quarta-feira, 27 de setembro de 2023

Aconteceu em 27 de setembro de 1946: Acidente com o DC-3 PP-PCH da Panair do Brasil em Minas Gerais


Na tarde do dia 
27 de setembro de 1946, o avião Douglas DC-3A-228D, prefixo PP-PCH, da Panair do Brasil (imagem abaixo), decolou às 16h10, do aeródromo de Lagoa Santa (hoje Aeroporto da Pampulha), em Belo Horizonte, com destino ao Rio de Janeiro, levando a bordo 22 passageiros e três tripulantes.


O DC-3 comandado por Otávio Bezerra Cavalcanti fez seus último contato por rádio com a estação da Panair às 16h38, quando sobrevoava a cidade de Conselheiro Lafaiete, ainda em Minas Gerais.

O avião não pousou no aeroporto de Santos Dumont, nem deu notícias. As buscas por sua localização foram desencadeadas. 

Alguns moradores da região de Alto do Rio Doce (MG) disseram ter ouvido uma forte explosão por volta das 16h40 que confundiram com um trovão devido à forte tempestade que havia naquele momento. 

Às 16h40, após penetrar num possível cumulonimbus, onde perderia sustentação, o Douglas DC-3 bateu no morro dos Marimbondos, na Serra da Samambaia, próxima ao povoado de Abreus, a cerca de 12 km da zona urbana de Alto Rio Doce, próximo a Barbacena, no interior de Minas Gerais. Todos os seus 25 ocupantes morreram no acidente.


Voando por instrumentos e sem contar com radar meteorológico para identificar zonas de turbulência fortes, a turbulência grave levou a perder o controle do avião. O avião caiu e colidiu com o solo a alta velocidade.







Por Jorge Tadeu (Site Desastres Aéreos) com Wikipédia e ASN

O mito do voo 513 de Santiago: explorando uma lenda moderna

Ative a legenda em português nas configurações do vídeo

Poucas histórias captam tanto a imaginação humana como aquelas que ultrapassam as fronteiras da realidade e se aventuram no reino do estranho e do inexplicável. Uma dessas histórias é a do voo 513 de Santiago, uma história tão convincente que se infiltrou na cultura popular, apesar de estar firmemente enraizada como um mito urbano.

O incidente do voo 513 de Santiago envolveu um Lockheed Super Constellation, uma aeronave quadrimotora conhecida por sua confiabilidade e amplo alcance. Tripulado por uma tripulação qualificada, o voo completou com sucesso inúmeras viagens antes de sua infeliz decolagem.

A história do voo 513 de Santiago começa



Segundo a lenda, o voo Santiago 513, um avião comercial operado por uma companhia aérea chamada Santiago Airlines, partiu de Aachen, na Alemanha , em 4 de setembro de 1954, com 88 passageiros e quatro tripulantes a bordo. A aeronave, considerada um Lockheed Super Constellation, tinha como destino Porto Alegre, Brasil .

Reza a história que, após a descolagem, o avião desapareceu sem deixar rasto, causando profundo pesar e confusão entre os familiares dos passageiros e tripulantes, bem como na indústria da aviação em geral. Supostamente, esforços de busca e resgate foram realizados, mas nenhum destroço ou sinal do avião foi encontrado.

Um retorno inesperado


A história do voo 513 de Santiago dá uma guinada extraordinária com a afirmação de que em 12 de outubro de 1989, 35 anos após seu desaparecimento, o avião reapareceu repentinamente. Segundo a história, ele pousou perfeitamente no aeroporto de Porto Alegre, surpreendendo os controladores de tráfego aéreo e despertando o interesse imediato das autoridades e da mídia.

A história fica ainda mais assustadora com as descrições do que foi encontrado dentro do avião: os restos mortais de 92 pessoas, todas em seus assentos e aparentemente intactas, com exceção do piloto que ainda segurava os controles.

A natureza das lendas urbanas


Normalmente, histórias como a do voo 513 de Santiago ganham força porque misturam a realidade – viagens aéreas, desaparecimentos, acontecimentos inexplicáveis ​​– com elementos do fantástico. A história tem todas as características de uma lenda urbana, um gênero de folclore moderno que inclui histórias não verificadas circulando como verdade.

As lendas urbanas muitas vezes contêm elementos de humor, horror ou mistério e podem ter lições morais subjacentes. A história do voo 513 de Santiago certamente se alinha com os elementos de terror e mistério, contribuindo para o seu apelo.

Fato versus ficção


Para testar a veracidade da história do voo 513 de Santiago, devemos considerar os factos. Existem vários sinais de alerta significativos que sugerem fortemente que é fictício:

Companhia aérea inexistente

Não existem registros históricos relativos a uma companhia aérea chamada Santiago Airlines. Além disso, Aachen é uma cidade na Alemanha que não é conhecida pelo seu aeroporto principal, nem por ter um aeroporto internacional significativo de onde pudesse partir um voo transatlântico.

Falta de registros oficiais

Não há registros oficiais de aviação ou relatos do suposto desaparecimento do vôo 513 de Santiago em 1954 ou reaparecimento em 1989.

Ausência de reportagens

Incidentes graves, como o desaparecimento ou reaparecimento de um voo, atraem considerável atenção da mídia. No entanto, não se sabe de nenhum meio de comunicação confiável que tenha noticiado o voo 513 de Santiago na época, seja na década de 1950 ou em 1989.

Violação das leis físicas

Escusado será dizer que a história também desafia as leis conhecidas da física e da biologia. É impossível um avião permanecer no ar 35 anos sem reabastecer, sem falar na impossibilidade de corpos humanos se transformarem em restos de esqueletos no ambiente controlado de um avião.

Resumindo

Embora a história do voo 513 de Santiago tenha cativado a imaginação de muitos, a falta de provas tangíveis deixa claro que esta história é um mito urbano convincente e não um facto histórico. A sua persistência reflete o nosso fascínio humano pelo misterioso e inexplicável, proporcionando uma narrativa que simultaneamente intriga e perturba.

Em última análise, é um lembrete de que as histórias, sejam elas baseadas na verdade ou tecidas a partir dos fios da imaginação, têm um poder significativo. 

Edição de texto e imagens por Jorge Tadeu (com informações de Aerotime Hub)

Por que, mesmo com tudo eletrônico, alguns aviões têm impressora na cabine?

Mesmo aviões mais modernos podem ter impressora a bordo (Foto: Divulgação/Boeing)
A cabine de um avião se mantém em constante evolução com o tempo. Desde os antigos modelos, com mostradores analógicos que mais pareciam "reloginhos", até os mais atuais, com telas de LCD, a comunicação também evoluiu.

Hoje, grande parte da papelada que era necessária a bordo foi substituída por tablets, e as informações estão presentes nas telas em tempo real. Ainda assim, alguns dos mais modernos aviões têm impressoras a bordo.

Esses dispositivos localizados nas cabines de comando ajudam os pilotos a lidar com o alto volume de dados que precisam ser gerenciados. Imprimir informações sobre meteorologia, rotas e aeroportos, por exemplo, evita que tenham que decorar uma grande quantidade de dados.

Leitura fácil


Impressoras térmicas utilizadas a bordo de aviões para imprimir informações sobre o voo
para os pilotos (Foto: Reprodução/AstroNova)
Durante o voo, os pilotos recebem um conjunto de informações oriundas do Atis (Automatic Terminal Information Service — Serviço Automático de Informação Terminal). É um serviço via rádio que repassa informações aos pilotos sobre condições meteorológicas, pista de pouso dos aeroportos, procedimentos a serem realizados, visibilidade, entre outros.

Na versão digital do Atis (D-Atis), esses dados podem ser exibidos em uma das telas da cabine, ou podem ser impressos. Quando vão para o papel, as telas ficam livres para exibir outras informações importantes para os pilotos.

Em algumas situações, o volume de dados é tão grande que há várias páginas impressas, como nos avisos chamados de Notam.

Não vem de fábrica


No geral, aviões de grande porte, como o Boeing 777 e o Airbus A330, por exemplo, podem ter uma impressora. O equipamento não é obrigatório de fábrica, e pode ser instalado de acordo com a necessidade de cada operador.

Também é possível, quando necessário, imprimir mapas e cartas aeronáuticas diretamente das EFB (Eletronic Flight Bag — Mala de Voo Eletrônica), que são tablets feitos para substituir o grande volume da papelada geralmente encontrada nos aviões (que também inclui manuais e listas de checagem, entre outros).

Impressora térmica


Para diminuir peso e facilitar a manutenção, as impressoras costumam ser térmicas, como as de supermercados, e não a jato de tinta. Também existem impressoras para aviões militares e para a tripulação imprimir bilhetes de embarque e conexão, antes mesmo de o passageiro deixar o avião. Comunicação livre e menos erros.

Comunicação livre e menos erros


Impressora térmica utilizada a bordo de aviões para imprimir informações
sobre o voo (Foto: Reprodução/AstroNova)
Com a informação em mãos em tempo real, na tela ou por meio da impressão em papel, as frequências de rádio ficam livres para pilotos e controladores se comunicarem. Isso é fundamental para a segurança, pois toda comunicação deve ser o mais curta e objetiva possível.

Assim, informações repetitivas ou que podem ser passadas de forma automatizada para serem impressas permitem desafogar a comunicação, que pode ser utilizada apenas para questões emergenciais ou informações sobre pousos e decolagens, por exemplo. 

Por fim, o recebimento dos dados por meio dos canais de comunicação da aeronave com o solo, para leitura na tela ou para ser impressos, diminui a chance de erros, já que o piloto ou controlador podem, eventualmente, se confundir com a mensagem via rádio.

Por Alexandre Saconi (UOL)

Desenvolvendo o Dreamliner: 5 melhorias que o Boeing 787 viu desde que entrou em serviço

Uma análise mais detalhada de algumas maneiras pelas quais a popular aeronave widebody da Boeing mudou em relação à sua fabricação.

Um Boeing 787-9 Dreamliner em solo em Farnborough (Foto: Ryan Fletcher)
Apresentado pela primeira vez no final de outubro de 2011 pela transportadora japonesa ANA, o 787 Dreamliner da Boeing é famoso por muitas de suas tecnologias iniciais . Utilizando extensivamente materiais compósitos, incluindo vários recursos de economia de combustível, como controle de fluxo laminar híbrido, e utilizando vários controles eletrônicos avançados, o jato widebody é uma peça incrível de engenharia.

No entanto, não é isento de problemas. De certa forma, o Boeing 787 é famoso por múltiplas séries de incidentes, falhas e, mais recentemente, problemas de controle de qualidade. Dada a longa história do fabricante com sede em Everett no negócio, não é surpreendente que, no devido tempo, estas coisas sejam resolvidas, e as companhias aéreas tenham recebido entregas de aviões familiares 787 durante grande parte do ano . Vamos dar uma olhada em algumas coisas que mudaram nos últimos 13 anos em relação à produção e desenvolvimento do jato widebody.

1. Uma bateria redesenhada


Muitas pessoas familiarizadas com a situação saberão que alguns anos após a introdução do Boeing 787, vários incêndios a bordo foram causados ​​por um problema na bateria da aeronave. Após três incidentes, o último envolvendo um pouso de emergência que resultou em múltiplos ferimentos sofridos, o tipo foi aterrado até que o fabricante pudesse encontrar uma solução.

Embora os três incidentes tenham acontecido em janeiro de 2013, a Boeing foi capaz de fornecer uma solução em apenas algumas semanas que acabaria por apaziguar a FAA e retirar o solo dos aviões. De acordo com um comunicado da época, os procedimentos de produção e testes incorporariam uma triagem mais rigorosa das células da bateria antes da montagem. Para ajustes térmicos e elétricos, a faixa de tensão do sistema seria aumentada e um invólucro especializado impediria o início de incêndios.

2. Mudanças nos motores Trent 1000 da Rolls-Royce


Em 2019, vários Boeing 787 tiveram que ser aterrados devido a um problema no motor. A Rolls-Royce fornece seu modelo Trent 1000 para alimentar o avião comercial de fuselagem larga. Ele foi até aprimorado ao longo dos anos, com o fabricante britânico de motores produzindo o “Trent 1000 TEN” com melhor consumo de combustível do que o Pacote C e era uma opção altamente competitiva contra o popular motor GEnx da GE.

Vista frontal do ventilador de admissão do motor Rolls Royce Trent 1000 do
Boeing 787 Dreamliner (Foto: Maxene Huiyu/Shutterstock)
Infelizmente, muito além das expectativas, os clientes notaram lâminas de motor corroídas e rachadas em seus Dreamliners equipados com Trent 1000. No entanto, a Rolls-Royce conseguiu resolver seus problemas resolvendo o problema de sulfetação das pás da turbina de pressão intermediária e redesenhando as pás da turbina de alta pressão. Notavelmente, a Rolls-Royce conseguiu superar todo o acúmulo de 787 aterrados em um ano.

3. Ajuste de fabricação de asas


De acordo com várias redes de notícias dos EUA, em março de 2014, a Boeing informou que foram encontradas rachaduras em exemplares de produção atual da aeronave widebody. Confiante de que o problema de produção não afetava nenhum Dreamliner em operação na época, algo precisava ser feito em relação às dezenas de modelos que ainda não estavam no final do processo de fabricação.

A Mitsubishi Heavy Industries, responsável pela fabricação das asas compostas de carbono no Japão, foi a empresa que avisou a fabricante de aviões com sede em Washington. Percebeu-se que algo em seu processo de fabricação foi a causa raiz das rachaduras encontradas em uma série de amarrações nas nervuras da asa do 787. Algumas semanas de trabalho foram gastas inspecionando as asas suspeitas de estarem danificadas enquanto o processo de fabricação japonês poderia ser alterado.

4. Peças totalmente novas em titânio


Embora o 787 seja composto por 80% de compósitos em volume, isso representa apenas cerca de 50% em peso. Outros 15% do peso vêm na forma de titânio, um metal incrível, mas exorbitante. Para economizar uma quantia significativa de dinheiro, em 2017, a Boeing fez parceria com a norueguesa Norsk Titanium para encontrar uma solução para suas necessidades de titânio.

Ao utilizar peças metálicas impressas em 3D, a Boeing estimou uma economia de custos de até US$ 3 milhões por Dreamliner. A impressão 3D não é uma solução inovadora para a indústria, com empresas como a GE utilizando este processo de fabricação para reduzir 300 peças de motor para apenas sete . Curiosamente, embora não relacionado, a Boeing teve um problema com outras peças de titânio encontradas em uma das seções da fuselagem do 787. Esses componentes foram fornecidos por outro fornecedor terceirizado, que confirmou o problema após uma auditoria realizada pelo fabricante de aeronaves com sede nos EUA.

5. Melhorando a comunhão em toda a família


A fim de aumentar o valor do produto para os operadores, os fabricantes de aeronaves tentam manter algum tipo de semelhança entre as famílias de aviões comerciais. Isto ajuda as companhias aéreas a poupar tempo e dinheiro, uma vez que os pilotos e tripulantes poderão trabalhar facilmente em mais de um tipo ou variante específica de aeronave.

Os Boeings 787 -8, -9 e -10 voando em formação (Foto: Boeing)
Conforme relatado pela Leeham News and Analysis, os Boeing 787-9 e -10 foram projetados com uma impressionante semelhança de 95%. No entanto, o -8, que veio antes dos outros, tinha muito menos pontos em comum. Para corrigir isso, a Boeing implementou ajustes de fabricação em 2018 que veriam o design estrutural da variante Dreamliner mudar para garantir que ela fosse construída de maneira muito semelhante às outras duas. Como resultado, os clientes poderiam facilmente operar duas ou três variantes sem muita reflexão.

Com informações de Simple Flying, Reuters, NBC News e Leeham News e Analysis

terça-feira, 26 de setembro de 2023

As dez maiores tragédias aéreas do mundo deixaram 3.772 pessoas mortas

Nos 10 mais trágicos acidentes aéreos ocorridos no mundo, nada menos do que 3.772 pessoas perderam a vida. Em duas dessas tragédias, o número de mortos passou dos 500. 

Acidente de Tenerife



Foram as que envolveram o choque de dois aviões no aeroporto de Gran Canária, nas Ilhas Canárias espanholas, em 27 de março de 1977. Houve a explosão uma bomba no aeroporto de destino e os voos foram desviados para um aeroporto menor, onde em meio a uma terrível confusão, os dois Boeing's 747, da KLM Royal Dutch Airlines e da Pan American World Airways se chocaram. De um dos aviões morreram todos os 248 ocupantes. No outro aparelho, morreram 335 dos 396 ocupantes.

Voo 123 da JAL



O outro desastre com mais de 500 mortos (exatamente 520 vítimas fatais), ocorreu em em 12 de Agosto de 1985, no Japão, com um Boeing da Japan Air Lines, que ia de Tóquio com destino a Osaka. Pouco depois de decolar, o aparelho traseiro que controla a pressão explodiu, causando sérios danos a aeronave. O avião perdeu altitude e caiu. A explosão matou 520 dos 524 ocupantes.

Os demais acidentes mais graves da história foram esses a seguir:


Colisão aérea de Charkhi Dadri



Em 12 de Novembro de 1996, na Índia, a colisão entre duas aeronaves na região de Charkhi Dadri. O Boeing 747-100B da Saudi Arabian Airlines e o Ilyushin Il-76, da Kazakhstan Airlines, se chocaram e mataram todos a bordo em ambos os voos. Investigações mostraram que houve falhas na comunicação entre as duas aeronaves e que o avião da Kazakhstan Airlines, em determinado momento. O total de mortos nos dois aviões foi de 349 pessoas.

Voo 981 da Turkish Airlines - Acidente de Ermenonville



Na França, em 1974, 346 pessoas morreram, quando o voo 981 da Turkish Airlines, que fazia a rota Istambul para Londres, caiu na região de Paris, matando os seus 346 ocupantes.

Voo 182 da Air India



O voo 181/182 da Air-India chegou em Toronto, no Canadá, depois de voar por Bombaim, Delhi e Frankfurt. Ali, ele sofreu um pequeno reparo na asa esquerda. O voo partiu então para Montreal, onde chegou em segurança. O voo mudou de 181 para 182 e se preparou para voltar para Bombaim, com paradas em Londres e Delhi. Em 23 de junho, no caminho de Londres, no Oceano Atlântico, uma explosão aconteceu no compartimento de carga. O avião se dividiu em dois antes de atingir o mar e matar todos os 329 passageiros. A explosão foi causada por uma bomba. Reportagens mostraram que um passageiro despachou a sua bagagem, mas não embarcou. A suspeita é que extremistas Sikh, que lutam na Índia, tenham promovido o atentado.

Voo 163 da Saudia Arabian Airlines



Em 1980, na Arábia Saudita, um avião da Saudia Arabian Airlines que fazia um voo doméstico entre o Riyadh International Airport e o Jeddah-King Abdulaziz International Airport, pegou fogo, fez um pouso forçado de emergência e morreram todos os seus 301 ocupantes.

Voo 655 da Iran Air



No dia 3 de julho de 1988, o voo civil da Iran Air, sobrevoando o Oceano Índico, que viajava entre Teerã, no Irã, e Dubai, nos Emirados Árabes, quando foi atingido por um míssil americano, disparado por um cruzador da Marinha americana, o USS Vincennes. O avião pertenmcia à Iran Air, viajava de Teerã, no Irã, a Dubai, nos Emirados Árabes. Todos os seus 290 ocupantes morreram.

Acidente da Guarda Revolucionária do Irã



Em 19 de fevereiro de 2003, o Ilyushin Il-76, do exército iraniano, caiu na região montanhosa de Kerman, matando os seus 275 ocupantes. As causas do acidente ainda não são claras. As condições do tempo eram péssimas no momento do acidente, o que pode ter causado problemas na aeronave. Tudo parece crer que se tratou de atentado terrorista. O grupo extremista Abu-Bakr, sem muitos detalhes, disse que tinha sido o responsável pelo acidente. Morreram todos os 275 ocupantes da aeronave.

Voo 191 da American Airlines



Em 1979, nos Estados Unidos, o voo 191 da American Airlines voaria em 25 de maio do Aeroporto Internacional O'Hare, em Chicago, para Los Angeles. Assim que decolou em Chicago, ele perdeu o controle e caiu, matando os 271 passageiros e outras duas pessoas no solo.

Voo 007 da Korean Airlines



Em 1983, a 1º de Setembro, no Oceano Pacífico o voo 007 da Korean Airlines, entre Nova York e Seul, passava pelo Mar do Japão quando foi atingido por mísseis de um navio da Marinha soviética. Todos os 269 passageiros morreram na hora. Entre os passageiros, estava o congressista americano Lawrence McDonald, o que causou uma crise diplomática entre os dois rivais da Guerra Fria. Os soviéticos negaram, no começo, qualquer envolvimento com o acidente. Depois, admitiram o acidente, mas alegaram que o avião tinha invadido o espaço aéreo deles, na região do Alasca.

Via Meio Norte, Site Desastres Aéreos e Blog Notícias e Histórias sobre Aviação


O que são e como funcionam os ailerons?

Ailerons da asa de um Boeing 747 (Foto via Aeroin)
Quando Wilbur e Orville Wright projetaram o primeiro avião motorizado bem-sucedido, eles sabiam que teriam que controlar a elevação das asas para manter o nível do avião. Para rolar o avião para a esquerda e para a direita, eles criaram um sistema para deformar o formato das asas. Para controlar a dobra da asa, o piloto tinha que balançar os quadris para uma direção ou outra! Graças a Deus, foi encontrada uma maneira mais conveniente de operar grandes aviões, ou então os pilotos teriam que ser ótimos dançarinos!

Como funcionam os ailerons?


A maioria dos aviões modernos não dobra suas asas - em vez disso, eles usam ailerons. Os ailerons são os controles de vôo que fazem o avião girar em torno de seu eixo longitudinal.


Os ailerons funcionam criando mais sustentação em uma asa e reduzindo a sustentação na outra, de modo que a asa com menos sustentação desce e aquela com mais sustentação sobe. O piloto move os ailerons e gira o avião girando a roda de controle para a esquerda ou direita - não é necessário dançar.

O que são Ailerons?


Os ailerons são um dos três principais controles de voo em um avião. Cada um desses três controles do piloto muda a direção em que o avião está voando. Eles movem o avião em torno de um dos três eixos de voo. Os três controles de vôo e eixos de voo são:
  • Os ailerons controlam a rotação do avião em torno do eixo longitudinal (do nariz à cauda).
  • O profundor controla a inclinação do avião em torno do eixo lateral (ponta de asa a ponta da asa) - ele move o nariz para cima e para baixo.
  • Finalmente, o leme controla a guinada do avião em torno do eixo vertical - ele move o nariz para a esquerda e para a direita.
Eixo de voo e controles de voo
Os controles de voo, incluindo ailerons, são abordados no Capítulo 6 do Manual do Piloto de Conhecimento Aeronáutico da FAA.

Como funcionam os ailerons em um avião?


Para entender como funcionam os ailerons, você deve primeiro entender um pouco sobre como uma asa faz a sustentação.

A asa de um avião é uma forma de aerofólio, que força o ar que passa acima da asa a se mover mais rápido do que o ar abaixo dela. Esse ar que se move mais rápido exerce menos pressão. A pressão mais alta abaixo da asa tentou preencher a pressão mais baixa e, como a asa está no caminho, levanta o avião.

Vista da asa pela janela do avião
Ao voar, se um piloto quiser fazer mais sustentação, ele precisa fazer pelo menos uma de duas coisas. Eles precisam voar mais rápido, o que aumentará a diferença entre as pressões mais altas e mais baixas, fazendo mais sustentação. Ou eles precisam aumentar o ângulo de ataque .

O ângulo de ataque é o ângulo entre a corda da asa e o vento relativo. Quando é aumentada, a asa faz mais sustentação. A linha de corda é simplesmente uma linha imaginária desenhada da borda de ataque à borda de fuga do aerofólio.

Os ailerons funcionam movendo a linha do acorde. Quando o aileron, montado no bordo de fuga da asa, se move para baixo, ele muda a linha do acorde. O resultado é que o ângulo de ataque é aumentado na localização do aileron. Essa área da asa faz mais sustentação do que o resto.

Como os ailerons são montados nas pontas das asas externas, uma pequena quantidade de sustentação extra fará com que o avião gire ou role para longe do aileron lançado.

Rolamento de um Tupolev Tu-334
Do outro lado do avião, o aileron oposto se move para cima. Essa mudança reduz o ângulo de ataque daquela asa, fazendo menos sustentação do que a asa circundante. A ponta da asa cai. Quando combinado com o movimento do outro aileron, o avião rola rapidamente para um lado ou outro.

Do ponto de vista do piloto, quando o manche é movido para a esquerda, o aileron esquerdo deve subir e o outro descer. Na curva à direita, o aileron direito sobe e o esquerdo desce.

Guinada adversa


Para o projetista de aviões, o grande problema dos ailerons está fundamentalmente na maneira como funcionam.

Sempre que a sustentação é aumentada aumentando o ângulo de ataque, mais arrasto é criado também. Esse arrasto é um subproduto da sustentação e está sempre lá. É chamado de arrasto induzido.

No caso dos ailerons, o ângulo de ataque só é aumentado na ponta da asa que sobe. Essa força fará com que o nariz do avião se afaste da curva. Uma vez que essa força de guinada não está ajudando o piloto a fazer uma curva, é conhecida como guinada adversa.

Todos os ailerons dão guinadas adversas, mas em alguns aviões, não é muito perceptível. Os designers descobriram algumas maneiras bastante inteligentes de minimizá-lo. Por exemplo, alguns ailerons são projetados para adicionar arrasto ao lado elevado do aileron também. O resultado é que ambos os lados causam arrasto, então o nariz não se move em nenhuma direção.

A guinada adversa é a principal razão pela qual os aviões precisam de lemes. O leme é o controle de voo que abre o nariz do avião para a esquerda ou para a direita.

Para executar corretamente uma curva em um avião, o piloto rola o avião com o volante ou manche e aplica pressão no pedal do leme na mesma direção.

Cockpit de uma aeronave DC 3

Ailerons x flaps


Muitas pessoas confundem ailerons com flaps. Ambos os controles ficam nas bordas traseiras das asas e são semelhantes, mas funcionam de maneira diferente e são usados ​​para coisas diferentes.

Os flaps também funcionam alterando a linha da corda da asa para aumentar o ângulo de ataque. Os flaps se estendem igualmente em cada lado do avião, de modo que a sustentação é aumentada uniformemente ao longo da envergadura. Eles são usados ​​para ajudar o avião a voar mais devagar e ajudar os pilotos a fazerem aproximações íngremes dos aeroportos sem aumentar a velocidade no ar.

Os flaps são um controle de voo secundário - eles são usados ​​para controlar melhor a sustentação e tornar o trabalho do piloto um pouco mais fácil. Na maioria dos aviões, os flaps não são necessários para um vôo seguro, mas ajudam de várias maneiras. Os flaps são estendidos em etapas incrementais e, uma vez configurados, permanecem estacionários até que a configuração do flap seja aumentada ou diminuída.

Os ailerons, por outro lado, são controles primários de voo necessários para controlar a aeronave. Eles estão localizados nas partes externas das asas. Quando um desce, o outro lado sobe. Eles operam apenas quando os controles são movidos na cabine, da mesma forma que os pneus se movem quando o motorista move o volante de um carro.

Uma boa visão das superfícies de controle de um avião comercial. Da esquerda para a direita,
você pode ver o aileron, flap externo, flaperon e flaps internos
Alguns planos combinam os dois controles em uma superfície de controle. Flaperons são flaps e ailerons combinados. Eles são encontrados em alguns aviões e, embora a ideia pareça complicada, é muito simples. Todo o trabalho é feito no projeto do avião, portanto, do cockpit, não há diferença para o piloto. Flaperons são mais frequentemente vistos em aviões de passageiros porque são projetados para voar muito rápido e muito devagar.

Tipos de Ailerons


Existem três outros tipos principais de ailerons, além dos flaperons mencionados acima.

Os ailerons diferenciais são projetados para operar em diferentes quantidades, de modo que o aileron elevado é colocado mais para cima do que os ailerons reduzidos são descartados. Isso cria o arrasto do parasita na asa que viaja para baixo, o que é igual ao arrasto induzido da asa elevada. Não elimina a guinada adversa, mas ajuda.

Os ailerons de fraise são projetados de modo que uma pequena parte da superfície de controle também desvia para fazer arrasto adicional quando o aileron levantado sobe. Novamente, este projeto adiciona arrasto do parasita à ponta da asa que se desloca para baixo para igualar o arrasto induzido feito no outro lado.

O tipo final de projeto de aileron é quando os controles entre os ailerons e o leme estão vinculados. Quando o piloto aplica ailerons à esquerda ou à direita, uma série de molas também aplica pressão do leme nessa direção. A guinada adversa ainda está lá, mas a ligação ajuda o piloto a contê-la aplicando um pequeno leme.

Edição de texto e imagens por Jorge Tadeu

Vídeo: Mayday Desastres Aéreos - Garuda Indonesia 152 - Curva Letal


Aconteceu em 26 de setembro de 1997: Garuda Indonesia 152 - Uma volta errada leva ao desastre e deixa 234 mortos


No dia 26 de setembro de 1997, um voo doméstico lotado de Jacarta para Medan com a transportadora de bandeira da Indonésia Garuda saiu do curso pouco antes de pousar, e o Airbus A300 bateu em uma colina 48 km ao sul do aeroporto, matando todas as 234 pessoas a bordo. 

O voo foi levado à destruição por uma longa sequência de coincidências bizarras e irritantemente menores falhas de comunicação que conspiraram para dar aos pilotos um mapa mental que diferia consideravelmente da situação real.


O voo 152 da Garuda Indonesia era um voo regular da capital da Indonésia, Jacarta, para a cidade de Medan, na ilha de Sumatra, operado pelo Airbus A300B4-220, prefixo PK-GAI (foto acima), de fuselagem larga. 

No dia 26 de setembro de 1997, 222 passageiros e 12 tripulantes embarcaram no avião, que partiu de Jacarta no horário programado às 11h41, horário local. 

Grande parte da Indonésia estava naquela época envolvida na chamada “Névoa do Sudeste Asiático de 1997”, uma nuvem de fumaça causada por incêndios florestais acidentais e agricultura de corte e queima. 

Em baixas altitudes perto de Medan, a fumaça restringia a visibilidade a apenas 500m. Embora fosse baixo o suficiente para que o Aeroporto Internacional de Polonia de Medan pudesse fechar sua pista única se assim desejasse, as autoridades do aeroporto optaram por não fechar. 

Na preparação para deixar Jacarta, o capitão do voo 152 Rahmo Wiyogo decidiu levar mais combustível na expectativa de atrasos devido à visibilidade.


O voo progrediu normalmente até que o avião estivesse se aproximando de Medan em meio à densa fumaça. A pista em Medan está alinhada de sudoeste a nordeste. 

Aproximando-se do sul, existem dois caminhos de descida possíveis para a pista 05: do lado esquerdo ou do lado direito (veja acima). As cartas de aproximação dos pilotos mostravam apenas a aproximação do lado esquerdo, e o capitão Wiyogo, um piloto experiente que voou para Medan inúmeras vezes, só havia usado esta aproximação. 

No entanto, um voo decolando de Medan foi liberado para partir pela pista 23 (voltado para sudoeste) seguido por uma curva para o norte. Os controladores de tráfego aéreo, portanto, não poderiam ter o voo 152 se aproximando pelo lado esquerdo do aeroporto porque entraria em conflito com o tráfego de partida. Em vez disso, eles decidiram encaminhar o Garuda 152 através da abordagem menos comum do lado direito.


Quando o controlador de tráfego aéreo liberou o voo para sua abordagem, ele acidentalmente usou o indicativo errado, transmitindo "Merpati um cinco dois, você er... vire à esquerda rumo dois quatro zero vetorização para interceptar a pista ILS zero cinco do lado direito, tráfego agora er... rolando.” 

Na verdade, havia um voo naquela área com a companhia aérea indonésia Merpati Nusantara com o mesmo número de voo, 152, naquela área; este foi provavelmente o motivo do erro do controlador. 

Mas porque ele abriu sua transmissão com “Merpati” em vez de “Indonésia” ou “Garuda”, a tripulação ignorou, presumindo que não era para eles. Ao não receber resposta, o controlador percebeu seu erro e perguntou: "Indonésia um cinco dois, você leu?" 

Desta vez, o voo 152 atendeu e pediu ao controlador para repetir a instrução. Mas quando ele repetiu, ele omitiu um elemento crucial: “do lado direito”. Na ausência dessa informação, a tripulação presumiu que eles estavam voando na mesma aproximação de sempre - do lado esquerdo. 

Isso levou o Capitão Wiyogo a comentar que a curva à esquerda instruída parecia precoce, porque teria sido se eles estivessem voando pela abordagem do lado esquerdo. Ele pediu ao ATC que confirmasse que o voo estava livre da “área montanhosa” e o controlador afirmou que sim.


Cerca de dois minutos após a curva à esquerda, o controlador instruiu o voo 152 a virar à direita para um rumo de 046 graus para interceptar a trajetória de planeio na pista. O primeiro oficial Tata Zuwaldi reconheceu a instrução, mas o capitão Wiyogo, que pilotava o avião, virou à esquerda em vez de à direita! 

Ele aparentemente ainda acreditava que estava voando pela abordagem do lado esquerdo, que exigia uma curva à esquerda neste ponto do voo, e instintivamente virou à esquerda, embora o controlador tivesse dito a eles para virar à direita. 

Antes que o primeiro oficial Zuwaldi pudesse notar o erro, o capitão Wiyogo disse que estava superaquecido e pediu a Zuwaldi que ajustasse o ar condicionado, fazendo com que ele desviasse o olhar dos instrumentos.


Depois de virar à esquerda por 30 segundos, o primeiro oficial Zuwaldi olhou para seus instrumentos e observou que o avião estava virando na direção errada. 

“Vire ... vire à direita”, disse ele ao capitão Wiyogo, fazendo com que Wiyogo perguntasse ao controlador: “Indonésia um cinco dois, confirme virar à esquerda ou virar à direita rumo a zero quatro seis?” 

O controlador repetiu a instrução para virar à direita e Wiyogo começou a inverter a direção de sua curva original errada. Mas o controlador usava um radar lento e desatualizado que só era atualizado a cada doze segundos. 

Vendo o avião ainda virando à esquerda, ele perguntou: “Um-cinco-dois confirma que você está fazendo [sic] virar à esquerda agora?” 

Confuso com a transmissão, o capitão Wiyogo respondeu: "Estamos, errr ... virando agora." 

Possivelmente interpretá-lo como significando "estamos virando neste momento", em vez de "agora estamos virando para a direita”, o controlador respondeu: “Um, cinco, dois, ok, continue virando à esquerda agora”. 

Mas naquele momento o avião estava virando à direita. Durante todo esse tempo, o avião ainda estava descendo. O voo 152 não havia sido autorizado a descer abaixo de 2.000 pés, então esta deveria ser a altitude em que o piloto automático cortaria a descida e nivelaria o avião. 

Mas isso não aconteceu, e o avião continuou descendo - presumivelmente os pilotos cometeram algum erro ao inserir o nível de voo desejado no piloto automático (talvez 010 ou 002 em vez de 020). E naquele momento, confusos com as instruções conflitantes do controlador sobre para que lado virar, os pilotos não perceberam que haviam descido abaixo de 2.000 pés. Pior ainda, eles estavam fora do curso e voando em direção a um terreno montanhoso próximo a 1.500 pés acima do nível do mar. 


Quando o controlador instruiu o avião a continuar virando à esquerda, o capitão Wiyogo inicialmente se endireitou e perguntou: “Confirma virar à esquerda? Estamos começando a virar agora mesmo.” 

O controlador começou a responder e disse: “Aha! Ok, ok”, possivelmente tendo descoberto o que estava acontecendo. 

De repente, o primeiro oficial Zuwaldi apontou que eles estavam descendo. O capitão Wiyogo se desculpou, aplicou força total e começou a puxar para cima, mas, aparentemente do nada, uma crista se ergueu bem na frente deles em meio à fumaça. 

No último segundo, o controlador contatou o voo e os instruiu a virar à direita rumo a 015 graus - mas isso era muito pouco, muito tarde. O controlador estava distraído tentando descobrir o que o avião estava fazendo e para que lado estava virando, e ele também não percebeu que estava descendo em direção ao terreno. 

Pior ainda, o sistema de alerta de proximidade do solo do avião, que deveria ter soado um alarme, nunca disparou. A razão exata para isso permanece obscura.


Apenas cinco segundos depois que o Capitão Wiyogo aplicou força total, a ponta da asa direita atingiu árvores no topo de uma crista a 1.550 pés de altitude, arrancando 1,5 metro da asa, bem como parte de um aileron. 

Alguém, provavelmente o primeiro oficial Zuwaldi, gritou “Sobe! Puxar para cima!" 

Mas o avião danificado e incontrolável rapidamente rolou para a direita e perdeu sustentação antes de se chocar contra uma ravina a cerca de 500 metros além do cume, obliterando a aeronave e matando instantaneamente todas as 234 pessoas a bordo. 


Os destroços pulverizados pararam sobre uma ampla área de terraços de arroz abandonados e árvores quebradas, deixando pouco que fosse reconhecível. A destruição foi tão completa que nem mesmo houve um incêndio, e muitas peças da aeronave foram empurradas à força para as profundezas da encosta lamacenta.


Os investigadores inicialmente tiveram dificuldade em trabalhar no local do acidente, que era quente, abafado, enfumaçado, escorregadio e rodeado por curiosos com pouca segurança. 

Demorou quase um mês para encontrar as caixas pretas, mas depois que foram localizadas, a trágica sequência de eventos começou a ficar clara.
  1. A fumaça limita a visibilidade a 500 metros. 
  2. A tripulação insere incorretamente sua altitude mínima autorizada no piloto automático. 
  3. Outro avião quer decolar, evitando que o voo 152 faça a aproximação padrão do lado esquerdo. 
  4. Ao dar instruções de aproximação do voo 152, o controlador acidentalmente usa um indicativo de uma aeronave anterior que tinha o mesmo número de voo, fazendo com que a tripulação ignore a transmissão. 
  5. Quando o controlador repete as instruções com o indicativo correto, ele negligencia a especificação de que a abordagem não é padrão. 
  6. O capitão Wiyogo ainda acredita que está voando pela abordagem padrão do lado esquerdo quando o controlador está lhe dando instruções para concluir a abordagem não padrão do lado direito. 
  7. O controlador instrui o voo a virar à direita, mas Wiyogo instintivamente vira à esquerda como se estivesse completando a aproximação do lado esquerdo. O avião agora está fora de curso. 
  8. O primeiro oficial Zuwaldi não percebe a curva incorreta porque está ajustando o ar condicionado do avião. 
  9. Quando a tripulação percebe o erro e começa a virar à direita, a tela do radar do controlador é muito lenta para atualizar e não pode exibir os movimentos do avião em tempo real. O avião agora está voando em direção a um terreno montanhoso. 
  10. Devido ao atraso de tempo, o controlador não tem uma imagem clara dos movimentos do voo. Ele interpreta mal a transmissão de Wiyogo e confunde os pilotos, dizendo-lhes para “continuarem virando à esquerda” quando estiverem virando à direita. 
  11. Na confusão, os pilotos falham em monitorar sua altitude e descem abaixo de 2.000 pés perto de terrenos elevados. 
  12. O controlador está distraído e também não percebe que o avião está muito baixo. 
  13. O aviso de proximidade do solo não dispara, deixando os pilotos com tempo insuficiente para evitar o cume da montanha. 
Na ausência de quase qualquer um desses elos da corrente, o acidente não teria ocorrido.


Também foi descoberto que o capitão Wiyogo poderia facilmente ter sido confundido pelos instrumentos de voo. O particular Airbus A300 usado neste voo tinha instrumentos principalmente digitais, exceto seu equipamento de navegação, que era analógico. 

Isso porque era uma versão anterior que a Airbus havia atualizado retroativamente com alguns instrumentos digitais de cabine para ver se as companhias aéreas preferiam. Mas o Capitão Wiyogo havia sido treinado em uma versão posterior do A300 que tinha apenas instrumentação digital, e havia diferenças significativas na leitura dos dois tipos de instrumentos. 


Os investigadores questionaram se seu treinamento com instrumentos analógicos era suficiente para evitar que ele perdesse a consciência situacional ao lançar olhares rápidos para eles durante situações estressantes. Se um esforço extra fosse necessário para ele ler seus instrumentos de navegação,  isso poderia explicar por que ele não tinha um mapa mental correto de sua posição.


Em seu relatório final, os investigadores fizeram 14 recomendações de segurança. Eles solicitaram que o aeroporto de Polonia em Medan atualizasse seu radar para que ele se atualizasse mais rapidamente; que eles instalem um Sistema de Alerta de Altitude Segura Mínima que alertaria os controladores quando um avião estiver muito perto do terreno; e que eles consideram a contratação de controladores adicionais. 


Aos reguladores, eles solicitaram que os aeroportos sejam obrigados a fechar quando a visibilidade for inferior aos 800 metros mínimos (no momento do acidente, isso era opcional na Indonésia); aquele treinamento em torno da fraseologia padrão é reforçado; e que os controladores sejam submetidos a treinamento em simulador para situações de emergência. 


E, finalmente, eles solicitaram que as companhias aéreas realizassem verificações dos sistemas de alerta de proximidade do solo de seus aviões de acordo com as instruções do fabricante, e que as companhias aéreas evitem usar o mesmo número de voo de outra companhia aérea operando na mesma região.


Embora o voo 152 da Garuda Indonésia seja apenas um de muitas dezenas de acidentes graves categorizados como Voo Controlado no Terreno, quase todos ocorrendo por causa de um erro de navegação ou uma taxa de descida imprópria, este acidente em particular se destaca por causa da cadeia excepcionalmente longa de eventos menores que levaram ao acidente. 

Cada erro e falha de comunicação são tão pequenos e, ao mesmo tempo, irritantemente consequentes. E pensar que, se não houvesse outro voo 152 voando para Medan naquele dia, toda a lamentável sequência de eventos poderia ter sido evitada! Se ao menos a tela do radar tivesse sido atualizada alguns segundos mais rápido! 

Em vários pontos, 234 vidas podem ter dependido da presença ou ausência de uma única palavra. Mas, infelizmente, no final os dados rolaram para o lado errado.

Edição de texto e imagens por Jorge Tadeu (Site Desastres Aéreos)

Com Admiral Cloudberg, Wikipedia, ASN - Imagens são obtidas do Bureau of Aircraft Accidents Archives, Wikipedia, Google e National Transportation Safety Committee (KNKT). Clipes de vídeo cortesia de Mayday (Cineflix).

Aconteceu em 26 de setembro de 1994: O desastre aéreo de Vanavara, na Rússia


O desastre aéreo de Vanavara ocorreu em 26 de setembro de 1994, quando um Yakovlev Yak-40, operado pelo avião regional russo Cheremshanka Airlines, caiu na margem de um rio perto de Vanavara, na Rússia. Todos os 24 passageiros e 4 membros da tripulação morreram.

A equipe de investigação russa concluiu que o erro do piloto foi a causa do acidente. As más condições meteorológicas obrigaram o voo a abortar várias tentativas de aterragem e a tripulação aérea falhou em manter a consciência da quantidade de combustível. Isso resultou na queda da aeronave devido ao esgotamento do combustível.

Posteriormente, a equipe de investigação culpou o aeroporto por "não relatar as condições meteorológicas" em tempo hábil para a tripulação.

Aeronave



A aeronave envolvida era o Yakovlev Yak-40, prefixo RA-87468, da Cheremshanka Airline (foto acima). O avião foi fabricado na planta de aviação de Saratov em 11 de novembro de 1974 com o número de série 9441337. Foi registrado novamente como CCCP-87468 e entregue ao Ministério da Aviação Civil da URSS. 

Em 16 de novembro, a aeronave foi enviada à Administração de Aviação Civil do Cazaquistão. Quatorze anos depois, em 16 de novembro de 1988, o 87468 era operado pela Krasnoyarsk Civil Aviation Administration. Cheremshanka Airlines posteriormente recuperou o Yak-40 em 1993. O tempo total de operação da aeronave foi de 22.203 horas de voo e um ciclo de voo de 17.220 ciclos.

Voo e acidente


O voo foi operado pela Cheremshanka Airlines, uma companhia aérea regional com base no aeroporto de Krasnoyark Cheremshanka. No momento do acidente, o Yakovlev Yak-40 transportava 24 passageiros, incluindo 21 adultos e 3 crianças, e 4 tripulantes. O piloto do vôo foi o Capitão Anatoliy A. Danilov e o copiloto foi o Primeiro Oficial Anatoliy G. Shcherbakov. Também a bordo estava o mecânico de voo Mikhail N. Shurpatov e um comissário de bordo.

As condições meteorológicas começaram a piorar enquanto a aeronave estava a caminho do Aeroporto de Tura, mas o ATC em Tura não informou à tripulação de voo sobre as mudanças nas condições. A tripulação foi, portanto, apanhada de surpresa pelo mau tempo quando chegaram a Tura. Devido à visibilidade limitada, a tripulação perdeu o aeroporto. 

Após três tentativas fracassadas de pouso, a tripulação decidiu desviar para o campo de pouso de Vanavara, um pequeno aeroporto a cerca de 453 quilômetros do Aeroporto de Tura.

A 41 quilômetros de Vanavara, a uma altitude de 3.000 metros, os motores dos aviões pegaram fogo quando o suprimento de combustível se esgotou. A tripulação decidiu então fazer um pouso de emergência em um pântano. 

Dois helicópteros e uma aeronave An-24 tentavam ajudar, sugerindo a direção do Yak-40 para o pântano onde seria possível fazer um pouso de emergência. A tripulação decidiu então pousar na margem do rio Chamba.

O capitão Danilov ordenou que o primeiro oficial Shcherbakov e o mecânico de voo Shurpatov olhassem pela janela e vissem se conseguiam encontrar o rio Chamba. O trem de pouso foi estendido pela tripulação e iniciou sua descida inicial. 

A uma velocidade de 235 km/h, a aeronave cortou copas de árvores e a asa direita se desprendeu da fuselagem. O Yak-40 então rolou fortemente para a direita e bateu na margem do rio Chamba invertida, com a parte frontal na água e a empenagem apoiada na costa. 

Não houve explosão ou incêndio, pois a aeronave ficou sem combustível, mas o impacto não sobreviveu. Todas as 28 pessoas a bordo morreram.


Imagens do local do acidente, tiradas de um helicóptero, mostraram que a cabine do Yak-40 foi completamente destruída. A fuselagem foi severamente esmagada enquanto a cauda estava relativamente intacta. Vítimas do acidente, junto com seus pertences, estavam espalhados em uma grande área gramada perto dos destroços.

Investigação


A investigação foi prejudicada pelo fato de que a gravação da conversa da tripulação com o ATC no Aeroporto de Tura foi perdida de alguma forma antes do início da investigação oficial. AM Chernov, o proprietário da Cheremshanka Airlines, ordenou que antes que os registros fossem transferidos para a equipe de investigação, ele deveria ouvi-los primeiro. Depois que os registros foram transferidos para a equipe de investigação russa, as gravações não foram encontradas, o que poderia indicar uma possível sabotagem por Chernov.


A investigação constatou que havia várias deficiências graves na organização do trabalho de voo na Cheremshanka Airlines, bem como na cultura de segurança de voo no controle de tráfego aéreo no aeroporto de Tura. Funcionários do Tura ATC escreveram cartas e em reuniões sindicais levantaram a questão de que a desorganização e a falta de uma cultura de segurança eram endêmicas no Tura ATC. 

No entanto, a administração da Tura Aviation Enterprise não eliminou essas deficiências, e o departamento de transporte aéreo regional de Krasnoyarsk não controlou seu trabalho adequadamente.


Conclusão da equipe de investigação russo


A comissão que investigou o incidente concluiu que a catástrofe ocorreu devido a uma série de fatores:
  • A tripulação calculou incorretamente o suprimento de combustível necessário para o voo;
  • O navegador de serviço do Aeroporto Cheremshanka, VA Tsurikov, não preparou adequadamente a tripulação para o voo;
  • O despachante não informou a tripulação em tempo hábil sobre a forte deterioração do tempo no Aeroporto de Tura;
  • Com a escassez de combustível a bordo, a tripulação optou por desviar para Vanavara, que ficava a mais de quatrocentos quilômetros de distância, quando o aeródromo de Baykit estava cem quilômetros mais perto (354 quilômetros); e
  • Ao se aproximar em Vanavara, a tripulação escolheu incorretamente o nível de vôo, bem como o ponto de início da descida.
Clique AQUI e assista uma matéria sobre o acidente no Youtube.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipédia, ASN e baaa-acro