Mostrando postagens com marcador Como Funciona. Mostrar todas as postagens
Mostrando postagens com marcador Como Funciona. Mostrar todas as postagens

quarta-feira, 17 de abril de 2024

Como funcionam os radares que detectam aviões


Origem e funcionamento 


Radar é, na verdade, a sigla para Radio Detecting And Ranging (Detecção e determinação de distância por rádio, em inglês). Ele foi inventado em 1904 pelo alemão Christian Hülsmeyer, mas só começou a ser usado em 1935, em um navio. Sua função era de detectar possíveis obstáculos. 

O sistema passou a ter uso militar durante a Segunda Guerra Mundial, em 1939, para a detecção de aeronaves —em especial pelos ingleses, que utilizavam a tecnologia para avisar com antecedência a população em caso de bombardeios nazistas.

Os radares são, de forma resumida, antenas emissoras e receptoras que funcionam ao emitir ondas eletromagnéticas de super alta frequência (SHF) em uma determinada direção. Caso essas ondas encontrem um objeto — um avião, por exemplo —, o sistema é capaz de ler e interpretar o padrão de reflexo dessas ondas e determinar variáveis como tamanho do objeto, velocidade e mudanças de altitude. 

Isso ocorre pelo chamado Efeito Doppler, a defasagem de frequência entre o sinal emitido e o recebido de volta.

Esse é o conceito básico dos radares, mas, dependendo da aplicação, a antena pode ser giratória, para cobrir 360 graus, ou fixa. Em alguns casos, há uma combinação desses dois sistemas. 

Os radares militares para controle aéreo têm funções específicas, como rastreamento, cálculo de trajetória e ainda para auxiliar na mira para disparo de armas guiadas por radar.

Além da finalidade militar, os radares têm sido utilizados em outras situações, como o controle de velocidade dos carros em uma rodovia e até como ferramenta para análise meteorológica. 

Os radares podem ser fixos ou portáteis e serem carregados, por exemplo, por aviões. Vale salientar que, caso um avião militar esteja com o radar ativo, ele se torna, automaticamente, um alvo mais fácil de ser localizado por outros radares, presentes tanto em terra quanto instalados em veículos e aeronaves.

Dúvidas comuns


Como um radar é capaz de identificar se um avião é aliado ou inimigo?

A identificação de aeronaves se dá, principalmente, pelos protocolos de detecção e comunicação. O alvo recebe o sinal, decodifica e responde de forma também codificada, identificando-se. Se não rolar essa "conversa", a aeronave pode ser considerada hostil. 

Sendo assim, o mesmo modelo de aeronave pode ter protocolos de detecção e identificação distintos, o que faria um Su-27 ucraniano, por exemplo, ser identificado como tal, não com uma aeronave russa.

No caso da aviação civil, há ainda um equipamento chamado transponder, que calcula sua posição por meio de GPS e a transmite para outras aeronaves e sistemas de monitoramento do trafego aéreo. Com isso, é possível saber onde cada aeronave está e, assim, traçar planos de voo e evitar situações de risco que possam culminar em colisões.

Qual é o alcance de um radar?


Radares de boa qualidade são capazes de detectar objetos a centenas de quilômetros. Há, porém, algumas limitações.

Considerando o método de funcionamento de um radar, que precisa que as ondas emitidas alcancem um objeto e retornem com uma clareza mínima, sem que ruídos eletromagnéticos causem detecções falsas, a curvatura da Terra pode atrapalhar. Especialmente se o objeto a ser detectado esteja próximo ao chão, como um avião voando em altitude baixa.

Nesse caso, essa aeronave só seria detectada quando estivesse muito próxima da origem do sinal de radar do solo.

Uma solução usada por forças aéreas é ter aviões — que podem, inclusive, ser jatos comerciais — transformados em "radares aéreos". Com isso, elimina-se essa limitação dos equipamentos instalados no solo.

O que são aviões "invisíveis"?


O F-117 em ação: primeiro caça stealth teria participado de ataque na Síria em 2017 (Foto: USAF)
Durante os anos 1970, a força aérea norte-americana começou a desenvolver um avião capaz de ser quase indetectável por radares — o que popularmente ficou conhecido por "avião invisível". Tratava-se do F-117, que ganhou notoriedade durante a Guerra do Golfo, em 1991.

Para diminuir ao máximo a sua detecção e identificação em radares, o avião usa uma combinação de superfícies geométricas planas, capazes de refletir as ondas de radar em poucas direções, dificultando o trabalho dos radares. 

Além disso, a fuselagem é coberta por materiais capazes de absorver, e não refletir, as ondas eletromagnéticas. Esse combo de tecnologias é complementado por sistemas ativos que geram interferência eletromagnética e, assim, "embaralham" o sinal emitido por radares inimigos.

É importante notar que esses aviões não são completamente invisíveis aos radares, apenas têm uma assinatura muito pequena. Assim, em determinadas condições, essas aeronaves podem ser detectadas.

Via Rodrigo Lara (Tilt/UOL) - Fonte: Renato Giacomini, coordenador e professor do departamento de engenharia elétrica do Centro Universitário FEI

sábado, 13 de abril de 2024

Raio pode derrubar um avião? O que acontece com a aeronave nessa hora?

Aviões são atingidos por raios enquanto voam
(Imagem: YouTube/Sjónvarp Víkurfrétta/Ziggy Van Zeppelin/ Valk Aviation)
Milhares de aviões são atingidos por raios anualmente. Estima-se que cada um dos mais de 27 mil aviões comerciais espalhados pelo mundo seja atingido pelo menos de uma a duas vezes por ano.

Mesmo causando preocupação nas pessoas, e até mesmo sendo assustador às vezes, hoje isso não representa mais riscos para quem está voando. Os aviões modernos são desenvolvidos para não sofrerem com os raios, e ainda passam por revisões de segurança cada vez que isso ocorre.

Avião de Miley Cyrus foi atingido 


No mês passado, a cantora norte-americana Miley Cyrus postou em suas redes sociais que seu avião havia sido atingido por um raio. 

Ela voava da Colômbia com destino a Assunção, capital do Paraguai, mas, após a ocorrência, precisou fazer um pouso não programado no aeroporto de Guarani, perto de Ciudad del Este, devido ao mau tempo. 

A cantora mostrou o momento em que o raio atinge o avião e, posteriormente, como ficou um pedaço da fuselagem atingida. Houve apenas um susto, e poucas horas depois os passageiros foram realocados em outros voos enquanto o avião era inspecionado.


Proteção


Quem está dentro de um avião não sofre com a descarga elétrica de um raio devido ao conceito da Gaiola de Faraday. De maneira simplificada, a fuselagem metálica do avião forma um invólucro que conduz a eletricidade à sua volta, mantendo quem está do lado de dentro seguro.

Assim, o raio é conduzido pelo lado de fora da aeronave apenas, e quem está do lado de dentro deve sentir só o incômodo do clarão e do som (se for o caso). 

Até mesmo nos aviões modernos, com a fuselagem feita de materiais compósitos, que não são tão bons condutores de eletricidade, há estruturas e tratamentos para isso. Nessas situações, os materiais, como a fibra de carbono encontrada na fuselagem, são cobertos com uma fina camada de cobre, além de serem pintados com uma tinta que contém alumínio.

Nariz do avião possui fios condutores para não ser afetado caso seja atingido por raios
(Imagem: Alexandre Saconi)
Um desses locais é o nariz do avião, que não costuma ser de material metálico, já que ali ficam sensores e o radar meteorológico da aeronave. Caso ele fosse metálico, atrapalharia os sinais dos equipamentos e, por isso, ele conta com fios para conduzir a eletricidade para o corpo do avião e dissipá-la no ambiente.

Precisa pousar?


Em grande parte das vezes em que um avião é atingido por um raio, o piloto decide pousá-lo para que sejam feitas inspeções de segurança. São os tripulantes que definem se será possível continuar voando até o destino ou se será preciso colocar o avião no solo o quanto antes.

O ponto onde o raio atinge o avião não costuma ser grande, e sua dimensão pode ser a mesma da cabeça de um lápis. Isso é detectado pelas equipes de manutenção no solo, que observarão se não há maiores danos. 

Essas marcas podem ser, por exemplo, um rebite danificado, um ponto mais escurecido na pintura, tinta lascando, entre outras. Dependendo do tamanho do dano, o avião pode continuar a voar normalmente por um tempo, ainda que alguma pequena parte tenha sido danificada.

Para inspecionar todo o contorno do avião, algumas empresas usam, inclusive, drones com câmeras para poder observar em partes mais difíceis de serem alcançadas se houve algum dano.

Avião já caiu por raio (mas isso é coisa do passado)


Em dezembro de 1963, o avião que fazia o voo Pan Am 214 caiu em decorrência de um raio, matando todas as 81 pessoas a bordo. O Boeing 707 se aproximava do aeroporto internacional da Filadélfia (EUA) quando um raio atingiu sua asa.

O relatório do acidente indicou que a causa mais provável para a queda tenha sido uma explosão da mistura de combustível com o ar dentro da asa, que teria sido induzida pelo raio.

Após essa tragédia, foram feitas algumas recomendações de segurança, entre elas: 
  • Instalação de descarregadores de eletricidade estática nos aviões que ainda não os possuíam;
  • Utilização apenas de combustível Jet A nos aviões comerciais, já que esse gera menos vapor inflamável em comparação com outros combustíveis;
  • Mudança de peças e sistemas nos tanques das asas para evitar a formação de vapores que possam entrar em ignição com tanta facilidade.
Os computadores dos aviões modernos também são blindados para evitar qualquer tipo de problema. Somando-se a isso, pilotos tendem a evitar regiões com nuvens mais carregadas, onde há mais chance de esse tipo de descarga ocorrer.

Via Alexandre Saconi (UOL) - Fontes: Consultoria Oliver Wyman; Anac (Agência Nacional de Aviação Civil), Iata (Associação Internacional de Transportes Aéreos, na sigla em inglês), Inpe (Instituto Nacional de Pesquisas Espaciais), Blog da KLM e Serviço Meteorológico Nacional dos Estados Unidos.

sexta-feira, 12 de abril de 2024

Como funciona a RAT (Ram Air Turbine)?

O pequeno equipamento que utiliza pressão de aríete para funcionar.

Um close da parte inferior do Airbus A350 com sua Ram Air Turbine externa
(Foto: Laurent Errera/Wikimedia Commons)
Uma Ram Air Turbine (RAT) é um pequeno componente que gera energia em caso de falha do motor. Embora as aeronaves sejam equipadas com uma Unidade Auxiliar de Energia (APU) para fornecer a energia necessária aos sistemas críticos em caso de falha completa do motor, o RAT oferece uma camada adicional de segurança.

Os RATs geram energia injetando pressão dinâmica - aquela que é exercida na aeronave devido ao seu movimento no ar. A pressão do aríete depende da velocidade da aeronave. Um RAT está localizado na parte traseira da aeronave e pode ser implantado por meio da força gravitacional.

A Ram Air Turbine de um Airbus A320 (Foto: Curimedia/Wikimedia Commons)
Com milhares de aviões transportando centenas de milhares de passageiros todos os dias, a segurança é a maior prioridade. Este artigo explica as funções do RAT e destaca alguns casos em que ele é utilizado em voos comerciais em situações de emergência.

Como funciona a RAT?


A Ram Air Turbine de uma aeronave é uma pequena hélice auxiliar que pode ser acionada em caso de perda de potência. Ele funciona gerando energia a partir da corrente de ar que passa por ele enquanto o avião voa, fazendo com que a turbina gire. A turbina pode ser conectada a um gerador ou a uma bomba hidráulica. Dessa forma, pode ajudar a alimentar os sistemas elétricos ou de controle de uma aeronave.

De acordo com a Skybrary, esses dispositivos normalmente estão localizados em compartimentos nas asas ou na fuselagem de uma aeronave. A quantidade de energia que um RAT gera depende da velocidade do avião no momento de seu uso. Eles trabalham usando o conceito de pressão dinâmica. Quanto maior a velocidade da aeronave, mais potência o RAT irá gerar.


O tamanho da RAT corresponderá ao da aeronave à qual está acoplado. Como tal, não é surpreendente que, com 1,63 metros de diâmetro, o Airbus A380 tenha o maior RAT entre os aviões contemporâneos. Um RAT típico terá cerca de 80 centímetros de largura e pode gerar entre 5 e 70 kW de potência quando solicitado durante uma emergência.

Uso da RAT em emergências - o 'Gimli Glider'


Houve vários incidentes em que o RAT de uma aeronave foi implantado para fornecer energia de emergência. Na verdade, a Collins Aerospace relata que o dispositivo salvou até 1.700 vidas em 16 incidentes documentados. Talvez entre os mais famosos deles esteja o voo 143 da Air Canada. Este serviço doméstico ficou sem combustível entre Montreal e Edmonton em 1983.

Vários trabalhadores de manutenção testando uma RAT de um Airbus A320
(Foto: Curimedia/ Wikimedia Commons)
A tripulação desceu com sucesso o Boeing 767 de 41.000 pés para fazer um pouso de emergência na Estação RCAF Gimli, em Manitoba. Isso fez com que o incidente se tornasse conhecido como 'Planador Gimli'. As manobras realizadas pela tripulação antes do pouso interromperam o fluxo de ar ao redor do RAT. Isso diminuiu ainda mais sua potência hidráulica, tornando a aeronave mais difícil de controlar. Apesar disso, a tripulação conseguiu pousar a aeronave sem vítimas fatais e apenas dez feridos leves entre os 69 passageiros e tripulantes.

Famosas implantações de RAT do século 21


O RAT também foi utilizado num incidente semelhante de esgotamento de combustível envolvendo o voo 236 da Air Transat em 2001. Neste caso, o Airbus A330 que voava de Toronto para Lisboa planeou durante mais de 160 quilómetros depois de ficar sem combustível sobre o Oceano Atlântico. Acabou por aterrar em segurança no Aeroporto das Lajes, nos Açores, sem vítimas mortais e apenas 18 feridos entre os 306 passageiros e tripulantes.

Uma foto aproximada de uma RAT em um Boeing 757 (Foto: Swampfoot/Wikimedia Commons)
Uma aeronave também pode perder potência como resultado de outros incidentes, como colisões com pássaros. Um dos, se não o mais conhecido ataque de pássaros na memória recente, envolveu o voo 1549 da US Airways em 2009. Neste caso, um Airbus A320 que partia perdeu todo o poder sobre Nova Iorque depois de atingir um bando de gansos.

Numa impressionante demonstração de habilidade e bravura, os pilotos Chesley Sullenberger e Jeffrey Skiles abandonaram com sucesso a aeronave no Rio Hudson após a falha do motor. Sem mortes, o abandono foi sem precedentes e ficou conhecido como o 'Milagre do Hudson'.

Com informações de Simple FlyingSkybrary e Collins Aerospace

segunda-feira, 8 de abril de 2024

Por que de vez em quando somos levados de ônibus até o avião para embarcar?

Embarque no finger é mais prático e rápido, mas nem sempre é possível utilizá-lo
para entrar ou sair do avião (Imagem: Divulgação/Infraero)
É comum, ao embarcar ou desembarcar de um voo comercial, pegar um ônibus para se transportar entre o avião e o terminal do aeroporto. Isso ocorre mesmo em aeroportos com as pontes telescópicas, também chamadas de fingers.

Mas por que isso acontece? É mais barato para a companhia aérea estacionar o avião no pátio de aeronaves em vez de ficar perto do prédio do aeroporto? Não é bem assim.

O motivo de sermos levados para um embarque nas chamadas áreas remotas é basicamente uma questão de planejamento. O que está em jogo é a disponibilidade de espaço para os aviões pararem nos fingers.

Não tem nada a ver com valores. Eles são cobrados por hora de permanência no solo, de acordo com o peso de cada aeronave. Na verdade, quanto menos ônibus forem utilizados, melhor.

Ao pousar, o avião é direcionado para o local que estiver livre. Se não há nenhuma ponte disponível, a aeronave é levada a uma posição na área remota do aeroporto.

Pessoas com deficiência têm prioridade


Ambulift para embarque de pessoas com deficiência em aviões (Imagem: Divulgação/Infraero)
Um dos fatores que dão prioridade para o uso do finger é embarque e desembarque de pessoas com deficiência ou com alguma necessidade de assistência especial. Caso não seja possível realizar o embarque na ponte telescópica, deve-se levar a pessoa até a área remota e, lá, ser embarcada por meio de um equipamento especial, como o ambulift.

Há também rampas móveis ou plataformas elevatórias especiais para cumprir a função.

Atrasos podem mudar planos


Existem situações em que um voo que estava planejado para parar na ponte de embarque não consegue fazê-lo porque o avião que ocupou a posição antes dele está com a partida atrasada.

Para não causar mais transtornos, os passageiros desembarcam no pátio de aeronaves e são levados para o prédio do aeroporto em ônibus.

Tempo no solo


Outra situação é quando o avião ficará muito tempo parado no solo. Para não deixar o finger ocioso, o voo é direcionado a um local onde poderá permanecer sem atrapalhar o fluxo do aeroporto.

Manutenção


Se o avião tiver manutenção programada após o desembarque, ele também já vai diretamente para uma área remota. Isso evita que, após a saída dos passageiros, a aeronave tenha de se locomover até o local onde ficará parada.

Suspeita de bomba


Embarque pelo finger é prioridade nos aeroportos (Imagem: Divulgação/Infraero)
Se um avião está sob suspeita de ter uma bomba ou alguma interferência ilícita, é procedimento padrão que ele seja levado para uma área mais afastada por questão de segurança.

No Brasil, essa situação é muito rara. Mesmo assim, as equipes das empresas e dos aeroportos são frequentemente treinadas caso isso venha a ocorrer.

Quantidade de passageiros


Outro exemplo que impede o uso da ponte é a sala de embarque não ser adequada para a quantidade de passageiros que vai embarcar.

Caso o número de pessoas seja maior do que o espaço comporta, elas devem ficar em outro lugar maior, que pode ser distante, e então precisa do ônibus para chegar ao avião.

Via Alexandre Saconi (Todos a Bordo) - Fontes: Infraero e Ruy Amparo, diretor de segurança e operações de voo da Abear (Associação Brasileira das Empresas Aéreas)

domingo, 7 de abril de 2024

Para onde vão o xixi e cocô no avião?

Já parou para pensar o que acontece com o xixi e o cocô deixados num avião durante um voo? Entenda como funcionam os banheiros em um avião.

(Imagem: Airway/Reprodução)
Você já se perguntou para onde vai o xixi e o cocô quando você está a 10.000 metros de altitude, voando tranquilamente em um avião? Se a resposta for sim, você não está sozinho. Muitos passageiros se questionam sobre o destino dos resíduos humanos durante os voos. Afinal, em um espaço confinado e cercado por toneladas de metal, a logística para lidar com esses materiais é algo que intriga a curiosidade de muitos viajantes.

Vamos desvendar os segredos dos banheiros de altitude e explicar detalhadamente o que acontece com o xixi e o cocô quando você está nas alturas.

O funcionamento dos banheiros de Avião


Antes de entrarmos nos detalhes sobre o destino final dos dejetos humanos, é importante entender como funcionam os banheiros de avião. Ao contrário dos banheiros convencionais, os banheiros de aeronaves possuem um sistema complexo que lida com o desperdício de maneira eficiente e higiênica.

Os banheiros de avião são equipados com um sistema de sucção a vácuo. Quando você pressiona o botão de descarga após usar o vaso sanitário, uma válvula se abre e o vácuo entra em ação, sugando os resíduos para fora do vaso. Esse sistema de sucção é essencial para garantir que os dejetos sejam removidos de forma rápida e eficiente, sem causar odores desagradáveis ou vazamentos.

Além disso, os banheiros de avião também contam com um sistema de tratamento de resíduos. Os dejetos são misturados com produtos químicos para neutralizar o odor e reduzir o risco de contaminação. Esse processo garante que os resíduos sejam armazenados de forma segura até que a aeronave pouse e possa ser descartado de maneira adequada.

(Imagem: Reprodução)

Para onde vai o xixi e o cocô?


O xixi e as fezes dos banheiros é armazenado em tanques especiais localizados na parte traseira da aeronave. Esses tanques são projetados para suportar a pressão e as condições extremas encontradas durante o voo.

Quando o avião se encontra em solo, esses tanques por sua vez são esvaziados por meio de uma mangueira acoplada a um caminhão que sugam os dejetos para eliminá-los de forma adequada. Esse processo é realizado por equipes especializadas que seguem procedimentos rigorosos para garantir a segurança e a higiene.

É importante ressaltar que o xixi e cocô dos banheiros de avião passa por um processo de tratamento antes de ser descartado. Isso significa que qualquer resíduo sólido ou químico é removido antes que o líquido seja liberado no meio ambiente. Portanto, o descarte não representa um risco significativo para o meio ambiente.

(Imagem: Reprodução)

Considerações ambientais e de saúde


É natural que algumas pessoas tenham preocupações em relação ao descarte de resíduos humanos durante os voos, especialmente no que diz respeito aos impactos ambientais e à saúde pública. No entanto, é importante destacar que as companhias aéreas seguem regulamentações rigorosas para garantir que o descarte de resíduos seja feito de forma responsável e segura.

Os tanques de armazenamento de resíduos são projetados para evitar vazamentos e contaminação do meio ambiente. Além disso, os resíduos passam por processos de tratamento antes de serem descartados, o que reduz o risco de impactos ambientais negativos.

Do ponto de vista da saúde pública, os banheiros de avião são limpos e desinfetados regularmente durante os voos. Os produtos químicos utilizados no tratamento de resíduos ajudam a neutralizar o odor e reduzir o risco de contaminação bacteriana.

Em resumo, os resíduos humanos produzidos durante os voos são armazenados em tanques especiais localizados na parte traseira da aeronave. O xixi é descartado durante o voo, enquanto o cocô é armazenado até que a aeronave pouse e seja submetida a um processo de manutenção em terra.

É importante ressaltar que as companhias aéreas seguem regulamentações rigorosas para garantir que o descarte de resíduos seja feito de forma responsável e segura, minimizando os impactos ambientais e protegendo a saúde pública.

Portanto, da próxima vez que você estiver voando e se perguntar para onde vai o xixi e o cocô, pode ficar tranquilo sabendo que os banheiros de avião são equipados com sistemas eficientes para lidar com esses resíduos de maneira adequada e não irão despejá-los em pleno vôo.

Via Danilo Oliveira, editado por Bruno Ignacio de Lima (Olhar Digital)

sexta-feira, 5 de abril de 2024

Como os aviões fazem curvas durante o voo?

Um dos sentimentos mais reconhecíveis de ser um passageiro em um voo comercial é o da aeronave girando. Assim como a sensação tangível de que a fuselagem do avião começou a inclinar, a mudança do ângulo da luz que entra pelas janelas também dá uma pista visual do que está acontecendo.

Geralmente associamos tais manobras com decolagem e pouso, mas o que deve acontecer para que ocorram? E de que outra forma os pilotos podem ajustar sua direção de viagem?

Aeronaves como os Airbus A380s fazem curvas especialmente inclinadas (Foto: Vincenzo Pace)

Várias superfícies de controle


Quando no ar, os pilotos ditam as direções de um avião ajustando uma variedade de superfícies de controle. Esses são seus ailerons, lemes e elevadores. No entanto, o último deles controla a inclinação da aeronave - em outras palavras, seu ângulo de subida ou descida.

Como tal, por si só, não influencia diretamente a direção de viagem de um avião em termos de rotação da aeronave Os elevadores estão localizados na cauda da aeronave no que é conhecido como estabilizador horizontal.

Várias superfícies de controle ajudam a mover a aeronave tanto vertical quanto
 lateralmente enquanto ela está em voo (Foto: Vincenzo Pace)
Enquanto isso, os ailerons e lemes desempenham um papel muito mais significativo em manter o avião apontando na direção para a qual deve seguir. Os ailerons estão situados na parte traseira das asas de uma aeronave. Estas são as superfícies de controle mais visíveis, tanto quanto o que os passageiros podem ver de dentro da cabine.

Finalmente, há o leme, que é uma parte móvel da cauda do avião. Por estar situado próximo ao estabilizador vertical da aeronave, pode ser fácil confundir os dois. No entanto, como veremos, há uma diferença crucial entre os dois em termos de suas funções.

O que os ailerons fazem?


Como estabelecemos, os ailerons são a superfície de controle mais visualmente visível da perspectiva do passageiro. Os movimentos que eles permitem que uma aeronave faça também estão entre os mais óbvios em termos do que os passageiros podem sentir de forma tangível.

Os ailerons estão localizados na parte traseira das asas de uma aeronave. Os pilotos
usam isso para ajustar o ângulo de rotação do avião (Foto: Jake Hardiman)
O papel dos ailerons é elevar e abaixar as asas da aeronave. Os pilotos ajustam essas superfícies com uma roda de controle. Eles servem para alterar o ângulo de rotação da aeronave. Conforme relata a NASA, “girar a roda de controle no sentido horário aumenta o aileron direito e abaixa o aileron esquerdo, que faz a aeronave girar para a direita”.

Claro, o mesmo é verdade na direção oposta. Isso quer dizer que girar a roda de controle no sentido anti-horário acaba rolando a aeronave para a esquerda. Essas manobras são conhecidas como curvas em curva e servem para mudar a direção do avião. Curiosamente, os lemes, que exploraremos mais adiante em breve, também desempenham um papel nas curvas inclinadas. 

A NASA afirma que: “O leme é usado durante a curva para coordenar a curva, ou seja, para manter o nariz da aeronave apontado ao longo da trajetória de voo. Se o leme não for usado, pode-se encontrar uma guinada adversa em que o arrasto na asa externa afasta o nariz da aeronave da trajetória de voo.”

Ao tirar fotos de aeronaves que partem, você pode frequentemente encontrá-los
inclinando-se para longe do aeroporto (Foto: Vincenzo Pace)

Como funcionam os lemes?


O leme de uma aeronave controla o que é conhecido como guinada. Este termo se refere ao movimento lateral em torno de um eixo vertical, que inclina a aeronave para a esquerda ou direita sem ajustar seu ângulo de rolamento. 

Os pilotos controlam os lemes com pedais. Isso os coloca em contraste com os ailerons, que, como estabelecemos, são operados com uma roda de controle. Em aeronaves maiores, como o Boeing 747, o leme consiste em duas superfícies de controle móveis.

Esses pedais estão ligados a uma série de sistemas hidráulicos que ajustam o leme em correspondência com a pressão dos pés do piloto. Isso significa que, quando o piloto pressiona um determinado pedal de leme, a aeronave vai guinar naquela direção. De acordo com o Aviation Stack Exchange, isso permite maior precisão do que se fosse operado eletronicamente, por controles computadorizados.

Conforme mencionado anteriormente, às vezes você pode acidentalmente confundir o leme de uma aeronave com seu estabilizador vertical. Afinal, esses componentes são encontrados na parte traseira de uma aeronave.

O Boeing 747 possui um leme de duas partes. Você pode quase ver onde ele se
 divide no 'V' da marca Virgin Atlantic em sua cauda (Foto: Jake Hardiman)
No entanto, há uma diferença fundamental que ajuda a diferenciar suas funções. Embora o leme seja uma superfície móvel que fornece controle de guinada, o estabilizador vertical permanece estático. Sua função, relatórios do Aviation Stack Exchange, é fornecer estabilidade de guinada. O leme permite que a aeronave deslize lateralmente quando você quiser; o estabilizador vertical evita que ele deslize para o lado quando você não quiser.

Crucial em ventos laterais


Os lemes são um componente particularmente vital quando se trata de pousar aeronaves em condições de vento cruzado. Isso ocorre porque a aeronave se aproxima de uma pista em um ângulo para mitigar os efeitos do vento cruzado.

Um A320 fazendo uma aproximação de 'caranguejo' no Aeroporto de Palma de Mallorca (PMI),
na Espanha (Foto: Javier Rodríguez via Flickr)
Visualmente, às vezes pode parecer que o avião está quase voando de lado. Como tal, essa manobra é conhecida como 'caranguejo', já que essas criaturas crustáceos também são conhecidas por andar de lado. Suas pernas rígidas e articuladas significam que é mais fácil e rápido para eles viajarem assim.

Ao realizar tal pouso, o leme desempenha um papel crucial em trazer a aeronave para fora do caranguejo. Pouco antes do flare de pouso, o piloto aplicará o leme na direção que alinha a aeronave com a pista. 

Simultaneamente, eles usarão o aileron oposto para manter as asas niveladas. Isso garante que todos os aspectos da aeronave estejam corretamente alinhados com a pista no toque. Isso permite que pousos seguros ocorram em meio aos ventos laterais mais fortes.

quinta-feira, 4 de abril de 2024

Asa do avião pode bater até quatro metros para cima e para baixo no voo

Estrutura onde foram realizados os testes da asa do Airbus A350, em 2012 (Foto: Airbus)
Não estranhe se você estiver voando e, ao olhar pela janela, veja seu avião "batendo a asa", parecido com o movimento de um pássaro. Essa oscilação pode chegar a quatro metros em algumas situações.

É evidente que um avião comercial não funciona como uma ave, mas é esperado que a ponta de sua asa se flexione para cima e para baixo para garantir a segurança de sua estrutura e de todos a bordo.

Essa superfície da aeronave tem uma boa elasticidade, o que é desejável por vários motivos. O principal deles é suportar o peso e as forças às quais o avião estará submetido durante o voo.

Caso a asa fosse demasiadamente rígida, poderia rachar ou, até mesmo se quebrar. Como ela tem uma certa flexibilidade, garante que esse risco esteja distante de se tornar realidade.

Voo mais confortável


Esse movimento também acaba absorvendo o excesso de vibração que seria causado caso o impacto do ar sobre a superfície fosse transmitido totalmente para a fuselagem da aeronave. Assim, essa flexão evita que o avião chacoalhe com mais intensidade do que qualquer um a bordo gostaria de sentir.

Por isso é normal ver a asa se mexendo até cerca de quatro metros para cima e para baixo durante um voo comercial, dependendo do avião. Mas isso não é sinal de risco, já que a estrutura do avião foi planejada e testada para aguentar isso.

Veja como a asa do avião se mexe durante o voo:


Comparativo mostra como a asa se mexe durante a decolagem:


Testes


Antes de voar, os aviões são submetidos a testes exaustivos. Alguns deles, inclusive, são destrutivos, com objetivo de saber até quanto a aeronave aguentaria em uma situação de risco extremo.

Um desses testes é o de flexão da asa, realizado para saber até quanto de carga ela é capaz de suportar. O Boeing 787 Dreamliner, um dos maiores aviões comerciais do mundo, realizou no ano de 2010 um teste estrutural extremo, para analisar qual a carga seu corpo aguentaria.

Teste realizado com o Boeing 787 Dreamliner mostra o quanto a asa de um avião
pode ser flexionada (Foto: Jennifer Reitz/Boeing)
Foram aplicadas forças 150% maiores que a mais extrema condição que um avião possa enfrentar em um voo. Ao todo, elas foram flexionadas 7,6 metros para cima, isso sem levar em conta que elas ainda são capazes de curvarem um pouco para baixo também, e tudo isso sem quebrar.

Para realizar esse teste, diversos cabos são presos em toda a asa, assim como são instalados diversos sensores. Em seguida, esses cabos são puxados para aplicar a força necessária para testar a estrutura.

Nas últimas décadas, não há registro de acidentes envolvendo o rompimento de uma asa em voo, mais uma prova da segurança envolvida na fabricação e manutenção dessa superfície. 

Veja como foi feito o teste de flexão da asa do Boeing 777 (em inglês):


Gerente de testes do A350XWB ES mostra como o avião é levado à prova em solo (em inglês):


Por Alexandre Saconi (UOL)

segunda-feira, 1 de abril de 2024

O que é o TCAS e como funciona?

Uma olhada em como a tecnologia ajuda a evitar que as aeronaves se aproximem demais umas das outras.


Com a segurança sendo primordial em toda a aviação, várias medidas estão em vigor para manter as aeronaves separadas no ar. Um exemplo é um sistema independente de prevenção de colisões conhecido como TCAS. Mas o que exatamente é isso e como funciona?

Separação vertical


A separação vertical refere-se à quantidade de altitude entre duas aeronaves no momento em que seus caminhos se cruzam. A quantidade necessária de separação vertical entre aeronaves é ditada pela Organização da Aviação Civil Internacional ( ICAO ). Formado em Montreal, Canadá, em abril de 1947, este é um órgão das Nações Unidas responsável por estabelecer "os princípios fundamentais que permitem o transporte aéreo internacional".

Um mínimo de 1.000 pés de separação vertical é necessário entre duas aeronaves (Foto: Getty Images)
A ICAO afirma que, de acordo com as Regras de Voo por Instrumentos (IFR), as aeronaves devem manter uma separação vertical não inferior a 1.000 pés de altitude. Isso se aplica a aeronaves voando a 29.000 pés ou abaixo. Aeronaves acima desta altitude geralmente requerem uma separação vertical de 2.000 pés ou mais. Certos corredores de alta capacidade estão isentos disso sob Separação Vertical Mínima Reduzida (RVSM). Nesses casos, a separação vertical mínima permanece em 1.000 pés.

A ICAO exige que todas as aeronaves com peso máximo de decolagem (MTOW) superior a
5.700 kg sejam equipadas com TCAS (Foto: Getty Images)
Os controladores de tráfego aéreo são geralmente responsáveis ​​por garantir que as aeronaves mantenham um grau adequado de separação vertical. No entanto, nos casos em que parece que uma colisão no ar pode ser possível, um sistema conhecido como TCAS também entra em ação.

Como funciona o TCAS?


TCAS significa Traffic Collision Avoidance System, e seu objetivo é minimizar o risco de colisões no ar entre aeronaves. A ICAO exige que todas as aeronaves com capacidade superior a 19 passageiros estejam equipadas com esta medida de segurança. A regra também se aplica a aeronaves com peso máximo de decolagem (MTOW) superior a 5.700 kg.

Trabalhando independentemente do controle de tráfego aéreo, o TCAS usa os sinais do transponder das aeronaves próximas para alertar os pilotos sobre o perigo de colisões no ar. Ele faz isso construindo um mapa tridimensional do espaço aéreo pelo qual a aeronave está viajando. Ao detectar os sinais do transponder de outras aeronaves, ele pode prever possíveis colisões com base nas velocidades e altitudes dos aviões que passam pelo espaço aéreo em questão.

O TCAS usa os sinais do transponder da aeronave próxima para alertar os pilotos
sobre o perigo de colisões no ar (Foto: Getty Images)
Se o TCAS detectar uma possível colisão, ele notificará automaticamente cada uma das aeronaves afetadas. Nesse caso, ele iniciará automaticamente uma manobra de prevenção mútua. Isso envolve o sistema informando as tripulações da aeronave em questão de forma audível e visível para subir ou descer de uma maneira que garanta que, quando seus caminhos se cruzarem, eles não se encontrem.

Um acidente que poderia ter sido evitado


Em 12 de novembro de 1996, a colisão aérea mais mortal do mundo ocorreu perto da capital da Índia, Nova Délhi. Um Boeing 747 da Saudia partiu de Delhi enquanto um Kazakhstan Airlines Ilyushin Il-76TD descia para pousar na capital.

A aeronave Saudia recebeu permissão do ATC para subir para 14.000 pés, enquanto o avião do Cazaquistão foi liberado para descer para 15.000 pés. Os controladores acreditavam que ambos os aviões passariam um pelo outro com segurança devido a uma separação de 1.000 pés entre eles.

O Boeing 747 da Saudia envolvido na colisão no ar perto de Delhi em 1996
(Foto: Andy Kennaugh via Wikimedia Commons)
Mas momentos depois, as duas aeronaves colidiram ao entrar em uma nuvem espessa, matando todas as 349 pessoas a bordo. Uma investigação pós-acidente sugeriu que os pilotos do Kazhak não entenderam as instruções do ATC e desceram abaixo da altitude atribuída.

Após o incidente, as autoridades de aviação indianas tornaram obrigatório que todas as aeronaves operadas em seu espaço aéreo fossem equipadas com TCAS.

Catástrofe como consequência da confusão


No entanto, o TCAS não é um sistema perfeito. Em 2002, um Tupolev Tu-154 e um Boeing 757F colidiram sobre Überlingen, na Alemanha, resultando na morte de todos os 71 ocupantes das duas aeronaves. A causa do acidente foi a confusão entre as instruções fornecidas pelo controle de tráfego aéreo e o TCAS.

Um Boeing 737 da GOL se envolveu em uma colisão aérea em 2006 (Foto: Lukas Souza)
Especificamente, a tripulação do Tupolev desconsiderou as instruções do TCAS em favor do controle de tráfego aéreo local. Enquanto isso, a tripulação do Boeing seguiu o conselho do TCAS, não tendo sido instruída pelo ATC. Como tal, ambas as aeronaves desceram (em vez de uma descendo e uma subindo conforme o TCAS) e posteriormente colidiram.

O acidente foi a segunda colisão aérea mais mortal do século 21, atrás do voo 1907 da GOL . Este voo, operado por um Boeing 737, colidiu com um jato particular Legacy da Embraer sobre o Brasil em setembro de 2006. ter seu transponder ativado no momento do acidente, tornando-o invisível para o TCAS do GOL 737. Todos os 154 ocupantes do 737 perderam a vida, embora o Embraer tenha conseguido pousar com segurança apesar dos danos, sem ferimentos em seus sete ocupantes.

Edição de texto e imagens por Jorge Tadeu com informações da Simple Flying

quarta-feira, 27 de março de 2024

Documentos, vacinação e raças restritas: saiba como viajar de avião com cães e gatos

Especialista explica como viajar de avião com cães e gatos e diferenças entre companhias e destinos.

Países têm regras distintas para embarques dos animais domésticos (Freepik)
Encontrar alguém confiável para cuidar do pet durante o período fora ou levá-lo na viagem e arriscar a saúde do bichano? Esse é o dilema vivido por muitos donos de animais de estimações, que ainda não sabem como viajar de avião com cães e gatos.

Foi o que aconteceu com a ex-BBB Aline Dahlen, que levou Ringo, seu gato, de 18 anos, para uma temporada em Los Angeles, nos EUA: “O maior desafio é lidar com as regras das companhias aéreas, que por muitas vezes tratam os bichinhos como se eles fossem bagagem".

"Bicho não é bagagem, é como um bebê de colo", alertou a fisiculturista. Dahlen tomou uma série de cuidados com o felino, que está se recuperando de um câncer: "Conversei muito com ele para prepará-lo. Por incrível que pareça, os animais entendem”.

Informações necessárias


Wagner Pontes, fundador da assessoria imigratória D4U Immigration, conversou com AnaMaria para explicar como viajar de avião com cães e gatos. Inicialmente, o especialista explica que há diferenças entre os requisitos veterinários e requisitos de transportes.

No primeiro caso, depende de qual é o destino do tutor:
  • Viagens nacionais: cães ou gatos precisam apenas estar com a vacina antirrábica atualizada e ter um atestado de saúde emitido dentro de 10 dias antes do embarque;
  • Viagens internacionais: os requisitos variam de acordo com o país de destino. A maioria exige que os cães e gatos possuam microchip, vacina antirrábica e titulação de anticorpos contra o vírus da raiva (mais conhecido como sorologia).
"Levando em conta que cada país possui requisitos diferentes, o ideal é começar a se organizar com a maior antecedência possível".

O Ministério da Agricultura e Pecuária do Brasil disponibiliza um manual para viajantes donos de animais domésticos. As exigências veterinárias de cada país podem ser consultadas clicando aqui.

Caso o destino não esteja na lista, o recomendado é entrar em contato com a embaixada do país de destino para obter mais informações. Consulte os canais de contato das embaixadas estrangeiras no Brasil clicando aqui.

Como viajar de avião com meu pet?


Depois dos requisitos veterinários, há também os requisitos de transporte, que são determinados pela Associação Internacional de Transportes Aéreos (IATA, na sigla em inglês). A organização internacional permite que cada companhia aérea adote normas próprias para aceitar animais em seus aviões.

Desta forma, vale consultar as regras específicas de cada empresa. Segundo as normas da Agência Nacional de Aviação Civil (Anac), a viagem de animais é cobrada à parte e o dono precisa reservar a passagem com antecedência, pois muitos voos limitam o número de animais por aeronave.

Quanto custa viajar de avião com cão ou gato? 

Ainda segundo o especialista, o custo para levar um pet em viagens de avião varia. Em voos nacionais, na faixa de R$ 250, enquanto voos internacionais, R$ 1600 - como para os EUA em classe executiva.

Posso viajar de avião com meu pet ao lado, no assento de passageiro? 

Não! Com exceção dos animais de serviço, como cão guia ou policial por exemplo, todos os animais que viajam na cabine precisam viajar dentro de bolsas de transportes que cumpram os requisitos de segurança da IATA.

A maioria das companhias aéreas que aceitam animais na cabine limitam o peso em até 10kg (animais mais a bolsa de transporte). O animal precisa permanecer dentro da bolsa de transporte abaixo do assento à frente durante todo o voo.

Os animais que excedam os requisitos para embarque na cabine, como peso, por exemplo, precisam viajar no compartimento inferior. Wagner ressalta que o meio é seguro e confortável aos animais. Para isso, eles precisam estar em perfeito e estado de saúde e habituados às caixas de transporte.

Documentação


Cada país também conta com uma lista de documentos distintos para a entrada no país. Em Portugal, por exemplo, é necessário registrar o seu animal junto ao governo municipal, feito na Junta de Freguesia do bairro e chama-se Bilhete de Identidade Animal com o custo de 15 euros por ano.

É necessário confirmar quais são as exigências com os órgãos responsáveis do destino do passageiro. Clique aqui para saber como viajar com seu cão ou gato para os EUA.

Viagens internacionais


O cuidado deve ser redobrado no caso de viagens internacionais. Isso porque, como dito anteriormente, cada país conta com suas próprias normas para receber animais estrangeiros. As medidas visam proteger a saúde local de doenças controladas ou até mesmo erradicadas.

Para isso, em alguns casos demora-se meses até que os animais consigam cumprir todos requisitos. Além disso, alguns países podem limitar a quantidade de animais por pessoas e/ou exigir que os animais sejam importados como carga viva (transporte desvinculado de passageiros).

No caso de viagens em que os pets irão desacompanhados (sem o tutor),o transporte precisa ser realizado por uma empresa habilitada pela IATA.

Raças proibidas ou restritas


Wagner também alerta sobre a particularidade de cada raça. Ainda no caso de viagens internacionais, raças específicas são proibidas de entrar em determinados países. O pitbull, por exemplo, é proibido ou restrito em 24 países. Canadá, Estados Unidos e França são países que restringem a raça.

Outra restrição, desta vez por conta das companhias aéreas, é contra as raças braquicefálicas. Os animais de focinho curto têm sensibilidade a altas temperatura. É preciso ter cuidado para evitar complicações respiratórias durante o voo e até mesmo infartos.

Alguns cachorros braquicefálicos:
  • Bulldogs francês e inglês;
  • Shih tzu;
  • Pequinês;
  • Pug;
  • Boxer;
  • Boston terrier;
  • Chow chow;
  • Bully americano.
Gatos de focinho curto:
  • British Shorthair ou pelo curto britânico;
  • Gato dos Himalaias;
  • Gato persa;
  • Scottish Fold.
O transporte de animais braquicefálicos é possível, mas deve ser muito bem planejado", acrescenta o especialista. Companhias que permitem a viagens desses animais, devem ser obrigatoriamente realizadas pela cabine.

terça-feira, 26 de março de 2024

Como funcionam as superfícies de controle de voo de aeronaves?

Apenas o simples fato de que uma aeronave pode decolar e permanecer no ar é um milagre da engenharia que geralmente consideramos garantido. Embora as partes fixas da fuselagem, asas e estabilizadores sejam essenciais, a verdadeira sutileza na manobra de um jato vem das partes dinâmicas anexadas a eles - as superfícies de controle de voo. Vamos dar uma olhada no que são e como funcionam.

Como funcionam as superfícies de controle dinâmico de uma aeronave? (Foto: Getty Images)

Superfícies primárias e secundárias


As superfícies de controle são todas as partes dinâmicas em uma aeronave que podem ser manipuladas para dirigir o avião durante o voo. Eles são divididos em superfícies de controle primárias e secundárias. Os principais em uma aeronave de asa fixa incluem os ailerons, elevadores e leme. Estes são responsáveis ​​por dirigir a aeronave.

Uma aeronave em voo pode girar em três dimensões - horizontal ou guinada, vertical ou inclinação e longitudinal ou roll. As superfícies de controle primárias produzem torque, que varia a distribuição da força aerodinâmica ao redor do avião.

As superfícies de controle secundárias incluem spoilers, flaps, slats e freios a ar. Isso modifica a aerodinâmica geral do avião, aumentando ou reduzindo a sustentação ou resistência gerada pelas asas.

Todas as superfícies atuam juntas para equilibrar as forças aerodinâmicas que impactam uma aeronave e para mover o avião em diferentes eixos em relação ao seu centro de gravidade.

Os elevadores


Os elevadores levantam e abaixam a aeronave, movendo o avião em seu eixo transversal, produzindo inclinação. A maioria das aeronaves possui dois elevadores. Eles são colocados na borda de fuga em cada metade do estabilizador horizontal fixo.

Os elevadores são montados nos estabilizadores horizontais fixos (Foto: Jake Hardiman/Simple Flying)
A entrada manual ou do piloto automático move os elevadores para cima ou para baixo conforme necessário por um movimento para frente ou para trás da coluna de controle ou da alavanca de controle. 

Se for movido para frente, o profundor desvia para baixo, o que gera um aumento na sustentação da superfície da cauda. Isso, por sua vez, faz com que o nariz do avião gire ao longo do eixo vertical e vire para baixo. O oposto é verdadeiro quando o painel de controle é puxado para trás.

O leme


O leme move a aeronave em seu eixo horizontal, produzindo guinada. Assenta no estabilizador vertical ou na barbatana caudal. Não é usado para dirigir a aeronave diretamente, como o próprio nome pode fazer crer. Em vez disso, é usado para neutralizar a guinada adversa produzida ao virar a aeronave ou para neutralizar uma falha de motor em quatro jatos.

O leme é articulado à barbatana de cauda fixa da aeronave (Foto: Getty Images)
Ele também é usado para 'escorregar' e direcionar a trajetória do avião antes de pousar durante uma aproximação com forte vento cruzado. O leme é geralmente controlado pelos pedais esquerdo e direito do leme na cabine.

Os ailerons


Os ailerons, que em francês significa 'asas pequenas', são usados ​​para inclinar o avião de um lado para o outro, movendo-o ao longo de seu eixo longitudinal, produzindo roll. Eles são fixados nas bordas externas das asas da aeronave e se movem em direções opostas uma da outra para ajustar a posição do avião.

Os ailerons estão localizados nas bordas externas das asas da aeronave e funcionam
em oposição um ao outro (Foto: Jake Hardiman/Simple Flying)
Quando o dispositivo de controle da cabine de comando é movido ou girado, um aileron desvia para cima e o outro para baixo. Isso faz com que uma asa gere mais sustentação do que a outra, o que faz o avião rolar e facilita uma curva na trajetória de vôo, ou o que é conhecido como 'curva inclinada'. A aeronave continuará a girar até que um movimento oposto retorne o plano ao longo do eixo longitudinal.

Flaps


Os flaps lembram os ailerons, mas ficam mais próximos da fuselagem. Eles mudam o formato da asa da aeronave e são utilizados para gerar mais sustentação e aumentar o arrasto, dependendo de seu ângulo. Sua configuração é geralmente entre cinco e quinze graus, dependendo da aeronave.

Os flaps são usados ​​para alterar a forma da asa para manipular o arrasto ou a sustentação (Foto: Getty Images)
Os flaps da borda final se estendem e se movem para baixo na parte de trás da asa. Os flaps de ponta se movem para fora e para frente na frente da asa. No entanto, as abas da borda dianteira e as venezianas não são controladas individualmente, mas respondem ao movimento das abas da borda traseira.

Slats e slots


As ripas de ponta se estendem da superfície da frente da asa usando pressão hidráulica. Ao todo, eles podem alterar a forma e o tamanho da asa de maneira bastante significativa. Isso permite que os pilotos adaptem a quantidade de arrasto e sustentação necessária para os procedimentos de decolagem e pouso.

Os espaços entre os flaps são chamados de ranhuras, que permitem mais fluxo de ar
para o topo da superfície extra da asa (Foto: Getty Images)
Os slots são aberturas entre os diferentes segmentos das abas. Eles são recursos aerodinâmicos que permitem que o ar flua de debaixo da asa para sua superfície superior. Quanto maior a superfície dos flaps da borda de fuga implantados, mais slots são necessários.

Spoilers e freios a ar


Spoilers e freios a ar são usados ​​para reduzir a sustentação e desacelerar a aeronave. Eles são usados ​​na aproximação e após o pouso. Spoilers são pequenos painéis articulados na superfície superior da asa e diminuem a sustentação interrompendo o fluxo de ar.

Spoilers são usados ​​para interromper o fluxo de ar sobre a asa, aumentando o arrasto
(Foto: Olga Ernst via Wikimedia Commons)
Embora os spoilers possam atuar como freios, os freios a ar adequados se estendem da superfície para a corrente de ar para reduzir a velocidade da aeronave. Na maioria das vezes, eles são implantados simetricamente em cada lado.

Circuito hidráulico


As aeronaves a jato contam com sistemas hidráulicos para manipular as superfícies de controle. Um circuito mecânico liga o controle da cabine ao circuito hidráulico que controla as superfícies dinâmicas do avião. Isso tem bombas hidráulicas, reservatórios, filtros, tubos, válvulas e atuadores. Esse sistema significa que a forma como uma aeronave responde é determinada pela economia, e não pela força física do piloto.

Por Jorge Tadeu com informações da Simple Flying