quarta-feira, 21 de setembro de 2022

Os 10 principais mitos de Hollywood sobre caças


Hollywood adora caças. E por que não? Afinal, eles são máquinas de guerra elegantes, rápidas e mortais, capazes de avançar na trama e criar alguns efeitos especiais sérios.

Mas Hollywood também adora um clichê. Seja um filme biográfico piloto, um filme de ação ou um drama de guerra extenso, os filmes quase sempre são influenciados por seus antecessores, mesmo que certos elementos sejam extremamente imprecisos.

A realidade é muitas vezes negligenciada em favor do espetáculo e do drama. Isso é mais notável quando olhamos para o retrato de caças ao longo da história cinematográfica. Agora, não é como se os cineastas não soubessem ou mesmo se importassem com o funcionamento desses jatos. Mas a realidade não é excitante. O público quer se divertir e, como resultado, as pessoas se tornaram muito mais familiarizadas com o clichê. Quando um clichê se torna popular o suficiente, pode eventualmente ser percebido como um fato.

Mas o que o espectador médio sabe sobre caças provavelmente foi adquirido em filmes. Consequentemente, a imagem popular de um avião de combate foi formada por uma coleção de mitos propagados pelo cinema. Também podemos vê-los sendo emulados em filmes europeus, asiáticos e africanos.

Reunimos 10 desses mitos de filmes sobre caças. Não há uma ordem estrita na lista. Mas incluímos os mais populares no topo e, digamos, os mais 'espetaculares' são apresentados abaixo.

1. O pós-combustor está sempre ligado


O fogo é emocionante. Que melhor maneira de apimentar uma cena do que mostrar um motor a jato cuspindo uma faixa de chamas atrás dele? Assim, muitos caças em filmes tendem a voar com o pós-combustor ligado, seja ou não necessário.

Um pós-combustor é um sistema que injeta combustível no escapamento de um motor a jato. Quando operacional, produz mais energia, o que permite que a aeronave acelere mais rapidamente à medida que as chamas ardentes saem de suas costas. Também aumenta drasticamente o consumo de combustível e pode causar desgaste adicional em alguns motores. Então, na realidade, os pilotos tendem a usar o pós-combustor com moderação, acionando-o quando esse impulso extra é necessário. Mas em um modo normal de operação, o motor a jato não produz chamas visíveis. Para Hollywood, isso provavelmente é um pouco monótono.

Aqui está uma cena de "Mulher Maravilha 1984" (2020), onde um caça a jato de táxis modelo indiscerníveis com pós-combustão completo. Se um piloto tentasse isso na vida real, arriscaria incendiar metade do aeroporto.


2. Os jatos voam lado a lado


Nos filmes, quando vários caças participam de uma operação, eles geralmente voam em formação próxima com as pontas das asas quase se tocando, assim como as equipes de acrobacias fazem em shows aéreos. Na realidade, isso não é apenas um feito extremamente difícil, como não oferece vantagens e pode até resultar na colisão dos jatos no ar.

Este tropo se origina de filmes da era pré-jato. Em relação aos caças com motores a pistão, a formação de pontas de dedos era uma coisa comum e prática. Mas quando se trata de caças a jato, as formações geralmente envolvem as aeronaves mantendo uma distância significativa umas das outras. Isso geralmente é vários quilômetros/milhas. Dessa forma, seus radares cobrem uma área mais ampla, podem reagir melhor à situação, além de engajar e desengajar o inimigo conforme necessário.

Abaixo está uma cena do "Força Aérea Um" (1997) onde um esquadrão de F-15s, dispostos em uma linha ordenada com quase nenhum espaço entre os jatos, está a caminho para enfrentar o inimigo. O clipe inclui uma tática legítima, uma formação conhecida como “Wall of Eagles”, onde os F-15 se espalham horizontalmente para maximizar sua cobertura de radar. No entanto, durante uma parede real, a distância entre os jatos adjacentes é entre 1,5 e três quilômetros (uma a duas milhas), de modo que as aeronaves são pouco visíveis umas para as outras a olho nu.


3. Um lobo solitário será o vencedor


Você precisa mostrar o ponto culminante de um arco de personagem como um piloto corajoso? Deixe-o enfrentar seu inimigo mortal sobre uma paisagem pitoresca e provar seu valor de uma vez por todas.

Embora essa técnica possa funcionar para filmes, é incrivelmente perigosa na vida real. No entanto, Hollywood frequentemente retrata caças embarcando em missões de combate solo. De acordo com os filmes, patrulhar, bombardear ou interceptar, parece, é melhor conduzido por um ás solitário, especialmente se ele for o personagem principal.

Na realidade, os caças quase sempre funcionam como uma unidade e são enviados em uma missão de combate pelo menos aos pares. Há pouca chance de um único jato de combate ser enviado para interceptar um oponente, pois isso significa uma desvantagem significativa quando confrontado por vários inimigos.

Os filmes muitas vezes levam esse mito um passo adiante. Mesmo em um duelo entre várias aeronaves de cada lado, os caças se enfrentam um a um. As táticas de grupo raramente estão em jogo, cada piloto apenas escolhe seu alvo e ataca. Essa linha de pensamento leva a um completo mal-entendido de como as guerras modernas são travadas e provavelmente é responsável por todas as comparações entre caças de nações concorrentes.

Enquanto os geeks da aviação gostam de discutir sobre qual jato é mais avançado, manobrável ou mais rápido, eles esquecem que tais comparações só fazem sentido se os jatos se envolverem, um a um, em um duelo justo. Isso é comum em filmes. Mas nunca na vida real.

4. 'Dogfight' é o principal modo de operação


Os filmes mostram o combate como duelos prolongados e de curta distância, onde os caças se aproximam tanto que os pilotos podem se olhar. Mas há muita coisa errada com esse retrato.

Mesmo na Segunda Guerra Mundial, quando todas as mortes ar-ar foram alcançadas com armas de curta distância, a maioria das aeronaves foi derrubada antes que os pilotos tivessem a chance de notar seu atacante. 

Mais tarde, quando os mísseis ar-ar foram introduzidos, os alcances de engajamento cresceram dramaticamente. Em guerras recentes, uma parte significativa das vitórias aéreas foi alcançada além do alcance visual (BWR), e até mesmo 'dogfights' de curto alcance muitas vezes terminavam assim que um lado identificava seu oponente e lançava um míssil.

Há uma longa história de especialistas que afirmam que as brigas de cães ainda são relevantes nos dias de hoje. Eles acreditam que a tecnologia nem sempre é confiável e o bom e velho combate a curta distância é inevitável. Isso pode ter funcionado durante a Guerra do Vietnã, quando os primeiros mísseis se mostraram pouco confiáveis ​​e os militares dos EUA tiveram que repensar suas táticas. Mas a tecnologia avançou significativamente desde então e continua a melhorar. A ênfase está agora na guerra tecnológica e cada vez menos ênfase é colocada em combates aéreos.

Mas o combate aéreo realista é muito chato para Hollywood. Até mesmo caças no futuro estão envolvidos principalmente em combates aéreos. Um exemplo pode ser encontrado nesta cena de "Stealth" (2003), onde jatos futuristas superavançados lutam de perto como em 1941.


5. 'Dogfighting' significa voar um atrás do outro


Quando se trata de um duelo real, a maioria dos filmes descreve o processo como envolvendo dois caças voando um atrás do outro. Um dispara suas armas, outro se esquiva de balas e mísseis. Se o enredo exigir, um piloto ocasionalmente realizará a manobra Cobra de Pugachev para mudar rapidamente sua posição e ficar atrás do inimigo. Este é um golpe espetacular, mas impraticável. Pode ser seguido por uma sequência obrigatória de “não consigo travar”, onde um jato em manobra evita um retículo de mira dolorosamente lento dentro da mira do piloto.

Na realidade, se um caça está atrás de seu oponente, na posição das seis horas, então o oponente já está acabado. Jatos de combate são projetados para eliminar alvos à sua frente de forma eficiente e, ao fazer algumas curvas rápidas e acentuadas ('jinking') pode ajudar a evitar uma explosão repentina de tiros, não funcionará por longos períodos de tempo, certamente não contra mísseis.

As manobras encontradas em combates reais são geralmente muito mais dinâmicas. Os pilotos realizarão uma sequência de curvas na tentativa de colocar a aeronave inimiga na zona de engajamento de armas e permanecer fora de perigo. É claro que essas brigas de cães são raras nos conflitos modernos (ver ponto nº 4). Mas eles são ainda mais raros em filmes.

Por exemplo, aqui está uma cena de "Lanterna Verde" (2011) onde os F-35 lutam contra alguns drones de combate fictícios. Tudo o que eles fazem é ficar no seis do outro enquanto constantemente brincam e brincam. De alguma forma, isso constitui um duelo.


6. Mísseis 'Sidewinders' são anti-tudo


É bem provável que o AIM-9 Sidewinder seja o míssil ar-ar mais produzido do mundo. Foi desenvolvido nos EUA na década de 1950 e copiado pela URSS e pela China. Seus modelos amplamente aprimorados ainda estão em produção hoje e, na cultura popular, tornou-se o míssil carregado por todas as aeronaves de combate.

Nos filmes, quando um caça precisa atacar qualquer coisa, normalmente ele atira no Sidewinder. Seja um avião inimigo, um tanque, um disco voador ou um monstro gigante, o míssil espirala nele e o explode. Há pontos de bônus se o jato atirar em dezenas deles, apesar de inicialmente carregar apenas dois ou quatro.

Na realidade, o AIM-9 é uma arma limitada. É um míssil de busca de calor de curto alcance e só pode travar objetos quentes a distâncias comparativamente curtas. Ele também tem uma pequena ogiva, que é suficiente para destruir um avião frágil, mas seria quase inútil contra qualquer coisa com mais substância. Caças reais podem transportar uma vasta gama de mísseis e bombas destinadas a diferentes alvos. Mas esses raramente são vistos em filmes.

Nesta cena de "Godzilla vs King Kong" (2021), um par de F-35s lança seus Sidewinders em um monstro, o que resulta em uma quantidade previsível de dano. Por que eles não usaram nenhuma de suas armas ar-terra muito mais poderosas? Como os pilotos conseguiram travar o míssil de busca de calor no animal de sangue frio? Nós nunca saberemos.


7. Brincando com mísseis


Mísseis antiaéreos reais normalmente seguem um procedimento operacional simples. Eles queimam seu combustível nos primeiros segundos do voo, acelerando a altas velocidades supersônicas, e deslizam o resto do caminho, ajustando sua trajetória para interceptar o alvo. Devido às superfícies de controle limitadas, eles não podem ser tão manobráveis ​​quanto as aeronaves. No entanto, eles compensam isso com rapidez e precisão.

Mas eles parecem operar de forma diferente nos filmes. Seja lançado do solo ou por outro jato, os mísseis têm combustível ilimitado, voam na mesma velocidade de uma aeronave e podem realizar manobras malucas. As cenas de ataque com mísseis geralmente apresentam sequências de perseguição estendidas com esquiva e manobras, que podem parecer emocionantes, mas não são precisas.

Os mísseis de última geração, como o AMI-9X, o Python-5 ou o Meteor, são extremamente manobráveis. Eles possuem bicos de vetorização de empuxo, capacidade de ataque traseiro ou aceleração no meio do curso. Mas mesmo esses mísseis são incapazes de pegar a aeronave e se tornam inúteis se errarem o alvo na primeira passagem.

No entanto, aqui está a cena de "Behind Enemy Lines" (2001) onde um míssil 9M37, disparado de um Strela-10, dança com um caça F/A-18 por minutos. É apenas um dos muitos exemplos semelhantes. Na verdade, encontrar uma cena de filme com comportamento realista de mísseis é quase impossível.


8. As armas usadas nos caças


Assim como os mísseis, as armas também estão repletas de clichês. Muitos caças são mostrados com duas armas, uma montada em cada lado de uma aeronave. Quando disparados, eles produzem o icônico 'thump-thump-thump' associado a uma metralhadora pesada, deixando um rastro de buracos em seu alvo.

Antes e durante a Segunda Guerra Mundial, a maioria dos países começou a montar canhões em seus caças e os manteve desde então. A maioria dos caças modernos tem um único canhão automático perto do cockpit ou na raiz da asa e, embora haja exceções (notadamente o F-5 e vários modelos do Mirage), um único canhão é o padrão.

Como canhões, essas armas têm um calibre bem pequeno (geralmente entre 20 e 30 milímetros). Mas, normalmente, eles disparam projéteis altamente explosivos cujo impacto é semelhante ao de uma granada de mão, em vez de uma bala de metralhadora comum. Eles também têm taxas de disparo extremamente altas (entre 1.000 e 2.000 tiros por minuto para os de cano único e mais de 5.000 tiros por minuto para os rotativos) e soam um pouco como uma motocicleta ao disparar.

Nesta cena de "Pacific Rim" (2013) o F-22 ataca um “kaiju” com o que parecem ser duas metralhadoras montadas na barriga cujas balas ricocheteiam na pele do monstro. Na realidade, o F-22 possui um único canhão M61A2 Vulcan de 20 mm entre o cockpit e a asa direita, capaz de disparar 100 projéteis altamente explosivos por segundo.


9. Quanto mais perto melhor


Os cineastas adoram incluir o máximo de ação intensa possível. Muitas vezes, isso inclui um jato atacando um alvo próximo, mergulhando logo acima, haja necessidade disso ou não.

Esta é uma tática legítima e as corridas de strafing de baixo nível eram bastante comuns na Segunda Guerra Mundial. Ainda hoje, esses movimentos ainda são realizados ocasionalmente. No entanto, a velocidade dos aviões a jato significa que esse ataque normalmente começa a uma distância de vários quilômetros ou milhas. A aeronave não se aproxima mais do que várias centenas de metros de seu alvo.

Chegar perto de um alvo é perigoso, então os pilotos tendem a se afastar o máximo possível. As capacidades de ataque de precisão de longo alcance são essenciais para quase todos os caças modernos. Isso permite que a aeronave fique fora do alcance da maioria dos mísseis terra-ar ao atacar.

No entanto, tal ataque é difícil de tornar emocionante. Um jato voa em alta altitude, lança uma bomba ou um míssil, e o alvo explode um minuto depois. Para torná-lo mais emocionante, os filmes tendem a retratar os ataques terrestres como um caso de curto alcance, com balas zunindo pela cabine e pilotos sorrindo para seus oponentes.

Há também pontos de bônus para retratar os jatos voando entre os prédios, mesmo que os pilotos reais tenham que ser loucos para tentar isso. E é exatamente isso que os F-22 fazem na cena a seguir de "The Tomorrow War" (2021), enquanto bombardeiam uma rua com o que parece ser napalm. Eles também voam em pós-combustão completo, ponta a ponta da asa, porque um clichê nunca é suficiente.


10. Os jatos VTOL podem fazer qualquer coisa


Aeronaves a jato de decolagem e pouso vertical (VTOL) ou decolagem curta e pouso vertical (STOVL) são projetadas para decolar e/ou pousar verticalmente, o que lhes permite operar em pistas curtas ou pequenos navios. O Harrier, o F-35B e o Yak-38 são os exemplos mais conhecidos e os únicos produzidos em massa.

Essa capacidade limitada de pairar é geralmente exagerada em filmes. Em vez disso, esses jatos se comportam como discos voadores ao atacar alvos terrestres ou aéreos. Embora os jatos VTOL e STOVL reais possam, em algumas circunstâncias, atacar enquanto pairando, eles descartam suas principais vantagens (ser rápido e ágil) ao fazê-lo. Como resultado, eles se tornam vulneráveis.

Aqui está uma cena de "Live Free or Die Hard" (2007) onde o F-35B demonstra algum comportamento que desafia a gravidade ao tentar atacar Bruce Willis. O jato também voa sozinho, chega a um alcance irracionalmente curto, dispara AIM-9 Sidewinders e dispara duas armas montadas na barriga. O pacote completo.


Edição de texto e imagens por Jorge Tadeu (com informações do Aero Time)

Qual é o maior avião do mundo?

(Foto: Artur Voznenko/Unsplash)
Até o início dos conflitos entre Rússia e Ucrânia, o cargueiro Antonov An-225 era o maior avião do mundo em operação. Com 84 metros de comprimento, 88m de envergadura e capacidade de carga até 250 toneladas ou 1.500 pessoas, o "sonho", tradução do seu nome em ucraniano, vai ficar para sempre na memória dos fãs de aviação, mesmo com a ideia do governo do país europeu em reconstruir esse colosso, que terá custo bilionário.

Mas, depois da destruição do Antonov, quem assumiu o posto de maior avião do mundo? Essa pergunta pode ser respondida de duas maneiras, pois a aviação tem suas peculiaridades. Sendo assim, vamos dividir pelo projeto com maior envergadura e o que está, atualmente, em operação em rotas comerciais regulares.

O maior em envergadura: Scaled Composities 351 Stratolaunch


O maior avião do mundo em envergadura é o Scaled Composities 351 Stratolaunch, mais conhecido como Roc. Esse projeto, nascido de uma parceria entre Paul Allen, cofundador da Microsoft e idealizador do projeto da aeronave, e Burt Rutan, o projetista do veículo.

Quando estiver finalizado, o Stratolaunch poderá facilitar o envio de foguetes ao espaço
 (Imagem: Divulgação/Stratolaunch)
A ideia de Allen era de baratear o lançamento de foguetes e, para isso, queria que uma aeronave tivesse a capacidade de levá-lo a uma certa altura na atmosfera e soltá-lo de lá. Para isso, esse monstro conta com 117 metros de envergadura e pode voar a um teto operacional de 7.160 metros e a uma velocidade de 346 km/h.

Ele abriga seis motores Pratt & Whitney PW4000, todos retirados de Boeings 747 inutilizados, além de duas fuselagens retiradas do mesmo modelo de avião, que servem de base para as asas gigantes. O foguete e até mesmo aeronaves supersônicas que podem decolar desse avião, ainda aparecerão em testes futuros.

O maior em operação: Airbus A380


O Airbus A380 é o maior avião de passageiros em operação no mundo atualmente, superando o Boeing 747 desde o início de suas operações, em 2007, em unidade adquirida pela Singapore Airlines. Ele tem 72m de comprimento, 79m de envergadura e 24m de altura. Seu peso máximo de decolagem é de 575 mil quilos e sua velocidade máxima é de 970 km/h.

A Emirates é a maior operadora do A380 (Imagem: Divulgação/Airbus-Lutz Borck)
Mesmo sendo um avião com enorme capacidade de passageiros, podendo levar mais de 800 em três classes, seus custos operacionais o tornaram um projeto inviável ao longo dos 14 anos de sua existência. E, em 2019, a fabricante europeia decidiu parar de fabricá-lo, com suas duas últimas unidades entregues em 2021, para a companhia aérea Emirates.

Foram, ao todo, 251 A380 produzidos na história para 16 clientes.

Os 10 maiores aviões do mundo em tamanho

  1. Airbus A380: 72m de comprimento e 79m de envergadura
  2. Boeing 747-8: 76,3m de comprimento e 68,5m de envergadura
  3. Airbus A340-600: 75m de comprimento e 63m de envergadura
  4. Airbus A350-1000: 74m de comprimento e 64m de envergadura
  5. Boeing 777-300: 73,9 de comprimento e 60,8 de envergadura
  6. Boeing 747-400: 71m de comprimento e 64m de envergadura
  7. Boeing 787-10: 68m de comprimento e 60,12m de envergadura
  8. Airbus A350-900: 67m de comprimento e 65 de envergadura
  9. Boeing 777-200: 64m de comprimento e 60,9m de envergadura
  10. Airbus A330: 64m de comprimento e 60m de envergadura

História: Curtiss NC-4: a primeira aeronave a cruzar o Oceano Atlântico

Apesar de o NC-4 ter sido o primeiro avião a sobrevoar o Oceano Atlântico com sucesso, sua fama durou apenas duas semanas.


Em 1919, um hidroavião Curtiss NC foi a primeira aeronave a voar através do Oceano Atlântico, mas de alguma forma sua realização quase nunca é discutida. A capacidade do hidroavião Curtiss NC de cruzar o Atlântico surgiu devido aos avanços na aviação antes da Primeira Guerra Mundial. Em janeiro de 1912, o pioneiro da aviação americana Glen Curtiss voou seu primeiro "hidroavião" com casco, atraindo a atenção de John Cyril Porte, um oficial da marinha britânica aposentado.

Porte estava à procura de um parceiro para ajudá-lo a ganhar um prêmio de £ 10.000 oferecido pelo Daily Mail para a primeira equipe a pilotar um avião da América do Norte para as Ilhas Britânicas. Em 1914, Curtiss, junto com Porte, construiu um grande hidroavião movido por dois motores e duas hélices empurradoras. O sonho deles era usar a aeronave para cruzar o Atlântico e reivindicar o prêmio do Daily Mail. Infelizmente, suas ambições foram frustradas em 4 de agosto de 1914, quando a Grã-Bretanha declarou guerra à Alemanha por violar a neutralidade belga.

Porte modificou a aeronave Curtiss


Agora de volta a servir na Marinha britânica, Porte ajudou a convencer o Royal Naval Air Service a encomendar à Curtiss Company a construção de hidroaviões que eles poderiam usar para patrulhas antissubmarinas. Quando os aviões chegaram, Porte os desenvolveu, acrescentando motores mais potentes e melhores cascos. Agora chamando a aeronave de barcos voadores de Felixstowe, ele compartilhou as melhorias de projeto com Curtiss para construí-los sob licença para a Marinha dos Estados Unidos.

A tripulação do NC-1, NC-3 e NC-4 antes de decolar para Terra Nova
(Foto: National Geographic Society via Wikimedia Commons)
Essa colaboração resultou em quatro aeronaves idênticas, o NC-1, NC-2, NC-3 e o NC-4, construídos pela Curtiss Airplane and Motor Company para a Marinha Americana. A designação NC foi derivada dos esforços colaborativos da Marinha (N) e Curtiss (C). A última aeronave a ser construída, o NC-4, fez seu primeiro voo de teste em 30 de abril de 1919. Querendo mostrar as capacidades da aeronave, os oficiais encarregados dos hidroaviões persuadiram a Marinha a permitir que eles voassem pelos Atlântico.

Apoiado por navios ao longo da rota, o primeiro voo transatlântico da marinha decolou da Estação Aérea Naval de Rockaway, em Nova York, em 8 de maio de 1919. Para garantir que o NC-4 realizasse a jornada, ele foi acompanhado pelo NC-1 e NC-3. O NC-2 foi desmontado para fornecer peças sobressalentes para o NC-4, se necessário. 

A primeira parada do avião foi Chatham Naval Air Station, Massachusetts, e Halifax, Nova Escócia, antes de voar para Trepassey, Newfoundland. Em caso de emergência ou necessidade de resgate, a Marinha estacionou oito navios de guerra ao longo da rota. Esperando com comida e combustível para os aviadores e suas equipes em Newfoundland estava o ex-caçador de minas USS Aroostook.

Terra Nova aos Açores foi a etapa mais longa


No dia 16 de maio, as três aeronaves decolaram de Trepassey com destino aos Açores com mais 22 dois navios da Marinha espaçados ao longo da rota de voo. Brilhantemente iluminados à noite, os navios esperavam ajudar a guiar os aviões. Apesar dos melhores esforços da Marinha, um nevoeiro espesso desceu sobre o oceano forçando o NC-1 e o NC-3 a pousar em mar aberto. A tripulação do NC-1 foi resgatada por um cargueiro grego enquanto o NC-3 taxiou o avião até chegar a um dos navios da marinha enviados para ajudar.

A etapa mais longa da viagem foi Terra Nova aos Açores (Imagem: Wikimedia Commons)
Depois de ter voado durante toda a noite e a maior parte do dia seguinte, o NC-4 chegou à localidade da Horta na Ilha do Faial. Na Horta, a tripulação passou três dias a descansar antes de partir para Lisboa. Infelizmente depois de ter voado uma curta distância, a aeronave sofreu problemas mecânicos e teve que pousar em Ponta Delgada. Precisando de peças de reposição e tempo para trabalhar no avião, o NC-4 decolou novamente em 27 de maio.

Como as outras etapas da viagem, os navios da Marinha dos EUA se espaçaram ao longo da rota. O NC-4 não encontrou mais problemas ao aterrar no porto de Lisboa nove horas e 43 minutos depois de deixar os Açores. Depois de se tornar a primeira aeronave a cruzar o Atlântico, o NC-4 ficou em Lisboa e partiu para Plymouth, na Inglaterra, chegando a Plymouth em 31 de maio de 1919.

Duas semanas depois, o voo recorde do NC-4 foi esquecido


Apesar do feito, o feito do NC-4 foi eclipsado duas semanas depois, quando os aviadores britânicos John Alcock e Arthur Whitten Brown voaram sem escalas da Terra Nova para a Irlanda. Alcock e Brown , consequentemente, ganharam o prêmio de £ 10.000, pois as regras estipulavam que a jornada deveria ser concluída em 72 horas. Sendo aeronaves da Marinha americana, os NCs nunca entraram na competição, pois não havia planos para completar a travessia em 72 horas.

Como funciona o leme em um avião?


Os controles de voo do avião são as superfícies de controle móveis que o piloto pode usar para controlar o avião enquanto ele voa pelo ar. Dos três controles de voo principais, o leme é geralmente o mais mal compreendido.

O que o leme faz?


Como todos os controles de voo, o leme é uma mini asa que cria uma força de elevação em uma direção específica. Montado verticalmente na cauda do avião, o leme faz uma força para a esquerda ou direita, puxando o nariz na direção oposta.

O leme é montado no estabilizador vertical, parte da empenagem na parte traseira do avião. É equivalente ao leme encontrado em barcos ou navios - ajuda o navio a virar para um lado ou para outro. Um avião, entretanto, se move em três dimensões. Isso significa que seus três controles de voo funcionam em uníssono. Para virar a aeronave, o piloto usa todos os três controles de voo.

Cauda curta SC.7 Skyvan
O leme é controlado na cabine por pedais. Quando o piloto pressiona o pedal esquerdo, o leme desvia para a esquerda. Essa deflexão cria mais força de levantamento no lado direito do leme, o que move o nariz do avião para a esquerda.

Controles de voo e suas finalidades


Existem três controles de voo primários encontrados de uma forma ou de outra em cada avião. Eles são o elevador, ailerons e o leme.

O elevador move o avião em torno do eixo lateral (ponta da asa para ponta da asa), que é chamado de inclinação. Pitch move o nariz para cima e para baixo.

Os ailerons movem o avião em torno do eixo longitudinal (nariz à cauda), um movimento denominado roll.

E, finalmente, o leme controla o plano em torno do eixo vertical (para cima e para baixo), que é chamado de guinada. Yaw move o nariz da aeronave para a esquerda ou direita.

Eixo de voo e controles de voo
Além desses controles, existem vários outros tipos de controles de voo. Os controles de voo secundários incluem flaps, flaperons, slats, slots, spoilers e compensadores. Nenhum deles é necessário para o voo; eles são usados ​​para fazer mais sustentação ou para ajustar os controles primários de voo.

O objetivo e a importância do leme


O leme pode ser o controle de voo mais incompreendido. Ao aprender a voar, torna-se evidente que os ailerons fazem o avião fazer uma curva. A maioria dos aviões então vira, talvez não tão eficaz quanto deveria, independentemente de os comandos do leme serem aplicados ou não.

Então, o que o leme faz, se seus efeitos são difíceis de notar? Para entender isso, você precisa entender o que faz um avião virar.

A força que faz um avião virar vem da sustentação das asas. Quando as asas são giradas em uma curva, a força de levantamento total permanece perpendicular à envergadura do avião. Em vez de toda a sustentação ser oposta à gravidade, já que está em vôo reto, parte dela está puxando o avião para a curva. Essa parte do elevador é conhecida como o componente horizontal do elevador. É o componente horizontal da sustentação que faz o avião virar.

Os ailerons, montados na borda de fuga externa das asas, giram o avião criando mais e menos sustentação nas pontas das asas. No lado onde mais é criado, a asa sobe; do outro lado, menos sustentação é criada e a asa desce. Quando mais sustentação é criada, mais arrasto induzido também é, o que é um subproduto da sustentação.

O arrasto induzido está sempre presente quando você faz sustentação com uma asa ou superfície de controle. Mas com os ailerons, isso representa um problema. A asa que sobe quando você faz uma curva causa o arrasto mais induzido. Isso significa que a asa do lado de fora da curva afastará o nariz da curva. Este fenômeno é denominado guinada adversa.

O leme é fundamental em um avião para neutralizar a guinada adversa. Ao aplicar um pouco de pressão no leme na curva, o nariz continua girando conforme desejado.

Houve alguns projetos de aeronaves que combinaram as entradas do leme e do aileron em um controle piloto. Os pedais do leme são removidos e os controles acoplados entre si para que o leme seja acionado com os ailerons. É apenas uma ideia com a qual os designers brincaram para tornar o voo mais simples e acessível, mas não pegou. O exemplo mais famoso desse design é o ERCO Ercoupe.

ERCO Ercoupe mostrando seu leme duplo

Não se trata apenas de virar


Embora o leme seja essencial para ajudar a controlar o avião nas curvas, ele faz muito mais do que isso.

Corrigindo Yaw

Os aviões movidos a hélice estão sujeitos a quatro tendências de viragem à esquerda. Durante o voo de cruzeiro, a aeronave é projetada para torná-los imperceptíveis. Mas às vezes, como durante as subidas, essas forças se combinam e vão virar o nariz do avião para a esquerda. Nestes casos, o piloto deve aplicar o leme correto para manter a aeronave voando em linha reta.

Recuperação de parada ou rotação

O leme também é um controle de voo crítico para emergências como estol ou giros. Ailerons, montados nas asas, podem se tornar ineficazes se as asas estiverem estoladas. O que é ainda mais perigoso, os ailerons podem exacerbar um estol, pois eles causam um desequilíbrio na quantidade de sustentação que cada asa produz.

O leme é usado para controlar a guinada do avião nessas situações. O processo de recuperação adequado para um cenário de giro é neutralizar os ailerons e aplicar o leme na direção oposta da curva.

Falha de motor

Em aviões bimotores, o leme é a maneira correta de corrigir se um motor falhar. Com um motor inoperante, o empuxo assimétrico puxará a aeronave em uma curva em direção ao motor morto. O leme pode neutralizar esse efeito e manter o avião voando em linha reta.

Rudder Trim (Guarnição do leme)


O leme pode ser compensado para reduzir a carga de trabalho do piloto. Os aviões multimotores quase sempre têm um controle de compensação do leme. No caso de falha do motor, o piloto pode ajustar o compensador para manter a direção. Dependendo do avião, alguns aviões exigem muita pressão no pedal. Pode desgastar os músculos das pernas de um piloto muito rapidamente!

Os aviões monomotores às vezes também têm trims de leme. Eles são úteis para fazer o ajuste fino da aeronave para um voo direto e nivelado, especialmente se o avião tiver uma ampla gama de velocidades e configurações.

Muitos aviões pequenos possuem compensadores ajustáveis ​​no solo. São simplesmente pequenos pedaços de metal montados na borda de fuga do leme. Eles podem ser ligeiramente dobrados no solo para garantir que o avião voe em linha reta durante o vôo de cruzeiro.

Controle de solo


Como o leme move o nariz do avião para a esquerda e para a direita, só faz sentido que seja usado para controlar a aeronave no solo durante o taxiamento. Lembre-se, quando não há ar fluindo sobre eles, os controles de vôo não funcionam.

Para realizar a direção no solo, a roda do nariz se move no trem de pouso do tipo triciclo e a roda traseira se move no trem de pouso convencional (taildraggers). Na maioria dos aviões com engrenagem triciclo, a direção da roda do nariz está ligada aos pedais do leme. Portanto, para orientar o caminho ao redor da pista, os pilotos movem os pés. A roda de controle permanece parada.

TWA DC-3, um avião com roda traseira (marcha convencional).
O leme e a compensação do leme são muito óbvios nesta foto
Aviões grandes normalmente têm um controle totalmente separado para dirigir a roda do nariz, chamado de leme.

Os aviões também podem usar seus freios para ajudá-los a dirigir no solo. Os pedais do freio são montados acima dos pedais do leme e cada pedal controla cada freio independentemente. É conhecido como freio diferencial e significa que o piloto pode fazer uma curva muito fechada no solo girando a roda do nariz e, em seguida, batendo no freio na parte interna da curva.

Edição de texto e imagens por Jorge Tadeu - Com informações do Aerocorner

Viajar de avião por R$ 330 mil: veja a lista das 10 passagens mais caras do mundo

Oferecida pela empresa Etihad Airways, a passagem mais cara do mundo custa US$ 64 mil (cerca de R$ 332 mil) e dá direito até a um "mordomo particular"; confira a lista das opções mais caras do mercado.

Novo cardápio da primeira classe da Emirates Airlines traz caviar combinado com
champanhe Dom Perignon (Foto: Divulgação/Emirates Airlines)
A Emirates Airlines atualizou nesta semana sua lista de opções luxuosas para os passageiros de primeira classe. Entre os novos itens do cardápio, estão porções ilimitadas de caviar, servido em uma colher de madrepérola e combinado com champanhe Dom Perignon.

Segundo a empresa, as novidades fazem parte de um investimento de US$ 2 bilhões para "melhorar a experiência do cliente a bordo". Além do caviar com champanhe, estão sendo adicionados ao cardápio um "menu de lanches de cinema" - no qual os passageiros podem escolher guloseimas como pipoca e rolinhos de lagosta - além de pratos como salmão frito e peito de pato assado.

A passagem mais cara da Emirates custa US$ 30 mil (aproximadamente R$ 155 mil), com trajeto de Los Angeles a Dubai. Para o conforto dos passageiros, a passagem dá direito também a um assento especial que pode ser transformado em cama, além de um espaço com uma porta deslizante que pode ser fechada a qualquer momento para garantir a privacidade dos viajantes. Cada passageiro também tem direito a minibar próprio, produtos para skincare e acesso ao chuveiro e spa a bordo.

Embora a passagem de US$ 30 mil por um voo possa parecer muito, na verdade ela não é a maisa cara do mundo. Tal título pertence à empresa Etihad Airways, que oferece uma passagem de primeira classe de Nova York a Abu Dhabi por US$ 64 mil (cerca de R$ 332 mil).

Segundo o Daily Mail, a lista com as 10 passagens aéreas mais caras do mundo fica assim:

1° - Etihad Airways: US$ 64 mil (R$ 332 mil) pelo trajeto de Nova York a Abu Dhabi;

2° - Lufthansa: US$ 43 mil (R$ 223 mil) pelo trajeto de Nova York a Hong Kong;

3° - Emirates Airlines: US$ 30 mil (R$ 155 mil) pelo trajeto de Los Angeles a Dubai;

4° - Etihad Airways: US$ 28 mil (R$ 145) pelo trajeto de São Francisco a Abu Dhabi;;

5° - Korean Air: US$ 274 mil (R$ 140 mil) pelo trajeto de Nova York a Pequim;

6° - Cathay Pacific: US$ 20 mil (R$ 103 mil) pelo trajeto de Nova York a Hong Kong;

7° - Virgin Atlantic: US$ 20 mil (R$ 103 mil) pelo trajeto de Nova York a Singapura;

8° - Qantas Airways: US$ 15 mil (R$ 77 mil) pelo trajeto de Los Angeles a Melbourne;

9° - All Nipon Airways: US$ 15 mil (R$ 77 mil) pelo trajeto de Nova York a Tóquio;

10° - Singapore Airlines: US$ 14 mil (R$ 72 mil) pelo trajeto de Nova York a Singapura.

Mulher é expulsa de voo da Azul após defender passageiros envolvidos em ameaça de bomba

Os dois passageiros detidos (Imagem: Reprodução)
Uma passageira em um voo recente na Flórida se viu em uma situação difícil depois de defender dois passageiros que foram removidos por causa de uma ameaça de bomba. No fim, ela mesma foi retirada do voo.

Na noite de sexta-feira passada (9), dois homens foram detidos pelas autoridades no Aeroporto Internacional de Fort Lauderdale Hollywood após uma suposta ameaça de bomba. O voo da Azul tinha como destino o Brasil e teve que ser evacuado após a identificação de uma ameaça de bomba. Em última análise, a ameaça de bomba provou ser infundada e o voo continuou até seu destino.

Além dos dois homens, uma passageira não relacionada com a ameaça também foi removida do voo depois de defender os dois homens que foram detidos, disse o 7 News Miami.

Na visão da mulher, os dois homens estavam simplesmente bêbados. Ela observou: “Dois caras, muito bêbados e de repente cinco minutos depois a polícia chegou ao avião e eles levaram os dois caras porque disseram que era uma ameaça”.

Ela disse que ela e dois outros passageiros não identificados estavam lá e não ouviram nenhum tipo de ameaça de bomba. Um comissário de bordo teria dito a ela para ficar quieta ou ela seria removida. Por fim, ela foi removida do voo. A mulher estava viajando para o Brasil para participar do funeral de sua mãe.

Outro passageiro disse ao 7 News Miami: “Eu estava lá e não ouvi nada sobre bomba, nem as outras pessoas, e isso não está certo, cobrando deles por algo que realmente não tinham”.

Os homens foram levados em custódia, mas não está claro se serão acusados formalmente por terrorismo, o que poderia lhes render prisão e multa. O voo da Azul teve que ser atrasado para que aeronave passasse por uma inspeção completa.

terça-feira, 20 de setembro de 2022

Fenômeno aerodinâmico: uma visão detalhada do "canto do caixão"

As explicações sobre o canto do caixão às vezes são vagas ou carentes de detalhes.


O canto do caixão é um daqueles fenômenos que se fala muito dentro e fora da indústria da aviação. No entanto, a maioria das explicações sobre o canto do caixão são muitas vezes vagas e não explicadas com tantos detalhes. Neste artigo, vamos aprofundar o tópico e discutir o que realmente é o canto do caixão.

Efeitos de voo e compressibilidade em alta velocidade


A maioria dos transportes a jato no mundo viaja na região transônica. Em média, um jato típico viaja a velocidades que variam de 78% a 85% da velocidade do som. Ou, em termos técnicos, 0,78 a 0,85 número Mach. Então, o que significa o número de Mach? Mach é a velocidade de um objeto em relação à velocidade do som.

Por exemplo, se um objeto está viajando a 0,1 Mach, isso significa simplesmente que o objeto tem uma velocidade que é 10% da velocidade do som. Se o mesmo objeto se move a Mach 1, isso implica que ele está viajando a 100% da velocidade do som, ou tem a mesma velocidade que a velocidade do som. Quando um objeto atinge Mach 1, diz-se que é supersônico, e quando a velocidade ultrapassa Mach 1, o objeto se move para o regime supersônico.

Cone de vapor do F-18 durante o voo supersônico (Foto: Kevin Dickert via Wikimedia)
Então, por que o número de Mach é tão importante? Para entender isso, visualize uma aeronave parada no solo. Se você bater no nariz dele com um martelo, você ouvirá um som. Este som é transportado por ondas de pressão que viajam à velocidade do som no solo, que é de cerca de 340 m/s. Agora imagine a aeronave se movendo a uma certa velocidade. Se você atingir a aeronave enquanto ela estiver em movimento, a onda de pressão ainda viajará na velocidade do som. No entanto, desta vez devido ao movimento da aeronave, a distância entre a onda de pressão principal e a aeronave diminui. À medida que a velocidade da aeronave aumenta cada vez mais, essa distância diminui ainda mais.

Como a aeronave se fecha em suas ondas de pressão com o aumento da velocidade
(Imagem: Chabacano via Wikimedia)
Na vida real, quando uma aeronave se aproxima de Mach 0,4, a compressibilidade do ar se torna um fator. Como mencionado anteriormente, à medida que a aeronave acelera, ela começa a acompanhar suas ondas de pressão. Abaixo de 0,4 Mach, a onda de pressão age como um carro de polícia que libera o trânsito para o Presidente. As ondas de pressão avisam as moléculas de ar à frente da aeronave para abrir caminho para ela.

Mas à medida que a aeronave se aproxima de sua onda de pressão, ela não pode mais avisar as partículas de ar. Como não há aviso, o ar é subitamente submetido a grandes mudanças que aumentam sua densidade, temperatura e pressão. Em algum momento, se a aeronave acelerar até Mach 1, ela finalmente alcançará suas ondas de pressão. Isso faz com que as ondas de pressão se acumulem, formando ondas de choque.

Durante uma subida, a True Air Speed ​​(TAS) de uma aeronave aumenta devido à redução da densidade. Juntamente com o TAS, a velocidade do som também diminui porque a velocidade do som é diretamente proporcional à temperatura. À medida que a temperatura diminui com a altitude , reduz a velocidade do som. O que isso significa é que, à medida que uma aeronave sobe cada vez mais alto, seu número Mach aumenta. A fórmula para o número de Mach é a seguinte:

Mach = TAS/LSS, onde TAS é a velocidade real do ar e LSS é a velocidade local do som.

À medida que uma aeronave sobe, seu TAS aumenta, o que aumenta seu número Mach
(Foto:  National Archives at College Park via Wikimedia Commons)
Isso é importante porque se uma aeronave que não foi projetada para ir acima da velocidade do som for acima dela, coisas indesejáveis ​​podem acontecer, como perda de controle. Em uma aeronave, a velocidade do fluxo é a mais alta nas asas e, portanto, é a parte mais provável que pode ir além da velocidade do som mais rapidamente.

Então, agora deixe-me introduzir um novo termo. O número de Mach Crítico. O número Critical Mach, ou Mcrit para abreviar, é a velocidade mostrada no indicador de velocidade da aeronave quando uma parte de uma aeronave se torna sônica. Em uma aeronave típica, a asa atingirá Mach 1 muito antes de qualquer outra parte da aeronave e, se a aeronave for projetada para voo subsônico, seu número de Mach crítico desempenha um papel importante na velocidade mais alta que pode atingir.

Assim, os designers criaram designs de asas que podem desacelerar o Mcrit, incluindo o uso de asas varridas e aerofólios supercríticos.

Parada de alta velocidade e parada de baixa velocidade


Um estol de alta velocidade é causado pela formação de ondas de choque. Por causa das mudanças drásticas que são trazidas ao fluxo de ar pela presença de uma onda de choque, ela causa a separação do fluxo logo atrás dela. Um choque que está preso à asa, consequentemente, faz com que o fluxo de ar se separe da asa, e isso leva à perda de sustentação. Isso é chamado de estol de alta velocidade. Com o aumento da altitude, a aeronave se aproxima de Mach 1 e, por esse motivo, com o aumento da altitude, a velocidade para estol em alta velocidade diminui.

As ondas de choque podem causar a separação do fluxo, o que pode levar a
um estol de alta velocidade (Foto: Oxford ATPL)
Por outro lado, o aumento da altitude faz com que o estol de baixa velocidade aumente. Consulte este artigo para obter uma explicação detalhada do fenômeno de estol em baixa velocidade. O estol de baixa velocidade aumenta com a altitude devido à compressibilidade. Conforme explicado anteriormente, à medida que a velocidade da aeronave aumenta, o fluxo de ar não é mais avisado. Devido a esta razão, à medida que a borda de ataque da asa atinge o fluxo de ar, ela é feita para se curvar sobre a asa em um ângulo mais acentuado.

Em velocidades normais, o fluxo de ar começa a divergir e subir muito à frente do bordo de ataque da asa. Devido ao ângulo de aproximação acentuado do fluxo de ar, a região de menor pressão na asa ocorre muito mais próxima do bordo de ataque, fazendo com que o gradiente de pressão adverso afete uma área maior da asa. Isso faz com que a asa estole em um ângulo de ataque mais baixo devido à separação precoce do fluxo.

Um aumento na altitude aumenta a velocidade de estol em baixa velocidade (Imagem: Oxford ATPL)
Agora, entende-se que com o aumento da altitude e da velocidade, o estol de alta e baixa velocidade se aproxima. Um aumenta enquanto o outro diminui. Em alguma altitude, essas duas velocidades se tornam uma única velocidade. Essa altitude é chamada de teto aerodinâmico da aeronave. Quando você chegar a esse teto, parabéns, você chegou oficialmente ao canto do caixão.

A que distância do canto do caixão os aviões voam?


Para aviões de passageiros, existem regulamentos que regem seus padrões de certificação. Uma delas é que, no teto mais alto, a aeronave deve poder manobrar com pelo menos 0,3 gs. Isso significa que a aeronave deve ter margem suficiente para manobras do piloto sem encontrar um bufê de alta velocidade ou um bufê de baixa velocidade. O buffet é o tremor da aeronave que é experimentado em um estol devido ao fluxo de ar separado atingindo as superfícies da cauda da aeronave.

A maioria dos fabricantes de aeronaves fornece gráficos de início de buffet nos manuais de voo, que os pilotos podem usar para determinar a altitude, velocidade e peso em que o buffet de baixa e alta velocidade pode ocorrer. Abaixo está o gráfico de início de buffet de um Airbus A320 com um exemplo trabalhado. Primeiro, vamos olhar para a linha amarela. Quando a linha de um fator de carga de 1,0 com um peso de aeronave de 60 Toneladas é estendida para uma altitude de 41.000 pés, pode-se observar que o buffet de baixa velocidade ocorre a Mach 0,65.

Gráfico de início de buffet do Airbus A320 (Foto: Airbus A320 AFM)
Para verificar o buffet de alta velocidade, cruzando a Mach 0,80, podemos ver que isso acontece com um fator de carga de cerca de 1,2 g. Agora, olhe para a linha vermelha, que está configurada para uma altitude de 37.000 pés. Da mesma forma que antes, com um fator de carga de 1,0 e um peso de 60 Toneladas, o buffet de baixa velocidade ocorre desta vez a uma velocidade de 0,62 Mach e na mesma velocidade de 0,80 Mach, o buffet de alta velocidade ocorre com um fator de carga de 1,4 g. Pode-se ver neste exemplo que com o aumento da altitude, a margem do buffet de baixa e alta velocidade diminui.

O cockpit do U2 é exibido enquanto voa a 70.000 pés. Quando a essa altitude, ele voa
muito perto do canto do caixão (Imagem: Christopher Michel via Wikimedia)
Afastando-se dos aviões de passageiros, os aviões militares de reconhecimento, o muito famoso U2 Dragonfly voa perto de seu canto de caixão. Quando em cruzeiro, a diferença entre seu bufê de estol de baixa velocidade e alta velocidade é de apenas 5 nós.

Edição de texto e imagens por Jorge Tadeu com informações do site Simple Flying

Aconteceu em 20 de setembro de 1989: Voo 5050 da USAir - Mergulhando na Baía de Nova York


No dia 20 de setembro de 1989, um Boeing 737 DA USAir começou sua corrida de decolagem em uma noite tempestuosa no Aeroporto LaGuardia, New York. Mas à medida que o avião acelerou pela pista, começou a puxar para a esquerda com força crescente. Com medo de que caíssem, o capitão decidiu abortar a decolagem - sem verificar se já era tarde ou não. 

Enquanto os pilotos tentavam desesperadamente pará-lo, o voo 5050 da USAir derrapou no final da pista 31 e mergulhou na Bowery Bay, onde atingiu um píer e se partiu em três pedaços. Quando todos foram retirados da água, mais de 90 minutos após o acidente, duas pessoas estavam mortas e outras 21 feridas. 

Os investigadores descobririam que não precisavam morrer: o avião poderia ter sido parado na pista, e a puxada inicial para a esquerda foi causada não pelo clima, mas pelos próprios pilotos, que não conseguiram verificar se o leme estava devidamente ajustado para a decolagem. 

A partir daí, os erros se combinavam, acumulando-se em uma sequência rápida para enviar um avião perfeitamente sadio para fora do final de uma pista que deveria ser longa o suficiente para permitir sua parada.

Boeing 737-401, da USAir, similar ao envolvido no acidente
Na segunda metade de 1989, a transportadora tradicional USAir estava nos estágios finais de aquisição da Piedmont Airlines, no que foi então a maior fusão de companhias aéreas da história. Para suavizar o que certamente seria um processo complicado, as companhias aéreas do Piemonte concordaram em começar a treinar seus pilotos de acordo com os procedimentos da USAir com bastante antecedência.

O N416US, a aeronave envolvida no acidente, fotografada alguns meses antes da ocorrência,
ainda com as cores da Piedmont Airlines
Quando a Piedmont contratou o primeiro oficial novato Constantine Kleissas, de 29 anos, em maio de 1989, a fusão estava quase completa e ele recebeu o mesmo treinamento que qualquer outro funcionário da USAir. 

Na verdade, a Piedmont Airlines não existia mais na época em que ele se formou, e quando ele chegou ao Aeroporto Internacional de Baltimore-Washington em 20 de setembro para seu primeiro voo não supervisionado real como piloto de um Boeing 737, o nome em seu avião era 'USAir'.

A rota do voo 5050 da USAir
Juntando-se a ele na lista da tripulação naquele dia estava o capitão Michael Martin, de 36 anos, que ocupava o posto de Major nas Reservas da Força Aérea e às vezes ainda pilotava o Lockheed C-130 Hercules durante seus dias de folga. Depois de uma breve passagem como engenheiro de voo no Boeing 727, Martin passou pelo mesmo programa de treinamento do 737 baseado na USAir que Kleissas. 

Após quase três anos como primeiro oficial, ele foi promovido a capitão exatamente dois meses antes do voo fatídico. Ele tinha mais de 5.500 horas no total, incluindo 2.600 no 737, mas apenas 140 delas eram como piloto em comando. Isso ainda era muito mais do que seu primeiro oficial extremamente verde, que ainda não havia completado um voo de linha não supervisionado e havia acumulado apenas 22 horas na aeronave real.

Martin e Kleissas voaram de Baltimore para o aeroporto LaGuardia de Nova York naquela tarde sem incidentes. No entanto, o mau tempo e os problemas de tráfego na área de Nova York causaram atrasos e cancelamentos generalizados, com a maioria dos voos saindo do aeroporto atrasados ​​várias horas. 

A viagem seguinte, o voo 1846 da USAir para Norfolk, Virgínia, já havia embarcado quando a USAir os informou que o voo seria cancelado; em vez disso, a empresa queria que eles transportassem a aeronave sem passageiros para Charlotte, Carolina do Norte, onde era necessário com mais urgência. 

Depois de desembarcar os passageiros frustrados de volta ao portão, o capitão Martin foi informado de mais uma mudança de planos: a viagem para Charlotte levaria passageiros que ficaram presos após o cancelamento de um voo anterior. Martin expressou seu descontentamento com a mudança, o que faria com que o voo demorasse mais e levaria a tripulação ao limite de seus limites de tempo de serviço.

Você pode ver como uma pessoa sentada no assento à esquerda e à ré do pedestal central pode acidentalmente mover o interruptor de compensação do leme para totalmente “nariz para a esquerda” se colocar os pés no pedestal? (NTSB)
Mesmo assim, o voo não programado para Charlotte, designado voo 5050, seguiu em frente. Enquanto o avião estava parado no portão, o capitão Martin foi fazer ao despachante uma série de perguntas pontuais, deixando o primeiro oficial Kleissas para supervisionar o processo de embarque. Várias pessoas visitaram a cabine durante esse tempo, incluindo um capitão da Pan Am viajando como um passageiro sem receita, que se sentou no assento traseiro da cabine.

Acredita-se que quando este capitão se sentou na cabine, ele momentaneamente colocou o pé para cima para descansar no pedestal central, um hábito bastante comum entre os visitantes da cabine. O pedestal não é um apoio para os pés, no entanto, pois contém vários controles, entre os quais o mais importante neste caso foi o interruptor de compensação do leme. 

O trim do leme é um sistema que permite aos pilotos inclinarem o leme em uma direção específica, tornando possível compensar o arrasto assimétrico ou um vento cruzado consistente sem ter que pressionar constantemente os pedais do leme. 

Mas, quando os tripulantes da cabine de comando pousaram os pés no pedestal central, foi possível acionar a chave tipo lâmina e girá-la para a posição de compensação do leme esquerdo. De fato, quando o voo 5050 da USAir deu partida em seus motores, algum tempo depois, a chave estava posicionada para aplicar o ajuste quase máximo do leme esquerdo.

A pista de onde decolou o voo 5050, como surgia em 1995, quando a configuração era semelhante a 1989
Depois que o capitão Martin voltou ao avião, o voo 5050 se preparou para recuar do portão cerca de dez minutos antes das 23h00. Depois que a ponte de jato foi removida, um agente de serviço de passageiros chamou Martin pela janela e perguntou se eles poderiam colocar a ponte de jato de volta e embarcar passageiros adicionais, mas Martin recusou, uma decisão que poderia ter inadvertidamente salvado vidas.

Com 57 passageiros e 6 tripulantes a bordo, o Boeing 737-401, prefixo N416US, da USAir, realizando o voo 5050 saiu do portão às 22h52 e taxiou até a pista 31 para decolagem. Durante o taxiamento, os pilotos percorreram a lista de verificação antes da decolagem, que incluía a verificação da posição do compensador. 

No entanto, a lista de verificação dizia especificamente “estabilizador e compensação”, um item que era suficientemente ambíguo para que os pilotos verificassem apenas a compensação do estabilizador, e não a compensação do leme. 

O capitão Martin também não percebeu o que deveria ter sido um puxão significativo para a esquerda durante o táxi, porque o ajuste do leme também desvia a direção da roda do nariz no solo.

Ao atingir a cabeceira da pista 31, o Primeiro Oficial Kleissas assumiu o controle da decolagem, conforme previamente combinado pelos pilotos.

"Você está pronto para isso, cara?" Capitão Martin brincou.

“Aqui vai o nada”, respondeu Kleissas. Ele estendeu a mão para ativar o modo de decolagem/arremesso (TOGA), mas acidentalmente pressionou o botão de desconexão do autothrottle. Consequentemente, quando ele pressionou corretamente os interruptores do TOGA alguns segundos depois, nada aconteceu, então ele decidiu avançar os manetes para a potência de decolagem manualmente.

“Eu mantive a direção até você, uh - ok, esse botão errado foi pressionado”, disse Martin.

“Ah, sim, eu sabia disso, er... -” disse Kleissas.

“É aquele lá embaixo”, disse Martin. "Tudo bem, vou definir o sua potência." Mas, apesar de sua promessa, ele falhou em ajustar a configuração de potência um tanto imprecisa de Kleissas, em que nenhum dos motores estava com potência total de decolagem e o motor esquerdo estava cerca de 3% mais lento que o direito.

À medida que o avião acelerava na pista, o ajuste do leme começou a puxar o leme e a roda do nariz para a esquerda, forçando Kleissas a manter o pé no pedal direito do leme para mantê-los em linha reta. No entanto, Martin disse que cuidaria da direção e - sem saber dos comandos do leme de seu primeiro oficial - ele simultaneamente tentou manter o avião em linha reta usando o leme, uma pequena roda próxima ao assento do capitão que controla a direção da roda do nariz.

O leme de direção em solo de um Boeing 737, circulado em amarelo
Mas quando um Boeing 737 se aproxima de uma velocidade de cerca de 64 nós em uma pista molhada (e a pista naquela noite estava realmente molhada), a força aerodinâmica atuando no leme torna-se um determinante mais significativo da direção do avião do que a direção da roda do nariz. 

Kleissas, portanto, precisava aplicar mais leme direito para compensar o aumento na autoridade do leme em alta velocidade, mas ele não o fez, então o avião começou a se desviar para a esquerda. 

Com Martin ainda segurando o leme reto quando o avião virou para a esquerda, as rodas do nariz começaram a derrapar e, a uma velocidade de 62 nós, uma delas explodiu. Quatro segundos depois, a uma velocidade de 91 nós, um som estrondoso começou a emanar das rodas quando os pneus se desintegraram.

Um trecho da gravação do CVR mostra como tudo se desenrolou rapidamente
Nesse ponto, teria sido prudente abortar a decolagem. Mas, em vez disso, o capitão Martin disse, “pegue a direção”, uma frase ambígua que só causou mais confusão. Martin pensou ter dito " você está com a direção", enquanto o primeiro oficial Kleissas pensou ter ouvido "Eu estou com a direção". 

Consequentemente, os dois pilotos pararam de tentar dirigir o avião em linha reta. O voo 5050 desviou imediatamente cerca de sete graus para a esquerda, um curso que os levaria para a lateral da pista se eles não tomassem medidas imediatas.

Quatro segundos e meio depois, o capitão Martin decidiu abortar a decolagem. “Vamos voltar atrás”, disse ele, colocando os dois aceleradores em marcha lenta. Ele usou a frenagem diferencial para tentar endireitar a trajetória, o que se mostrou eficaz, e então aplicou a frenagem máxima e o empuxo reverso cerca de cinco segundos depois.

O que Martin não percebeu é que abortou depois de passar a V1, a velocidade mais alta na qual é seguro abandonar a decolagem. Antes do voo, ele havia calculado V1 em 125 nós, mas o voo 5050 estava se movendo a 130 nós quando ele anunciou que estavam parando.

“Aborto da USAir cinquenta e cinquenta”, anunciou o primeiro oficial Kleissas pelo rádio.

“Cinqüenta e cinquenta, entendido, vire à esquerda no final”, respondeu o controlador.

Mas de repente ficou claro que eles estavam ficando sem pista. Eles deveriam ter tido bastante espaço para parar, mas por algum motivo não pararam! "Ah, estamos saindo, estamos saindo, estamos saindo!" O primeiro oficial Kleissas gritou.

Ainda se movendo a uma velocidade de 34 nós, o voo 5050 da USAir derrapou no final do deck da pista, caiu vários metros e bateu com força no píer de madeira que sustentava o sistema de iluminação de aproximação que se estendia até a Baía Bowery. Com um tremendo esmagamento, o píer desabou e o avião se partiu em três pedaços, parando com o nariz levantado contra o que restava do píer enquanto a cauda caía na água.

Os bombeiros tentam entrar nos destroços após a queda do voo 5050
A separação da fuselagem logo atrás das asas fez com que as linhas 21 e 22 balançassem para cima e se chocassem contra o teto, esmagando até a morte uma mulher do Tennessee e sua sogra e prendendo várias outras. 

O resto dos passageiros e tripulantes, descobrindo que haviam sobrevivido ao acidente com ferimentos relativamente mínimos, imediatamente começaram a organizar uma evacuação. Os comissários de bordo correram para abrir as portas, mas a porta L1 não abria, e a porta L2 teve que ser fechada rapidamente depois que a água começou a entrar pela porta. 


Aqueles que evacuaram pelas saídas sobre as asas puderam ficar nas asas parcialmente submersas, com a ajuda das cordas de fosso, que alguns passageiros de raciocínio rápido retiraram de seus contêineres. Contudo, aqueles que pularam das portas de passageiros R1 e R2 se viram na água sem nenhum bom meio de flutuação - na época, os voos não precisavam carregar coletes salva-vidas se planejassem ficar a 50 milhas náuticas da costa. 

Enquanto lutavam na água, vários passageiros foram apanhados por uma fraca corrente de maré e flutuaram para baixo da pista, que foi construída em postes que se estendiam sobre a baía. Os comissários de bordo jogaram coletes salva-vidas e almofadas de assento para aqueles que não sabiam nadar, mas muitos descobriram que as almofadas de assento ofereciam flutuabilidade insuficiente para mantê-los à tona. 

As equipes de resgate se aproximam do avião usando barcos algumas horas após o
acidente - observe o nível da maré mais alta
A operação de resgate foi caótica. O controlador, ao perceber que o avião não iria parar a tempo, ativou o alarme de colisão antes que o acidente realmente ocorresse, e os caminhões de bombeiros entraram no local em 90 segundos. Tirar os passageiros da água era outra questão, entretanto. 

Aqueles que estavam nas asas - incluindo uma mãe solteira tentando desesperadamente segurar um bebê de cinco anos e um de 8 meses - foram resgatados cerca de 12 minutos após o acidente. 

Demorou muito mais para encontrar todos aqueles que haviam entrado na água, e os helicópteros e barcos que vieram procurá-los tiveram dificuldade em localizar os passageiros em meio aos escombros flutuantes. 

Vários passageiros quase se afogaram depois de serem apanhados sob a lavagem do rotor de helicópteros em resposta; outros sofreram ferimentos graves após engolir combustível de aviação, e uma mulher sofreu uma fratura no tornozelo e uma mão lacerada depois de ser atropelada por um barco de resgate. 

Os bombeiros também tiveram que entrar na fuselagem precariamente equilibrada para ajudar o comissário de bordo líder e o capitão Martin a retirar os passageiros dos assentos 21F e 22A, que ficaram presos nos destroços e não puderam ser libertados até 90 minutos após o acidente. Após o resgate bem-sucedido, Martin finalmente deixou o avião, a última pessoa a fazê-lo. 

Equipes de resgate retiram pessoas do avião após o acidente
Apesar do medo de que muitos tivessem se afogado, quando todos foram contabilizados, ficou claro que os dois passageiros que morreram no impacto foram as únicas vítimas fatais; todos os outros foram resgatados. 

Vinte e uma pessoas ficaram feridas, incluindo o capitão Martin, cuja perna foi perfurada quando estilhaços do píer de madeira perfuraram o chão da cabine dentro da área dos pés. Mas o acidente poderia ter sido muito pior: os investigadores notariam mais tarde que, se o avião estivesse lotado, com mais certeza teria morrido.

Uma manchete do New York Times detalha o drama do esforço do NTSB para falar com os pilotos
Quando os investigadores do National Transportation Safety Board chegaram ao local na manhã após o acidente, eles esperavam entrevistar rapidamente os pilotos para ter uma ideia do que poderia ter dado errado. 

Eles também queriam realizar testes de rotina para ter certeza de que os pilotos não estavam sob a influência de álcool ou drogas. Mas um pedido à ALPA (sindicato dos pilotos) dez horas após o acidente foi rejeitado. 

A ALPA primeiro disse ao NTSB que não sabia onde os pilotos estavam, mas acabou admitindo que o sindicato os havia transferido para um local não revelado “para que não pudessem ser encontrados pela mídia”. 

O NTSB não conseguiu entrevistá-los até 44 horas após o acidente, e mesmo assim a ALPA só permitiu porque a FAA ameaçou intimá-los.

Embora rumores em contrário persistam, o NTSB não conseguiu encontrar evidências que sugerissem que um dos pilotos estava sob a influência de álcool no momento do acidente; na verdade, um policial treinado para reconhecer sinais de alcoolismo falou com o capitão poucos minutos após o acidente e relatou que ele parecia perfeitamente sóbrio.

Boias de contenção foram colocadas ao redor do avião na superfície da água para
conter o combustível derramado
Enquanto isso, uma pergunta óbvia surgiu: por que o voo 5050 invadiu uma pista que deveria ter sido longa o suficiente para acelerar quase até a velocidade de decolagem, abortar e então parar? 

A pista 31 em LaGuardia tinha 2.140 metros de comprimento, enquanto um 737-400 no voo 5050 com peso deveria ser capaz de alcançar a V1 e parar em uma distância total de apenas 1.730 metros, mesmo em uma pista molhada.

Acontece que, como quase todos os acidentes de atropelamento, uma série de eventos aparentemente menores aumentaram a distância necessária até que o avião simplesmente ficou sem espaço. O NTSB acabou por ser capaz de identificar três fatores principais que impediram o voo 5050 de parar a tempo, sem nenhum dos quais a queda não teria ocorrido.

Uma vista do avião da borda da pista 31, olhando na direção do voo
O primeiro fator foi o empuxo de decolagem insuficiente. Nenhum dos motores atingiu o ajuste correto de potência de decolagem, porque o primeiro oficial acidentalmente desengatou a aceleração automática. 

O autothrottle teria automaticamente definido o impulso de decolagem correto assim que um dos pilotos pressionou os interruptores do TOGA, mas ninguém nunca ligou novamente, nem o capitão Martin corrigiu o ajuste muito difícil do acelerador do primeiro oficial Kleissas. Isso acrescentou 97 metros à distância necessária para atingir a velocidade com que Martin abortou a decolagem.

Em segundo lugar, o capitão Martin abortou a decolagem após passar por V1, uma violação dos procedimentos adequados. Embora V1 seja definida como a velocidade após a qual a decolagem não pode ser abortada sem ultrapassar a pista, isso nem sempre é o caso na prática; no voo 5050, os pilotos derivaram V1 de uma tabela padrão de números, enquanto a pista era na verdade longa o suficiente para permitir uma decolagem rejeitada com sucesso de uma velocidade mais alta do que aquela que eles selecionaram. 


No entanto, o capitão Martin não olhou para a velocidade deles antes de tomar sua decisão - se tivesse, certamente teria continuado a decolagem, já que a situação não era tão crítica a ponto de justificar uma parada de emergência após passar por V1. 

Na verdade, era perfeitamente possível dirigir o avião em linha reta com os pedais do leme, sair do solo, e então consertar o equilíbrio do leme enquanto no ar (e caso sua palavra não fosse suficiente por si só, o NTSB encontrou vários casos de pilotos fazendo exatamente isso). Em qualquer caso, abortar a 130 nós, em vez da velocidade V1 de 125 nós, acrescentou 151 metros à distância de parada.

Finalmente, o capitão Martin poderia ter acionado os freios muito mais rápido do que ele. Não acreditando que a distância de parada seja uma grande preocupação, ele se concentrou primeiro em usar a frenagem diferencial para endireitar a trajetória antes de aplicar a pressão máxima de frenagem. Isso atrasou o início da frenagem máxima em cerca de três segundos em relação ao seu tempo de reação normal, que acrescentou 240 metros à distância de parada.

A polícia inspeciona o local do acidente um dia após o acidente
Martin também poderia ter reduzido esse tempo ainda mais se tivesse armado os freios automáticos antes da decolagem. Os procedimentos da Boeing e da USAir recomendaram que os pilotos armem os freios automáticos para que possam aplicar automaticamente a pressão máxima de frenagem assim que uma decolagem rejeitada for detectada. 

No entanto, alguns pilotos se recusaram a fazer isso devido ao equivalente aéreo de uma velha história de esposas: eles acreditavam que os freios automáticos sacudiriam os passageiros desconfortavelmente durante um aborto em baixa velocidade (Isso era de fato falso, porque os freios automáticos só seriam ativados se a decolagem rejeitada ocorresse em alta velocidade).

Os investigadores observaram que essa prática era perigosa porque, embora fosse tecnicamente possível fazer movimentos do leme e aplicar pressão máxima de frenagem ao mesmo tempo , isso exigia que o piloto colocasse os pés em uma posição nada natural; como consequência, os pilotos podem ter que escolher entre frear e dirigir. Armar os freios automáticos eliminaria esse dilema.

Como o acidente ocorreu à vista do complexo penitenciário de Rikers Island, vários oficiais de correção participaram da resposta (foto acima). Não foi a primeira vez que fizeram isso: a inserção mostra as consequências de um acidente de avião em 1957 na Ilha Rikers, em que tanto presidiários quanto oficiais de correção ajudaram a salvar os sobreviventes.
Somados, esses três fatores explicaram a diferença entre as distâncias de parada teórica e real do voo 5050. Mas os investigadores também precisavam entender por que os pilotos rejeitaram a decolagem em primeiro lugar. O problema começou com o compensador do leme, que puxava o avião para a esquerda. 

O gravador de dados de voo mostrou que o ajuste do leme estava em neutro quando o avião chegou ao LaGuardia, mas mudou para a esquerda total no momento em que os motores ligaram novamente e o registrador voltou a funcionar. 

Após o acidente, os investigadores receberam pelo menos 90 relatos informais do interruptor de compensação do leme movendo-se para a posição totalmente à esquerda antes da decolagem, principalmente porque os visitantes da cabine se sentaram na poltrona voltada para o lado e descansaram os pés no pedestal central.

No caso do voo 5050 da USAir, o capitão da Pan Am que visitou a cabine e sentou-se na poltrona negou ter colocado os pés no pedestal; nenhum piloto tocou a chave antes ou durante a decolagem; e nenhuma evidência de falha mecânica foi encontrada. 

Os investigadores concluíram que o capitão da Pan Am provavelmente colocou os pés para cima e depois esqueceu, embora não tenham descartado a possibilidade de o interruptor ter se movido quando o primeiro oficial colocou alguns papéis no pedestal central enquanto o avião estava no portão. 

Como resultado dessas descobertas, a Boeing anunciou que mudaria o seletor de compensação do leme de uma chave do tipo lâmina para uma maçaneta redonda que não se movia quando batida, e que acrescentaria uma crista protetora ao redor da maçaneta para manter os objetos longe isto.

Uma foto de jornal mostra a seção do nariz danificado do voo 5050
Não importa quem acidentalmente moveu a chave, os efeitos da posição incorreta do compensador do leme deveriam ter sido evidentes durante o taxiamento. O compensador do leme teria deslocado os pedais do leme um em relação ao outro em mais de 11 centímetros, facilmente o suficiente para ser notado, e o capitão Martin precisaria fazer movimentos constantes com o leme para manter o avião se movendo em linha reta enquanto fazia seu caminho para o pista. 

E, no entanto, em sua entrevista inicial, ele não mencionou ter notado nenhuma dessas coisas. Só muito mais tarde ele disse aos investigadores que estava vagamente ciente dos pedais do leme deslocados, mas não se importou com isso porque tal condição é comum no C-130, que voou simultaneamente com o Boeing 737. No entanto, o NTSB sentiu que como um capitão 737 qualificado,

Os pilotos também poderiam ter detectado a discrepância se tivessem seguido a intenção da lista de verificação antes da decolagem, que solicitava que os pilotos verificassem a posição do "estabilizador e compensação". 

No entanto, se os pilotos não foram rigorosamente ensinados que isso deveria incluir o leme e o compensador do aileron além do estabilizador, seria compreensível por que eles poderiam ter interpretado mal esta linha. Em qualquer caso, eles verificaram apenas o acabamento do estabilizador e não os outros (A USAir posteriormente revisou o texto para evitar confusão).

Cobertura do acidente pelo New York Times
Durante a própria decolagem, uma falha na comunicação fez com que esse problema relativamente pequeno aumentasse significativamente. O primeiro oficial Kleissas não disse ao capitão Martin que ele estava tendo dificuldade em manter o avião em linha reta ou que estava usando o leme para isso. 

Então, quando um estrondo ocorreu a uma velocidade de 62 nós, ninguém sugeriu abortar a decolagem. Em vez disso, Martin anunciou “Tenho a direção”, uma declaração ambígua que não deixava claro quem deveria estar no controle. 

Essa linguagem imprecisa levou os dois pilotos a abrirem mão do controle sobre a direção e, como o primeiro oficial Kleissas não mencionou que estava aplicando força extra com os pedais do leme ou que estava prestes a remover essa força, a guinada repentina para a esquerda pegou Martin totalmente de surpresa. Ele tentou reagir usando o leme,

Quando a cana do leme não conseguiu corrigir a deriva para a esquerda, ele decidiu abortar a decolagem sem verificar a velocidade. Como o piloto não estava voando, ele deveria estar monitorando a velocidade deles para avisar “80 nós” e “V1”, mas por causa do problema de direção e da falta de clareza sobre quem estava pilotando o avião, ninguém fez isso. Como resultado, ele optou por rejeitar a decolagem após o ponto em que ela não era mais permitida.

Nesse ponto, ficou claro que o acidente poderia ser evitado em todos os níveis. Houve inúmeras oportunidades para os pilotos perceberem a configuração do equilíbrio do leme e igualmente inúmeras oportunidades para eles usarem os controles disponíveis para endireitar e decolar normalmente. 

Nenhuma dessas oportunidades foi aproveitada. Os pilotos também poderiam ter evitado o acidente corrigindo a configuração do empuxo de decolagem, armando os freios automáticos conforme recomendação da companhia aérea, ou mesmo comunicando mais claramente sobre o que estavam experimentando enquanto o avião acelerava na pista. 

No final, duas pessoas morreram, 21 pessoas ficaram feridas e uma aeronave multimilionária foi destruída por complacência e desatenção.

O New York Daily News não foi tão circunspecto em sua cobertura quanto o New York Times
No entanto, várias das decisões críticas que levaram ao acidente também podem ser atribuídas à inexperiência. O NTSB achou que não era sensato emparelhar um capitão recém-promovido com um novo primeiro oficial que tinha apenas 22 horas no 737. 

Especialmente considerando que esta foi a primeira decolagem não supervisionada do Boeing 737 do primeiro oficial Kleissas, o capitão Martin deveria ter dado mais passos para garantir que ele estava pronto (como revisar os procedimentos de decolagem rejeitados), mas sua própria inexperiência pode tê-lo impedido de pensar nessas contingências.

Após a queda do voo 1713 da Continental Airlines em 1987, outro acidente fatal causado por uma série de erros banais antes e durante a decolagem, o NTSB recomendou que a Federal Aviation Administration exigisse que as companhias aéreas evitassem emparelhar novos comandantes com primeiros oficiais inexperientes. 

No entanto, a FAA optou por “promover” a política em vez de impô-la. Embora tais procedimentos sejam exigidos hoje, eles chegaram tarde demais para evitar a queda do voo 5050 da USAir.

Outra vista frontal dos destroços
O acidente também poderia ter sido evitado se os pilotos tivessem recebido um treinamento melhor para se comunicar. A comunicação clara é um princípio básico do bom gerenciamento de recursos de tripulação (CRM), um tópico que já estava sendo ensinado em várias das principais companhias aéreas dos Estados Unidos. 

A USAir, entretanto, não estava entre eles e nenhum dos pilotos havia recebido treinamento em CRM. (Embora seja considerado indispensável hoje, a FAA não exigia que as companhias aéreas fornecessem esse treinamento até 1994).

Se eles tivessem sido treinados nos princípios do CRM, o primeiro oficial Kleissas poderia ter mencionado que estava usando o leme para manter o avião em linha reta, e o capitão Martin poderia ter deixado mais claro quem assumiria o controle da direção. Isso teria dado aos pilotos as informações de que precisavam para estabilizar a situação e continuar a decolagem com sucesso.

Nesta vista de alta qualidade da quebra principal na fuselagem, é fácil ver
como os dois passageiros da fileira 21 perderam a vida
Além do redesenho do interruptor de compensação do leme e da proposta de evitar o emparelhamento de dois pilotos inexperientes, o NTSB também recomendou que o LaGuardia tentasse tornar as áreas próximas às extremidades de suas pistas menos perigosas para os aviões; que os comissários de bordo recebam exercícios práticos de emergência sobre a água; que as companhias aéreas garantam que os pilotos saibam como extrair o máximo desempenho de parada durante uma decolagem rejeitada; e que os pilotos sejam obrigados a armar os freios automáticos (se disponíveis) sempre que decolarem em uma pista molhada ou particularmente curta, entre outras sugestões. 

O NTSB também apelou ao Departamento de Transportes para criar requisitos unificados para o fornecimento de amostras de sangue e urina de operadores de veículos envolvidos em acidentes em todos os setores de transporte de massa. Em seu relatório final, o NTSB invadiu a ALPA por segurar os pilotos por muito tempo após o acidente, observando que isso "complicou muito a investigação". 

Realmente, é incrível que o cais não tenha desabado sob o peso da seção do nariz
Não fazendo nenhum esforço para esconder sua exasperação, os investigadores acrescentaram,“O sequestro dos pilotos por um período de tempo tão extenso em muitos aspectos beira a interferência em uma investigação federal e é imperdoável”. Na verdade, se os pilotos tivessem tentado fugir dos investigadores por 44 horas após um acidente sem a proteção da ALPA, eles provavelmente teriam sido presos.

Infelizmente, apesar das melhorias prometidas, os eventos dos anos que se seguiram à queda do voo 5050 reduziram em grande parte o acidente a uma nota de rodapé à margem de tragédias maiores. 

Os destroços do voo 405 da USAir, após ter caído na mesma pista três anos depois
Em 1991, 35 pessoas morreram quando um voo da USAir colidiu com um Skywest Metroliner em LAX devido a um erro do controlador de tráfego aéreo. Em 1992, o voo 405 da USAir caiu na mesma pista de LaGuardia, matando 27 das 51 pessoas a bordo, devido ao acúmulo de gelo nas asas. Então, em julho de 1994, o voo 1016 da USAir caiu perto de Charlotte depois que os pilotos ficaram desorientados devido ao cisalhamento do vento, matando 37; e dois meses depois, o voo 427 da USAir caiu em Pittsburgh, matando 132, devido a um mau funcionamento do leme. 

Embora alguns desses acidentes não pudessem ser atribuídos à USAir, no final de 1994, a companhia aérea conseguiu acumular o pior histórico de segurança de qualquer grande companhia aérea dos Estados Unidos. 

Hoje, porém, a USAir não existe mais e a maioria dos fatores que levaram ao acidente foram retificados. A última das melhorias de segurança buscadas pelo NTSB após o voo 5050 veio apenas em 2015, quando a LaGuardia instalou sistemas especializados de detenção de materiais 'engenheirados' em todas as suas pistas, garantindo que nenhum avião de passageiros jamais sairá da extremidade e cairá no East River.


Imediatamente após a queda do voo 5050, os dois pilotos perderam suas licenças, mas pelo menos um deles voltou a trabalhar na indústria. 

Embora o destino do capitão Michael Martin não esteja claro, o primeiro oficial Constantine Kleissas se tornou um investigador de acidentes aéreos em nome da Associação de Pilotos da Linha Aérea, onde auxiliou na investigação do NTSB sobre a perda do voo 427 da USAir. 

Tendo sobrevivido a um acidente. e investigou um desastre muito mais trágico, Kleissas declarou em um artigo de 2002: “Ser um investigador de acidentes é dez vezes mais estressante do que ser o membro da tripulação sobrevivente”. Esperançosamente, as lições de sua queda continuarão a salvar outras pessoas de ambos os traumas por muitos anos.

Edição de texto e imagens por Jorge Tadeu (Site Desastres Aéreos)

Com Admiral Cloudberg, Wikipedia e ASN - Imagens: NTSB, New York Daily News, New York Times, Werner Fischdick, Alex Beltyukov, Google, Getty Images, The New York Correction History Society, Bureau of Aircraft Accidents Archives.