Mostrando postagens com marcador Clima. Mostrar todas as postagens
Mostrando postagens com marcador Clima. Mostrar todas as postagens

sexta-feira, 15 de dezembro de 2023

Vídeo: Mayday Desastres Aéreos - Voo Loganair 6780 Pesadelo no Mar do Norte


Aconteceu em 15 de dezembro de 2014: Voo Loganair 6780 Pilotos salvam avião 7 segundos antes de atingir o solo


Em 15 de dezembro de 2014, a aeronave Saab 2000, prefixo G-LGNO, da Loganair (foto abaixo), operava o voo 6780, um voo doméstico regular do Aeroporto de Aberdeen para o Aeroporto de Sumburgh, nas Ilhas Shetland, na Escócia. 

A aeronave Saab 2000, matrícula G-LGNO, realizou seu voo inaugural em março de 1995. Equipada com dois motores turboélice Rolls-Royce AE 2100A, tinha um total de 26.672 horas de voo e 25.357 ciclos de voo. 

A aeronave envolvida no incidente, usando as cores da franquia Flybe
O Saab 2000 é um turboélice bimotor que pode transportar até 53 passageiros, e foi fabricado desde sua certificação em 1994 até 1999. A aeronave tem velocidade máxima de operação (V MO) de 270 nós (500 km/h) acima de 11.000. pés (3.400 m) e 250 nós (460 km/h) abaixo de 9.000 pés (2.700 m). A velocidade máxima alcançada durante os testes de voo foi de 318 nós (589 km/h).

A Loganair tinha um contrato de franquia com outra companhia aérea regional britânica, a Flybe, até agosto de 2017. Portanto, no momento do acidente a aeronave operava com as cores da Flybe.

O capitão era um homem de 42 anos que trabalhava na Loganair desde 2005. Ele tinha um total de 5.780 horas de voo, incluindo 4.640 horas no Saab 340 e 143 horas no Saab 2000. O capitão voou originalmente no Saab 340, mas fez a transição para o Saab 2000 em agosto de 2014. Quando o capitão voou o Saab 340, ele recebeu um exercício de treinamento no qual um raio causou uma falha no gerador e resultou no desligamento do piloto automático.

A copiloto era uma mulher de 35 anos que trabalhava na Loganair desde o início de 2014. Ela tinha um total de 1.054 horas de voo, incluindo 260 horas no Saab 2000. Ela foi qualificada para voar no Saab 2000 em maio de 2014.

Nenhuma anormalidade foi relatada na aeronave antes da decolagem. O tempo em Aberdeen estava bom, mas a previsão para Sumburgh previa tempestades com chuva, neve, granizo e ventos de até 60 nós (110 km/h).

Os dois pilotos completaram uma rotação sem intercorrências de Aberdeen a Sumburgh e vice-versa, depois se prepararam para a segunda rotação com o capitão como piloto em comando.

Embora o voo de uma hora para Sumburgh exigisse 1.826 quilos de combustível, os pilotos optaram por encher os tanques em Aberdeen para aproveitar os preços mais baixos. Isso resultou em uma carga de combustível de 3.000 kg.

Levando a bordo, três tripulantes e 30 passageiros, o voo 6780 foi vetorizado para uma aproximação do sistema de pouso por instrumentos (ILS) para a pista 27 do aeroporto de Sumburgh. A aeronave desceu a 2.000 pés (610 m) e capturou o localizador 9 milhas náuticas a leste do aeroporto. 

Durante a aproximação, o capitão decidiu dar a volta por causa de uma forte tempestade exibida no radar meteorológico. Ao virar para o sul, a aeronave foi atingida por um raio, que entrou na fuselagem pelo radome diretamente em frente à cabine e saiu pela exaustão da unidade de potência auxiliar (APU) na cauda. Um raio esférico apareceu brevemente na cabine pouco antes do ataque. 


O capitão, no meio de uma troca de rádio, cessou a transmissão e imediatamente assumiu o controle da aeronave, onde começou a fazer ajustes nos controles de voo. Durante este tempo, a copiloto declarou 'mayday', e o controlador de tráfego aéreo ofereceu todas as opções à tripulação para uma aproximação ou desvio.

O piloto automático, sentindo que a aeronave estava acima da altitude selecionada de 2.000 pés amsl, começou a aplicar inclinação do nariz para baixo para atingir a altitude selecionada. Como o piloto automático ainda estava ativado, as forças de controle que o comandante experimentou (opondo-se às suas ações) foram maiores do que o normal para um determinado deslocamento da coluna, e ele identificou que a aeronave não parecia normal. 

O copiloto também aplicou comandos com o nariz para cima, mas também percebeu que a aeronave não estava respondendo conforme o esperado. 

Avisos de mistrim de inclinação e rotação exibidos no PFD
O display primário de voo (PFD) exibia avisos de inclinação e rotação incorreta, que não foram atendidos. Estes foram acompanhados de sinos audíveis, bem como de legendas no EICAS, nenhum dos quais o comandante se lembra de ter notado. 

O capitão instruiu a copiloto a ativar o interruptor de compensação de emergência do profundor, mas como o sistema de controle do profundor não apresentou defeito, a função de compensação de emergência não foi ativada quando o interruptor foi ligado.

O voo 6780 havia subido para cerca de 4.000 pés (1.200 m) quando a atitude virou de nariz para baixo e a aeronave começou a descer. A aeronave começou a mergulhar a uma taxa de descida máxima de 9.500 pés (2.900 m) por minuto, durante o qual dados inválidos de um dos computadores de dados aéreos (ADCs) fizeram com que o piloto automático fosse desligado enquanto o ajuste de inclinação estava quase totalmente voltado para baixo.

O ângulo de inclinação atingiu 19° nariz para baixo e a velocidade atingiu 330 nós (610 km/h), 80 nós (150 km/h) acima do V MO. Durante este tempo, o controlador continuou a informar ocasionalmente os pilotos sobre a sua altitude.

Os pilotos mantiveram os comandos de inclinação do nariz para cima e a aeronave começou a inclinar-se. O sistema de alerta de proximidade do solo (EGPWS) gerou alarmes "SINK RATE" e "PULL UP" próximos à altura mínima atingida de 1.100 pés (340 m).


O capitão aplicou potência total e a aeronave começou a subir. O voo 6780 continuou a subir até 24.000 pés (7.300 m) e foi desviado para o Aeroporto de Aberdeen, onde pousou com segurança. Todos os 33 passageiros e tripulantes saíram ilesos.

A Divisão de Investigação de Acidentes Aéreos (AAIB) abriu uma investigação sobre o incidente.

Foi realizada uma inspeção detalhada da aeronave. Algumas pequenas marcas de fuligem e danos foram vistos na superfície do radome e, embora houvesse danos causados ​​pelo calor no interior, não havia buracos. O escapamento do APU foi danificado com seções de metal fundido, mas nenhum dano adicional à aeronave foi revelado. Testes e inspeções dos sistemas de controle do elevador e do piloto automático não revelaram nenhuma anormalidade.


O exame das informações meteorológicas revelou que a aeronave foi atingida por um raio desencadeado, fenômeno no qual uma aeronave que acumula carga negativa durante o voo desencadeia um ataque ao se aproximar de uma região carregada positivamente em uma célula de tempestade. O sistema de detecção de raios do Met Office observou um raio na posição registrada da aeronave às 19h10min20s.

Imediatamente após a queda do raio, os pilotos realizaram comandos de nariz para cima nos controles de voo para continuar a arremetida, o que junto com pequenos aumentos na potência do motor fez com que a aeronave subisse. 

Por outro lado, o piloto automático começou a mover o ajuste de inclinação para a posição de nariz para baixo para manter a altitude selecionada de 2.000 pés (610 m), exigindo que os pilotos puxassem a coluna de controle com uma força de 24 libras (11 kg). Durante dois minutos e meio após o relâmpago, os pilotos e o piloto automático continuaram a dar informações conflitantes. A aeronave continuou a subir em etapas até 4.000 pés (1.200 m).

Para manter a altitude, os pilotos puxaram a coluna de controle totalmente para trás com uma força de 80 libras (36 kg). O voo 6780 manteve 4.000 pés (1.200 m) por cerca de 10 segundos, mas o nariz baixou gradualmente à medida que o piloto automático continuava a mover o ajuste de inclinação para a posição de nariz para baixo (compensação de inclinação tendo mais autoridade de profundor do que a coluna de controle em altas velocidades). 

Eventualmente, o ajuste de inclinação parou perto de 9° (de um máximo de 10°) e o voo 6780 começou a descer a uma velocidade de 1.500 pés por minuto. A aeronave continuou a descer e acelerar à medida que a potência do motor foi gradualmente reduzida e passou para voo ocioso. Seis segundos depois, o piloto automático foi desativado quando o voo 6780 passou de 3.600 pés (1.100 m) a uma razão de descida de 4.250 pés (1.300 m) por minuto e aumentando.

Quando o piloto automático foi desativado, ele deixou a aeronave com compensação de inclinação quase totalmente voltada para baixo e que tornou a coluna de controle ineficaz. Assim a aeronave continuou sua descida. 

Os pilotos mantiveram o nariz para cima e aplicaram potência total, e a aeronave começou a subir no momento em que o EGPWS emitiu um alarme “SINK RATE”. Isto foi seguido por um alarme “PULL UP” quando a aeronave atingiu seu pico de descida de 9.500 pés (2.900 m) por minuto a 1.600 pés (490 m). Os pilotos conseguiram recuperar a aeronave 7 segundos antes de atingir o solo.

O piloto automático percebeu que a aeronave estava subindo acima da altitude selecionada de 2.000 pés (610 m) e começou a aplicar compensação de nariz para baixo para recuperar essa altitude. Mesmo que o capitão puxasse a coluna de controle com forças excessivas e acionasse o interruptor de compensação de inclinação, o piloto automático foi projetado para não desengatar. 

O capitão sentiu que a força exigida na coluna de controle era maior do que o normal, devido ao piloto automático se opor às suas ações. Ele pode ter atribuído isso erroneamente a um mau funcionamento do controle de voo causado pelo raio. Depois disso, o piloto automático foi desativado enquanto a aeronave estava com o nariz para baixo de 10°, devido a um mau funcionamento do ADC. Se isso não tivesse acontecido, o piloto automático teria sido desativado quando a aeronave atingisse o limite de inclinação do nariz para baixo de 17°. 

Dados FDR do voo 6780
A análise do gravador de dados de voo (FDR) revelou que um dos computadores de controle de voo (FCCs) não recebeu dados ou recebeu dados inválidos do ADC por pelo menos 99 milissegundos. Isso desativou o piloto automático às 19h13. O ADC não foi removido para investigação adicional porque nenhum mau funcionamento do ADC foi observado após o acidente.

Em setembro de 2016, a AAIB emitiu seu relatório final, afirmando que "As ações do comandante após o relâmpago foram fazer entradas manuais nos controles de voo, que parecem ter sido instintivas e podem ter sido baseadas em sua suposição de que o piloto automático se desconectaria quando o raio caísse. No entanto, o piloto automático não se desconectou e estava tentando manter uma altitude alvo de 2.000 pés AMSL, compensando o nariz para baixo enquanto o comandante fazia entradas de inclinação do nariz para cima. As forças de controle sentidas pelo comandante foram maiores que o normal porque o piloto automático estava se opondo às suas ações e ele pode ter atribuído isso a um mau funcionamento do controle de voo causado pelo raio. Ele não se lembrava de ter visto ou ouvido nenhum dos avisos auditivos ou visuais de mistrim, que indicavam que o piloto automático ainda estava ativado. Este foi provavelmente o resultado do tunelamento cognitivo."


Além disso, o relatório afirmava que "O comandante aplicou e manteve a entrada completa da coluna de controle de popa (elevador de nariz para cima); no entanto, a autoridade de compensação do elevador com o nariz para baixo do piloto automático excedeu a autoridade do elevador com o nariz para cima do comandante e a aeronave inclinou o nariz para baixo e desceu, atingindo uma taxa de descida máxima de 9.500 pés/min. O piloto automático então foi desativado devido a uma falha do ADC e isso permitiu que as entradas de compensação de inclinação do nariz para cima do comandante se tornassem efetivas. A aeronave começou a subir pouco antes de atingir a altura mínima de 1.100 pés acima do nível do mar."

Dos 22 tipos de aeronaves pesquisados, apenas o Saab 2000 tinha piloto automático com os três atributos a seguir: 
  • Aplicar uma força de cancelamento à coluna moverá o elevador, mas não fará com que o piloto automático desengate;
  • O piloto automático pode compensar na direção oposta à entrada da coluna de controle aplicada ao piloto;
  • Pressionar os interruptores principais de compensação de inclinação não tem efeito e não fará com que o piloto automático seja desativado.
Anteriormente, os pilotos automáticos Airbus A300, Fokker 70 e Fokker 100, tinham características semelhantes, mas, na sequência de múltiplos acidentes e incidentes graves, o piloto automático foi redesenhado.  Além disso, o Saab 340 tinha as mesmas características do Saab 2000, pois o piloto automático não era desengatado mesmo que o piloto operasse a coluna de controle, mas foi projetado para desengatar quando o piloto operava o ajuste de inclinação.

A AAIB também concluiu que a maior autoridade do compensador longitudinal do que a coluna de controle durante o voo em alta velocidade contribuiu para o acidente. Mesmo quando a coluna de controle foi puxada ao limite, os pilotos não conseguiram evitar que o nariz caísse. O piloto automático foi projetado para desengatar automaticamente quando a inclinação ou inclinação excede um determinado ângulo, mas não foi projetado para evitar excesso de velocidade, mesmo que a velocidade exceda V MO (durante o incidente, o piloto automático continuou a compensar o nariz para baixo, mesmo que o V MO havia sido ultrapassado).

A Agência da União Europeia para a Segurança da Aviação (EASA) disse num relatório de 2018 sobre o efeito de susto que "este é um caso interessante em que a gravidade do acidente não foi definida pela causa do susto (neste caso, o raio), mas na sequência de eventos depois disso".


A EASA descreveu ainda o acidente da seguinte forma: "Com efeito, após o relâmpago, a aeronave estava totalmente funcional e um simples desligamento do piloto automático teria sido suficiente para os pilotos manobrarem a aeronave da maneira que desejassem. No entanto, os efeitos do sobressalto, provavelmente associados ao estresse pré-sobressalto, reduziram o estado de espírito cognitivo do PIC para fazer entradas manuais imediatas, ignorando outros modos de controle. É claro que a hipótese alternativa é que o PIC (pensando que o piloto automático havia sido desligado devido ao raio) pode ter assumido que o seu sistema de controle manual estava prejudicado e instigado o seu tunelamento naquela direção. Infelizmente, se os pilotos tivessem evitado uma reação manual instantânea, poderia ter sido possível que o problema secundário de combater o piloto automático fosse totalmente evitado e levasse a um voo muito mais seguro."

A AAIB emitiu cinco recomendações de segurança à EASA e à Federal Aviation Administration (FAA) para evitar perda de controle devido ao piloto automático. O comunicado de segurança recomenda a revisão do projeto do piloto automático de aeronaves certificadas pelas regras da Parte 25 e regulamentos equivalentes, incluindo o Saab 2000, e exigir modificações, se necessário, para garantir que os pilotos não representem perigo potencial ao aplicar forças que entrem em conflito com o piloto automático.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipédia e ASN

quinta-feira, 30 de novembro de 2023

Por que há cada vez mais turbulência em voos?

Descubra por que a turbulência nos aviões está aumentando. Desde fatores meteorológicos até geográficos, exploraremos as razões por trás desse fenômeno para manter a calma no ar.


Nos últimos anos, os viajantes aéreos notaram um aumento significativo na frequência e intensidade das turbulências durante os voos. Este fenômeno, que pode gerar ansiedade nos passageiros, levanta a pergunta essencial: porque há cada vez mais turbulência nos aviões?

Exploraremos algumas das razões por trás desse fenômeno crescente, e daremos dicas sobre quando a turbulência normalmente ocorre e como amenizar seus efeitos durante o voo.

Quando geralmente há mais turbulência?


As turbulência são perturbações na corrente de ar que podem afetar o voo de uma aeronave. Embora seja um fenômeno natural e comum na atmosfera, certos horários e condições climáticas aumentam a probabilidade de ocorrência de turbulência durante um voo.

Perto de áreas montanhosas

Um dos cenários mais propícios à turbulência é a proximidade de áreas montanhosas. Quando o vento interage com as montanhas, são geradas ondas de ar que podem causar flutuações no voo.

Correntes de jato

As correntes de jato são fortes fluxos de vento na alta atmosfera. Quando uma aeronave passa por uma corrente de jato ou está próxima de seus limites, a turbulência pode se intensificar. Os pilotos costumam ficar atentos à presença dessas correntes para tomar medidas preventivas.

Durante subidas e descidas

A turbulência é geralmente mais pronunciada durante as fases de subida e descida. Isso ocorre porque o avião está passando por diferentes camadas de ar e, em alguns casos, encontrando condições mais instáveis.

Por que a turbulência aumentou?


Segundo o estudo da Universidade de Reading, o aumento da turbulência é atribuído às mudanças climáticas. Conforme a pesquisa, aqui estão algumas razões chave que poderiam explicar por que a turbulência aumentou:

Mudança nos padrões de vento

A mudança climática está afetando os padrões atmosféricos e os fluxos de vento em diferentes partes do mundo. Estas alterações podem levar a condições atmosféricas mais propícias à formação de turbulência.

A intensidade das correntes de jato

O estudo pode ter constatado um aumento na intensidade das correntes de jato sobre o Atlântico Norte. As correntes de jato são correntes de ar de alta velocidade na atmosfera e mudanças em sua intensidade podem influenciar a ocorrência de turbulência.

Maior variabilidade atmosférica

A mudança climática também pode estar contribuindo para uma maior variabilidade nas condições atmosféricas. Esta variabilidade pode levar a flutuações mais pronunciadas na velocidade e direção do vento, criando condições propícias à turbulência.

Mudanças na temperatura atmosférica

O aquecimento global pode afetar a distribuição da temperatura na atmosfera, o que por sua vez pode influenciar a formação de turbulência. As diferenças de temperatura podem criar gradientes mais acentuados que promovem turbulência.

Interconexão global

Embora o estudo tenha focado no Atlântico Norte, a mudança climática é um fenômeno global. As mudanças em uma região podem ter efeitos em cascata em outras áreas, o que poderia explicar a observação de um aumento na frequência de turbulência em rotas populares na Europa, no Médio Oriente, no Atlântico Sul e no Pacífico Oriental.

Influência da meteorologia


As condições meteorológicas adversas, como tempestades, passagem de frentes e mudanças bruscas de temperatura, contribuem significativamente para a intensificação da turbulência.

Tempestades e frentes

A formação de tempestades e a passagem por áreas de frentes frias ou quentes geram instabilidade na atmosfera. Quando uma aeronave passa por essas zonas, pode sofrer turbulência devido à variabilidade na velocidade e direção do vento.

Mudanças bruscas de temperatura



Mudanças repentinas na temperatura do ar podem dar origem a correntes de convecção, criando bolsas de ar ascendentes e descendentes. Este fenômeno pode causar movimentos repentinos e imprevisíveis durante o voo.

Compreender como a meteorologia influencia a formação de turbulência é essencial para antecipar e mitigar riscos. Os avanços na tecnologia meteorológica permitem aos pilotos avaliar com mais precisão as condições meteorológicas, facilitando a tomada de decisões para garantir voos mais seguros e tranquilos.

domingo, 19 de novembro de 2023

Onda de calor: por que altas temperaturas podem atrasar ou cancelar um voo?

Onda de calor: Altas temperaturas podem atrasar ou até mesmo cancelar voos
(Imagem: Viktor Hanacek/Picjumbo)
Altas temperaturas podem ocasionar atrasos ou cancelamentos de voos. Embora seja raro de acontecer no Brasil, a recente onda de calor que atinge o país reacende essa possibilidade. Por que isso acontece?

É tudo questão de física


Quanto mais quente o ar, menos denso ele fica. Com isso, uma concentração menor de oxigênio entra na câmara de combustão dos motores, diminuindo sua potência e afetando seu comportamento.

Ao mesmo tempo, baixa densidade do ar afeta o desempenho aerodinâmico. Melhor performance ocorre quando o ar está mais denso e interage melhor com as superfícies do avião, o que costuma ocorrer em dias frios e secos.

O que pode acontecer?


Quando o calor e umidade podem afetar a segurança do voo, algumas medidas podem ser necessárias. Entre elas:
  • Usar uma distância maior da pista para a decolagem.
  • Retirar carga do avião para deixá-lo mais leve e conseguir decolar no espaço disponível.
  • Diminuir a quantidade do combustível, também com o objetivo de deixar o avião mais leve, desde que respeitado os limites para realizar o voo.
  • Tirar passageiros do avião (ainda para reduzir o peso).
  • Cancelar ou atrasar o voo esperando uma condição melhor para a decolagem.
No Brasil, as maiores empresas aéreas afirmam que não enfrentaram problemas devido à atual onda de calor. Em nota, a Gol explica que um acompanhamento constante auxilia na prevenção de problemas do tipo.

"A temperatura é um parâmetro importante no cálculo de performance dos voos. Temperaturas altas, principalmente em aeroportos mais restritos, como no Santos Dumont (RJ), pode ser um gatilho para termos que tirar peso da aeronave, seja carga ou passageiros e respectivas bagagens. Como a variação de temperatura é dinâmica (e às vezes grande) ao longo do dia, cada voo é analisado para verificar essa condição até o momento do embarque, podendo haver alguma preterição", informou Fernando Henrique Tavares da Silva Amaral, diretor de Segurança Operacional da GOL.

Onde há mais problemas?


Geralmente, em locais naturalmente mais quentes, há mais cancelamentos e atrasos devido ao calor. Nessas regiões, é comum encontrar pistas com extensão maior do que a média para compensar a necessidade de uma corrida maior antes de decolar.

Geralmente, aeroportos onde a temperatura ultrapassa os 40° C registram mais problemas do tipo. Um exemplo é Las Vegas, na região do deserto de Mojave, em Nevada (EUA). Em julho, um avião com cerca de 200 passageiros ficou horas parado aguardando as condições climáticas melhorarem no aeroporto da cidade para poder voar.

Verão nos EUA teve mais cancelamentos de voos devido a problemas climáticos que o inverno. Os meses de junho a setembro são os mais quentes no país, e tendem a ter 30% ou mais dos cancelamentos relacionados a questões climáticas, enquanto nos outros meses, essa fatia gira em torno de 25%.

Via Alexandre Saconi (Todos a Bordo/UOL)

sexta-feira, 17 de novembro de 2023

'Terror' durante voo: o que pilotos fazem para evitar turbulências?


Enfrentar uma turbulência costuma ser uma das sensações mais desagradáveis durante um voo. Desde um leve balanço até um movimento mais intenso, esse evento costuma causar enjoos e preocupação nos passageiros.

No sábado (23), um avião que decolou de Campinas (SP) com destino a Presidente Prudente (SP) enfrentou uma forte turbulência, causando mal-estar aos passageiros e tripulantes. Passageiros relataram ter vivido momentos de "terror" durante a viagem, que deveria levar apenas 1h30, durou o dobro e teve que ser completada horas depois, de ônibus.

Mesmo com a sensação ruim ocasionada, saiba que turbulências não derrubam aviões. No caso do voo do sábado, o avião utilizado foi um ATR-72, que costuma voar mais baixo que os jatos. Nessa camada da atmosfera, mais próxima ao solo, é comum haver mais turbulências, o que se somou às rajadas de vento no momento previsto para o pouso, que chegavam aos 60 km/h, segundo boletim meteorológico.

Ainda assim, as aeronaves são planejadas para aguentar diversos esforços antes de passarem por algum problema mais sério. As asas de um Boeing 787, por exemplo, podem se mexer até quatro metros para cima e para baixo durante um voo, tudo isso para manter a segurança da operação e evitar problemas com a estrutura da aeronave.

Planejamento


Antes de decolar, é feito um planejamento minucioso sobre o voo. Desde os locais onde ele irá passar, até os procedimentos de chegada, tudo deve estar planejado antes de sair do solo.

Um dos principais fatores que ajudam a evitar a turbulência é analisar como estará a meteorologia na rota que o avião estará seguindo. Para isso, as empresas aéreas e os pilotos contam um sistema amplo de alertas.

Um deles é o Metar (Meteorological Aerodrome Report, ou, Informe Meteorológico de Aeródromo, em tradução livre). Nele constam as informações sobre como está o tempo em determinado aeroporto, como chuvas, garoa, nevoeiro, tempestade de areia etc.

Similar ao Metar, o TAF (Terminal Aerodrome Forecast, ou Previsão de Área ou Aeroporto, em tradução livre) é um modelo que estipula como estará o clima em determinado local nas próximas horas. É uma previsão do tempo atualizada regularmente, que auxilia os pilotos a se prepararem para as condições climatológicas que poderão encontrar logo que chegarem ao seu destino.

Mesmo assim, ao chegar ao destino, pilotos podem ser surpreendidos por condições adversas, como rajadas de vento ou chuva forte, que, não necessariamente, foram previstas anteriormente nos boletins.

Radar a bordo


Radome aberto de um Abirbus A330, local onde os radares meteorológicos do avião
são abrigados (Foto: Divulgação/KLM)
Aviões comerciais de maior porte, como o Airbus A320 ou o Boeing 737, têm radares meteorológicos a bordo. Eles ficam localizados no nariz dos aviões, e passam informação em tempo real para os pilotos na cabine.

Caso seja observada uma nuvem de chuva mais densa na rota, os pilotos podem desviar dela. Para isso, geralmente, pedem autorização para os controladores de tráfego aéreo, quando avisam o motivo do desvio, visando evitar colisões com outros aviões em voo.

No radar, é possível ver quais nuvens são mais densas, como as de chuva, chamadas de cúmulos-nimbos. Mesmo que o piloto não consiga desviar de uma nuvem dessas, ele pode voar por ela. Apesar do desconforto causado pela turbulência, o motor continuará funcionando normalmente.

Esses radares, porém, não detectam zonas de turbulência, mas ajudam a manter as aeronaves de regiões onde elas são mais propensas a ocorrer, como as proximidades das nuvens.

Altitude influencia


Aviões que voam em maiores altitudes encontram menores turbulências. Aviões turboélice, como o que realizou o voo no sábado, voam mais baixo, por entre as nuvens, em uma camada da atmosfera que está mais sujeita a turbulências.

Altitude de voo influencia na possibilidade de enfrentar turbulência durante os voos (Arte/UOL)
O modelo ATR-72 tem uma altitude máxima de voo de cerca de 20 mil pés (6.096 metros). Já os jatos comerciais podem voar a até 36 mil/40 mil pés (10.972 a 12.192 metros), onde as turbulências são mais raras.

Próximo ao local do pouso, os aviões voam mais baixo, o que os torna mais suscetíveis a turbulência também. Na região de Presidente Prudente, onde o pouso de sábado seria realizado, havia fortes rajadas de vento e formações de nuvem.

Por segurança, provavelmente, os pilotos optaram por pousar em outro lugar para evitar riscos. Algo comum em situações como essa.

Por Alexandre Saconi (UOL)

quinta-feira, 16 de novembro de 2023

O que causa a turbulência nos aviões?

Conheça a ciência por trás desse fenômeno, que muitas vezes assusta os viajantes nos voos.


Quem nunca passou por uma situação de apreensão em um voo por conta de alguma turbulência? Trata-se daquele movimento repentino do avião que assusta e, às vezes, até faz algumas coisas caírem no chão. Quase todo mundo já vivenciou essa sensação, mas você sabe o que é uma turbulência e qual é a sua causa?

Nas viagens de avião, as turbulências são muito comuns e acabam sendo uma fonte de ansiedade para quem já sente medo de voar. Por isso, entender o que causa a turbulência pode ser essencial para garantir novas viagens bem mais tranquilas, já que esse é um fenômeno com origem na natureza.

O que é uma turbulência?


A turbulência é o movimento irregular do fluxo de ar, uma forte corrente de vento que pode acarretar agitações ascendentes e descendentes sobre uma aeronave durante um voo, como explica a Agência Nacional de Aviação do Brasil, a Anac.

Já a Federal Aviation Administration dos Estados Unidos vai além e afirma que entre suas várias causas, a turbulência pode ser gerada pelo movimento do ar criado por pressão atmosférica, correntes de jato, ar ao redor de montanhas, frentes de clima frio ou quente, ou ainda por tempestades.

Só que há diferentes tipos de turbulência que podem atingir um avião, como a turbulência mecânica, a esteira de turbulência e a turbulência térmica – e cada uma delas é causada por motivos distintos. O fenômeno, no entanto, também pode ocorrer de forma inesperada: quando o céu parece estar tranquilo e começa uma turbulência, ela é chamada de “turbulência de ar limpo”, como afirma o órgão oficial de aviação norte-americano.

O que causa as turbulências?


Descubra, a seguir, as causas de cada tipo de turbulência e como elas se originam:

Turbulências mecânicas:

Esse tipo pode ocorrer quando uma aeronave passa pelos fluxos de ventos de estruturas sólidas, como ventos entre montanhas, de prédios, morros e até de hangares de aeroportos, conforme explica o site da Anac.

Em regiões de planaltos, o relevo pode contribuir para a ocorrência da “circulação do ar de montanha” e, por isso, disparar processos intensos de ventos e gerar turbulência orográfica – um tipo de turbulência mecânica que surge do atrito do ar ao soprar contra elevações montanhosas.

A turbulência gerada por uma onda orográfica de ventos pode ser tão intensa quanto a ocasionada por uma forte tempestade, relata o site oficial de aviação civil do Brasil.

Esteira de turbulência

É um outro tipo de turbulência que resulta, segundo a Anac, da passagem da aeronave através da atmosfera. Ou seja, é fruto do próprio contato da aeronave com o ar e caracterizado pela ocorrência de vórtices de vento rotativos gerados nas pontas das asas do próprio avião.

Os vórtices de ar de aeronaves de maior porte representam perigo para a segurança da operação de aeronaves de menor porte que passam relativamente perto. A força do vórtice é determinada pelo peso, velocidade e forma da asa da aeronave geradora, como esclarece a Anac.

Mesmo quando a responsabilidade de evitar a esteira de turbulência cabe ao piloto em comando do avião, os controladores de voo informam, na medida do possível, as aeronaves próximas sobre a ocorrência esperada de esteira de turbulência. No entanto, a ocorrência de perigos associados à esteira de turbulência não pode ser prevista com exatidão e os controladores não podem assumir a responsabilidade de sempre emitir avisos sobre tais perigos.

Turbulência térmica

É causada pelo aquecimento solar da superfície da terra, que por sua vez aquece a atmosfera inferior, resultando em correntes de vento irregulares.

As correntes descendentes fazem com que a aeronave seja desviada para baixo de sua trajetória normal, podendo ocasionar até um toque na pista de pouso e decolagem antes do desejado. Já as correntes ascendentes forçam a aeronave para cima de sua trajetória normal de pouso, resultando num toque além do ponto desejado.

Turbulência de Ar Limpo

Um tipo perigoso de turbulência é a Clear air turbulence (CAT), ou em português a Turbulência de ar limpo, que pode ser súbita e severa, e ocorre em regiões sem nuvens, causando violentos ataques à estrutura da aeronave. Trata-se de uma turbulência de alta altitude, como afirma a Anac.

Em alguns casos, elas surgem em regiões de ar limpo, nas proximidades de tempestades. Isso porque o rápido crescimento das nuvens de tempestade empurra o ar para longe, gerando ondas na atmosfera que podem se transformar em turbulência a centenas ou até milhares de quilômetros de distância da tempestade em si, explica a Anac.

Independente do tipo, geralmente a turbulência e sua intensidade são reportadas pelos pilotos dos aviões e os controladores de voo repassam a informação aos demais pilotos que se aproximam da região onde ela foi reportada. Essas informações servem para alertar e prevenir aeronaves próximas ou em rota com o fenômeno.

segunda-feira, 6 de novembro de 2023

Altas temperaturas podem tornar os aviões pesados ​​demais para decolar

As temperaturas crescentes do planeta estão dificultando a decolagem de aviões em certos aeroportos, apresentando mais um desafio para a aviação civil. (Crédito: Reprodução/Pixabay)
As temperaturas crescentes do nosso planeta estão dificultando a decolagem de aviões em certos aeroportos, apresentando mais um desafio para a aviação civil. E à medida que as ondas de calor se tornam mais frequentes, o problema pode se estender a mais voos, forçando as companhias aéreas a deixar os passageiros em terra.

"O desafio básico enfrentado por qualquer aeronave que decola é que os aviões são muito pesados, e a gravidade quer mantê-los no chão”, diz Paul Williams, professor de ciência atmosférica da Universidade de Reading, no Reino Unido. “Para superar a gravidade, eles precisam gerar sustentação, que é a atmosfera empurrando o avião para cima.

Os aviões obtêm 1% menos elevação a cada 3 graus Celsius de aumento de temperatura, “é por isso que o calor extremo dificulta a decolagem dos aviões – e em algumas condições realmente extremas isso pode se tornar totalmente impossível”, disse Williams.

O problema afeta principalmente aeroportos de altitude elevada, onde o ar já é naturalmente mais rarefeito, e com pistas curtas, que deixam o avião com menos espaço para acelerar. De acordo com Williams, se um avião precisar de 6.500 pés de pista a 20 graus Celsius, precisará de 8.200 pés 40 graus Celsius.

'Acalmação global’


Williams e sua equipe pesquisaram dados históricos de 10 aeroportos da Grécia, todos caracterizados por altas temperaturas no verão e pistas curtas. Eles encontraram um aquecimento de 0,75 Celsius por década desde a década de 1970.

“Também encontramos uma diminuição no vento contrário ao longo da pista, em 2,3 nós por década”, disse Williams. “O vento contrário é benéfico para as decolagens, e há algumas evidências de que as mudanças climáticas estão causando o que é chamado de ‘acalmamento global’, e é por isso que os ventos parecem estar diminuindo”.

A equipe então colocou essas temperaturas e ventos contrários em uma calculadora de desempenho de decolagem de aeronaves para uma variedade de diferentes tipos de aeronaves, incluindo o Airbus A320 – um dos aviões mais populares do mundo.

“O que descobrimos foi que o peso máximo de decolagem foi reduzido em 127 kg a cada ano – isso é aproximadamente equivalente ao peso de um passageiro mais sua mala, o que significa menos um passageiro a cada ano que pode ser transportado”, Williams diz.

Desde a sua introdução em 1988 até 2017, o A320 teria visto seu peso máximo de decolagem reduzido em mais de 360 quilos no aeroporto Chios Island National, o principal aeroporto do estudo, que tem um comprimento de pista de pouco menos de 1.500 metros.

O City Airport de Londres, no distrito financeiro da capital do Reino Unido, também tem uma pista de pouco menos de 5.000 pés de comprimento. Durante uma onda de calor em 2018, mais de uma dúzia de voos foram forçados a deixar os passageiros no solo para decolar com segurança.

Em 2017, dezenas de voos foram cancelados inteiramente em poucos dias no aeroporto internacional Sky Harbor de Phoenix, pois as temperaturas atingiram 48,8 graus Celsius, acima da temperatura operacional máxima para muitos aviões de passageiros.

Um estudo da Universidade de Columbia prevê que até 2050, uma aeronave de fuselagem estreita típica como o Boeing 737 sofrerá um aumento nas restrições de peso de 50% a 200% durante os meses de verão em quatro grandes aeroportos dos EUA: La Guardia, Reagan National Airport, Denver International e Sky Harbor.

Soluções possíveis


Felizmente, as companhias aéreas não são impotentes contra o problema. “Há muitas soluções na mesa”, diz Williams. “Uma seria agendar saídas fora da parte mais quente do dia, com mais saídas de manhã cedo e tarde da noite, que é uma tática já usada em áreas quentes como o Oriente Médio.”

Aeronaves mais leves também são menos afetadas pelo problema, então isso pode acelerar a adoção de materiais compostos, como fibra de carbono para fuselagens, diz Williams.

Enquanto isso, fabricantes como a Boeing já estão oferecendo uma opção “quente e alta” em algumas de suas aeronaves, para as companhias aéreas que planejam usá-las extensivamente em aeroportos de alta altitude e alta temperatura. A opção oferece impulso extra e superfícies aerodinâmicas maiores para compensar a perda de sustentação, sem alteração no alcance ou na capacidade de passageiros.

É claro que uma abordagem mais drástica seria alongar as pistas, embora isso possa não ser possível em todos os aeroportos.

Em alguns casos, onde nenhuma dessas soluções é aplicável, os passageiros simplesmente terão que desistir de seus assentos. Mas, diz Williams, isso continuará sendo um problema de nicho no futuro próximo, pelo menos: “Pessoas sendo empurradas para fora de aeronaves porque está muito quente é raro e continuará sendo raro. A maioria dos aviões nunca atinge seu peso máximo de decolagem, então isso acontecerá em casos marginais – principalmente aeroportos com pistas curtas, em grandes altitudes e no verão”, diz ele.

No entanto, o futuro a longo prazo pode ser mais difícil, ele acrescenta: “Não acho que será uma grande dor de cabeça para a indústria, mas acho que há fortes evidências de que vai piorar”.

Via IstoÉ

sábado, 28 de outubro de 2023

Tempestade destrói hangares e atinge 11 aviões da FAB no interior de SP

A FAB informou que os ventos causaram estragos substanciais em três aeronaves e danos leves em outras oito.

Estrutura caiu sobre um Tucano, em Pirassununga (Foto: Redes sociais/Reprodução)
A chuva e o forte vento do início da noite desta quinta-feira (26), que atingiram a região de Pirassununga (a 211 km de São Paulo), destruíram hangares da AFA (Academia da Força Aérea) e ao menos 11 aviões acabaram atingidos pelas estruturas de ferro. Ninguém ficou ferido.

Segundo a FAB (Força Aérea Brasileira), o temporal ocorreu por volta das 18h e atingiu uma linha de hangares que abrigavam as aeronaves T-27 Tucano.


Em nota, a FAB afirma que a estrutura se rompeu por causa da força do vento, causando estragos substanciais em três aeronaves e danos leves em outras oito.

"Uma avaliação técnica mais detalhada está sendo realizada para identificar todos os problemas causados pelas chuvas", diz a Força Aérea. Fabricado pela Embraer, esse modelo de avião é usado pela FAB desde o início da década de 1980.

A aeronave com a designação T-27 é utilizada para treinamento. O Tucano AT-27 tem configuração com armamento.

Via O Tempo e Folha de S.Paulo

quarta-feira, 25 de outubro de 2023

Por que as companhias aéreas não voam sobre o Tibete?


O planejamento de rotas aéreas e mudanças operacionais são áreas complexas, mas interessantes. Alguns passageiros seguirão isso de perto, fascinados por onde seu voo os leva, enquanto outros mal percebem enquanto cruzam os céus. Se você seguir o mapa, no entanto, uma coisa que você verá em voos de longa distância para a Ásia é que eles nunca sobrevoam a Região Autônoma do Tibete na China, apesar de seu grande tamanho.

Poucas aeronaves sobre o Tibete


A região em questão é a Região Autônoma do Tibete na China. Esta é uma área escassamente povoada e montanhosa, também conhecida como o planalto tibetano - um nome significativo, dado que a altitude média na região é superior a 4.500 metros.

(Foto: Dennis Jarvis via Flickr)
Por ser escassamente povoada, há poucos voos para ou dentro da região (toda a área representa apenas 0,2% da população da China, para contextualizar). Existem aeroportos internacionais em Lhasa (foto acima) e Xining, e muitos voos agora operam para a China e regionalmente. Mas as companhias aéreas que voam de ou para outros destinos evitarão totalmente a região, apesar de muitas vezes ser a rota mais direta.

Dê uma olhada nesta imagem abaixo do FlightRadar24.com mostrando os aeroportos da região. Você notará que toda a região está vazia de voos, com várias aeronaves rastreando logo acima e abaixo.

(Imagem: FlightRadar24.com)
Então, por que as companhias aéreas fazem isso? Existem três razões principais, conforme explicado em um vídeo do RealLifeLore (abaixo).


Incapaz de descer a uma altitude segura em caso de emergência


A principal razão para as aeronaves evitarem a região é a alta altura média do terreno. Isso é mais de 14.000 pés. As aeronaves, é claro, voam muito mais alto do que isso. Mas o procedimento no caso de uma emergência, como a despressurização da cabine, é descer até 10.000 pés antes de desviar para um aeroporto.

Com terreno tão alto, a aeronave não seria capaz de descer o suficiente. É claro que há oxigênio para os passageiros. Mas este é um suprimento limitado e baseado na suposição de que a aeronave atingirá rapidamente uma altitude segura. Para piorar a situação, existem poucos aeroportos de desvio, e estes podem ser um longo voo de algumas partes da região.

(Foto: Getty Images)
Para evitar uma situação em que o avião não pode descer rápido o suficiente, as companhias aéreas optam por pular completamente a região tibetana. Normalmente, os únicos voos que sobrevoam são aqueles com destino a Lhasa ou aos mais cinco aeroportos da província, o que significa que ainda há algum tráfego. No entanto, como vimos acima no mapa, o espaço aéreo do Tibete está quase vazio em comparação com os céus ao seu redor.

Risco de aumento da turbulência


A turbulência durante um voo é causada por correntes de ar que se movem para cima e para baixo em ondulações e em diferentes velocidades. Isso é afetado por vários fatores, incluindo o efeito de aquecimento do sol, as condições climáticas e as montanhas. As correntes de ar subirão sobre as montanhas, criando fluxos perturbadores.

A turbulência pode acontecer em qualquer rota - como todos nós já experimentamos. Mas nesta região montanhosa alta, é mais provável e pode ser difícil de evitar. Isso seria perturbador para os passageiros e também poderia tornar uma situação de emergência ainda mais perigosa.

Vista do furacão do cockpit (Foto: Getty Images)
Durante tempestades tropicais, os voos podem ser solicitados a passar por cima do sistema de tempestades para evitar o pior da turbulência, embora geralmente eles pulem completamente o voo. No entanto, com montanhas para enfrentar, essa tarefa é extremamente difícil para os pilotos e coloca em risco a segurança dos passageiros. Portanto, com a possibilidade de tempo adverso sempre presente, voar sobre altas montanhas é menos do que ideal para voos comerciais.

Risco de congelamento do combustível de aviação


E não surpreendentemente, o motivo final também está ligado ao terreno montanhoso. As temperaturas são muito mais baixas, o que leva ao risco de o combustível de aviação congelar. O combustível Jet A1 padrão tem um ponto de congelamento de -47 graus Celsius (e Jet A, que é mais comum nos EUA, é ligeiramente superior a -40 graus).

Tais temperaturas raramente são alcançadas, especialmente por períodos prolongados de tempo. Mas em altitude sobre as montanhas já frias, há um risco aumentado disso. Não é um problema significativo para voos mais curtos dentro ou fora da região, mas um longo voo sustentado sobre a área pode ser diferente.

Avião sendo reabastecido na África do Sul (Foto: Getty Images)
Embora isso possa não parecer uma grande preocupação, o congelamento do combustível de aviação pode levar a acidentes graves. Em 2008, o voo 38 da British Airways caiu em Londres Heathrow depois que cristais de gelo se formaram na mistura de combustível e entupiram o motor, fazendo com que o avião caísse perto da pista. Felizmente, não houve mortes naquele dia, mas o incidente ressaltou o quão importante a temperatura pode ser para o fluxo de combustível de aviação.

Portanto, voar sobre o Tibete por horas pode levar a impactos ainda mais desconhecidos na mistura de combustível de aviação, deixando as companhias aéreas em risco de perder seus motores.

Edição de texto e imagens por Jorge Tadeu (com informações de Simple Flying e FlightRadar24.com)

sexta-feira, 13 de outubro de 2023

Tempestade danificou dois Airbus A320neo no Brasil

Dois A320neo da Azul sofreram danos em meio as fortes chuvas que atingiram as regiões Sul e Sudeste do país.

Airbus A320neo matrícula PR-YRB no aeroporto internacional Afonso Pena, na grande Curitiba
(Foto: Reprodução/Redes sociais)
Dois Airbus A320neo da Azul Linhas Aéreas sofreram hoje (12), danos causados pelas fortes chuvas que atingiram as regiões Sul e Sudeste do Brasil.

A primeira ocorrência foi registrada no Airbus A320-251N (A320neo) matrícula PR-YRB, que teve seu radome danificado quando cumpria o voo AD2784 entre os aeroportos de Viracopos, em Campinas, e Afonso Pena, que atende a cidade de Curitiba, onde pousou com segurança às 15h20.

Um segundo avião, o Airbus A320-251N (A320neo) registro PR-YRO, sofreu afarias no radome e no para-brisas durante o voo AD4011 entre Ilheús e Campinas, pousando às 18h40.


Os passageiros e tripulantes de ambos os voos desembarcaram normalmente em seus respectivos destinos. No solo foi possível ver os danos causados pela possível presença de gelo.

Em resposta a AERO Magazine, a Azul "informa que as aeronaves dos voos AD2784 (Campinas-Curitiba) e AD4011 (Ilhéus-Campinas) encontraram condições climáticas adversas durante o trajeto. Os pousos ocorreram normalmente e os clientes desembarcaram em segurança."

Com informações de Wesley Lichmann (Aero Magazine)

segunda-feira, 9 de outubro de 2023

As condições climáticas afetam os voos e como as companhias aéreas os cobrem


Se acabou de ser informado de que o seu voo foi atrasado ou cancelado, quase podemos garantir que é por um destes motivos – negligência da companhia aérea, problema técnico ou condições meteorológicas. Embora exista um equívoco comum de que esta última é a causa mais popular de perturbação de voos, de acordo com o departamento de transportes dos EUA, apenas 30% de todos os atrasos são causados ​​pelo clima. Como explicam os especialistas – o equívoco é formado principalmente pelas manipulações da companhia aérea.

As condições climáticas na aviação são um dos fatores mais importantes – a aeronave pode sair da pista devido a fortes ventos laterais, manter a velocidade de decolagem necessária pode ser impossível devido a fortes chuvas, enquanto o frio intenso pode não ser o ambiente onde todos os sistemas da aeronave têm o melhor desempenho. No total, de acordo com as estatísticas, as condições meteorológicas são a terceira causa mais popular (13%) de incidentes aéreos, depois de erros humanos (56%) e problemas técnicos (17%).

Embora centenas de voos sejam atrasados ​​ou cancelados em todo o mundo devido às condições meteorológicas , os especialistas do setor observam que as companhias aéreas muitas vezes jogam esta carta sensível para tentar desviar a responsabilidade pelo voo atrasado ou cancelado.

Com informações do Aerotime

sexta-feira, 6 de outubro de 2023

Aconteceu em 6 de outubro de 1981: Avião x Tornado - A queda do voo 431 da NLM Cityhopper


No dia 6 de outubro de 1981, um jato regional Fokker F28 operando um voo doméstico na Holanda encontrou uma linha de tempestades logo após a decolagem de Rotterdam. Enquanto os pilotos tentavam contornar a tempestade que se formava, uma lacuna se fechou sobre eles e o avião foi atingido por ventos extremos. 

De repente, uma rajada massiva atingiu o avião, submetendo-o a forças muito maiores do que seus limites de projeto. A asa direita arrancou em voo, fazendo o jato tombar das nuvens sobre Moerdijk. Nenhuma das 17 pessoas a bordo sobreviveu ao acidente.


Os investigadores se perguntaram: que força poderia ter derrubado um avião do céu tão de repente? A turbulência poderia realmente ser a culpada? 

Mas, à medida que a história se desenrolava, ficou claro que o voo 431 da NLM Cityhopper encontrou algo muito mais mortal do que mera turbulência: na verdade, o avião parecia ter voado direto para um tornado que estava abrindo seu próprio caminho de destruição no interior da Holanda nos minutos que antecederam a queda.

O Fokker F-28 PH-CHI envolvido no acidente
A NLM Cityhopper, agora conhecida como KLM Cityhopper, é uma subsidiária integral da transportadora de bandeira holandesa KLM, especializada em voos curtos dentro da Holanda e para países vizinhos. Na década de 1980, a NLM Cityhopper operava uma frota composta principalmente de turboélices Fokker F-27 e jatos regionais F-28 de fabricação holandesa. 

O voo 431 da NLM era um voo regular de Rotterdam para Hamburgo, Alemanha, com escala na cidade de Eindhoven. O avião Fokker F-28 Fellowship 4000, prefixo PH-CHI (foto acima), com motor traseiro, tinha espaço para 65 passageiros - mas no dia 6 de outubro de 1981, estava quase vazio. 


Apenas 17 pessoas embarcaram no voo do final da tarde, incluindo os dois pilotos, Capitão Jozef Werner e o Primeiro Oficial Hendrik Schoorl. Dois comissários de bordo cuidaram dos 13 passageiros, a maioria viajantes de negócios da Alemanha, Reino Unido e Estados Unidos.


Naquela tarde, um conjunto de condições climáticas incomuns convergiam para a Holanda. Uma frente quente e estacionária se estendia por grande parte da Europa Ocidental, trazendo altas temperaturas e chuvas para uma região que se estendia de Lisboa a Colônia. 

Enquanto isso, uma zona de baixa pressão e uma frente fria associada estavam se movendo para o leste através da Irlanda. Uma segunda área de baixa pressão ao largo da costa de Portugal colidiu com a frente quente, enviando uma onda que se propagou na frente e empurrando-a para o norte, para a Holanda. 

Ao mesmo tempo, a frente fria se aproximou da Holanda pelo oeste ao passar pelas Ilhas Britânicas, pressagiando uma colisão dos dois sistemas climáticos na área ao redor de Rotterdam. Impulsionado por ventos fortes a uma altitude de cerca de 3.000 pés, o ar frio começou a passar sobre a camada de ar quente que permanecia ao redor do solo. Como o ar quente geralmente sobe e o ar frio geralmente desce, uma massa de ar frio em cima de uma massa de ar quente é extremamente instável. 

Essa instabilidade pode gerar tempestades e outras condições climáticas severas, incluindo granizo, micro-explosões ou mesmo tornados. Quando as duas massas de ar colidiram sobre a Holanda, linhas de tempestades surgiram ao longo da zona de convergência, metralhando Holanda e Brabant com chuva, ventos fortes e relâmpagos.

Às 4h20 daquela tarde, o capitão Werner e o primeiro oficial Schoorl foram informados sobre as tempestades localizadas a sudeste de Rotterdam durante o briefing pré-voo. No entanto, até onde se sabia, essas tempestades não eram incomuns de forma alguma. 

Relatórios meteorológicos distribuídos a partir do radar instalado no Aeroporto Schiphol de Amsterdã indicaram apenas chuva leve e nenhum fenômeno anormal de vento. Os pilotos planejaram evitar as tempestades se possível, mas naquela época certamente não tinham motivos para se preocupar. Às 5h04, o voo 431 da NLM Cityhopper decolou do aeroporto de Rotterdam e virou para o sul, escalando a cidade. 

Os últimos relatórios meteorológicos da época ainda não incluíam nenhuma menção a quaisquer tempestades perigosas. Mas, na verdade, os boletins meteorológicos fornecidos pelos controladores em Rotterdam tinham mais de 20 minutos. 

Antes que alguém recebesse a informação, um meteorologista em Amsterdã teve que observar o estado da tela do radar meteorológico, esboçar as tempestades em um mapa e enviar cópias do mapa para aeroportos na Holanda, um processo que geralmente leva 20 minutos. Mas nesse período, muita coisa pode mudar.


Embora ninguém soubesse ainda, as condições na área ao sul de Rotterdam foram propícias à formação de ventos ciclônicos extremos. O que aconteceu a seguir foi mal compreendido na época, mas uma provável sequência de eventos pode ser reconstruída retroativamente usando o conhecimento moderno de como os tornados se formam. 

Na intersecção das duas frentes, ventos soprando em diferentes direções em diferentes altitudes começaram a causar a rotação da camada de ar entre elas. À medida que a massa de ar frio acima de 3.000 pés desceu pelo ar mais baixo e mais quente sob a força da gravidade, o ar quente foi forçado para cima, criando correntes ascendentes que colidiram com a camada giratória. 

A corrente ascendente e o “tubo” giratório de ar se fundiram, fazendo com que a corrente ascendente começasse a girar em torno do eixo vertical. Este vórtice, com vários quilômetros de diâmetro, é conhecido como mesociclone - e se as condições forem adequadas, pode rapidamente se transformar em um tornado. No entanto, um mesociclone não é diretamente visível no radar meteorológico, que detecta a intensidade da precipitação. 

Hoje, os meteorologistas podem detectar mesociclones procurando por padrões de vento revelados por radar Doppler, que pode medir a velocidade e direção dos ventos dentro de uma tempestade. 

Mas na Holanda, em 1981, os meteorologistas que divulgavam relatórios meteorológicos para aeronaves não tinham radar Doppler nem qualquer especialização em mesociclones e tornados. Como resultado, o mesociclone que se formou sobre o estuário Hollands Diep passou completamente despercebido.


Pouco depois das 17h, um tornado começou a tomar forma quando o mesociclone passou perto do município de Moerdijk, na costa sul de Hollands Diep. Uma corrente descendente penetrou no mesociclone, fazendo com que a coluna de ar em rotação descesse do fundo da base da nuvem em direção ao solo abaixo. 

A corrente descendente contraiu progressivamente a base da corrente ascendente ainda fluindo para o mesociclone, fazendo com que sua velocidade de rotação aumentasse como um patinador no gelo puxando seus braços para acelerar um giro. 

Um residente local tirou esta foto do tornado de Moerdijk na direção oposta
À medida que a corrente ascendente sugava o ar em baixa altitude, ela criou uma zona de baixa pressão que puxou o ciclone ainda mais para baixo até atingir o nível do solo. As velocidades extremas do vento precipitaram o vapor de água do ar, criando uma clássica nuvem em funil ao redor do ciclone. Não havia dúvida - um tornado havia atingido o interior da Holanda, a oeste do parque industrial de Moerdijk! 

Movendo-se para nordeste a mais de 50 quilômetros por hora, o tornado atravessou fazendas e campos antes de atingir o parque industrial, enviando fragmentos leves para o alto. No que diz respeito aos tornados, não era particularmente forte - provavelmente não mais poderoso do que um EF1, a segunda menor intensidade na escala de 0-5 Fujita aprimorada. Mas mesmo um tornado EF1 pode atingir velocidades de vento superiores a 170 quilômetros por hora, causando danos isolados, mas graves, a estruturas não reforçadas.


Sem saber da presença do tornado, os pilotos do voo 431 do NLM Cityhopper continuaram voando para o sul em direção ao estuário Hollands Diep. Cinco minutos após a decolagem, eles observaram tempestades à frente que ultrapassavam significativamente a intensidade sugerida pela última previsão do tempo. 

Para evitar o pior da tempestade, eles solicitaram um desvio para o sul para voar entre as duas áreas de precipitação mais intensa, conforme mostrado em seu radar meteorológico de bordo. O controlador de tráfego aéreo atendeu ao pedido, e o voo 431 apontou para a lacuna entre as duas nuvens cumulonimbus em forma de bigorna. 

À medida que voavam para a lacuna, as nuvens se fechavam em torno deles e a turbulência começou a sacudir o avião para cima e para baixo e de um lado para o outro. Os pilotos aceleraram para 425 km/h em uma tentativa de tornar a viagem mais suave. Enquanto isso, várias testemunhas avistaram o tornado quando ele passou sobre o parque industrial de Moerdijk, incluindo algumas que relataram um segundo tornado nas proximidades. 

Ao mesmo tempo, um policial em um barco em Hollands Diep perseguiu o tornado, tirando uma série de fotos da nuvem em funil que se movia rapidamente enquanto lutava para alcançá-la. Mas, apesar do grande número de testemunhas, não havia autoridade capaz de receber rapidamente os relatos do tornado e repassá-los às aeronaves próximas.


Precisamente às 17h12, quando o voo 431 passou sobre Hollands Diep a 3.000 pés, ele cruzou o caminho com o curso superior do tornado dentro da nuvem. A turbulência severa atingiu o avião, jogando-o violentamente em várias direções. Quando o avião se aproximou do vórtice, as correntes descendentes em torno do tornado o atingiram com força por cima, colidindo com o F-28 com 2,5 vezes a força da gravidade. 

Uma fração de segundo depois, o avião passou pela corrente ascendente central do tornado e para a corrente descendente do outro lado, fazendo com que a força invertesse a direção duas vezes, de -2,5g para + 6,8G para -3,2G, em um período extremamente curto. 

O golpe duplo da corrente ascendente violenta seguida pela corrente descendente extrema excedeu os limites do projeto estrutural do avião, arrancando a asa direita e incendiando os tanques de combustível rompidos.


Perdendo toda a asa direita, o voo 431 mergulhou das nuvens, girando em um saca-rolhas em um halo de fogo. Não havia absolutamente nada que os pilotos pudessem fazer para salvar suas aeronaves danificadas. 

O avião despencou do céu e caiu no chão segundos depois na borda do parque industrial. A fuselagem bateu na lateral da estrada do perímetro, enviando destroços sobre uma ponte da ferrovia e através de ambas as faixas de tráfego. 


O avião explodiu com o impacto, lançando uma nuvem de fumaça que o policial capturou em filme momentos depois de fotografar o tornado. A três quilômetros de distância, a asa direita decepada também caiu do céu, parando nas águas rasas de Hollands Diep. Quanto ao próprio tornado - ele se dissipou um minuto após a queda, desaparecendo no céu noturno de onde veio.


Equipes de emergência correram para o local, mas tudo o que restou do avião foram destroços espalhados e uma enorme cratera em um campo. Nenhuma das 17 pessoas a bordo havia sobrevivido. 

O acidente também tirou indiretamente a 18ª vida no solo: um bombeiro de 49 anos, ao avistar o avião caindo do céu acima dele, sofreu um ataque cardíaco e morreu no local. Fora da queda do avião, no entanto, o tornado causou relativamente poucos danos e ninguém mais morreu ou ficou ferido. 


Na verdade, a conexão entre o tornado e a queda do avião não era imediatamente óbvia. Jornais na Holanda relataram que havia mau tempo na área, mas não mencionaram um tornado, e as primeiras especulações culparam em grande parte a forte turbulência ou sabotagem. 

Mas o gravador de dados de voo pintou um quadro nítido: no espaço de apenas alguns segundos, o voo 431 foi submetido a forças que variam de + 6,8 G a -3,2 G, bem além dos limites estruturais de qualquer avião comercial. A tempestade era realmente tão intensa ou havia outra explicação? Os investigadores precisavam de provas de que o avião poderia ter encontrado o tornado fotografado pelo policial minutos antes do acidente.


Investigadores holandeses solicitaram uma análise do tornado ao Escritório Meteorológico do Reino Unido para avaliar a probabilidade de derrubar o voo 431. Ao analisar as fotografias, mapas meteorológicos, dados de voo e outros recursos, a equipe foi capaz de afirmar com certeza que o Fokker F-28 encontrou o curso superior do vórtice tornádico logo após o funil se elevar do solo próximo ao final de seu ciclo de vida. 

Mas o relatório precisava ir além disso. O encontro com o tornado foi um golpe de sorte completo ou poderia ter sido feito mais para evitar o acidente? 


O problema enfrentado pela indústria da aviação em 1981 era que não havia maneira confiável de detectar tornados, exceto observá-los visualmente do solo e relatar sua posição. Não se podia esperar que os pilotos veriam um tornado e se desviassem porque apenas a ponta inferior do tornado é visível.

Meteorologistas experientes podiam identificar áreas de provável formação de tornado procurando ecos de radar em forma de gancho nas bordas das tempestades, mas essa técnica, embora amplamente usada por caçadores de tempestades na América do Norte, era relativamente obscura na Europa na época. 

Na verdade, uma revisão dos dados do radar no momento do acidente mostrou um gancho distinto na área onde o tornado se formou, mas a importância disso não foi avaliada até depois do acidente.

Mapa mostra todos os tornados conhecidos que atingiram a Europa entre 2000 e 2012
No geral, as autoridades europeias pareciam pouco preparadas para lidar com a ameaça de mau tempo. Embora os tornados na América do Norte sejam muito mais fortes em média, os dados mostram que muitas áreas da Europa experimentam tornados a uma taxa por unidade de área semelhante à dos EUA e Canadá. Como a maioria deles é fraca, eles causam relativamente poucos danos, e as pesquisas sobre eles ficaram atrás das americanas. 

Mas, como o tornado de Moerdijk demonstrou, não é preciso um EF5 para derrubar um avião. Portanto, considerando o número de tornados que ocorrem em todo o mundo, qual a probabilidade de outro avião se encontrar na mesma situação que o voo 431 do NLM Cityhopper? 

Em seu relatório, o Escritório Meteorológico afirmou que um encontro entre um avião comercial e um tornado pode acontecer aproximadamente uma vez a cada 300 milhões de horas de voo - certamente raro, mas não tão raro que não precisasse ser pensado. O que a Europa precisava, eles escreveram, era algum sistema para detectar tornados ou outros eventos de vento severo - porque do jeito que as coisas estavam, a Europa não tinha sistema algum. 


Para fins de segurança da aviação, detectar um tornado não é tão diferente de detectar qualquer tipo de cisalhamento do vento - ou seja, o vento se movendo em direções diferentes em uma pequena área geográfica. 

Tornados são essencialmente apenas uma manifestação muito dramática de cisalhamento do vento, um problema que vem causando acidentes há anos. Na época, o melhor conselho que os reguladores podiam dar aos pilotos era evitar tempestades por princípio. Mas isso não era uma panaceia. 


Os pilotos do voo NLM 431 fizeram o possível para evitar a tempestade sobre Moerdijk, voando ao redor da parte mais intensa da célula. No entanto, os tornados costumam se formar adjacentes ao centro da tempestade, em vez de diretamente abaixo dele. Mal sabiam eles que, ao contornar a borda, o capitão Werner e o primeiro oficial Schoorl corriam um perigo ainda maior!

Ao longo dos próximos anos, o problema do cisalhamento do vento mudou para a vanguarda do interesse global devido a dois acidentes fatais nos Estados Unidos, ambos envolvendo micro-explosões - uma corrente descendente súbita e poderosa associada a uma tempestade que pode empurrar um avião para o chão. 

Em 1982, o voo 759 da Pan Am encontrou uma micro-explosão na decolagem de Nova Orleans, causando a queda do avião em uma área residencial. Todas as 145 pessoas a bordo e 8 no solo foram mortas. 

Acima: os restos do voo Delta 191
Três anos depois, o voo 191 da Delta caiu perto da pista depois de encontrar uma micro-explosão na aproximação final em Dallas, matando 136 das 163 pessoas a bordo, bem como uma no solo. Esses acidentes estimularam a Federal Aviation Administration a investir pesadamente em tecnologia para detectar cisalhamento do vento a bordo do avião.

A tecnologia para detectar cisalhamento de vento de um ponto centralizado no solo de fato já existia. Em 1973, o Laboratório Nacional de Tempestades Severas (NSSL) dos EUA documentou pela primeira vez todo o ciclo de vida de um tornado usando radar Doppler, que mede as mudanças na frequência de um sinal de rádio de retorno para determinar a velocidade das partículas transportadas pelo ar dentro de uma nuvem. 

Essa tecnologia já estava sendo empregada em algumas aeronaves militares, mas mal havia começado a ser aplicada para uso civil. Em 1981, o radar meteorológico Doppler entrou em serviço para detectar tempestades severas nos Estados Unidos, mas a Europa carecia de qualquer programa semelhante. 

Acima: espectadores observam um tornado na Romênia
Alguns aeroportos, como o London Heathrow, tinham sistemas que podiam detectar cisalhamento do vento perto das pistas, mas a maior parte do continente não tinha essa cobertura. No momento do acidente, Os meteorologistas da Holanda ainda estavam olhando para um mapa básico de precipitação, desenhando o que observavam e distribuindo os esboços aos aeroportos! 

No seu relatório, o Meteorological Office escreveu aos seus homólogos holandeses, “É opinião dos autores que algum serviço que alerta a aviação para a possibilidade de fortes tempestades e que pode operar de forma semelhante ao serviço de alerta de cisalhamento de vento em Heathrow ( mas com acesso a um visor de radar adequado) seria melhor do que nenhum serviço.” 

Em seu próprio relatório, os investigadores holandeses também recomendaram o estabelecimento de um programa que alertaria pilotos e controladores de tráfego aéreo sobre a presença de mau tempo em tempo hábil. Também recomendou que os reguladores estudassem a possível implementação de um sistema de alerta de tempestades em toda a Europa, auxiliado por novas tecnologias de detecção.

No final da década de 1980, ocorreram dois grandes avanços no combate ao cisalhamento do vento. Em 1988, os Estados Unidos implementaram um sistema de radares Doppler que forneceria uma cobertura quase completa de todo o país, permitindo que os meteorologistas detectassem com rapidez e precisão todos os tornados e outros eventos climáticos severos à medida que ocorressem, e os previsse com antecedência. 

Na mesma época, a FAA desenvolveu com sucesso um sistema de detecção de cisalhamento de vento que poderia ser instalado em aviões de passageiros. Esses sistemas foram implantados nos Estados Unidos em 1993 e, no mesmo ano, o Canadá completou sua própria rede nacional de radares Doppler. 

Os países europeus seguiram o exemplo no final da década de 1990, e a maioria alcançou cobertura completa em 2004. Durante esse tempo, nenhum outro avião voou para dentro de tornados e, graças aos modernos sistemas de detecção, tal encontro hoje é quase impossível de imaginar. 

O voo 431 da NLM Cityhopper continua, e provavelmente sempre será, o único caso confirmado de acidente aéreo causado por um tornado. O impacto que este acidente específico teve na segurança da aviação é difícil de avaliar, mas tal evento único não merece cair na obscuridade total.

Edição de texto e imagens por Jorge Tadeu (Site Desastres Aéreos)

Com Admiral Cloudberg, Wikipedia, ASN - Imagens: C. Mulder, Christian Volpati, WT Roach e J. Findlater, Vanessa Ezekowitz, LA Times, European Severe Storms Laboratory, Dallas Morning News, Romênia Journal e Johan van Tuyl. Algumas imagens são de domínio público.