sexta-feira, 8 de outubro de 2021

Aconteceu em 8 de outubro de 2001: Voo 686 da Scandinavian Airlines - Colisão de Linarte


No dia 8 de outubro de 2001, o Aeroporto Linate de Milão se tornou o cenário do pior desastre aéreo da Itália quando dois aviões colidiram na pista sob forte neblina, matando todas as 114 pessoas em ambas as aeronaves e quatro no solo. 

A investigação descobriu que o aeroporto de Linate era um desastre esperando para acontecer, com falhas de segurança em toda a linha que permitiram que um Cessna Citation particular taxiasse involuntariamente na direção do voo 686 da Scandinavian Airlines enquanto ele acelerava na pista.


O voo 686 da Scandinavian Airlines System - SAS era operado pelo McDonnell Douglas DC-9-87 (MD-87), prefixo SE-DMA, transportando 104 passageiros e 6 tripulantes de Milão, na Itália para Copenhague, na Dinamarca. No comando do voo estavam o capitão Joakim Gustafsson e o primeiro oficial Anders Hyllander, ambos pilotos experientes com bons registros de segurança. 

Eles se tornariam vítimas inocentes dos erros de outra dupla de pilotos ainda mais experientes: o capitão alemão e primeiro oficial do Cessna 525A CitationJet CJ2, prefixo D-IEVX, registrado para H. Enschmann, que levava a bordo quatro passageiros, além dos dois tripulantes. 

Eles estavam realizando um voo de demonstração para um cliente em potencial, o presidente da empresa italiana de alimentos Star, que estava a bordo do avião, junto com o representante europeu da Cessna que estava lá para ajudar a fechar o negócio. Ambos os aviões estavam sob a jurisdição do controlador de tráfego aéreo Paolo Zacchetti.


O Cessna Citation estava estacionado no pátio esquerdo, visto na foto acima, aguardando liberação para seguir para a pista. Zacchetti instruiu seus pilotos a taxiarem até o “pátio principal” via taxiway R (“Romeo”) 5, que contornava o final da pista principal do aeroporto sem cruzá-la. 

No entanto, Zacchetti usou os termos “pista” e “avental” alternadamente, o que provavelmente confundiu os pilotos do Cessna. Além disso, as marcações na pista que designam as pistas de taxiamento R5 e R6 estavam tão gastas que era difícil vê-las, mesmo em condições claras. 

A manhã do dia 8 de outubro definitivamente não estava clara: o nevoeiro tinha reduzido a visibilidade para menos de 200 metros em todo o aeroporto. Devido a todos esses fatores, os pilotos do Cessna acidentalmente entraram na pista de taxiamento R6, que cruza a pista principal do aeroporto, em vez da R5.


Não havia nenhuma outra marcação para alertar os pilotos em qual taxiway eles estavam realmente, então eles continuaram em frente até chegarem a uma “linha de espera”, muito parecida com um sinal de pare em uma estrada, marcado como S (Sierra) 4. 

Os pilotos relataram a Zacchetti que estavam agora em “Sierra 4”, mas essa linha de espera nem estava nos mapas do aeroporto de Zacchetti, e ele confessou mais tarde que não tinha ideia de onde estava. Em vez de pedir aos pilotos do Cessna sua localização, no entanto, ele simplesmente desconsiderou isso e permitiu que eles prosseguissem. 

Ao mesmo tempo que o Cessna estava se tornando irremediavelmente perdido, o voo 686 da Scandinavian Airlines taxiou até o início da pista e recebeu autorização para decolar. Gustafsson e Hyllander empurraram os manetes para a velocidade de decolagem e o MD-87 saiu ruidosamente pela pista.


Enquanto isso, o Cessna chegou a outra linha de espera na borda da pista, mas os pilotos não conseguiram ver a linha de espera ou a pista, devido às marcações desbotadas e ao nevoeiro. Completamente cego para o grande avião vindo direto para eles, o pequeno avião moveu-se para a pista 36R, diretamente na trajetória do voo 686 da Scandinavian Airlines. 

Neste ponto, sensores de movimento destinados a detectar incursões na pista deveriam ter feito um alarme soar no torre de controle, alertando Zacchetti do perigo a tempo de ordenar que o voo 686 abortasse sua decolagem. No entanto, esses sensores de movimento foram deliberadamente desligados anos antes, após repetidos alarmes incômodos causados ​​por animais e veículos de manutenção durante a noite, enquanto o aeroporto estava fechado. 

Em algum lugar ao longo da cadeia de comando do Aeroporto de Linate, alguém havia decidido que a inconveniência de alarmes incômodos era pior do que o perigo de desligar o sistema. Essa decisão foi fatal; o desastre agora era inevitável.


Os pilotos do voo 686, sem saber da colisão iminente, alcançaram a V-1, velocidade acima da qual a decolagem não pode ser abortada com segurança. A roda do nariz levantou do chão quando o avião começou a decolar. 

De repente, o Cessna apareceu no meio do nevoeiro bem na frente deles. Não houve oportunidade de qualquer ação evasiva; Gustafsson mal teve tempo de gritar “O que é isso !?” antes do voo 686 bater direto na lateral do Cessna Citation, rasgando-o em pedacinhos. 

O impacto devastador arrancou o conjunto do trem de pouso direito do MD-87 e seu motor direito, enquanto o Cessna foi feito em vários pedaços que imediatamente explodiram em chamas. Os pilotos do Cessna provavelmente nunca souberam o que os atingiu, e Gustafsson e Hyllander provavelmente estavam igualmente inseguros sobre o que havia acontecido.


No entanto, os pilotos não tiveram tempo de adivinhar o que encontraram na pista. Gustafsson e Hyllander imediatamente lançaram um esforço desesperado para salvar a aeronave. 

Como já haviam ultrapassado a velocidade de decisão, a coisa mais prudente a fazer seria tentar levantar voo e, em seguida, dar a volta para um pouso de emergência, de modo que os pilotos aceleraram o motor esquerdo o mais forte que puderam e tentaram decolar da pista. 

O avião ficou brevemente no ar, atingindo uma altitude máxima de apenas 12 metros (39 pés), mas o motor esquerdo ingeriu pedaços do Cessna e foi fatalmente danificado. Empurrá-lo ao máximo o fez estremecer e vibrar, e ele começou a perder força. Incapaz de permanecer no ar, o voo 686 caiu novamente mais adiante ao longo da pista, deslizando junto com a asa direita se arrastando pelo solo devido à falta do trem de pouso. 


Os pilotos agora não tinham escolha a não ser tentar abortar a decolagem, com muito pouco espaço sobrando antes do final da pista. Mesmo assim, Gustafsson pisou fundo nos freios e acionou o único reversor de empuxo restante do avião em um último esforço para diminuir a velocidade. Mas a marcha quebrada e o empuxo assimétrico do motor perdido giraram o avião fortemente para a direita e ele escorregou para o lado, saindo do fim da pista e caindo direto no hangar de bagagem. 

O prédio e o avião foram consumidos em uma grande explosão, matando todas as 110 pessoas a bordo do avião, bem como quatro funcionários do aeroporto que separavam as bagagens. 


A resposta de emergência ao acidente foi um desastre quase tão grande quanto o próprio acidente. Os controladores e outros funcionários do aeroporto ouviram uma série de estrondos distantes, mas não conseguiram discernir a causa porque não conseguiram ver a pista em meio ao nevoeiro. 

Por vários minutos, as operações do aeroporto continuaram normalmente, com os controladores completamente alheios à ocorrência de um grande acidente. Por cinco minutos, os dois aviões ficaram sentados lá, queimando, sem nenhum bombeiro no caminho. 

Então, um oficial da alfândega descobriu vários carregadores de bagagem feridos saindo do hangar em ruínas e eles lhe contaram sobre o acidente. Ele passou essa informação para os controladores, que finalmente soaram o alarme geral. Na mesma época, os controladores perceberam que o voo 686 da Scandinavian Airlines não havia aparecido em suas telas de radar.


Caminhões de bombeiros correram para o local para encontrar o hangar e o avião consumido pelas chamas. Uma grande parte do edifício desabou sobre a aeronave, esmagando a maior parte da cabine de passageiros. Os bombeiros lutaram contra o incêndio por mais de quinze minutos antes que os controladores percebessem que o Cessna Citation também estava faltando, e o alarme foi acionado novamente. 

Cinco minutos depois, equipes de emergência encontraram os destroços em chamas do pequeno avião espalhados pela pista 36R. Todos os quatro ocupantes desta aeronave também estavam mortos. 


No entanto, os resultados da autópsia mais tarde mostraram que ambos os pilotos e um dos passageiros morreram na verdade por inalação de fumaça enquanto estavam presos nos destroços, em vez do impacto em si, e eles quase certamente poderiam ter sido salvos se não tivesse levado 25 minutos para os bombeiros chegarem. 

De fato, o caos da resposta custou mais três vidas, e agora todos em ambos os aviões estavam mortos, junto com quatro no solo. Com 118 vidas perdidas, foi o pior desastre aéreo da história da Itália, superando a queda do voo 112 da Alitalia em 1972, que detinha esse título terrível por 29 anos.


Imediatamente após o acidente, surgiu uma disputa sobre quem era o responsável pelo local do acidente. Acidentes de avião na Itália foram considerados principalmente um assunto criminal, e a polícia responsável pela cena não permitiu que investigadores civis da Itália e da Suécia acessassem os destroços por algum tempo. 

“Nós nem mesmo podemos olhar para o avião esta noite, porque há uma briga entre as duas autoridades italianas de investigação”, disse um investigador da Scandinavian Airlines ao New York Times no dia do acidente. 

Quando os investigadores civis tiveram acesso, os destroços já haviam sido removidos do local e eles tiveram que cavar pilhas de destroços fora do local para procurar as caixas pretas.


A investigação do acidente logo descobriu uma série de falhas sistêmicas no aeroporto. As marcas nos aventais e pistas de taxiamento estavam tão gastas que às vezes ficavam ilegíveis. Os avisos de incursão na pista foram deliberadamente desligados. O aeroporto não tinha radar de solo há anos. 

Os controladores não estavam usando a terminologia padrão para se referir a vários recursos do aeroporto. E os controladores não haviam feito um tour a pé pelo aeroporto e não estavam familiarizados com todos os seus recursos. (Se Zacchetti soubesse onde S4 estava, ele teria percebido que o Cessna estava no lugar errado, mas ele ignorou porque não estava em seu mapa). O Relatório Final foi divulgado dois anos e três meses após o acidente.


“A grande lição desse acidente é que as pessoas têm tendência a se acostumar às falhas, aceitando condições latentes - acostumando-se com um sistema que não funciona - e [com] o tempo, na verdade, [tornando] todo o sistema cada vez mais perigoso ”, disse Tom Zollner, principal investigador da Scandinavian Airlines no caso.

É um problema insidioso: se estamos lidando com algo que não está funcionando, por que consertar? Mas, à medida que esses problemas aumentam, torna-se mais provável que ocorra um caso extremo com o qual o sistema improvisado não pode lidar, mesmo que funcione 99,99% do tempo.


Enquanto isso, os promotores italianos rapidamente entraram com as acusações contra aqueles que foram considerados culpados pelo acidente, um movimento atípico internacionalmente, mas comum na Itália. Onze pessoas foram inicialmente indiciadas, mas as acusações contra sete delas foram retiradas. 

No final das contas, o diretor da ENAV, autoridade de segurança aérea da Itália, foi convidado a ser julgado; os chefes de ambos os principais aeroportos de Milão; e o controlador de tráfego aéreo Paolo Zacchetti. Zacchetti e o diretor do ENAV foram condenados a oito anos de prisão, enquanto os outros dois, seis e meio. 


Os promotores descreveram uma cultura de corrupção na ENAV, concedendo contratos a seus amigos, distribuindo empregos para amigos e parentes e aceitando subornos. Após essas alegações explosivas, o primeiro-ministro italiano Silvio Berlusconi demitiu toda a liderança da ENAV. 

Contudo, a frase de Paolo Zacchetti por usar uma “fraseologia fora do padrão” foi considerada por muitos como escandalosamente dura. “Eu defini o controlador de solo como a 119ª vítima do caso”, disse Mario Pica, o principal investigador do acidente para a autoridade de aviação civil da Itália. “É verdade, ele cometeu um erro. Mas ele é o resultado de um sistema que falhou.”


Hoje, o aeroporto de Linate tem radar de solo, marcações bem pintadas de pistas de taxiamento, detectores de incursão em pistas e controladores melhor treinados. De fato, as consequências do desastre de Linate parecem ter penetrado profundamente no sistema de aviação italiano, que antes era repleto de suborno, nepotismo e supervisão deficiente.

As mudanças parecem ter feito a diferença: em mais de 17 anos desde o desastre, não houve outro acidente fatal na Itália ou envolvendo nenhuma companhia aérea italiana. Em um país onde a corrupção sempre foi vista como endêmica, a morte de 118 pessoas em um de seus aeroportos mais movimentados serviu como um alerta muito necessário.

Leia AQUI outro relato sobre este acidente.

Edição de texto e imagens por Jorge Tadeu (Site Desastres Aéreos)

Com Admiral Cloudberg, Wikipedia e ASN - Imagens: flygcforum, Wikipedia, Google, ATRiCS, BBC News, IASA, planecrashinfo.com, 1001crash e The Independent. Clipes de vídeo cortesia da Cineflix.

C-130 em flutuadores: podemos esperar um renascimento do hidroavião?

Uma renderização do C-130 sobre flutuadores (Imagem: US AFSOC)
A ideia de converter o Lockheed C-130 Hercules em um hidroavião é quase tão antiga quanto a própria aeronave. A primeira proposta foi emitida na década de 1960 e reimaginou o Hércules como um barco voador. Mais tarde, essas ideias se concentraram em adicionar flutuadores ao avião, o que gerou muitas propostas incomuns. No entanto, nenhum deles atingiu a fruição.

Além de ser uma das aeronaves de transporte mais produzidas do mundo, o C-130 pode muito bem ser a aeronave militar mais versátil já usada.

Em vários pontos durante sua carreira de quase sete décadas, variantes do C-130 foram criadas para desempenhar quase todas as funções desempenhadas por aeronaves, incluindo ataque ao solo, reconhecimento, aviso prévio aerotransportado (AWACS), guerra eletrônica, patrulha marítima e busca e resgate.

Algumas fontes paquistanesas afirmaram que durante a Guerra Indo-Paquistanesa de 1965, alguns C-130s foram instalados com armas antiaéreas, realizaram missões especiais de superioridade aérea e foram responsáveis ​​pelo abate de vários jatos indianos. Essas afirmações não são confirmadas, mas, se decidirmos acreditar nelas, também podemos adicionar aeronaves de combate à sua lista de funções.

Em setembro de 2021, o Comando de Operações Especiais da Força Aérea dos Estados Unidos (AFSOC) anunciou suas intenções de construir uma versão do Hercules que incluísse flutuadores. É uma pena, sugere o comunicado de imprensa do AFSOC , que uma aeronave tão versátil ainda não seja capaz de pousar na água, que representa 71% da superfície do planeta. Os objetivos estratégicos nacionais concentraram-se mais nas regiões costeiras. Portanto, seria lógico ter a capacidade de implantação rápida lá.

O Hercules que será modificado é o MC-130J, a versão projetada para entregar, extrair e fornecer soldados de operações especiais. As capacidades do AFSOC aumentariam muito se a aeronave pudesse ser usada da nova maneira. Além disso, a fuselagem pode ser adaptada para qualquer finalidade, podendo também ser encomendada por outros serviços e utilizada para outras tarefas.

A AFSOC incluiu pela primeira vez o desenvolvimento do hidroavião em sua lista de aquisições na primavera de 2021 e confirmou o projeto em setembro. Também foi anunciado que, devido ao uso ativo das mais recentes tecnologias de design digital, a aeronave estará pronta para voar antes do final de 2022, um período recorde. Presumivelmente, a produção em massa seguirá logo depois.

Curiosamente, o serviço não deu explicação para a urgência. Por que, quando propostas anteriores foram ignoradas, os EUA agora precisam desse tipo de aeronave? E onde exatamente será empregado? No entanto, não são difíceis de deduzir.

O Kunlong


Em julho de 2020, a Aviation Industry Corporation of China (AVIC) fez um teste de voo com o AG600 Kunong, um hidroavião que, de acordo com a empresa, seria um ótimo complemento para muitos esforços de resgate e combate a incêndios.

Hidroavião AG600 Kunlong (Imagem: Alert5/Wikipedia)
A comunidade internacional não se convenceu de tais afirmações, já que o novo barco voador, movido por quatro turboélices e capaz de transportar pelo menos 12 toneladas (26.000 libras) de carga, também seria perfeito para entregar, extrair e fornecer as ambições chinesas no Sul da China Mar.

Referir-se ao mar como um 'hotspot' na geopolítica contemporânea é um eufemismo. Apesar das leis internacionais, uma decisão do Tribunal Permanente de Arbitragem da ONU e protestos de países vizinhos, a China continua reivindicando quase a totalidade do mar como seu e não hesita em ostentar seu poderio militar na região.

Entre uma série de pequenas ilhas, projetos de recuperação de terras e a ilha de Taiwan (que a República Popular da China reivindica como sua), existe uma vasta extensão de costa onde os hidroaviões podem ser usados ​​com eficácia. Durante o conflito, a capacidade de desconsiderar aeroportos e pousar aviões em qualquer local e a qualquer momento oferece uma grande vantagem. 

Os hidroaviões militares originais do início do século 20 foram projetados com isso em mente e foram amplamente utilizados até a Segunda Guerra Mundial. No entanto, a proliferação de aeródromos militares, o aumento do alcance de aeronaves terrestres, novos tipos de porta-aviões e o uso generalizado de helicópteros acabaram por torná-los obsoletos. Agora, consideramos as imagens de hidroaviões como relíquias do passado.

Mas as aeronaves de asa fixa tendem a ser muito mais rápidas e eficientes do que os helicópteros. Eles podem transportar mais carga útil e apresentar um maior alcance. Apesar de serem mais pesados ​​e lentos (devido aos enormes flutuadores que precisam carregar), os hidroaviões superam os helicópteros em todos os aspectos. Além disso, a infraestrutura militar não é particularmente bem desenvolvida no Mar da China Meridional e, o pouco que existe, pode ser destruída ou capturada.

Enquanto os projetistas insistem que o AG600 foi desenvolvido com o uso civil em mente, não é surpreendente que a aeronave estivesse associada à situação no Mar do Sul da China. A China já emprega um grande hidroavião próprio, o Harbin SH-5, que foi lançado na década de 1960. Foram sete produzidos, mas apenas um é usado para combate a incêndios, os demais (desconsiderando os três protótipos) são empregados pela marinha chinesa.

Após seu vôo inaugural, a mídia chinesa afirmou que o AG600 era o maior hidroavião existente. Isso é amplamente divulgado por jornalistas ocidentais. No entanto, essa declaração vem com várias ressalvas. Por exemplo, muitos hidroaviões da segunda guerra mundial, como o famoso Hughes H-4 Hercules, eram muito maiores e mais pesados. 

Existem dois Martin JRM Mars vintage de 1944 no Canadá, em um estado indiscutivelmente operacional. Comparado a essas aeronaves, o AG600 é bastante modesto em tamanho. No entanto, um dos Martins foi usado para treinar pilotos chineses antes do primeiro vôo do Kunong.

Depois, há também o albatroz A-40.

O Albatroz A-40


O A-40 é o maior hidroavião a jato já construído. Ele também é um pouco maior do que o AG600 e substancialmente mais pesado. Foi projetado na década de 1980 na União Soviética pelo bureau de Beriev, com o objetivo de se tornar a obra-prima da empresa e o sucessor de uma longa linha de barcos voadores Beriev.

Um dos protótipos do A-40 (Imagem: Alexxx1979/Wikipedia)
Depois de alguns voos de teste e recordes mundiais no final dos anos 1980, os dois protótipos A-40 sofreram um destino semelhante a muitos outros projetos soviéticos ambiciosos e foram deixados para enferrujar em seus hangares. O colapso econômico experimentado por uma Rússia recém-capitalista viu o fim de qualquer desenvolvimento posterior.

Mas em 2014, a United Aircraft Corporation (UAC) anunciou que retomou o desenvolvimento do Albatross. Em 2016, a Marinha russa revelou que substituiria o desatualizado Be-12 pelo novo hidroavião até 2020.

Como acontece com muitos outros projetos, os prazos pareciam significar pouco. No entanto, em 2019, várias notícias surgiram, incluindo a confirmação de que o projeto está em andamento, o anúncio de um novo nome, o Be-24 Albatross, e mais detalhes sobre a modernização da aeronave. Ele seria produzido em uma série limitada (aproximadamente uma dúzia) e complementaria uma frota existente de Be-200s menores.

O Be-200 Altair, uma versão reduzida do A-40, esteve em produção na década de 2000 e foi uma presença marcante nos esforços de combate a incêndios na Rússia e no exterior. Embora seja mais conhecido por despejar toneladas de água em áreas selvagens em chamas, o avião, assim como seu irmão mais velho, foi projetado com outros usos em mente.

Em particular, os barcos voadores a jato de Beriev eram destinados à patrulha marítima, reconhecimento e guerra anti-submarina. De acordo com oficiais russos , ambas as aeronaves desempenharão essas funções quando forem adotadas na Marinha. Ambas as aeronaves também serão utilizadas no Extremo Norte da Rússia.

O Ártico é, em muitos aspectos, semelhante ao Mar do Sul da China. É um pesadelo geopolítico e uma potencial zona de guerra entre grandes potências. Aqui, a infraestrutura do campo de aviação também é mal desenvolvida e há bastante litoral.

É altamente provável que uma corrida armamentista no Ártico tenha estimulado a Rússia a ressuscitar seus projetos de hidroaviões, assim como uma corrida armamentista no Mar da China Meridional provavelmente se tornou um catalisador para o desenvolvimento do AG600. O hidroavião C-130 é uma resposta óbvia a esses dois desafios.

O Hercules


Devido a um design digital bacana, há uma grande chance de que o C-130 seja adotado pelos militares dos EUA antes que o AG600 ou o Be-42 cheguem às suas respectivas forças armadas. Também é provável que, ao contrário de seus concorrentes, o design americano seja amplamente exportado. A OTAN e seus aliados parecem um mercado maduro para tal avião.

Ilustração do MC-130J, a versão anfíbia do C-130
Também existe um grande mercado civil para o hidroavião Hercules, especialmente se ele puder ser adaptado para funções de combate a incêndios. Ele promete ser muito mais capaz do que qualquer projeto semelhante e, salvo novos desenvolvimentos, se tornará o maior e mais pesado hidroavião operacional. Como se trata, essencialmente, de uma modificação de um design já existente, também poderia ser mais acessível do que outros modelos.

O Hercules também marca um ponto de viragem no que pode ser referido como o 'renascimento do hidroavião'. Outros hidroaviões foram desenvolvidos nos últimos anos, mais notavelmente o ShinMaywa US-2, um turboélice de quatro motores japonês lançado em 2007. Mas a velocidade e o vigor com que as grandes potências se apressaram para desenvolver suas próprias aeronaves com capacidade de pouso na água não têm precedentes. Isso destaca uma mudança significativa de atitude.

Dois hotspots geopolíticos, o Mar da China Meridional e o Ártico, estimularam a ressurreição de uma ideia quase esquecida. O que se segue é uma onda de ideias que, se implementadas, serão muito interessantes de observar.

Sud Aviation Caravelle será restaurado na Finlândia


Em todo o mundo, existem apenas alguns exemplares do Sud Aviation SE-210 Caravelle, embora mais de 280 unidades deste avião tenham sido construídas.

Dois aviões do tipo estão no campo de aviação Estocolmo-Arlanda, na Suécia. Mas agora um dos dois primeiros aviões a jato deixará seu lugar depois de 47 anos e se mudará para Turku, na Finlândia.

O aeroporto em Turku está atualmente reformando seu terminal de passageiros e deseja usar o pioneiro do tráfego de jato na Finlândia como um novo atrativo. A aeronave será exibida na saída sudoeste do aeroporto em conexão com as obras de renovação do terminal.

A empresa recebeu a aeronave como um presente do Museu Sueco de Aviação e História Marítima. O SE-210 Caravelle não está mais em condições de aeronavegabilidade após muitos anos ao ar livre e deve ser desmontado profissionalmente para transporte rodoviário até seu novo local, a 160 quilômetros de distância.

Caravelle nas cores da Finnair
O Caravelle foi o primeiro jato operado por uma companhia aérea finlandesa. O jato adquirido pela empresa aeroportuária de Turku está atualmente pintado com as cores da SAS Scandinavian Airlines mas será restaurado e reformado com as cores da Finnair dos anos 1960, em espartanas cores azul e cinza.

A Finnair adotou o tipo de aeronave na década de 1960 e, especialmente, um modelo atualizado posteriormente, o Super Caravelle, tornou-se por algumas décadas a espinha dorsal do tráfego aéreo da empresa para o resto da Europa e especialmente no crescente tráfego fretado para o Mediterrâneo, até 1983.

O avião, que na Finnair podia transportar 82 passageiros, ou 95 se a primeira classe fosse abolida, foi um pioneiro no conforto dos passageiros. O avião também teve uma altitude de voo máxima sensacional de quase 13.000 metros.

A restauração da aeronave está prevista para ser concluída em cerca de um ano.

Quais companhias aéreas foram as primeiras a voar cada modelo Boeing 747?

Retratado aqui está um Pan Am Boeing 747 logo após o pouso no aeroporto de Heathrow,
em Londres, em 21 de janeiro de 1970, após seu primeiro voo comercial (Foto: Getty Images)
Com mais de 50 anos de história e inúmeras variantes lançadas, o programa do 747 mudou a forma como os passageiros (e cargas) viajam. Ser o cliente de lançamento de um novo tipo ou variante de tipo é empolgante e vem com algum prestígio. Vamos dar uma olhada nas primeiras companhias aéreas (clientes de lançamento) para cada modelo do Boeing 747.

No início…


Como provavelmente é bem conhecido no mundo da aviação, a Pan Am foi o cliente lançador do primeiro Boeing 747-100, tendo sido uma voz influente no design do jato. Com o compromisso da Pan Am de encomendar 25 jatos jumbo, a Boeing tinha o que precisava para seguir em frente com o desenvolvimento da aeronave. Em janeiro de 1970, o primeiro 747 entregue à Pan Am foi batizado pela primeira-dama Pat Nixon. Este primeiro jato foi denominado Clipper Victor.

É um pouco mais nebuloso quando se trata da próxima iteração do 747, o 747-200. Um fórum online acredita que o cliente lançador dessa variante de passageiro foi a KLM. Enquanto isso, o modelo cargueiro, o 747-200F, entrou em serviço em 1972 com a Lufthansa.

A Modern Airliners relata que a Japan Airlines foi a primeira a voar no primeiro 747-100SR (curto alcance). O lançamento deste jato ocorreu em agosto de 1973. Pouco depois, a ANA (All Nippon Airways) recebeu o primeiro 747-100BSR em dezembro de 1978.

A ANA foi o cliente lançador do 747-100BSR (Foto: Ken Fielding via Wikimedia Commons)
A partir daqui, foi a Pan Am que teve a honra de ser o cliente lançador do 747SP. A companhia aérea recebeu a primeira entrega deste jumbo encurtado em 5 de março de 1976. Este jato em particular foi denominado Clipper Freedom.

Sete anos depois, em 23 de março de 1983, a Swissair recebeu a primeira entrega do 747-300. Vários anos depois disso, em 1985-1986, a Japan Airlines seria a primeira a usar dois jatos jumbo Boeing 747-300SR de curto alcance. A transportadora operou essas aeronaves em serviços domésticos de alta capacidade, como Okinawa – Tóquio.

A variante mais popular do 747


Então, em fevereiro de 1989, a Northwest se tornaria a primeira a voar o 747-400 em um serviço comercial. Isso levaria os passageiros de Minneapolis para a rota de Phoenix.

O primeiro 747-400M Combi seria lançado em março de 1989, com a primeira entrega ocorrendo em setembro. Foi quando entrou em serviço com a KLM (que também recebeu os últimos 747-400M em abril de 2002). Vários anos depois, em 1993, a Cargolux seria a primeira operadora do 747-400F.

A Northwest Airlines seria a primeira operadora do Boeing 747-400. A companhia aérea mais
tarde entraria em uma fusão com a Delta Air Lines (Foto: Ken Fielding via Wikimedia Commons)
O 747-400 era, é claro, a variante mais popular do jato jumbo. Ele também tinha uma série de subvariantes adaptadas a vários ambientes operacionais.

O programa Longer-Range 747-400 foi lançado oficialmente em novembro de 2000 com um pedido da Qantas para seis do tipo. O primeiro lançamento do 747-400ER foi em junho de 2002, com a Qantas recebendo a primeira entrega em outubro de 2002. Com tempos semelhantes aos da variante de passageiros, o primeiro lançamento do 747-400ER Cargueiro (747-400ERF) foi em setembro de 2002. A primeira entrega ocorreu em outubro de 2002 para a Air France.

Em dezembro de 2005, a Cathay Pacific comemorou a conclusão e certificação do primeiro 747-400 Boeing Converted Freighter, ou 747-400BCF. Isso aconteceu com uma cerimônia de devolução realizada em Xiamen, na República Popular da China. De acordo com a Boeing, a Cathay Pacific lançou o programa de conversão de passageiros em cargueiros da Boeing em janeiro de 2004.

A variante final


A variante final do 747 foi o 747-8. Isso seria dividido em 747-8i para passageiros e 747-8F para transporte de carga.

Em outubro de 2011, a Cargolux se tornou a primeira operadora a voar com o 747-8F. Pouco depois, em junho de 2012, a Lufthansa realizou o voo inaugural do primeiro 747-8i. Isso levou passageiros de Frankfurt para Washington, DC.

A Lufthansa ainda opera o Boeing 747-8i (Foto: tjdarmstadt via Wikimedia Commons)
Curiosamente, muitos desses tipos ainda operam com várias operadoras em todo o mundo. Agora que cobrimos todas as 'primeiras companhias aéreas', teremos apenas que esperar e ver quais companhias aéreas se tornarão as 'últimas operadoras' de cada tipo.

Avião solar passa em teste e promete ser capaz de voar para sempre


A fabricante de aeronaves Skydweller anunciou que seu novo protótipo de avião solar não-tripulado, de mesmo nome, concluiu seu primeiro teste de voo autônomo. A multinacional dos Estados Unidos e Espanha efetuou um total de 10 pousos e decolagem na cidade espanhola de Albacete, utilizando apenas os sistemas GNC (Autonomia e orientação, Navegação e Controle).

Os voos tiveram acompanhamento de pilotos, tal como em testes de sistemas de direção beta, mas foi totalmente orientado pelo sistema de geolocalização da Skydweller. Para realizar os testes, a aeronave utilizou coordenadas no espaço aéreo, ajustando-se enquanto se aproximava de cada ponto, até entrar em um circuito de voo em loop fechado.

Os voos em loop aconteceram para testar a capacidade do sistema de detectar alterações climáticas, bem como a qualidade dos loops de voo em diferentes altitudes. Sensores de decolagem, pouso e de comunicações também foram postos em testes antes da próxima etapa.

“Estas demonstrações de sucesso provam a habilidade da empresa em desenvolver, testar e integrar capacidades de sistemas autônomos com segurança tanto em aviões novos quanto em já existentes”, afirma em nota o Líder de Estratégia da empresa, John Parkes.

Meta da Skydweller é que avião solar voe infinitamente


Para a próxima etapa do avião solar, a Skydweller está trabalhando em componentes que permitam um voo infinito. No momento, este objetivo está limitado por questões técnicas: a aeronave está majoritariamente equipada com componentes de aviões comerciais convencionais — que, à bem da verdade, não foram feitos para voar tanto assim.


Segundo os desenvolvedores, no momento a tecnologia permite que a aeronave voe ininterruptamente por 90 dias, embora a empresa almeja com o dia em que o Skydweller consiga voar para sempre. E tecnicamente, isso não é impossível, já que a aeronave pode se abastecer pelos painéis solares em pleno voo.

A Skydweller ainda irá direcionar a aeronave para baterias posteriores de testes nos próximos meses.

Via Olhar Digital - Imagem: Divulgação/Skydweller

Vídeo mostra avião pilotado por bilionário caindo na Itália

Motorista registrou queda de avião de bilionário romeno
Um vídeo flagrou a queda do avião que vitimou um bilionário romeno e sua família, na Itália. Dan Petrescu estava pilotando o monomotor Pilatus PC-12 no domingo (3), quando pegou fogo e atingiu um edifício comercial em San Donato Milanese, uma cidade a sudeste de Milão, na Itália. Petrescu, que pilotava a aeronave, e os sete passageiros morreram. 

A queda foi capturada em vídeo, publicada pela italiana CorriereTv, e mostra o avião descendo em um movimento quase vertical, quando alcança um prédio. Em seguida, uma bola de fogo pode ser vista no local do acidente.


O bilionário romeno de 68 anos estava acompanhado de sua esposa, Regina, do filho, Dan Stefan, e um amigo do filho, Julien Brossard. Além dos amigos da família Filippo Nascimbene, que estava com a esposa, Claire Alexandrescou, a mãe dela, Miruna Anca Wanda Lozinschi, e o filho do casal, Raphael, de acordo com o The Sun. A aeronave, que havia deixado o aeroporto de Milão pouco depois das 13h, pegou fogo 16 segundos antes de bater no edifício, 11 minutos após a decolagem. No entanto, ainda não se sabe a causa da queda em si.


As famílias deixaram o batizado do pequeno Raphael e estavam indo em direção à Sardenha para visitar a mãe de 98 anos de Petrescu, que tinha uma fortuna estimada em três bilhões de euros e era dono de uma série de hipermercados e shopping centers. A caixa preta do avião foi recuperada e as autoridades locais abriram uma investigação para entender o que pode ter causado o acidente.

Via UOL

quinta-feira, 7 de outubro de 2021

Vídeo: Conheça o piloto herói Kevin Sullivan, cujo raciocínio rápido salvou 315 pessoas no voo 72 da Qantas

(Legendado)

Caso sua legenda em português não apareça, clique no ícone "ferramentas" do vídeo e selecione "Legendas" e, em seguida, "traduzir automaticamente", e selecione o idioma.

Vídeo: Mayday Desastres Aéreos - Qantas voo 72 - Queda Livre sobre o Oceano Índico


Aconteceu em 7 de outubro de 2008: A quase queda do voo 72 da Qantas - Em queda livre


No dia 7 de outubro de 2008, o voo 72 da Qantas estava voando alto sobre o Oceano Índico a caminho de Perth, na Austrália Ocidental, quando repentinamente caiu sem aviso. Antes que os pilotos pudessem descobrir o que estava acontecendo, aconteceu de novo - parecia que o avião tinha vontade própria; que o computador no coração do Airbus A330 tinha ficado não confiável. 

Embora os pilotos tenham conseguido fazer um pouso de emergência seguro, os violentos arremessos feriram mais de 100 pessoas, algumas delas gravemente, e causaram danos significativos ao mobiliário da cabine. 

Os investigadores encarregados de encontrar a causa rastrearam o problema até os dados ruins fornecidos por um computador de bordo chamado Air Data/Inertial Reference Unit, desencadeando uma série de problemas de software que culminaram em um comando automático de 10 graus de nariz para baixo durante o voo de cruzeiro. Como era possível que fantasmas no código pudessem ferir tantas pessoas e ameaçar derrubar um avião de uma das companhias aéreas mais seguras do mundo? 

A fonte final do problema se mostrou elusiva, mas os investigadores acreditaram que o voo 72 da Qantas contém lições valiosas sobre o tipo de risco de segurança que se tornará cada vez mais comum à medida que os aviões se tornam mais complexos.


O voo 72 da Qantas era um serviço regular programado com a companhia aérea nacional da Austrália de Cingapura para Perth, na Austrália Ocidental. Operado pelo Airbus A330-303, prefixo VH-QPA (foto acima), um avião de fuselagem larga, o voo partiu de Cingapura às 9h32, horário local, com 303 passageiros e 12 tripulantes a bordo, com destino ao sul através do Oceano Índico. 

No comando estavam o capitão Kevin Sullivan e o primeiro oficial Peter Lipsett, ambos com mais de 10.000 horas de voo. Um terceiro piloto, o segundo oficial Ross Hales, também estava voando para que os pilotos pudessem alternar os intervalos de descanso durante o voo. Na metade da jornada, o primeiro oficial Lipsett cedeu seu lugar ao segundo oficial Hales e fez seu intervalo de descanso. Era 12h39.

No fundo do compartimento de aviônicos do A330, uma falha apareceu em um dispositivo chamado número um Air Data/Inertial Reference Unit, ou ADIRU 1 para breve. 

O A330 tem três ADIRUs, cada um dos quais conectado a um conjunto independente de sensores que medem uma ampla gama de parâmetros, incluindo velocidade do ar; altitude; e ângulo de ataque (AOA), a medida do ângulo de inclinação em relação ao fluxo de ar. 

Os ADIRUs processam essas informações e as fornecem aos computadores de voo na forma de “palavras” de 32 bits codificadas em binário. Cada “bit” é uma unidade de informação com dois estados binários, um ou zero, aos quais são atribuídos significados diferentes dependendo de sua posição na palavra de 32 bits. 

Uma palavra enviada do ADIRU para o computador de voo contém um rótulo de 8 bits que significa que tipo de informação está sendo transmitida (velocidade do ar, altitude, etc.); um identificador de origem/destino de 2 bits que indica de onde as informações estão vindo e para onde estão indo; até 19 bits de dados reais medidos; um indicador de status de 2 bits que indica se os dados são válidos ou não; e um indicador de paridade de 1 bit que faz com que o computador de destino rejeite a palavra se ela contiver o número errado de zeros e uns.


De particular interesse é a seção de dados de 19 bits. Cada bit na sequência de 19 bits é atribuído a um número específico, sempre duas vezes o número anterior, que muda dependendo do parâmetro que está sendo medido. 

Por exemplo, no parâmetro de altitude, o bit # 12 é sempre um pé, o bit # 13 é sempre dois pés, o bit # 14 é sempre quatro pés e assim por diante. Um valor de altitude é codificado como uma soma desses números; os números usados ​​na soma são indicados alterando o valor binário do bit associado de zero para um. 

Por exemplo, a altitude de cruzeiro do voo 72 de 37.012 pés pode ser indicada com um valor binário de um nos bits # 27 (32.768 pés), # 24 (4.096 pés), # 19 (128 pés) e# 15 (8 pés), com todos os outros bits na seção de dados definidos para um valor binário de zero.


O que aconteceu exatamente dentro do ADIRU 1 a bordo do voo 72 exatamente às 12h40 é desconhecido até hoje. Mas, embora o evento desencadeador seja um mistério, o efeito que teve sobre os dados disponibilizados por este ADIRU foi notável. 

Assim que o erro ocorreu, o ADIRU começou a enviar rajadas de dados erroneamente rotulados - dados em que as informações de altitude possuíam a sequência de rótulo de 8 bits correspondente à velocidade do ar ou AOA. 

Como o valor exato dos dados codificados na palavra depende do tipo de dado como o rotulado, a informação foi corrompida. Os bits específicos que foram definidos com um valor binário de um para somar à altitude da aeronave permaneceram definidos como tal, mas agora representavam o número correspondente em um parâmetro diferente. 

Considere o exemplo anterior com uma altitude medida de 37.012 pés. Para somar 37.012 pés, bits# 27 , # 24 , # 19 e # 15 receberam um valor binário de um. No entanto, na escala usada para dados AOA, esses mesmos bits correspondiam a valores que somavam um total de 50.625 graus.


Assim que o erro ocorreu, o ADIRU 1 começou a enviar intermitentemente esses dados errados para os computadores de voo. Mas esse não foi o único problema. Alguns dos dados falsos foram usados ​​como ponto de referência para calcular o próximo lote, corrompendo “palavras” futuras também. 

Alguns parâmetros que dependiam dos parâmetros corrompidos foram corrompidos, assim como os “relatórios de status” periódicos emitidos pelo ADIRU, que indicavam se vários sistemas estavam funcionando ou não. 

Embora nenhum mecanismo que explicasse conclusivamente todos os tipos de dados corrompidos tenha sido encontrado, a origem do problema pode ter sido a CPU ADIRU cometer erros ao ler valores armazenados em sua memória de acesso aleatório. 

O recurso integrado que rotulava os dados como válidos ou inválidos não detectou o problema porque a corrupção ocorreu durante o processo de montagem de palavras, após as verificações terem sido realizadas. 

Muitos dos dados corrompidos também passaram por verificações adicionais, ou essas verificações falharam; por exemplo, o computador sempre verificava os dados AOA para garantir que eram compatíveis com a velocidade e o ângulo de inclinação medidos do avião. Mas, como esses parâmetros também foram corrompidos, a verificação não funcionou.


Na outra extremidade, o computador recebia dados de todas as três ADIRUs, incluindo as duas que estavam funcionando normalmente, e comparava constantemente suas saídas para garantir consistência e detectar dados falsos. 

A cada período de um segundo, o computador fez 25 comparações dos valores AOA emitidos pelos três ADIRUs, calculou o valor mediano em cada intervalo de amostragem e descartou os dados AOA de qualquer ADIRU cujas saídas estavam consistentemente muito longe da mediana durante o curso do período de um segundo. 

No caso de um valor AOA diferir significativamente da mediana no início do intervalo de um segundo, o computador "lembraria" os últimos dados válidos enviados desse ADIRU e os usaria em seus cálculos por 1,2 segundos antes de amostrar novamente. Mas havia uma falha oculta neste processo. 

Se um "pico" de dados AOA inválidos ocorresse no início do período de comparação de um segundo, desaparecesse e retornasse dentro de 0,2 segundos após o final do período de comparação, o período de memorização de 1,2 segundo seria acionado, mas o computador não rejeitar as saídas AOA do ADIRU porque elas não eram inválidas durante todo o período de um segundo. 

Então, quando o período de memorização terminou e o computador fez uma nova amostragem dos dados, a saída era inválida novamente, mas seria tratada como válida porque a saída acabara de passar no teste de comparação. 

O computador presumiu que, se o teste tivesse passado, qualquer valor recebido após o fim do teste seria necessariamente válido e usou esse valor em seu próximo cálculo do ângulo de ataque real do avião. 

Por este método, a enxurrada de dados ruins do ADIRU 1 (e, em particular, os dados AOA ruins) passaram por todas as proteções destinadas a filtrá-los. Os dados ruins foram então usados ​​pelo computador de voo em seus cálculos.


Na cabine, os pilotos notaram os efeitos dos dados ruins segundos após sua criação. Em primeiro lugar, o piloto automático se desconectou, pois se mostrou incapaz de reconciliar as diferenças nos dados que estava recebendo dos três ADIRUs. 

O Capitão Sullivan anunciou imediatamente que tinha controle manual. Menos de cinco segundos depois, os pilotos se viram bombardeados por uma súbita cascata de avisos acionados por dados errados e corrompidos. 

Mensagens de falha inundaram a tela do computador no console central, e os avisos de "estol" e "excesso de velocidade" começaram a disparar intermitentemente - uma combinação obviamente impossível, considerando que um indicava que eles estavam voando muito devagar e o outro indicava que eles estavam voando também velozes! 

O Capitão Sullivan tentou engajar o segundo piloto automático reserva do A330. Ao mesmo tempo, os valores de velocidade e altitude no visor de voo de Sullivan, que fornece seus dados do ADIRU 1, pareceram enlouquecer, flutuando descontroladamente de uma maneira completamente inconsistente com o nível da aeronave e trajetória dócil. 

Uma mensagem de falha e uma luz de advertência associadas à unidade de referência inercial número um (parte do ADIRU 1) também dispararam. Em resposta às indicações não confiáveis ​​de velocidade do ar, Sullivan desligou o piloto automático e voou com o avião manualmente usando os instrumentos de espera no console central. 

Totalmente perplexo com a cascata de avisos aparentemente falsos, o capitão Sullivan e o segundo oficial Hales chamaram o primeiro oficial Lipsett de volta à cabine para ajudar a descobrir o que estava acontecendo.


Mas antes que Lipsett chegasse à cabine do piloto, a sequência de eventos que se desenrolavam no reino da informação repentinamente invadiu o mundo real. Um pico de dados de altitude erroneamente rotulados como dados AOA e marcados como válidos pelo computador de voo acionou duas condições de emergência separadas das chamadas proteções de piso alfa do A330. 

As proteções de piso do Alpha, uma parte central da filosofia de projeto da Airbus, são limites impostos à inclinação, ângulo de ataque, velocidade do ar e ângulo de inclinação que desencadearão ações corretivas automáticas quando excedidos. 

Essas proteções normalmente evitam que os pilotos façam entradas de controle que possam colocar o avião em uma atitude perigosa, e corrigem uma atitude perigosa se uma delas ocorrer. Mas os dados defeituosos acionaram incorretamente duas das proteções do piso alfa, embora a aeronave estivesse em uma atitude normal para voo de cruzeiro. 

Um sistema denominado "proteção AOA alta" detectou um ângulo de ataque excessivamente alto (proveniente do ADIRU 1 defeituoso) e aplicou uma entrada de elevador de nariz para baixo de 4 graus, o máximo que poderia comandar, para ajudar a trazer o AOA de volta aos limites. 

Exatamente ao mesmo tempo, os mesmos dados ruins acionaram um sistema separado denominado “compensação anti-pitch up”, que se destina a neutralizar a tendência do A330 de se inclinar ao voar em alta velocidade e alto ângulo de ataque. Este sistema aplicou uma entrada de elevador de nariz descendente de 6 graus, que também passou a ser o máximo que ele poderia comandar. Os dois comandos de nariz para baixo foram aditivos, juntos aplicando um movimento súbito de 10 graus com o nariz para baixo.


O efeito de um comando de 10 graus para baixo do nariz durante o voo de cruzeiro foi repentino e catastrófico. O avião mergulhou imediatamente, arremessando no teto qualquer pessoa e qualquer coisa que não estivesse amarrada. 

Pelo menos 60 passageiros sentados não usavam cintos de segurança, e as forças G negativas os jogaram de cabeça para baixo nas unidades de serviço de passageiros no fundo dos compartimentos superiores. 


Vários outros, incluindo a maioria da tripulação e cerca de 20 passageiros, estavam fora de seus assentos, desempenhando várias funções ou indo para os banheiros. Eles também se viram atirados contra o teto com grande força. 

Os compartimentos de bagagem se abriram, espalhando malas e mochilas pelos corredores. Bebidas, comida, laptops, livros e outros itens soltos voaram em todas as direções. Na cabine, os pilotos foram puxados para cima e para fora de seus assentos, contido apenas por seus cintos de segurança. 

O Capitão Sullivan alcançou seu manche lateral para tirar a aeronave do mergulho, mas quando ele tentou trazer o nariz para cima, não houve resposta; os sistemas automáticos o haviam bloqueado. Ele me soltou e tentou novamente. Desta vez, como o pico de dados acabou, os elevadores responderam e o avião começou a nivelar. 


À medida que as forças G negativas diminuíam, todos na cabine que estavam presos ao teto desabaram de novo. Pessoas bateram no chão, nos assentos e em outros passageiros, caindo em meio a uma confusão caótica de objetos aleatórios. 

Ainda se recuperando do choque do transtorno, os passageiros e a tripulação fizeram um balanço da situação. A manobra violenta causou ferimentos generalizados - havia ossos quebrados, contusões, lacerações graves e muito mais. 

Todos os comissários de bordo ficaram feridos em vários graus. Uma pessoa quebrou uma perna, vários sofreram graves ferimentos na coluna e muitos estavam sangrando profusamente. O primeiro oficial Lipsett, que estava a caminho da cabine, quebrou o nariz.


Agora de volta ao controle, Sullivan e Hales, que não se machucaram, começaram a tentar limpar todas as mensagens de erro na tela do computador. As notificações de falha afetaram uma grande variedade de sistemas, e muitos deles não exigiam nenhuma ação, mas a que continuava aparecendo, independentemente do que eles fizessem, era a mesma falha “NAV IR 1” que receberam anteriormente. 

E enquanto eles trabalhavam, os avisos de estol e velocidade excessiva continuavam a soar. O segundo oficial Hales fez um anúncio pelo sistema de som, pedindo a todos os passageiros e tripulantes que se sentassem e colocassem os cintos de segurança imediatamente. 

De repente, outro pico de dados ruins do AOA chegou ao computador de voo. Embora a desconexão do piloto automático tenha alterado a lógica do piso alfa, removendo a proteção AOA alta, o sistema de compensação anti-pitch up permaneceu ativo e foi acionado novamente. 

Desta vez, o mergulho não foi tão acentuado e a maioria das pessoas tinha colocado os cintos de segurança, mas alguns que haviam se machucado ou tentavam ajudar os outros não, e foram jogados no teto novamente. Assim como da primeira vez, os esforços iniciais de Sullivan para subir não surtiram efeito; e assim como da primeira vez, a resistência diminuiu após alguns segundos e ele conseguiu nivelar o avião. 

Uma queda repentina era uma coisa, mas duas diminuições repentinas eram outra bem diferente. Com todos os tipos de alarmes ligados e desligados em segundo plano e novas mensagens de erro aparecendo constantemente, a tripulação não tinha certeza do que estava acontecendo e temia que pudesse mergulhar novamente a qualquer momento. Um desembarque imediato em Learmonth, na Austrália Ocidental, parecia a melhor opção.


Lipsett, apesar do nariz quebrado, finalmente conseguiu chegar à cabine e assumir o lugar de Hales. Ele relatou que também havia feridos entre os passageiros. Neste momento, Sullivan notou que a guarnição do estabilizador automatizado não estava funcionando; a guarnição teria que ser ajustada manualmente. 

O equipamento de navegação também não funcionava e eles não podiam interagir com a interface do computador. Sullivan declarou um pan-pan-pan, um nível abaixo de um mayday, e informou aos controladores que o voo 72 estava indo para Learmonth com “problemas no computador de voo”. 

Depois de receber a palavra dos comissários de bordo de que havia vários ossos quebrados, lacerações e outros ferimentos, ele atualizou isso para um socorro completo e solicitou que as ambulâncias encontrassem a aeronave após o pouso. 

Os pilotos voaram o restante do voo em modo totalmente manual, tentando ignorar os alarmes espúrios constantes que se recusavam a desligar. O primeiro oficial Lipsett ligou para a manutenção da Qantas em Sydney pelo sistema de comunicação por satélite para tentar obter ajuda para resolver a situação, mas eles também não conseguiram descobrir o que estava errado. No entanto, as quedas repentinas nunca mais voltaram, e o voo 72 pousou em segurança em Learmonth às 13h32.


Ao todo, pelo menos 119 dos 315 passageiros e tripulantes ficaram feridos, 12 deles gravemente. O interior da cabine estava totalmente destruído. Painéis de teto foram quebrados, unidades de serviço de passageiros destruídas, compartimentos superiores arrancados do alinhamento. Lixo, comida, sangue e bebidas derramadas espalhadas pelo chão. 

E embora o avião voasse novamente e ninguém morresse, muitas pessoas sofreram ferimentos que ficarão com eles pelo resto de suas vidas - tudo por causa de alguns "fantasmas no código". 


Os investigadores do Australian Transportation Safety Board tiveram que perguntar: como tal coisa pôde acontecer? Acontece que não foi a primeira vez que esse tipo de erro ocorreu. Outro A330 da Qantas experimentou um problema de dados semelhante em 2006, também na costa da Austrália Ocidental. E em dezembro de 2008, aconteceu novamente em outro voo da Qantas fora da Austrália Ocidental. 

Nenhum desses outros dois casos envolveu um pitch down não comandado, mas o modo de falha do ADIRU em todos os três incidentes foi semelhante, e dois deles envolveram até mesmo o mesmo ADIRU. 

O fato de que todas essas falhas ocorreram dentro de uma pequena região geográfica parecia muito estranho para ser uma coincidência, mas apesar de uma variedade de teorias e de um apelo da Australian and International Pilots Association para proibir voos sobre a área, os investigadores não conseguiram encontrar nada inerente a Austrália Ocidental que pode ter causado o mau funcionamento.


Na verdade, o ATSB nunca foi capaz de descobrir de forma conclusiva o que fez com que o ADIRU começasse a enviar dados falsos e com rótulos incorretos. Apenas uma teoria não poderia ser descartada: um efeito de evento único, ou SEE para breve. 

A SEE ocorre quando uma partícula de alta energia do espaço sideral, como um nêutron, atinge um chip de computador e altera aleatoriamente uma chave binária de um para zero ou zero para um. Se um SEE ocorreu em um local crítico dentro do módulo de memória da CPU ADIRU, ele poderia, apenas talvez, ter acionado tudo o que se seguiu. 

O ATSB não foi capaz de encontrar evidências para provar ou refutar a teoria, mas o fato de os dois ADIRUs que experimentaram este tipo de mau funcionamento estarem próximos um do outro em número de série sugeriu que pode ter havido alguma falha de hardware mínima naquele lote de ADIRUs que os tornou mais suscetíveis a um SEE.


O que tornou a falha do ADIRU perigosa não foi que ela falhou em si, mas que os dados inválidos passaram por várias camadas de verificações cruzadas sem serem sinalizados como tal. Se os picos de dados tivessem sido sinalizados como inválidos em algum ponto do processo, o computador os teria desconsiderado e a segurança do voo nunca teria sido comprometida. 

A investigação encontrou um modo de falha até então desconhecido, no qual picos de dados ocorrendo aproximadamente a cada 1,2 segundos podem levar o computador a pensar que dados ruins são reais. Era aí que residia o verdadeiro problema de segurança. 

Pode não ser possível evitar que alguns zeros e zeros sejam corrompidos de vez em quando, mas se as proteções em camadas nem sempre conseguissem detectar os dados corrompidos, isso representava um risco à segurança. Essas proteções eram boas - o próprio ADIRU poderia eliminar 93. 5% de dados inválidos por conta própria antes que o computador fizesse sua verificação cruzada - mas isso não foi suficiente para evitar que um pouco de código incompatível ferisse 119 pessoas. 

Em princípio, entretanto, o ADIRU permaneceu completamente seguro. Este tipo de falha ocorreu apenas três vezes em 128 milhões de horas de serviço para este modelo de ADIRU, bem dentro da zona de probabilidade que os reguladores consideram “extremamente remota”.


Um ângulo final que o ATSB buscou foi a taxa de uso do cinto de segurança entre os passageiros das companhias aéreas. Durante os dois distúrbios durante o voo, passageiros sem restrições colidiram com o teto e contra outros passageiros, causando ferimentos não apenas a si próprios, mas também a outras pessoas que estavam usando os cintos de segurança e não teriam se machucado. 

Embora alguns fatores pudessem estar relacionados com o uso mais baixo do cinto de segurança, não havia uma razão universal para que as pessoas optassem por não usá-lo. Fazer com que as pessoas usem o cinto de segurança quando o sinal do cinto de segurança não está colocado é um desafio que as companhias aéreas enfrentam há décadas. 

Conectar o cinto de segurança o tempo todo não é uma solução prática porque as pessoas ficariam complacentes com sua presença e ignorariam o cinto com taxas mais altas do que antes. Os investigadores decidiram que mais pesquisas teriam que ser feitas para encontrar as maneiras mais eficazes de contornar esse paradoxo.


Em seu relatório final, o ATSB escreveu que a investigação foi extremamente difícil e tocou em várias áreas onde nenhuma investigação de acidente aéreo havia se aventurado antes. Os autores do relatório também estavam cientes de que o incidente do voo 72 da Qantas pode ser representativo do tipo de caso que se tornará cada vez mais comum na era moderna. 

“Dada a complexidade crescente dos sistemas [de aeronaves]”, escreveram eles, “esta investigação ofereceu uma visão sobre os tipos de problemas que se tornarão relevantes para investigações futuras”. 

Poucos dias após o acidente, a Airbus emitiu um boletim para todos os operadores do A330 instruindo os pilotos a desligar imediatamente o ADIRU indicado ao receber uma falha “NAV IR”. Este conselho pode ter evitado um acidente semelhante em dezembro daquele ano, quando os pilotos do voo 71 da Qantas experimentaram um defeito idêntico no ADIRU, mas desligaram a unidade afetada após apenas 28 segundos. 

As autoridades regulatórias em todo o mundo reeditaram este boletim da Airbus como uma diretiva de aeronavegabilidade, tornando-o uma regra oficial. A Airbus também redesenhou a lógica usada pelo computador de voo para verificar os dados AOA, eliminando a possibilidade de que picos de dados oportunos passassem pela verificação cruzada. 

Além disso, a Airbus começou a incluir novas maneiras de testar seu software de verificação de dados, incluindo testes com picos de dados intermitentes, que não haviam sido tentados anteriormente.


No entanto, o ATSB encontrou um problema: embora o evento que precipitou essa falha fosse tão raro que o ADIRU ainda atendesse a todas as diretrizes de segurança razoáveis, ele representou apenas um exemplo de corrupção nas vastas quantidades de informações sendo processadas dentro dos muitos computadores de uma aeronave. 

Que outras lacunas podem existir que podem fazer com que um bug de software, um SEE ou outras fontes de dados inválidos se manifestem de maneiras perigosas? Como esses eventos poderiam ser previstos? 

Uma maneira era atacar uma das fontes suspeitas de erros: os SEEs. Após o acidente da Qantas, a Agência Europeia para a Segurança da Aviação começou a pedir aos fabricantes de computadores para aeronaves que levassem em consideração os SEEs durante a fase de projeto para tornar seus produtos menos suscetíveis. 

No momento da publicação do relatório, a Administração Federal de Aviação dos Estados Unidos ainda estava pesquisando as melhores maneiras de abordar o problema. Hoje, a compreensão das implicações desse fenômeno para a segurança ainda está em desenvolvimento. 

No entanto, o voo 72 da Qantas se destaca como o primeiro caso em que os investigadores investigaram profundamente uma falha grave de software - e serve como um lembrete da importância de manter o cinto de segurança preso o tempo todo.

Edição de texto e imagens por Jorge Tadeu (Site Desastres Aéreos)

Com Admiral Cloudberg, Wikipedia, ASN e The Aviation Herald - Imagens: AAPIMAGE, Wikipedia, Australian Transportation Safety Board, News.com.au, Sydney Morning Herald, ABC, New Zealand Herald e Masakatsu Ukon. Clipes de vídeo cortesia de Mayday (Cineflix).

Aconteceu em 7 de outubro de 1979: A queda do voo 316 da Swissair - Plutônio e diamantes a bordo

Em 7 de outubro de 1979, um Swissair DC-8 caiu ao tentar pousar no Aeroporto Internacional de Atenas-Ellinikon. Dos 154 passageiros e tripulantes a bordo, 14 morreram no acidente.

O voo 316 da Swissair era um serviço internacional regular de passageiros de Zurique, na Suíça, para Pequim, na China, via Genebra, Atenas e Bombaim (agora Mumbai). 


A aeronave, o McDonnell Douglas DC-8-62, prefixo HB-IDE, da Swissair, batizada "Uri" (foto acima), foi pilotada pelo Capitão Fritz Schmutz e pelo Primeiro Oficial Martin Deuringer. No total, o avião levava a bordo 142 passageiros e 12 tripulantes. 

O voo 316 pousou na pista 15L a uma velocidade de 146 nós (270 km/h; 168 mph). A aeronave desacelerou, mas ultrapassou a pista e parou em uma via pública. A asa esquerda e a cauda se separaram e um fogo intenso começou. 


Quatorze dos 142 passageiros a bordo morreram. Entre os mortos estavam cidadãos britânicos, alemães e franceses. Dos passageiros a bordo, 100 eram médicos a caminho de uma convenção médica na China.

Um dos sobreviventes do voo 316 foi Hans Morgenthau, um professor emérito da Universidade de Chicago e especialista em Relações Internacionais.


Após o acidente, soube-se que a aeronave estava transportando mais de 450 kg de isótopos radioativos e uma pequena quantidade de plutônio. O plutônio estava na bagagem de um dos médicos a bordo e desapareceu brevemente após o acidente, embora tenha sido encontrado rapidamente. As autoridades mandaram bombeiros e outras equipes de resgate verificados quanto à exposição à radiação.


O acidente destruiu mais de 2 milhões de dólares em diamantes industriais com destino a Bombaim. A maioria dos diamantes brutos foram encontrados pela polícia, mas foram destruídos pelo intenso calor do acidente.

Dois dias após a queda do voo 316, as autoridades gregas acusaram o piloto Fritz Schmutz de homicídio culposo, além de outras acusações. Em um julgamento em 1983, Schmutz, junto com o copiloto Deuringer, foram considerados culpados de várias acusações, incluindo homicídio culposo com negligência, causando vários ferimentos corporais e obstrução do tráfego aéreo, e foram condenados a cinco e dois anos e meio na prisão, respectivamente. Schmutz e Deuringer foram libertados sob fiança enquanto apelavam de suas sentenças.


Um ano após sua sentença, o tribunal decidiu que Schmutz e Deuringer poderiam substituir as multas no lugar da prisão. Nenhum dos pilotos voou desde o acidente, mas eram funcionários da Swissair.

A investigação do acidente determinou que as causas do acidente foram que a tripulação tocou muito longe na pista, em uma velocidade muito alta, seguindo uma abordagem não estabilizada, e que eles falharam em utilizar adequadamente os sistemas de freio e reversão da aeronave , que resultou na impossibilidade de parar a aeronave dentro da pista disponível e na distância de ultrapassagem.


Um membro da equipe de Operações do Comitê de Investigação de Acidentes teve opinião diferente do restante do Comitê em relação à causa do acidente, afirmando que acreditava que a tripulação não percebeu a velocidade e a distância de toque de aterrissagem, não acompanhou as deficiências da empresa técnica de pouso com ação de frenagem e não conseguiu utilizar adequadamente os sistemas de freio e reversão da aeronave.

Por Jorge Tadeu (com Wikipedia, ASN e baaa-acro)

Aconteceu em 7 de outubro de 1961: Colisão do Douglas DC-3 da Derby Airways contra os Pirineus

No sábado, 7 de outubro de 1961, o Douglas C-47B-30-DK Dakota 4 (DC-3), prefixo G-AMSW, da Derby Airways (foto acima), partiu para realizar o voo do Aeroporto Gatwick, em Londres, Inglaterra, para o Aeroporto Perpignan, perto de Perpinhã e Rivesaltes, ambas comunas do departamento de Pirineus Orientais na região de Occitanie, no sul da França.

A aeronave G-AMSW havia sido construída em 1944, originalmente para a Força Aérea dos Estados Unidos (cauda no. 44-76587). Em 1952, foi registrado para a Air Service Training Limited e em 1954 na Cambrian Airways. Foi registrado na Derby Aviation em 31 de dezembro de 1958.

O voo, que partiu de Londres às 20h43 (UTC), levava a bordo três tripulantes (piloto, copiloto e aeromoça) e 31 passageiros.

O capitão da aeronave, Capitão Michael E. Higgins, tinha 5.624 horas de experiência de voo e já havia pousado duas vezes em Perpignan durante os seis meses anteriores, embora fazendo a rota direta Limoges - Perpignan. O copiloto, 1º Oficial Rex Hailstone (2.267 horas) fez cinco pousos em Perpignan nos seis meses anteriores, embora não em rotas via Toulouse.

Às 00h30 (UTC), a tripulação informou sobre a entrada de Toulouse estar no nível de voo 75, com  estimativa de chegada em Perpignan às 01h12 (UTC). 

Em uma área de chuva intermitente e vento de forças variáveis, o avião colidiu com na montanha de Canigou, a 2.200 m de altitude, no departamento dos Pirenéus Orientais, região Languedoque-Rossilhão, sudoeste da França.

Todos os 34 a bordo (31 passageiros, piloto, copiloto e aeromoça) morreram no acidente.

Uma equipe de resgate de um chalé em Courtalets chegou ao local enquanto pedaços dos destroços ainda estavam queimando. Uma testemunha ocular descreveu a cena como "apocalíptica; corpos queimados jaziam no chão em um raio de 100 m ao redor dos destroços".

O acidente foi atribuído a um erro de navegação, cuja origem não foi possível determinar por falta de provas.


Por Jorge Tadeu (com ASN, Wikipedia e baaa-acro.com)

Hoje na História: 7 de outubro de 1919 - Fundação da KLM, a mais antiga companhia aérea ainda em operação

Albert Plesman, fundador da Koninklijke Luchtvaart Maatschappij NV (KLM)
Em 7 de outubro de 1919, é fundada por Albert Plesman a Koninklijke Luchtvaart Maatschappij NV, operando sob o nome KLM Royal Dutch Airlines, tornando-se a companhia aérea mais antiga do mundo ainda operando com seu nome original, embora a empresa tenha parado de operar durante o Segunda Guerra Mundial - além das operações nas Antilhas Holandesas no Caribe.

A KLM realizou seu primeiro serviço regular de passageiros com este Airco DH.16, G-EALU,
de Croydon a Amsterdã, em 17 de maio de 1920
O primeiro voo da KLM foi em 17 de maio de 1920, do aeroporto de Croydon, em Londres, para Amsterdã, na Holanda, transportando dois jornalistas britânicos e vários de outros jornais. 
O Airco DH.16, registro G-EALU, era pilotado por Henry (“Jerry”) Shaw. Este avião, chamado Arras , foi alugado da Aircraft Transport and Travel Limited, uma empresa britânica. Shaw era o piloto-chefe dessa empresa.

Em 1920, a KLM transportava 440 passageiros e 22 toneladas de carga. Em 1921, a KLM iniciou serviços programados.

Em setembro de 2018, a frota da KLM incluía 120 aviões, a maioria Boeing. Outros 19 aviões estão encomendados. A companhia aérea tem aproximadamente 32.000 funcionários.

Ao todo, a KLM teve 17 logotipos entre 1919 e 2019
A KLM venceu o conceituado “Avion Award”, concedido pela World Airline Entertainment Association (WAEA), pelo design das novas telas individuais de vídeo e da navegação dos programas, jogos e filmes contidos nela. 

Esses monitores foram instalados em todas as poltronas dos B777 e dos A330 da companhia. Um júri internacional formado por representantes das indústrias de impressos, música, TV e cinema levou em conta a originalidade, a praticidade, o conteúdo e o equilíbrio entre os diversos itens da tela individual oferecida pela KLM.