui Amelia Earhart. Por favor respondam”.

Ao USA Today, o especialista afirmou: “Apesar de nenhuma destas pessoas se conhecer, todas contam uma história bastante consistente sobre uma situação que se estava a deteriorar. A linguagem que Earhart usa vai mudando ao longo dos dias, à medida que as coisas pioram”.

“Em algum momento, entre a 01h30 da manhã de quarta-feira, quando foi enviada a última transmissão credível, e a manhã de sexta-feira, dia 9, o Electra foi arrastado do recife para o oceano, onde se partiu e acabou por afundar“, concluiu Gillespie em seu artigo. “Quando os três aviões da Marinha dos EUA sobrevoaram a ilha na manhã de sexta-feira, já nenhum avião foi encontrado”.

Em 1940, três anos depois do incidente, uma ossada foi descoberto na Ilha Gardner, e levada para análise. Richard Jantz, um especialista em biologia óssea da Universidade do Tennessee, confirmou que o esqueleto tem 99% de probabilidade de ser de Amelia Earhart. 

Por Giovanna de Matteo (aventurasnahistoria.uol.com.br)

sexta-feira, 8 de dezembro de 2023

Aviões furtivos ainda têm um problema muito visível: trilhas de condensação

Os cientistas ainda não descobriram como impedir que as aeronaves produzam essas trilhas de vapor d'água em alta altitude.



Fóruns militares online como o SecretProjects enlouqueceram no ano passado por causa de uma imagem granulada e indistinta de uma aeronave. O aprimoramento digital básico mostrou uma nave com asas de morcego diferente de qualquer avião militar conhecido dos EUA, em silhueta contra o céu azul.

O consenso entre a mídia de defesa era que essa nave misteriosa deveria ser um drone furtivo RQ-180 ultrassecreto, usado para missões de espionagem nas áreas mais sensíveis – como o Irã, outras partes do Oriente Médio e áreas próximas à China.

Foi a segunda de três dessas fotografias a surgir nos últimos anos. Todas as três aeronaves foram descobertas pelo mesmo recurso decididamente não furtivo.


“Ouvi um leve ruído de aeronave e notei um rastro de fumaça bem acima de nós”, disse Joerg Arnu, que testemunhou a terceira aeronave misteriosa, ao The Drive, um site focado em cultura automotiva e assuntos militares.

Esse rastro – uma trilha de vapor d’água semelhante a uma nuvem produzida por aeronaves em alta altitude – os levou direto ao avião misterioso, como uma longa flecha branca dizendo “aqui estou”.


“É o equivalente furtivo de sair do banheiro, arrastando papel higiênico atrás do sapato”, diz Scott Lowe, um fotógrafo que capturou uma imagem rara de um avião espião U-2 depois de perceber seu rastro no início do ano passado.


A tecnologia furtiva reduziu drasticamente as assinaturas de radar e infravermelho de aeronaves que alertavam as defesas aéreas sobre sua presença. Anteriormente, as aeronaves eram frequentemente detectadas por radar a longo alcance. Os engenheiros também desenvolveram uma variedade de técnicas para eliminar completamente os rastros. Então, por que algumas aeronaves supostamente “secretas” ainda os deixam para trás?

Prepare-se para mergulhar no mundo das artes das trevas da aviação – de fumaça e espelhos, ácido e lasers.

De Metal e Espelhos


Trilhas de condensação (ou rastros de condensação) são visíveis pelo mesmo motivo que a respiração ou o escapamento do carro em um dia frio. O ar quente e úmido se mistura com o ar frio e seco e cria condensação. No caso dos rastros, a condensação assume a forma de minúsculos cristais de gelo. Eles se formam em torno de minúsculas partículas, principalmente fuligem, no escapamento do motor.

Os rastros se tornaram um problema pela primeira vez durante a Segunda Guerra Mundial, quando as formações de bombardeiros em massa das Forças Aéreas do Exército dos EUA deixaram grandes faixas de rastros no céu. Os caças alemães podiam ver os rastros a quilômetros de distância, muito antes de os próprios aviões serem visíveis, e aprenderam a se concentrar neles para fazer interceptações.


Os magos técnicos desenvolveram o chaff (palha), feito de minúsculas tiras metálicas, para os aviões se posicionarem atrás deles como nuvens reflexivas. Ajudou a cegar o radar alemão, mas os rastros ainda permaneceram visíveis. Isso fez dos ataques noturnos a opção preferida. Após a guerra, os jatos substituíram os motores a pistão; infelizmente, eles deixaram rastros ainda mais distintos.

Os pilotos logo descobriram que os rastros podiam ser eliminados mudando ligeiramente a altitude, embora a ciência por trás disso não fosse totalmente compreendida até a década de 1950.

Uma aeronave AC-130 Gunship da Força Aérea dos EUA executa uma manobra evasiva e lança chaff e sinalizadores durante uma demonstração de poder de fogo no Nevada Test and Training Range em Nevada.
“Em teoria, sempre haverá ar mais seco alguns milhares de pés acima de você”, diz Adam Durant, CEO da SATAVIA, que produz modelagem de trilha de condensação e software de previsão. Isso geralmente facilita a localização de um nível em que os rastros não se formem.

O problema era que os pilotos às vezes não percebiam que estavam deixando um rastro até que fosse tarde demais e devido à visibilidade limitada atrás deles. Isso foi literalmente uma questão de vida ou morte para os pilotos dos aviões espiões U-2 da CIA sobrevoando o território soviético. Os pilotos logo descobriram uma solução simples: equipar a aeronave com um espelho retrovisor fora do cockpit para dar uma visão por trás da aeronave.


Os testes foram realizados com o “Artigo 349”, um U-2 especialmente modificado (abaixo) para testar uma variedade de tecnologias furtivas, incluindo tinta anti-radar conhecida como “veludo preto” e um espelho retrovisor. Os detalhes do projeto de 1958 só foram divulgados em 2003 e, mesmo assim, os relatórios foram redigidos, mas é evidente que os fabricantes de U-2 Lockheed e a Força Aérea dos EUA estiveram envolvidos na avaliação.


“É opinião da Operação que esta instalação é um ativo valioso”, de acordo com a avaliação da CIA em ‘Rear View Mirror’. “A necessidade aumentará com o passar do tempo, com base em estimativas das futuras capacidades russas de interceptação.”


Os testes mostraram que o piloto podia ver um rastro quando ele tinha menos de um quilômetro de comprimento; esperava-se que também pudesse ser útil para localizar caças interceptadores. O espelho retrovisor externo tornou-se equipamento padrão e foi instalado em muitas versões subsequentes do U-2.

Uma cortina de fumaça sulfúrica


Enquanto isso, os engenheiros da USAF procuravam soluções que não exigissem que a aeronave mudasse sua rota de voo. Eles se concentraram nas partículas do escapamento em torno das quais as gotas de água se formam.

“O número de cristais de gelo depende muito do número de partículas de fuligem. Se fôssemos reduzi-los, isso reduziria o rastro”, diz o Dr. Marc Stettler, especialista em emissões de transporte da University College, em Londres.

Os pesquisadores descobriram que um dos principais contribuintes era o trióxido de enxofre, que resultou da combustão do enxofre no combustível, então eles tentaram misturas de combustível com baixo teor de enxofre. Em última análise, o efeito não foi suficiente, mas a pesquisa continuou por alguns anos.


A mesma pesquisa revelou que pode haver outra maneira de lidar com rastros alterando o combustível. Em vez de impedir a formação de um rastro reduzindo o enxofre, eles aumentaram a quantidade de enxofre para que houvesse ainda mais partículas no escapamento. A ideia era que isso mudaria o tamanho das gotas no rastro para torná-lo invisível.

De acordo com um estudo da Força Aérea dos Estados Unidos de 1962, se o tamanho da partícula pudesse ser reduzido para menos de meio mícron, o rastro apareceria como uma névoa azul em vez de uma trilha branca: “De qualquer distância, essa névoa azul seria substancialmente invisível por causa de a falta de contraste com a atmosfera.”

Os pesquisadores passaram a soprar dióxido de enxofre diretamente na entrada de ar, mas mesmo isso não foi suficiente. O Dr. Roger Teoh, que está explorando o impacto da aviação nas mudanças climáticas no Imperial College, em Londres, diz que mesmo grandes aumentos no teor de enxofre falharam em surtir o efeito desejado. “A adição de grandes quantidades de enxofre levou apenas a uma redução muito pequena na formação do rastro; e pode haver consequências não intencionais”, diz Teoh.

Injeções de ácido eficazes, mas prejudiciais


Em 1961, a Força Aérea dos EUA havia conseguido algo incrível. Fotografias de uma demonstração com um bombardeiro B-47 Stratojet quadrimotor mostram os motores de um lado deixando um rastro normal como de costume, mas nada visível do outro lado. O bombardeiro havia sido equipado com um novo sistema que injetava ácido clorossulfônico no escapamento. Isso conseguiu o que os experimentos com enxofre não conseguiram: produzir um rastro com partículas minúsculas demais para serem vistas.


A técnica foi altamente eficaz, mas o equipamento de supressão de rastro adicionou 400 libras ao bombardeiro, reduzindo a carga de bombas. Além disso, o avião precisava de um suprimento de produtos químicos de supressão de rastro igual a cerca de dois por cento do combustível, adicionando potencialmente mais 2.000 libras.

Embora não haja registro da tecnologia sendo implantada em bombardeiros, o sistema ‘no-con’ foi instalado em drones Ryan Firebee voando em missões de reconhecimento sobre o Vietnã e a China. Esses pequenos e rápidos drones movidos a jato geralmente evitavam a observação, mas às vezes eram denunciados por seus rastros.

Drones Firebee
O sistema de injeção de ácido conseguiu manter os pequenos drones invisíveis, mas era impopular por outros motivos. O ácido clorossulfônico é extremamente corrosivo e danifica os motores, encurtando sua vida útil. Também é altamente tóxico e perigoso para as equipes de terra.

Detectando rastros com lasers


Quando o bombardeiro B-2 Spirit estava sendo desenvolvido no final dos anos 80, ele foi inicialmente equipado com um sistema de injeção de ácido clorossulfônico semelhante ao dos Firebees. No entanto, por razões que nunca foram divulgadas, isso nunca foi usado.

O motivo pode ter sido ambiental; havia uma consciência crescente de que a pulverização secreta de produtos químicos altamente tóxicos de aeronaves poderia atrair críticas. Isso foi antes mesmo do surgimento das teorias da conspiração do “chemtrail” dos anos 90, que acusavam o governo dos EUA de pulverizar substâncias químicas misteriosas de aeronaves que deixavam rastros duradouros. Não há evidências de que essa teoria esteja conectada com a pesquisa real de rastros – cujo objetivo era impedir a formação de tais rastros.


O secretário da Força Aérea dos EUA, Edward Aldridge, revelou que uma solução alternativa havia sido encontrada em uma coletiva de imprensa de 1989 sobre o B-2, mas manteve os jornalistas tentando adivinhar qual era a nova tecnologia. “O problema do rastro foi resolvido, mas não vou dizer como”, disse Aldridge.

Houve muita especulação de que a solução seria um novo aditivo de combustível ou um sistema de defletores para misturar o ar frio com o escapamento (veja abaixo).

O Espião da Trilha de Condensação Furtiva

Noshir Gowadia era um engenheiro que trabalhava no complexo sistema de exaustão do furtivo B-2. Seu projeto ajudou a garantir que o ar frio fosse misturado com o escapamento do jato quente antes de deixar o avião, para diluir o traço térmico do avião e torná-lo mais difícil de detectar com imagens infravermelhas.


Gowadia usou sua experiência para redesenhar bicos de jato com o objetivo de eliminar rastros visíveis. Isso envolvia um “campo de fluxo não uniforme” – uma região de mistura turbulenta – que espalharia tanto as gotas de água que qualquer rastro seria invisível ao olho humano e a outros sensores. A USAF achou que havia encontrado uma solução para o problema do rastro e concedeu a Gowadia um contrato para desenvolver seu conceito em um produto acabado.

No entanto, em 2011, Gowadia foi condenado por espionagem – especificamente, passar detalhes de escapamentos furtivos para a China – e sentenciado a 32 anos. O projeto de redesenho do bocal foi descontinuado e não está claro se essa técnica pode efetivamente eliminar rastros.

Foi apenas anos depois que o verdadeiro segredo foi revelado como sendo o PAS, ou Pilot Alert System. Desenvolvido pela empresa de sensores Ophir, o PAS usa uma forma de lidar: ele dispara um feixe de laser de volta ao escapamento do jato e mede a dispersão da luz nas partículas de gelo. Isso pode detectar imediatamente quando um rastro começa a se formar, avisando o piloto para mudar de altitude antes que se torne visível.


O PAS foi certamente uma melhoria em relação ao espelho retrovisor do U-2, mas o que os planejadores da Força Aérea dos EUA realmente queriam era poder voar sem qualquer risco de formação de rastros em primeiro lugar.

Voltar ao básico


Mudar a altitude funciona porque os rastros só se formam em condições particulares de temperatura e umidade. O cientista alemão Ernst Schmidt deu os primeiros passos para uma compreensão científica do processo em 1941 e, em 1953, Herbert Appleman, da American Meteorological Society, desenvolveu uma fórmula precisa para a formação do rastro. Conhecido como critério de Schmidt-Appleman, isso pode ser claramente expresso como um gráfico de temperatura e umidade: para evitar a formação de rastros, apenas evite a área mapeada no meio do gráfico.


Os planejadores da Força Aérea dos EUA usaram o Critério Schmidt-Appleman para desenvolver modelos de software cada vez mais sofisticados para prever onde os rastros se formarão. Em 1998, a USAF avaliou seu software JETRAX como 84% confiável para determinar se rastros apareceriam em uma trajetória de voo. Os planejadores podem redirecionar missões furtivas para evitar deixar rastros no céu.

Embora o software de previsão militar sempre tenha sido mantido em sigilo, houve um aumento nos desenvolvimentos no setor comercial. O motivo: as mudanças climáticas.

Uma razão mais ecológica para evitar trilhas de condensação


Enquanto alguns rastros desaparecem rapidamente, outros se espalham para formar nuvens cirrus de alta altitude, que têm um efeito de aquecimento significativo. Na verdade, o efeito de aquecimento dos rastros de cirrus é realmente maior do que o do CO2 da queima de combustível de aviação. A remoção dos rastros tornaria o voo menos prejudicial ao planeta.


“Os rastros representam 59% do impacto climático das viagens aéreas. Isso equivale a 1,8 bilhão de toneladas de CO2 por ano”, diz Durant. DECISIONX:NETZERO é o modelo de atmosfera planetária da SATAVIA, conduzido por Inteligência Artificial e alimentado com dados meteorológicos comerciais. A chave, apropriadamente, é a computação em nuvem, que torna o cálculo intensivo acessível. Isso permite que o sistema divida o globo em células de cinco quilômetros quadrados, empilhadas com sessenta de profundidade.

“Utilizamos os conjuntos de dados climáticos em escala global para conduzir um modelo baseado em física da dinâmica atmosférica que nos mostra a probabilidade de gerar um rastro em qualquer rota”, diz Durant.

Enquanto a maioria dos modelos meteorológicos se concentra no que está acontecendo no nível do solo, o SATAVIA analisa a altitude de cruzeiro da aeronave e aplica algoritmos de formação de rastros. Crucialmente, ao mostrar as condições em sessenta altitudes diferentes, permite que o plano de voo evite o risco de trilhas de condensação.


Durant observa que, embora isso exija alguns esforços no gerenciamento do tráfego aéreo, um pequeno número de voos produz os rastros mais prejudiciais e duradouros. Ele diz que a maior parte do benefício poderia ser obtida com o redirecionamento de apenas 5% dos voos.

Depois de um esquema piloto bem-sucedido com a companhia aérea Etihad para testar o software na prática, a empresa está refinando seu modelo em um produto comercial. Durant não tem conhecimento de nada parecido no mundo comercial, mas os militares, com seu enorme poder de computação, podem muito bem ter algo comparável.

Tecnologia furtiva ainda sob sigilo


Pode haver outros desenvolvimentos neste campo que não são públicos. Uma patente de 2014 da fabricante de motores Rolls Royce vincula um sensor semelhante ao PALS a um sistema de controle do motor. A patente afirma que, ao alterar a eficiência do motor, o escapamento pode ser alterado para evitar a formação de rastros. A Rolls Royce recusou-se a discutir este ou outro trabalho nesta área, como um plano bizarro para zapear o escapamento com micro-ondas para evitar a formação de cristais de gelo.

“Geralmente, um motor mais eficiente pode aumentar ligeiramente a formação de rastro porque o ar no escapamento deixa o motor em temperatura mais baixa”, diz Teoh. “Portanto, a redução da formação de rastro só pode ser alcançada diminuindo a eficiência do motor, o que provavelmente tem o custo de aumentar o consumo de combustível.”


Teoh também observa que novos tipos de combustores de motor também podem diminuir drasticamente a quantidade de fuligem no escapamento, garantindo que o combustível seja totalmente queimado antes de chegar ao escapamento. “O último banco de dados de emissões de aeronaves da ICAO, um conjunto de dados disponível ao público, mostra que diferentes tipos de combustor podem reduzir significativamente o número de partículas de fuligem em até quatro ordens de magnitude”, diz Teoh. Isso representaria um fator de dez mil, o que poderia ser suficiente para eliminar rastros visíveis.

Os aviões espiões ainda podem deixar rastros em lugares onde não estão tentando ficar escondidos – daí a foto da sorte de Lowe daquele U-2. “Sem um rastro ou luz perfeita, o U-2 é invisível”, diz Lowe. “Eu nunca teria notado isso de outra forma.”

O suposto RQ-180 sobrevoando as Filipinas (Foto: Michael Fugnit)
Mas no caso das fotos do RQ-180, você deve se perguntar por que a mesma aeronave supostamente supersecreta deixou rastros altamente visíveis três vezes seguidas, sempre em plena luz do dia sobre uma área povoada? Uma vez pode ser explicado por acidente, duas vezes sugeriria uma falha no aprendizado, mas três vezes começa a parecer deliberado.

O ponto principal é que estamos vendo os rastros, que estão nos levando à aeronave, porque eles querem que o façamos. Essa linha no céu é um ponteiro deliberado. Por que isso deveria acontecer e o que realmente está sendo mantido oculto – esse é outro mistério.

Via Fernando Valduga (Cavok) com Popular Mechanics

Como as aeronaves são reabastecidas?


Obviamente, uma parte crítica do tempo de uma aeronave em solo é o processo de reabastecimento . Mas para algo que acontece a poucos metros de distância dos passageiros que estão sentados na cabine, essa atividade é um pouco mais complexa do que abastecer um carro comum no posto de gasolina local. Vamos dar uma olhada em como as aeronaves são reabastecidas.

O combustível é armazenado principalmente nas asas de uma aeronave. Isso atua para equilibrar o peso e aumentar a rigidez da asa enquanto reduz a vibração (Getty Images)

A primeira etapa: levar combustível para a aeronave

Após o estacionamento bem sucedido de uma aeronave, seja na rampa do terminal do aeroporto ou em um local remoto, um combustível de aeronaves é despachado para a aeronave para iniciar o processo. Isso acontecerá o mais rápido possível, pois o tempo é essencial, principalmente para aquelas curtas reviravoltas!

Em alguns casos, um caminhão de combustível se posicionará sob a asa da aeronave ou próximo a ela para jatos mais baixos. Esta posição deve ser próxima o suficiente do receptáculo para conectar a mangueira, mas longe o suficiente para evitar uma colisão.

No caso de aeroportos maiores, o combustível não pode ser entregue no tanque do caminhão. Em vez disso, os tubos dos tanques de armazenamento para longe do terminal transportam o combustível para o pátio. Esse combustível é acessado por hidrantes na rampa.

O Petroleum Equipment Institute observa que, no caso de uma conexão de hidrante, uma mangueira vai primeiro de um caminhão especial ou carro de manutenção de combustível para o hidrante. 

Em seguida, a outra extremidade é conectada ao equipamento do caminhão do hidrante, que separa qualquer água do combustível que possa estar presente. Este equipamento também irá filtrar e medir (medir) o combustível. Depois de filtrado e medido, o combustível flui por uma segunda mangueira, que é conectada ao tanque de combustível do avião.

Uma observação interessante é que os regulamentos da FAA proíbem a presença de equipamentos para fumar, como isqueiros e cinzeiros nos veículos. Na verdade, se um veículo incluir esse equipamento quando adquirido inicialmente, ele deve ser removido ou tornado inoperante.

Onde fica o ponto de abastecimento de uma aeronave?

Aeronaves menores têm portas de abastecimento no topo da asa. No entanto, na maioria das aeronaves comerciais, a porta / receptáculo de combustível está localizada sob a asa. 

Reabastecimento de uma aeronave pelo método sobre a asa

Isso é conhecido como sistema de abastecimento de ponto único, que se refere ao fato de que a aeronave pode ser reabastecida neste único local, apesar da presença de vários tanques em ambas as asas da aeronave e potencialmente também no centro ou na parte traseira da fuselagem.

Sistema de reabastecimento de ponto único de uma grande aeronave
De acordo com o Flight Mechanic, este sistema usa receptáculos no bordo de ataque inferior da asa para encher todos os tanques, diminuindo assim o tempo que leva para reabastecer a aeronave. A aeronave equilibra automaticamente o combustível em cada tanque.

Um sistema de abastecimento de ponto único também servirá para limitar a contaminação e reduzir a chance de eletricidade estática inflamar o combustível.

Aeronaves menores têm um receptáculo para reabastecimento. 
Aeronaves maiores têm dois para um abastecimento mais rápido (Airbus)

Lista de verificação de segurança

O mecânico de voo observa que uma longa lista de precauções de segurança deve ser tomada antes do abastecimento. Embora não listemos todos os pontos aqui, existem algumas precauções nas quais você pode não pensar de imediato:

  • Certifique-se de que todos os sistemas elétricos e dispositivos eletrônicos da aeronave, incluindo radar, estejam desligados.
  • Esvazie os bolsos da camisa de todos os itens, pois eles podem cair nos tanques de combustível.
  • Não abasteça a aeronave se houver o perigo de outra aeronave nas proximidades soprar sujeira na direção da aeronave sendo abastecida.

Conectando-se

Uma etapa muito importante para se conectar aos tanques de combustível da aeronave é primeiro um fio terra. Isso ocorre porque o movimento de fluidos de líquidos inflamáveis, como gasolina dentro de um tubo ou mangueira, pode acumular eletricidade estática. Uma descarga eletrostática tem o risco de inflamar o vapor de combustível.

Portanto, um fio terra é conectado do caminhão de combustível à aeronave em um processo conhecido como ligação. O guia da Airbus sobre reabastecimento seguro afirma que “a ligação garante a continuidade elétrica entre a aeronave e o veículo de reabastecimento, evitando que qualquer faísca apareça quando o operador de solo conectar a mangueira de reabastecimento ao acoplamento da aeronave”. 

A colagem é uma parte crítica do processo de reabastecimento, pois dissipa a 
eletricidade estática e evita a ignição do combustível (Airbus)

Assim que a aeronave estiver no solo, o técnico conectará a mangueira de combustível à aeronave. Dependendo da altura da aeronave, alguma 'assistência' pode ser necessária na forma de um elevador para jatos mais altos e escadas para aqueles mais baixos.

A quantidade de combustível é outro fator importante a ser atento, algo que os pilotos devem estar cientes em termos de controle de peso e alcance. Levando em consideração os horários de voo e reabastecimento da aeronave, a quantidade de combustível é calculada pela companhia aérea e enviada ao técnico de reabastecimento. Isso pode até ser exibido nas telas na rampa.

Deixando o combustível fluir

Um avião queima muito combustível durante um voo. Quanto mais pesada uma aeronave, maior sua taxa de queima de combustível. De acordo com a Mint, um Boeing 747 consome aproximadamente quatro litros por segundo, ou 240 litros por minuto, e 14.400 litros por hora. Toda essa quantidade de combustível requer tanques enormes, que obviamente levariam um tempo considerável para encher.

Existem vários fatores que determinam quanto tempo leva para reabastecer uma aeronave. Eles incluem:

  • Quanto combustível é necessário, determinado pela aeronave e seu destino;
  • Se o combustível vem de um caminhão ou hidrante (um caminhão pode ter que fazer várias viagens);
  • Quantos pontos de abastecimento estão sendo usados. Aeronaves maiores podem ter um ponto com duas conexões, permitindo duas mangueiras. Outros reabastecem com uma mangueira sob cada asa.

Em geral, o abastecimento pode levar de meia hora a uma hora. Com tempos de resposta de apenas 30-40 minutos, é por isso que os comissários de bordo podem instruí-lo a manter o cinto de segurança desapertado enquanto a aeronave está sendo reabastecida. Esta precaução de segurança visa auxiliar em uma evacuação mais rápida caso ocorra um acidente de abastecimento.

A Airbus não exige o aterramento (aterramento) da aeronave ou do veículo de reabastecimento durante as operações de reabastecimento, mas alguns regulamentos locais podem solicitá-lo (Airbus)

Finalizando

Quando o abastecimento estiver concluído, a mangueira de combustível e o cabo de aterramento são desconectados. A JetBlue observa que um reabastecedor irá então preparar um recibo de combustível indicando a quantidade de combustível bombeado. Este é então entregue à equipe do aeroporto para fins de contabilidade.

Na verdade, abastecer uma aeronave é principalmente uma questão de segurança - e com grandes jatos e dezenas de milhares de litros de líquido inflamável fluindo, há realmente muito a estar ciente!

Edição de texto e imagens por Jorge Tadeu (Site Desastres Aéreos)

Aconteceu em 8 de dezembro de 2005: Voo Southwest Airlines 1248 - Diretrizes Desconsideradas


O voo 1248 da Southwest Airlines era um voo regular de passageiros de Baltimore, Maryland, para Chicago, Illinois, continuando para Salt Lake City, em Utah e depois para Las Vegas, em Nevada. Em 8 de dezembro de 2005, o avião escorregou ao pousar na pista do aeroporto Chicago-Midway em meio a uma tempestade de neve, saindo do aeroporto e colidiu com automóveis, matando um menino de seis anos.

Aeronave e tripulação 



A aeronave, 
 com apenas um ano de idade, era o Boeing 737-7H4 (WL), prefixo N471WN, (foto acima) que havia sido entregue à Southwest Airlines em julho de 2004. Ela era equipada com dois motores turbofan CFM International CFM56-7B24.

O capitão era Bruce Sutherland, de 59 anos, ex-piloto da Força Aérea dos Estados Unidos. Ele ingressou na Southwest Airlines em agosto de 1995 e tinha 15.000 horas de voo, incluindo 4.500 horas no Boeing 737. 

O primeiro oficial foi Steven Oliver, de 34 anos, que trabalhava para a companhia aérea desde fevereiro de 2003, tendo atuado anteriormente como capitão para Mesaba Airlines. O primeiro oficial tinha 8.500 horas de vôo (com 4.000 delas como capitão), com 2.000 delas no Boeing 737. Nenhum dos pilotos havia se envolvido em qualquer acidente ou incidente antes do vôo 1248.

O capitão Sutherland era o piloto voando (PF) e o primeiro oficial Oliver era o piloto de monitoramento (PM).

O acidente 


Gráfico ILS Pista 31C para o Aeroporto Internacional Chicago Midway , onde ocorreu o incidente (clique na imagem para ampliá-la)

Na quinta-feira, 8 de dezembro de 2005, o voo 1248 da Southwest Airlines estava programado para chegar ao Aeroporto Internacional Chicago Midway do Aeroporto Internacional Thurgood Marshall de Baltimore-Washington e, em seguida, continuar para o Aeroporto Internacional de Salt Lake City e, em seguida, para o Aeroporto Internacional Las Vegas McCarran. 

A rota do voo 1248 da Southwest Airlines
O voo sobrevoou uma pequena área no noroeste de Indiana várias vezes antes de tentar pousar em uma tempestade de neve . A tempestade de neve havia reduzido a visibilidade para menos de uma milha.

Por volta das 19h15 (CST), o piloto tentou um pouso com quase 20 centímetros de neve no solo da pista. Os funcionários do aeroporto afirmaram que a neve da pista foi limpa antes do momento do pouso. O último relatório meteorológico relatou vento de leste a sudeste (090°) a 11 nós (20 km/h; 13 mph).

Um vento sudeste normalmente favorece o pouso contra o vento na pista 13 central. O alcance visual da pista foi relatado em 4.500 pés (1.400 m), abaixo dos mínimos de pouso para a abordagem do Sistema de Pouso por Instrumento para a pista 13C. A única pista disponível com mínimos mais baixos era a direção oposta no 31C, que a tripulação selecionou, com a velocidade da aeronave consequentemente aumentada pelo vento de cauda.

O 737 derrapou durante o pouso; subsequentemente, testemunhas disseram que o trem de pouso do nariz desabou e a aeronave colidiu com uma barreira ao redor do aeroporto, parando na Avenida Central logo ao sul do cruzamento da 55th Street no canto noroeste do aeroporto.


O cruzamento estava cheio de tráfego e o avião atingiu pelo menos três carros, matando um menino de seis anos, ferindo gravemente cinco ocupantes de um carro (dois adultos e três crianças) e ferindo gravemente quatro ocupantes de um segundo carro.

No detalhe,  Joshua Woods, de seis anos, a única vítima fatal do acidente
Todos foram levados rapidamente para hospitais da área. Três passageiros da aeronave foram levados a hospitais com ferimentos leves. Ao todo, doze pessoas foram levadas para hospitais após o incidente. Um outro carro atropelado estava estacionado e desocupado.

Investigação 


O National Transportation Safety Board investigou o acidente. O comissário do Corpo de Bombeiros de Chicago, Cortez Trotter, disse que a aeronave não seria removida da interseção até que o NTSB autorizasse isso após a investigação no local. O nariz da aeronave foi içado para um reboque de trator no sábado, 10 de dezembro, e o 737 foi rebocado para um hangar para inspeção contínua.

Como o Boeing 737-700 é um modelo da "Próxima Geração", a aeronave foi equipada com a mais recente tecnologia antiderrapante e de frenagem. O relatório observou que a Southwest tinha só muito recentemente começou realmente usando os Autobrake sistemas, e que a formação piloto sobre o uso adequado dos freios de automóveis tinha sido inadequada.


O relatório preliminar do NTSB determinou que a aeronave tocou na zona de toque da pista com 4.500 pés (1.400 m) de seus 6.522 pés (1.988 m) de comprimento restantes; sob as condições predominantes de clima, vento, velocidade e peso, a aeronave precisava de 5.300 pés (1.600 m) de pista para parar com segurança. Verificou-se que o vento de cauda era de 8 nós e excedeu o limite exigido de 5 nós.

Uma recomendação preliminar do NTSB disse: "O piloto voador (capitão) afirmou que não conseguia tirar as alavancas de reversão da posição retraída. O primeiro oficial, após vários segundos, percebeu que os reversores não foram acionados e ativou os reversores sem problemas. Dados de voo informações do gravador revelam que os reversores de empuxo não foram acionados até 18 segundos após o toque, ponto no qual havia apenas cerca de 1.000 pés (300 m) de pista utilizável restante."


Alternativamente, a tripulação poderia ter ficado no ar, esperando que o tempo melhorasse, ou eles poderiam ter desviado para outro aeroporto, como o Chicago O'Hare International , cujas pistas substancialmente mais longas estavam a 10 minutos de voo. Cada uma dessas opções acarretaria despesas adicionais consideráveis ​​para a Southwest, bem como conexões perdidas e inconvenientes significativos para os passageiros do voo. 

O National Transportation Safety Board identificou a pressão psicológica para completar a tarefa atribuída como um dos fatores que contribuíram para a decisão da tripulação de pousar em Midway, apesar das condições desfavoráveis. As transcrições do gravador de voz da cabine indicam que os pilotos estavam preocupados com o clima e, antes do pouso, brincavam aludindo ao filme 'Avião!', dizendo: "Escolhi um dia ruim para parar de cheirar cola." 


O NTSB descobriu que o controlador de tráfego aéreo disse aos pilotos que a ação de frenagem para a primeira metade da pista foi boa e ruim para a segunda metade. No entanto, os investigadores descobriram que o controlador não deu aos pilotos todos os relatórios de ação de frenagem necessários porque ele não levou em consideração o tipo de aeronave de onde os relatórios vieram. Um desses aviões era um pequeno avião que relatou más condições de frenagem. 

Verificou-se que os relatórios de ação de frenagem variavam significativamente com base no tipo de aeronave, mudanças nas condições climáticas, experiência do pessoal, tipo de equipamento usado e o tempo do relatório e, portanto, não devem ser usados ​​como informações conclusivas sobre as condições da pista.

Os pilotos afirmaram que, com base nos cálculos que fizeram no computador de desempenho de bordo (OPC), acreditaram que poderiam pousar e parar com segurança. No entanto, os investigadores determinaram que o OPC baseou suas margens de parada em 2 suposições: primeiro, que o vento de cauda é menor do que durante o acidente e, segundo, que os reversores de empuxo são acionados a tempo após o pouso. 


Verificou-se que os pilotos não estavam cientes dessas suposições e que a Southwest não havia fornecido treinamento recorrente suficiente para eles. Portanto, os pilotos não usaram o termo de ação crítica de frenagem “ruim” ao avaliar o desempenho de pouso.

A Southwest Airlines tinha uma política que exigia que os pilotos considerassem avaliações de ação de frenagem mais críticas ao receberem relatórios de ação de frenagem mista. No entanto, verificou-se que os pilotos do acidente desconheciam esta política e, portanto, não a consideraram ao avaliar as condições de pouso. 

O NTSB também descobriu que três outros pilotos da empresa pousaram antes do acidente com os mesmos relatórios de ação de frenagem mistos. Quando entrevistados, os pilotos da empresa revelaram que também não aderiam à política de frenagem mista ou não a conheciam. A Southwest também não havia treinado rotineiramente seus pilotos para seguir ou entender a política de relatório de ação de frenagem mista, e isso não era mencionado nos manuais da empresa.


O NTSB concluiu que mesmo com as más condições de frenagem e o vento de cauda, ​​o avião poderia ter parado a tempo se os pilotos acionassem os reversores de empuxo a tempo. O exame do sistema reversor não encontrou evidências de mau funcionamento.

O National Transportation Safety Board determinou que a causa provável desse acidente foi a falha dos pilotos em usar o empuxo reverso disponível em tempo hábil para desacelerar ou parar o avião com segurança após o pouso, o que resultou em um atropelamento da pista. Essa falha ocorreu porque a primeira experiência dos pilotos e a falta de familiaridade com o sistema de autobrake do avião os distraiu do uso do reversor durante o pouso desafiador.


Contribuíram para o acidente: "1) a Southwest Airlines deixou de fornecer aos seus pilotos orientação e treinamento claros e consistentes com relação às políticas e procedimentos da empresa relacionados aos cálculos da distância de pouso na chegada; 2) programação e projeto de seu computador de desempenho de bordo, que não apresentava informações críticas de suposições, apesar dos métodos inconsistentes de avaliação do vento de cauda e reverso; 3) planejar a implementação de novos procedimentos de autobrake sem um período de familiarização; e 4) falha em incluir uma margem de segurança na avaliação de chegada para levar em conta as incertezas operacionais. Contribuindo para a gravidade do acidente foi a ausência de um sistema de proteção de materiais de engenharia , que foi necessário devido à área de segurança limitada da pista além do final da pista 31C."

Resultado 


Agora é prática recomendada para qualquer nova pista ter uma área livre de pelo menos 1.000 pés (300 m) de comprimento em cada extremidade, chamada de 'área de segurança da pista', para permitir espaço adicional para uma aeronave que ultrapassa a pista para desacelerar e parar em relativa segurança.

Como Midway foi construído antes dessas regras serem postas em prática, ele não tem essa área de segurança. O acidente renovou os debates sobre a necessidade e a viabilidade de um sistema de proteção de materiais projetados, ou EMAS, em Chicago Midway, devido à falta de áreas adequadas para transbordar e aos bairros residenciais ao redor. 


Além disso, as ações tomadas pela cidade para adquirir terras para uma zona-tampão ao redor do aeroporto (em aparente reconhecimento do perigo) vieram à tona após o acidente. Em 2007, a instalação começou em camas modificadas de pára-raios de comprimento curto. O primeiro foi concluído no final da Pista 31C, no verão de 2007. As camas EMAS também foram instaladas no final de 04R, 13C e 22L.

O acidente ocorreu 33 anos após o voo 553 da United Airlines, também um Boeing 737, ter caído ao se aproximar do aeroporto Midway, matando 45 pessoas.

O acidente envolvendo o voo 1248 foi o primeiro acidente da Southwest Airlines nos 35 anos de história da empresa a resultar em morte. O principal incidente anterior foi em 2000, quando o voo 1455 da Southwest Airlines invadiu uma pista em Burbank, Califórnia , ferindo 43 e evitando por pouco uma catástrofe; a aeronave acabou fora de um posto de gasolina Chevron.

Como resultado direto do acidente, a Administração Federal de Aviação dos Estados Unidos criou um Comitê de Criação de Regras de Aviação para Avaliação de Desempenho de Decolagem e Pouso. (ou seja, TALPA ARC). Em 2016, com base nas recomendações do TALPA ARC, a FAA implementou o novo método "Código de condição da pista" para a comunicação das condições da pista da gestão do aeroporto aos membros da tripulação de voo.

A aeronave envolvida após seu reparo e retorno ao serviço sob seu novo registro

Embora o acidente de Midway tenha matado uma pessoa no solo em vez de um passageiro ou membro da tripulação, a Southwest seguiu a tradição de retirar qualquer número de voo envolvido em um acidente fatal; os voos atuais de Baltimore para Chicago, com partida às 15h55 ou por volta das 15h55, foram designados como voo 1885 até que esse número de voo fosse transferido para um voo diferente. 

A Southwest também fez uma petição à FAA em julho de 2006 para que o número da cauda da aeronave fosse alterado para N286WN. Após um longo reparo, a aeronave emergiu do hangar de Midway da Southwest como N286WN em setembro de 2006.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipédia e ASN