domingo, 4 de abril de 2021

Aconteceu em 4 de abril de 1994: Um exercício de auto-engano - A queda do voo 433 da KLM Cityhopper


No dia 4 de abril de 1994, um avião Saab 340B com destino ao País de Gales deu meia-volta e retornou a Amsterdã depois que os pilotos relataram um problema com um dos motores. Mas apenas alguns segundos antes de pousar, os pilotos repentinamente perderam o controle do avião, que rolou incontrolavelmente para a direita antes de cair de lado em um campo lamacento. 

O turboélice deu uma cambalhota e parou de lado, matando três e ferindo gravemente nove das 24 pessoas a bordo. Mas o que causou essa sequência de falhas mecânicas aparentemente crescentes? 

Para surpresa dos investigadores holandeses, um exame exaustivo não revelou nada de errado com o avião, exceto por uma única luz de advertência com defeito. Foi essa pequena falha que acionou uma série de erros em cascata em que os pilotos não conseguiram reconhecer as consequências de suas próprias entradas, convencendo-se de que algo estava seriamente errado com seu avião perfeitamente operacional - e eles nunca consideraram o curso de ação simples e óbvio que teria resolvido todos os seus problemas.

A KLM Cityhopper é uma subsidiária integral da transportadora de bandeira holandesa KLM, que realiza principalmente voos regionais para complementar os serviços internacionais de longa distância da KLM. Com uma grande frota de pequenos turboélices bimotores, a KLM Cityhopper oferece voos para cidades em toda a Europa Central e Ocidental em rotas populares entre viajantes a negócios e passageiros. 

O Saab 340B, PH-KSH, envolvido no acidente
Um deles foi o voo 433, um serviço regular entre Amsterdã e Cardiff, no País de Gales. Para esta rota no dia 4 de abril de 1994, a KLM Cityhopper forneceu o Saab 340B, prefixo PH-KSH, um turboélice construído na Suécia com espaço para 34 passageiros. 

No comando do voo estavam o capitão Gerrit Lievaart e o primeiro oficial Paul Stassen, que fizeram 1.200 e 1.300 horas respectivamente no Saab 340B. Junto a eles estavam um comissário de bordo e 21 passageiros, totalizando 24 pessoas a bordo. 


Às 14h20, horário local, o voo 433 da KLM Cityhopper decolou da pista do aeroporto Schiphol e começou a subir em direção à altitude de cruzeiro de 20.000 pés. Por cerca de dez minutos, tudo correu normal enquanto o avião sobrevoava o interior da Holanda. 

Então, a uma altitude de 16.500 pés, os pilotos foram repentinamente arrancados de sua rotina pelo som do alerta de advertência do comandante, o alarme genérico que alerta a tripulação da presença de uma falha mecânica. 

Lievaart e Stassen olharam imediatamente para o painel de advertência, onde observaram que a luz certa da pressão do óleo do motor estava acesa. “Pressão correta do óleo do motor”, anunciou Stassen. "Verificar. Tome uma atitude." Stassen puxou o manual de referência rápida (QRH), que continha procedimentos sobre como reagir a todos os vários avisos que eles poderiam receber durante o voo. 

O que nenhum dos pilotos sabia era que o aviso era realmente falso - um curto-circuito no painel de controle conectado à luz de aviso da pressão do óleo do motor certa o fez acender, embora a pressão do óleo estivesse normal. Mas a lista de verificação foi projetada com essa possibilidade em mente e os ajudaria a determinar rapidamente se o aviso era real.


“Tome uma atitude... Lista de verificação de emergência... Baixa pressão do óleo do motor e da hélice, 15B”, disse o primeiro oficial Stassen, folheando o QRH. “15B... baixa pressão do óleo do motor, óleo do motor e pressão do óleo de propulsão... verificado.” 

Antes mesmo de Stassen encontrar a lista de verificação, o capitão Lievaart começou a puxar a potência do motor certo, embora isso não fizesse parte do procedimento prescrito. Muito provavelmente, Lievaart estava preocupado que deixar o motor em alta potência sem óleo suficiente poderia levar a uma falha catastrófica do motor, mas ele deveria esperar até que um problema fosse realmente verificado antes de fazer isso. 

Sem saber das ações de Lievaart, Stassen olhou para o medidor de pressão do óleo do motor correto para verificar se havia um problema. “Bem, a pressão do óleo do motor, uh ... é este, este é um pouco mais baixo do que o outro, mas está diminuindo”, disse ele. 

Como Lievaart reduziu a potência do motor certo, a leitura da pressão do óleo para aquele motor começou a diminuir. Mas nenhum dos pilotos aparentemente fez a conexão. "Sim", disse Lievaart. “Sim, está diminuindo.” Continuando a lista de verificação, Stassen disse: "Então, a seguir luz do painel de advertência da pressão do óleo do motor acesa ou pressão do óleo do motor abaixo de 30 psi". 

O medidor mostrou claramente que a pressão do óleo no motor direito, embora inferior à do motor esquerdo devido à configuração de potência inferior, estava acima de 30 psi e bem dentro da faixa normal. 

A luz de advertência e o medidor derivaram suas leituras de fontes independentes para garantir que uma falha do sistema de advertência não leve a uma leitura incorreta. “Não é esse o caso”, disse Lievaart. “Mas normalmente ainda está no verde, isso é o que é tão estranho.” "Isso é engraçado, não é? ” disse Stassen. 

De acordo com a lista de verificação, não havia problema se o medidor de pressão do óleo mostrasse uma leitura de pressão normal, mas o fato de a pressão estar diminuindo assustou os dois pilotos.

Agora eles precisavam decidir se deveriam ou não retornar ao aeroporto. “Sim, mas não vamos continuar com isso”, disse o Capitão Lievaart. “Não, não, não, não,” disse Stassen. “Pressão do óleo do motor boa, leve ou abaixo de 30 psi, não é o caso. Então, uma de duas coisas: se sim, então você pode continuar, mas se ambos estiverem ligados, então se a luz estiver ligada e a pressão estiver abaixo de 30 psi, então ele deve ser desligado”, ele anunciou, parafraseando a lista de verificação. 

“Tudo bem”, disse Lievaart, “bem, o que temos? Está acima de cinquenta? " "Sim." “E nós... a pressão de advertência é...” “Sim, a luz está acesa. Então a luz está acesa, ou abaixo de trinta, ou...”

“Continue a operação normal”, disse Lievaart. "Sim." Tendo trabalhado com a lista de verificação, eles haviam corretamente chegado à conclusão de que a presença da luz de advertência em combinação com uma leitura de pressão acima de 30 psi significava que o voo poderia continuar normalmente. 

Mas o capitão Lievaart não conseguiu restaurar o motor certo para aumentar a potência, seja porque se esqueceu, ou porque tinha dúvidas persistentes sobre o estado do motor. De qualquer forma, deixar o motor em marcha lenta era inconsistente com a decisão de continuar o voo.

No entanto, com um motor em marcha lenta (onde gera pouco ou nenhum empuxo), o avião não conseguiu subir tão rapidamente quanto antes. Com um motor suportando a maior parte da carga, a razão de subida do voo 433 começou a se deteriorar, o que rapidamente chamou a atenção do capitão Lievaart. 

Mas, em vez de restaurar o motor certo para potência de subida, ele viu a incapacidade de subir como uma confirmação de que algo estava realmente errado com o motor. Poucos segundos depois de dizer que eles poderiam “continuar a operação normal”, Lievaart mudou de ideia e anunciou que voltariam para Amsterdã. 

A pedido de Lievaart, o primeiro oficial Stassen ligou para a torre e emitiu uma “chamada PAN”, um nível abaixo de uma chamada de socorro, para informar ao controle de tráfego aéreo que eles tinham uma situação anormal que não era uma emergência. 

O voo 433 deu meia-volta e começou a voltar para o aeroporto de Schiphol. A tripulação não discutiu como um motor em marcha lenta afetaria o pouso até as 14h42, bem na descida em direção ao aeroporto. Neste ponto, Stassen comentou: “Eu também acho que, porque você está voando em voo ocioso, por isso você tem menos problemas do que poderia ter de outra forma”. “Sim”, disse o capitão Lievaart. 

Ambos os pilotos aparentemente acreditaram que seria mais fácil pousar o avião com o motor correto em marcha lenta do que seria se o desligassem por completo. No entanto, isso não era verdade. A essa altura, Lievaart havia anunciado que eles usariam os procedimentos normais para pousar com todos os motores funcionando, e ele provavelmente acreditava que deixar o motor certo em marcha lenta em vez de desligá-lo permitiria que ele usasse esse procedimento. 

Mas na realidade, na verdade, um motor ocioso causa mais dificuldades do que um motor que foi desligado. Embora o motor não produza empuxo em nenhum dos estados, ele causa mais arrasto durante a marcha lenta, o que torna o avião mais difícil de controlar. 

Para evitar isso, a tripulação deve restaurar o motor correto ao empuxo normal ou desligá-lo totalmente e usar o procedimento de pouso com um motor inoperante. Em vez disso, eles estavam efetivamente tentando pousar com um motor desligado enquanto usavam o procedimento para um pouso normal - uma combinação que teria consequências mortais. 


O capitão Lievaart logo solicitou um pouso na pista 06, que o controlador prontamente concedeu. O primeiro oficial Stassen apontou que isso os forçaria a pousar com um vento de cauda de 10 nós, o máximo permitido pelos regulamentos, mas Lievaart decidiu prosseguir de qualquer maneira. 

Para perder altitude suficiente a tempo de pousar na pista 06, Lievaart agora colocou o motor esquerdo em marcha lenta também, e na maior parte do resto da descida os motores permaneceriam nesta configuração de potência. 

A tripulação completou a lista de verificação de pouso a tempo e, logo em seguida, interceptou o planador para a pista. Agora Lievaart precisava ajustar sua potência e inclinação para manter a trajetória de planagem e a velocidade de aproximação do alvo de 125 nós. Mas com um motor em marcha lenta e um forte vento de cauda, ​​ele achou difícil fazer as duas coisas ao mesmo tempo. 

Parecia que toda vez que ele acelerava para recuperar 125 nós, ele terminava acima do plano de planagem e sempre que ele acelerava para voltar ao plano de planeio, sua velocidade cairia abaixo de 125 nós. 

Enquanto isso, o primeiro oficial Stassen observou que o piloto automático vinha aplicando compensação do leme para neutralizar o empuxo assimétrico dos motores. Com o motor esquerdo produzindo potência e o motor direito em marcha lenta, o avião tendia a guinar para a direita, o que poderia ser combatido usando o leme; até agora, o piloto automático fazia isso “ajustando” o leme para uma posição em que compensasse perfeitamente o desequilíbrio de empuxo. 

Mas os procedimentos padrão exigiam que os pilotos removessem qualquer compensação do leme aplicada pelo piloto automático antes do pouso, a fim de tornar o avião mais fácil de controlar enquanto no solo. A uma altura de 230 pés, Stassen removeu o compensador do leme - agora era responsabilidade do capitão Lievaart pisar no leme para compensar o desequilíbrio de impulso. Enquanto isso, sua velocidade no ar caiu para 119 nós, o que levou Stassen a gritar: "Cuidado com a velocidade!"

Acima: uma foto do voo 433 tirada por um observador de aviões segundos antes do acidente
Quando um avião dá uma guinada ou “deriva” bruscamente, a asa a favor do vento gera mais sustentação do que a asa a favor do vento, o que faz o avião tombar. Para manter esse banco sob controle, o capitão Lievaart virou para a esquerda usando os ailerons, que mantiveram o nível do avião, mas não corrigiram a guinada subjacente. 

Então, quando Stassen gritou “cuidado com a velocidade”, ele acelerou bruscamente o motor esquerdo para tentar recuperar a velocidade de aproximação adequada. Isso fez com que a guinada aumentasse mais, e o avião começou a se inclinar para a direita com mais vigor do que poderia ser neutralizado apenas com os ailerons. 

O voo 433 desviou para a direita da pista mesmo quando o capitão Lievaart aplicou o aileron esquerdo totalmente, e imediatamente ficou claro que eles não poderiam pousar. Lievaart pediu uma volta e acelerou o motor esquerdo até a potência máxima, abandonando a abordagem. 

Com o motor esquerdo na potência máxima e o motor direito em marcha lenta, Lievaart precisava usar o leme para neutralizar a guinada e evitar que o avião virasse à direita; os ailerons sozinhos não fariam o trabalho. Mas ele não o fez. 

Em vez disso, ainda aplicando o aileron esquerdo total, ele puxou os controles para subir, alcançando um ângulo de inclinação de doze graus com o nariz para cima. Este era um ângulo muito íngreme com apenas um motor gerando energia. Consequentemente, o avião começou a perder velocidade rapidamente. 

Dentro de instantes, o aviso de estol do stick shaker foi ativado, alertando a tripulação sobre um estol iminente. Lievaart diminuiu a inclinação para seis graus, mas depois aumentou para nove graus, fazendo com que o aviso de estol fosse ativado novamente. 


Nesse ponto, a velocidade no ar caiu abaixo de 103 nós - a chamada "velocidade mínima de controle" do avião. A velocidade mínima de controle, ou Vmca, é a velocidade mais lenta em que o avião pode ser controlado com um motor inoperante. 

Como a eficácia dos controles de voo diminui proporcionalmente com a diminuição da velocidade no ar, abaixo de uma certa velocidade os ailerons e o leme juntos não terão autoridade de controle suficiente para superar a guinada e inclinação causada pelo motor inoperante. 

Quando o voo 433 caiu abaixo dessa velocidade, o avião saltou com força para a direita. O capitão Lievaart finalmente plantou o pé no leme, mas era tarde demais; a única maneira de se recuperar era acelerar o motor certo e voltar acima do Vmca. 

Segundos depois, inclinando-se em 80 graus, a ponta da asa direita atingiu um campo cerca de 500 metros à direita da pista. A asa enterrou-se no solo lamacento e o avião deu uma cambalhota no solo, arrancando a asa e fazendo a fuselagem deslizar lateralmente pelo solo. Depois de deslizar por mais de 100 metros, o avião rolou para o lado esquerdo e parou, gravemente danificado, mas com a cabine praticamente intacta.


O acidente matou instantaneamente dois passageiros sentados na parte dianteira direita da aeronave, onde a fuselagem atingiu o solo pela primeira vez; O capitão Gerrit Lievaart também morreu porque não estava usando o cinto de segurança, o que fez com que fosse jogado contra o escudo de proteção contra o impacto. 

No entanto, o tanque de combustível da asa esquerda milagrosamente não foi violado durante o acidente, evitando a ignição de um incêndio grave. Os passageiros, a maioria sofrendo vários graus de lesões, viram-se pendurados pelos cintos de segurança no avião de lado, abalados, mas vivos. 


As saídas do lado esquerdo estavam presas ao solo e não podiam ser abertas, enquanto a saída sobre a asa direita ficava bem acima de suas cabeças, dificultando o acesso. Três passageiros conseguiram passar por ela, mas a maioria permaneceu presa dentro do avião - se tivesse ocorrido um incêndio, eles teriam queimado vivo. 

Depois de lutar através do campo lamacento do fazendeiro ao redor do avião, os resgatadores conseguiram libertar os sobreviventes presos cortando o telhado com ferramentas elétricas especializadas. Nove pessoas sofreram ferimentos graves, incluindo o primeiro oficial Stassen, mas além dos três que morreram no impacto, todos se recuperaram totalmente.


Os investigadores do Conselho de Segurança Holandês logo chegaram ao local e removeram as caixas pretas do avião para análise. A próxima prioridade deles era entrevistar o primeiro oficial Stassen, mas descobriu-se que Stassen havia sofrido uma lesão cerebral durante o acidente que o deixou incapaz de se lembrar de qualquer coisa sobre o voo. Eles não teriam uma visão em primeira mão do raciocínio por trás das ações da tripulação. 

Uma análise técnica de todos os sistemas do avião revelou que a única coisa errada com a aeronave era um curto-circuito em uma mesa telefônica que acionou erroneamente a luz de advertência da pressão do óleo do motor certa. Todo o resto daquele ponto em diante dependia das ações dos pilotos. 

A partir dos dados do gravador de voo, era evidente que, embora o primeiro oficial Stassen executasse a lista de verificação corretamente, O capitão Lievaart girou preventivamente o motor direito de volta à marcha lenta e o deixou lá pelo resto do voo. Este foi o erro instigante que gerou todos os outros erros que se seguiram. 

O que confundiu os investigadores foi a questão de saber se Lievaart sabia que o motor certo ainda estava em marcha lenta quando ele decidiu continuar o voo. A evidência sugere que sim. 

Mais tarde no voo, os pilotos concordaram que seria mais fácil pousar o avião com o motor em marcha lenta do que desligado, e também relataram ao ATC que o motor estava em marcha lenta quando questionados sobre a natureza do problema. 

Considerando o exposto, era provável que Lievaart soubesse que o motor ocioso era o motivo de eles não estarem subindo, e decidiu retornar ao aeroporto por causa desse fato. O que ele não entendeu é que a redução na pressão correta do óleo do motor foi porque ele reduziu a potência do motor, não porque havia algo de errado com ele. 

Porém, tendo se convencido de que algo estava errado com o motor, ele bloqueou completamente a possibilidade de restaurá-lo à potência total. Nem no último momento, quando acelerar o motor certo era sua única esperança de salvar o avião, lhe ocorreu tentar.


Obviamente, se a tripulação tivesse devolvido o motor para aumentar a potência, eles poderiam ter continuado para Cardiff sem incidentes. Mas também era perfeitamente possível retornar em segurança a Schiphol com um motor inoperante. 

Os problemas só aumentaram porque os pilotos acreditaram erroneamente que poderiam usar o procedimento normal de pouso com o motor em marcha lenta. Na realidade, eles precisavam voar como se o motor estivesse inoperante. 

Os pilotos são treinados para manobrar contra uma falha de motor usando o leme, e o procedimento de pouso monomotor os lembra da velocidade mínima de controle (Vmca), mas Lievaart e Stassen claramente não perceberam que esses itens eram igualmente importantes quando o motor foi ligado ligado, mas não gerando impulso. 

O período durante a descida, em que ambos os motores estavam com a mesma configuração de potência, pode tê-los embalado ainda mais em uma falsa sensação de segurança. 

Quando o primeiro oficial Stassen removeu o ajuste do leme aplicado pelo piloto automático, o capitão Lievaart não estava mentalmente preparado para usar o leme para manter o avião em linha reta. Em vez disso, ele usou os ailerons para conter a rotação, o que permitiu que a guinada continuasse piorando até que o avião saísse da pista.


Lievaart determinou corretamente que essa situação exigia uma reviravolta. Mas os procedimentos para uma volta são diferentes com um motor. Ou seja, com um motor inoperante, o piloto não pode subir tão abruptamente como o normal. 

Manter a velocidade no ar na atitude de inclinação usada em uma volta normal requer mais empuxo do que um único motor pode fornecer, o que significa que um ângulo de subida mais raso deve ser usado. Ao subir muito abruptamente, Lievaart fez com que a velocidade do avião caísse abaixo de Vmca, resultando em um giro incontrolável para a direita. 

Se ele tivesse seguido o procedimento de arremetida com um único motor, a velocidade no ar teria ficado acima de Vmca e o acidente não teria ocorrido. O tratamento que o capitão Lievaart deu à situação revelou uma falta de compreensão técnica. 

Embora ele não esteja vivo para confirmar isso, as evidências sugeriam que ele não sabia como os ajustes de empuxo afetavam a pressão do óleo ou que um motor em marcha lenta era aerodinamicamente semelhante a um motor totalmente desligado. 

Sua determinação de que não era necessário usar os procedimentos de pouso e arremesso monomotor resultou de uma interpretação excessivamente literalista das instruções e mostrou que ele não entendia alguns dos princípios básicos por trás de pilotar um avião multimotor. Mesmo que em ambos os casos o motor esteja “ligado”, um motor em marcha lenta obviamente se comporta de maneira diferente de um motor fornecendo impulso normal! 


O Conselho de Segurança holandês descobriu que Lievaart havia falhado duas vezes nas verificações do simulador em operações com um motor fora, e só passou depois de receber treinamento adicional. 

Em sua mais recente verificação de um único motor, ele obteve um “menos padrão”, a nota de aprovação mais baixa possível. Isso novamente sugeriu que Lievaart entendia o quê, mas não o porquê, dos procedimentos operacionais de um único motor. 

Como um aluno que sabe marcar duas vezes dois em uma calculadora, mas não sabe por que a resposta é quatro, ele não estava preparado para uma situação na qual precisava derivar a resposta sozinho.


Na verdade, este é um problema surpreendentemente comum entre jovens pilotos que fizeram a transição relativamente recente de operações monomotor para multimotor. Alguns pilotos estudantes que podem voar em aviões monomotores sem problemas às vezes se esforçam para entender como um avião multimotor reagirá ao empuxo diferencial e, embora esses pilotos muitas vezes memorizem procedimentos suficientes para passar em seus testes de verificação, eles não têm a capacidade de responder a uma emergência real. 

Um exemplo recente ocorreu em 2019 em Addison, Texas, onde um bimotor privado Beechcraft King Air fretou uma falha do motor esquerdo durante a decolagem. Os pilotos não reagiram adequadamente à guinada induzida pela falha do motor e não mantiveram velocidade no ar suficiente. 

Quando sua velocidade no ar caiu abaixo de Vmca, os pilotos perderam o controle do avião, e o King Air rolou invertido e mergulhou em um hangar, matando todas as 10 pessoas a bordo. O vídeo acima do acidente de Addison fornece uma ilustração vívida do princípio aerodinâmico que também levou à queda do voo 433 do KLM Cityhopper.


O Conselho de Segurança também observou que a falta de comunicação adequada entre os tripulantes foi um fator que contribuiu para o acidente. Não houve discussão sobre os possíveis efeitos de voar com um motor em marcha lenta. 

Os pilotos não discutiram como o vento de cauda de 10 nós pode afetar sua aproximação. Eles também não tentaram descobrir por que estavam recebendo mensagens contraditórias sobre a pressão do óleo. 

Durante todo o voo, o primeiro oficial Stassen ofereceu informações úteis e geralmente deu a impressão de que queria voar de acordo com as regras, mas o capitão Lievaart freqüentemente interpretava mal ou simplesmente ignorava suas declarações, emitindo ordens contraditórias sem explicação. Stassen também não o desafiou quando isso ocorreu. 

Infelizmente, o treinamento de gerenciamento de recursos da tripulação (CRM), o que poderia ter ajudado os pilotos a se comunicarem com mais eficácia, ainda estava sendo implementado no KLM Cityhopper na época e, embora Lievaart tenha começado a receber o treinamento, Stassen não.


Em seu relatório final, o Conselho de Segurança holandês recomendou que a Saab atualizasse seu manual de operações para proibir ou fornecer procedimentos para voar com um motor em marcha lenta e para neutralizar o equilíbrio do leme ao voar com um motor inoperante. 

Também recomendou que o KLM Cityhopper melhorasse a forma como avalia as habilidades do piloto e agilizasse a introdução do treinamento de gerenciamento de recursos da tripulação. 

Mas as melhores melhorias de segurança às vezes não vêm de recomendações formais. Dado o problema generalizado de erros durante as operações monomotores em aviões a hélice multimotores, a coisa mais importante que os pilotos podem fazer é estudar acidentes anteriores, como o voo 433 do KLM Cityhopper, o acidente Addison King Air ou o voo 105 do Midwest Express. 

O Capitão Lievaart foi para o túmulo acreditando que algo estava terrivelmente errado com seu avião, mas o problema era realmente sua própria falta de conhecimento sobre os fundamentos do voo. 

Saber quais são os procedimentos é apenas metade da batalha - saber por que os procedimentos são do jeito que são é igualmente importante, e deve ser responsabilidade de cada piloto saber ambos, para que não tenham o mesmo destino da tripulação do voo 433.

Edição de texto e imagens por Jorge Tadeu

Com Admiral Cloudberg, ASN, Wikipedia - Imagens: H. Pieterse, Werner Fischdick, Google, o Conselho de Segurança Holandês, o Bureau of Aircraft Accidents Archives, Ardenau4 (via Wikimedia), Mayday e C. Mulder. Videoclipes cortesia de Mayday (Cineflix) e What You Hav not Seen (via YouTube).

Nenhum comentário: