terça-feira, 27 de janeiro de 2026

Aconteceu em 27 de janeiro de 2020: Voo Caspian Airlines 6936 - Acidente ao terminar pouso fora do aeroporto


Em 27 de janeiro de 2020, o voo 6936 da Caspian Airlines ultrapassou a pista ao pousar no Aeroporto Mahshahr, no Irã, em um voo doméstico de Teerã. Todas as 144 pessoas a bordo sobreviveram, com apenas dois feridos.

O MD-83, EP-CPZ, a aeronave envolvida no acidente
A aeronave do acidente era o McDonnell Douglas MD-83 (DC-9-83), prefixo EP-CPZ, da Caspian Airlines (foto acima). O avião voou pela primeira vez em 1994, depois serviu com várias companhias aéreas antes de ser transferido para o Caspian em 2012.

O capitão era um homem de 64 anos não identificado, que ingressou no Caspian em 2019, tendo voado anteriormente para a Kish Air e pela Marinha iraniana. Ele tinha 18.430 horas de voo, incluindo 7.840 horas no MD-80. O primeiro oficial era um homem de 28 anos anônimo que era muito menos experiente do que o capitão, tendo registrado apenas 300 horas de vôo com 124 delas no MD-80.

O voo transcorreu normalmente até a aproximação. O checklist de descida/aproximação foi realizado, porém, apenas parcialmente. A lista de verificação de pouso foi perdida pela tripulação.

A transcrição citada no relatório mostra oito chamadas GPWS de "Taxa de afundamento" entre 1000 pés AGL e 500 pés AGL (indicações GPWS automatizadas), seguindo a chamada GPWS AGL automatizada de 400 pés, o GPWS soou "Taxa de afundamento!", "Pull up! ", "Puxar para cima!", "Puxar para cima!", "Taxa de afundamento!", "Taxa de afundamento!", "Taxa de afundamento!", "Quarenta", "Taxa de afundamento!", "Vinte", "Dez".

Dados de radar mostraram a aeronave a 2.700 pés MSL (elevação do aeródromo de 18 pés) a 249 nós acima do solo, cerca de 3 nm antes da cabeceira da pista.

A aeronave pousou o trem de nariz primeiro em 171 KIAS (Vapp 135 KIAS, Vref 131 KIAS) 1.695 metros além da cabeceira da pista (LDA 2.695 metros) a cerca de +1,22 G depois de ter descido pelos últimos 1.000 pés AGL em 38 segundos (taxa média de descida cerca de 1.580 pés por minuto). O interruptor de proximidade da engrenagem entrou no modo solo, brevemente no modo aéreo antes de retornar ao modo solo, portanto, era provável um salto.

A aeronave ultrapassou a pista no pouso, terminando na via expressa Mahshahr-Sarbandar, 170 metros (560 pés) após o final da pista.

O EP-CPZ sobre a via expressa após ultrapassar a pista, com um 737 da Caspian Airlines voando acima
Todas as 144 pessoas a bordo, incluindo 135 passageiros, sobreviveram. O trem de pouso da aeronave quebrou durante a ultrapassagem. Não ocorreram feridos, mas a aeronave recebeu danos tão substanciais que o AIB avaliou a aeronave como destruída.


Uma testemunha disse que o trem de pouso da aeronave não parecia estar totalmente abaixado quando ela pousou. O chefe da autoridade de aviação da província do Khuzistão afirmou que a aeronave pousou há muito tempo na pista, causando a ultrapassagem.


A Organização de Aviação Civil do Irã abriu uma investigação sobre o acidente. Em 1 de setembro de 2020, o CAO.IRI divulgou seu relatório final e estabeleceu que a causa é uma saturação de pista, causada pelos seguintes erros da tripulação:
  • Má tomada de decisão para aceitação do risco de pouso em alta velocidade;
  • Abordagem não estabilizada contra o perfil de voo normal;
  • Má conduta da tripulação;
  • Decisão insatisfatório e não realização de voltas durante a execução de uma abordagem desestabilizada.
Outros fatores contribuintes foram:
  • Carregamento de 5 toneladas de combustível extra, o que aumentou a distância necessária para pouso;
  • Decisão de fazer um pouso na RWY 13 com vento de cauda;
  • Incapacidade do copiloto (PM) de assumir o controle da aeronave e executar as ações adequadas.

Como resultado desta investigação, algumas recomendações foram emitidas:

Para a Organização da Aviação Civil do Irã:
  • Exigir que todos os operadores forneçam mais orientação e imponham treinamento adicional para pilotos e despachantes em relação à política de combustível da empresa e as suposições que afetam os cálculos da distância de pouso/margem de parada, incluindo o uso de dispositivos de desaceleração em solo da aeronave, condições e limites do vento, distância aérea e segurança margens;
  • Enviar um pedido formal ao Gabinete de Ministros do Ir. Irã corrigirá a dimensão da faixa RWY no Estatuto dos Aeródromos do Irã de acordo com o Anexo 14 da convenção da ICAO;
  • Atualizar as informações de Mahshahr Airport in Iran AIP.
Para a Caspian Airlines:
  • Realizar a auditoria de Segurança de Operação de Linha (LOSA) para Tripulação de Voo e Tripulação de Cabine;
  • Corrija os planos de aula do simulador para o voo, considerando as descobertas do acidente;
  • Expanda e melhore o Sistema de Análise de Dados de Voo;
  • Melhorar o sistema de comunicação entre o departamento de operação e todos os membros da tripulação sobre a notificação do planejamento de voo.
Para o Aeroporto Mahshahr:
  • Seguir os requisitos do aeródromo Iran CAO para ANS, controle de obstáculos e analise os procedimentos de aproximação por instrumentos.
Para Aeroportos do Irã e Companhia de Navegação Aérea:
  • Fornecer diretrizes de treinamento para o pessoal ATS sobre a coordenação acordada entre as unidades ATS envolvidas.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipédia, ASN e baaa-acro.com

Aconteceu em 27 de janeiro de 2009: Voo da Empire Airlines / FedEx 8284 - Configuração Catastrófica


Em 27 de janeiro de 2009, o voo 8284 da Empire Airlines foi um voo de carga operado pela Empire Airlines para a FedEx entre o Aeroporto Fort Worth Alliance e o Aeroporto Internacional Lubbock Preston Smith, ambos no Texas. A aeronave caiu na aproximação final de seu destino. Ambos os membros da tripulação sobreviveram com ferimentos leves e a aeronave teve perda total.


O voo 8284 foi operado pelo ATR-42-320, prefixo N902FX, da Empire Airlines, arrendada para a FedEx (foto acima), foi fabricado em 1990 pela ATR. Antes de ser entregue à Empire Airlines em 2003, e posteriormente arrendada à FedEx no mesmo ano, a aeronave serviu para três companhias aéreas anteriores: Bar Harbor Airlines, Continental Express e ExpressJet Airlines.

O capitão era Rodney Holberton, de 52 anos de idade,  com um total de 13.935 horas de voo, com 12.742 horas como piloto em comando (PIC). Ele tinha 2.052 horas no ATR 42, 1.896 como PIC. primeiro oficial era Heather Cornell, de 26 anos, com 2.109 horas, de acordo com os registros da Empire Airlines. Ela tinha 130 horas operando o ATR 42 como segundo em comando.

Após um voo sem intercorrências, a aeronave se aproximou do Aeroporto Internacional de Lubbock por volta das 4h30, horário padrão central, em meio a uma névoa congelante.

Durante a aproximação por instrumentos houve um problema de controle de voo que impediu o acionamento dos flaps. O primeiro oficial continuou a abordagem enquanto o capitão tentava consertar o problema dos flaps. 

Nenhum membro da tripulação monitorou a velocidade no ar e a aeronave começou a descer a mais de 2.000 pés (610 m) por minuto, levando a um aviso de "Pull Up". 

A tripulação reagiu apenas 17 segundos após o alarme inicial aplicando empuxo máximo nos motores. A aeronave então entrou em um estol aerodinâmico e caiu. 

A aeronave pousou antes da cabeceira da pista e derrapou em 3.300 pés (1.000 m) para fora da pista 17R. Um incêndio começou logo em seguida.


Os membros da tripulação foram enviados ao hospital por ferimentos leves e posteriormente liberados.

Um exame no local dos destroços revelou que o avião pousou perto da soleira da pista e colidiu com o sistema de iluminação de aproximação antes de derrapar do lado direito da pista e cair na grama. 


O avião parou em um rumo oeste perpendicular à pista. Um incêndio pós-impacto consumiu grande parte da fuselagem e da asa direita.

As autoridades do aeroporto disseram que as condições meteorológicas não contribuíram para o acidente.


O Conselho Nacional de Segurança de Transporte (NTSB) investigou a causa do acidente. O gravador de dados de voo e o gravador de voz da cabine mostraram que a tripulação continuou a pousar depois que os flaps falharam em abrir, em vez de realizar uma volta. 

A tripulação também falhou em aplicar o empuxo máximo do motor imediatamente após o estol, esperando 17 segundos depois que um alerta TAWS soou antes de aplicar o empuxo. Em entrevistas pós-acidente, o comandante disse que tinha cansaço do sono antes do voo devido a "situações de alta carga de trabalho" que afetavam seu desempenho. 


Depois que a investigação foi concluída, o NTSB divulgou seu relatório final em 2011. Ele concluiu com os investigadores afirmando que "O National Transportation Safety Board determina que a causa provável deste acidente foi a tripulação de voo, falha em monitorar e manter uma velocidade mínima segura durante a execução de uma aproximação por instrumentos em condições de gelo, o que resultou em um estol aerodinâmico em baixa altitude." 


Contribuíram para o acidente "1) a falha da tripulação de voo em seguir os procedimentos operacionais padrão publicados em resposta a uma anomalia do flap, 2) a decisão do capitão de continuar com a abordagem não estabilizada, 3) a má gestão dos recursos da tripulação da tripulação de voo e 4) fadiga devido à hora do dia em que ocorreu o acidente e uma dívida de sono cumulativa, que provavelmente prejudicou o desempenho do capitão."

Uma visão geral do local do acidente
O N902FX foi seriamente danificado no acidente e foi tirado de serviço. Os membros da tripulação foram enviados ao hospital por ferimentos leves e posteriormente liberados. Ambos voltaram a voar com a FedEx Express um mês depois.


O NTSB emitiu nove recomendações de segurança como resultado do acidente, incluindo recomendações para prevenir a formação de gelo durante o voo. 

O acidente levou a EASA a revisar os manípulos de avião para proteção contra estol e a adotar uma regra sobre a simulação das condições de gelo em simuladores de voo.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipédia, ASN e baaa-acro.com

Hoje na História: 27 de janeiro de 1967 - Três astronautas morrem em teste da Missão Apolo 1

Em 27 de janeiro de 1967, durante um teste de "plugs out" do Módulo de Comando da Apollo 1, duas semanas antes do lançamento programado da Apollo/Saturn 1B AS-204 - o primeiro voo espacial tripulado do Programa Apollo - um incêndio eclodiu no local pressurizado ambiente de oxigênio puro da cápsula e rapidamente envolveu todo o interior.

A pressão aumentou rapidamente para 29 libras por polegada quadrada (200 kPa) e 17 segundos depois, às 23h31: 19,4 UTC, a cápsula se rompeu.

Os três astronautas, Tenente Coronel Virgil I. Grissom, Força Aérea dos Estados Unidos, Tenente Coronel Edward H. White II, Força Aérea dos Estados Unidos, e Tenente Comandante Roger B. Chaffee, Marinha dos Estados Unidos, foram mortos.

A Missão

A Apollo 1, inicialmente designada como AS-204, foi a primeira missão tripulada do Programa Apollo dos Estados Unidos, que teve como objetivo final um pouso lunar tripulado. Um incêndio na cabine durante um ensaio de lançamento no dia 27 de janeiro de 1967 no Complexo de Lançamento da Estação da Força Aérea do Cabo Kennedy matou todos os três membros da tripulação.

Imediatamente após o incêndio, a NASA convocou o Conselho de Revisão de Acidentes da Apollo 204 para determinar a causa do incêndio, e ambas as casas do Congresso dos Estados Unidos conduziram suas próprias investigações da comissão para supervisionar a investigação da NASA. A fonte de ignição do incêndio foi determinada como sendo elétrica, e o fogo se espalhou rapidamente devido à alta pressão na cabine de comando. 

White, Grissom e Chaffee
O resgate dos astronautas foi impedido pela escotilha da porta, que não podia ser aberta contra a pressão interna mais alta da cabine. A falha em identificar o teste como perigoso (porque o foguete não foi abastecido) levou o resgate a ser prejudicado pela falta de preparação para emergências.

Durante a investigação do Congresso, o então senador Walter Mondale revelou publicamente um documento interno da NASA, citando problemas com o principal contratante da Apollo North American Aviation, que ficou conhecido como "Phillips Report". Essa revelação envergonhou James Webb, o Administrador da NASA, que não tinha conhecimento da existência do documento, e atraiu controvérsia ao programa Apollo. 

Apesar do descontentamento do Congresso com a falta de abertura da NASA, ambos os comitês do Congresso determinaram que as questões levantadas no relatório não tinham relação com o acidente.

Detalhe do Módulo de Comando da Apollo 1 após o acidente
Os voos tripulados da Apollo foram suspensos por 20 meses, enquanto a Segurança do Módulo de comando foi questionada. No entanto, o desenvolvimento e os testes não-tripulados do Módulo lunar e do foguete Saturno V continuaram.

Edição de texto e imagens por Jorge Tadeu

Como usar o simulador de voo Google Earth


Voar ao redor do mundo


Use um joystick ou atalhos em teclado para explorar o mundo em um simulador de voo.

Requisitos do simulador de voo

Para usar o simulador de voo, você precisa ter:
  • o Google Earth instalado em um computador Mac, Windows ou Linux
  • um joystick ou um mouse e um teclado

Inicializar o simulador de voo


Você pode abrir o simulador de voo pelo menu ou usando teclas de atalho:
  • No menu: clique em Ferramentas e Entrar no simulador de voo...
  • Windows: pressione Ctrl + Alt + a
  • Mac: pressione ⌘+ Option + a

Escolher seu avião


Escolha qual aeronave quer pilotar, onde quer iniciar o voo e como quer controlar o avião.

Observação: para alterar a aeronave, o local de início ou o controlador, primeiro é necessário sair do simulador de voo.

1. Escolha sua aeronave
  • Se você for um piloto inexperiente, use o SR22 para aprender a pilotar.
  • Se você for um piloto experiente, use o F-16 para decolar imediatamente e continuar.
2. Escolha onde iniciar seu voo.
  • Para iniciar do seu local atual, escolha Visualização atual.
  • Para iniciar de um aeroporto, selecione Aeroporto e escolha um aeroporto na lista suspensa.
3. Configure seu controlador de voo.
  • Joystick do computador (opcional): em "Suporte a joystick", marque Joystick ativado. Consulte o manual do seu joystick para ver instruções mais detalhadas.
  • Mouse do computador: coloque seu cursor no centro da tela. Em seguida, clique uma vez do botão do mouse.

Pilotar seu avião


Monitore tudo o que acontece no seu voo com os avisos na tela (HUD). Para receber ajuda enquanto você voa, pressione Ctrl + h (Windows e Linux).

Avisos na tela

  1. Direção: a direção para a qual a aeronave está apontando
  2. Velocidade: velocidade atual em nós
  3. Ângulo de inclinação: o ângulo sendo usado para mudar lentamente a direção do avião
  4. Velocidade vertical: taxa de subida ou descida em pés por minuto
  5. Sair do recurso de simulador de voo: clique neste botão para sair do simulador de voo
  6. Acelerador: nível da potência do motor
  7. Leme de direção: ângulo do eixo vertical do avião
  8. Ailerão: ângulo do avião quando é girado
  9. Elevação: ângulo e levantamento das asas do avião
  10. Indicadores de flap e trem de pouso: onde os flaps e trens de pouso são configurados
  11. Ângulo de inclinação: ângulo entre a direção do avião e o horizonte em graus
  12. Altitude: o número de pés acima do nível do mar em que o avião está

Pilotar usando um joystick

  1. Para taxiar na pista antes da decolagem, pressione o joystick para frente para tomar velocidade.
  2. Quando o avião estiver rápido, puxe o joystick para trás levemente para decolar.
  3. Quando o avião atingir altitude de voo e as asas estiverem niveladas, centralize o joystick.
  4. Para alterar a direção, faça correções de curso ou vá para a direita ou para a esquerda e mova o joystick na direção que você quer ir. Movimentos leves funcionam melhor.
Pausar ou retomar um voo: pressione a barra de espaço para pausar um voo. Pressione-a novamente para retomá-lo.

Pilotar usando um mouse e teclado

  1. Pressione a tecla Page Up para aumentar a propulsão e taxiar o avião na pista.
  2. Quando o avião estiver em movimento, mova o mouse um pouco para baixo. Quando você estiver rápido o suficiente, seu avião decolará.
  3. Quando o avião atingir altitude de voo e as asas estiverem niveladas, centralize o mouse na tela.
  4. Para mudar a direção, fazer correções de curso ou virar para a direita ou esquerda, use as teclas de seta. Pequenas correções funcionam melhor.
  5. Para olhar ao redor, pressione as teclas de seta + Alt para virar de maneira lenta, ou + Ctrl para virar de maneira rápida.
Para ver mais controles de voo no teclado, consulte os atalhos do teclado.

Sair do simulador de voo


Há duas maneiras de sair do simulador de voo:
  • No canto superior direito da tela, clique em Sair do simulador de voo.
  • Pressione Ctrl + Alt + a (Windows) ou ⌘+ Option + a (Mac).

Um simples lanche pode derrubar um avião: pilotos revelam regra inusitada antes de comer

Saiba por que os comandantes do seu voo nunca dividem o mesmo prato.


A alimentação dos pilotos durante o voo segue protocolos de segurança rigorosos, sendo a regra mais famosa a proibição de que o piloto e o copiloto comam a mesma refeição. O objetivo é evitar que ambos sofram uma intoxicação alimentar simultânea, garantindo que pelo menos um deles esteja apto a comandar a aeronave.

Além dessa norma, as refeições são feitas em momentos de voo estável e através de um sistema de revezamento, onde um profissional mantém o controle total enquanto o outro se alimenta.

Mas não é só o cardápio que muda: existem alimentos específicos que são “banidos” da cabine para evitar panes no sistema. Você sabe quais são?

Por que os pilotos não podem comer a mesma comida?


A regra mais curiosa — e vital — da aviação impede que o piloto e o copiloto consumam o mesmo tipo de alimento durante o trajeto. O motivo é simples, mas estratégico: prevenção contra intoxicações alimentares.

Caso ocorra algum problema de contaminação em um dos pratos, apenas um dos profissionais seria afetado. Isso garante que sempre haverá pelo menos um piloto em perfeitas condições de saúde para comandar a aeronave e realizar um pouso de emergência, se necessário.

Como funciona o revezamento para os pilotos comerem?


A prioridade absoluta é manter o controle constante do avião. Por isso, as refeições nunca são feitas ao mesmo tempo. A tripulação segue um sistema de revezamento rigoroso:

Controle humano e nutrição de elite


Embora a tecnologia do piloto automático seja avançada, ela não substitui a presença humana. Por isso, as refeições oferecidas são balanceadas e semelhantes às da classe executiva, garantindo energia para enfrentar jornadas intercontinentais exaustivas.

Protocolos conservadores lembram que a nutrição correta não é apenas uma questão de conforto, mas uma peça fundamental da segurança de voo. Estar bem alimentado e alerta é o que permite ao piloto intervir prontamente em qualquer automação técnica da aeronave.

Via Agência Hora - Foto: Reprodução

Por que as janelas do Concorde eram tão pequenas?

As janelas menores do Concorde eram um recurso de segurança para ajudar em sua operação em grandes altitudes.

(Foto: Frederic Legrand/Shutterstock)
Muitas realizações de design e engenharia fizeram com que o Concorde funcionasse como antes. Isso inclui motores especialmente desenvolvidos, pós-combustores, nariz móvel e design de asa delta. Outra característica de design que pode parecer cosmética são as janelas muito menores. Longe de serem superficiais, no entanto, estes desempenharam um papel vital na segurança da operação do Concorde em grandes altitudes.

Cruzando o céu a cerca de 60.000 pés


O Concorde, claro, é mais lembrado por sua operação supersônica. O Concorde e o menos bem-sucedido Tupolev Tu-144 foram as únicas duas aeronaves supersônicas comerciais até o momento. A aposentadoria do Concorde em 2003 pôs fim a esta era - pelo menos até a próxima geração de aeronaves começar a operar.

Além de voar a uma velocidade média de cruzeiro em torno de Mach 2, o Concorde também voou muito mais alto do que os jatos comerciais normais. Atingiu cerca de 60.000 pés, em comparação com um máximo de 42.000 pés para a maioria das outras aeronaves de grande porte (os limites variam para diferentes tipos de aeronaves). Nesta altitude, os passageiros puderam começar a ver a curvatura da Terra.

Em 2003, o Concorde fez seu último voo (Foto: Getty Images)
O Concorde precisava dessa altitude para seu desempenho. Poderia atingir altitudes mais elevadas devido ao aumento da sustentação gerada ao voar em velocidades muito mais altas. Em baixas altitudes, o arrasto impediria que ele atingisse altas velocidades.

Em comparação, esta altitude era muito superior à das aeronaves gerais de longo curso da época. Por exemplo, um Boeing 747-7 só poderia aproximar-se de cerca de 40.000 pés durante serviços de voo padrão. Mesmo os jatos comerciais atuais, como o 787-9 Dreamliner, possuem um teto operacional de aproximadamente 43 mil.

Operação segura em grandes altitudes


Uma das razões pelas quais a maioria das aeronaves comerciais não navega em altitudes tão elevadas é a segurança dos passageiros. Com menos restrições, muitos jatos particulares e executivos alcançam altitudes mais elevadas.

O problema aqui está relacionado a qualquer possível descida de emergência. No caso de despressurização da cabine, a aeronave deve descer rapidamente até uma altitude onde o ar seja respirável. Os suprimentos de oxigênio de emergência estão, é claro, em todas as aeronaves, mas os suprimentos são limitados e os sistemas são projetados tendo em mente a descida rápida.

Como parte de seu projeto, portanto, o Concorde precisava encontrar uma maneira de descer rapidamente de sua altitude operacional mais elevada. Isso foi feito de várias maneiras – e é aí que entram as janelas menores!
  • O Concorde tinha um sistema automático para auxiliar na descida rápida de emergência. Isso aceleraria a capacidade dos pilotos de baixar a aeronave, com menos verificações manuais e alterações necessárias.
  • A asa delta permitiu uma descida de emergência muito mais rápida.
  • As pequenas janelas da cabine retardariam a descompressão se uma janela falhasse. Tal situação é uma possível causa da despressurização da cabine em altitude, portanto projetá-las desta forma diminuiria o impacto de uma falha.

Veremos as mesmas pequenas janelas na próxima geração supersônica?


Em suma, não necessariamente. A tecnologia mudou muito desde o design do Concorde na década de 1970. A proposta mais avançada para uma nova aeronave comercial supersônica é da Boom Supersonic. A empresa alterou recentemente significativamente o seu design proposto . A mudança de três para quatro motores foi a mudança mais significativa, mas todo o design foi atualizado. O novo design tem janelas menores que as iniciais, mas ainda parecem muito maiores que as do Concorde.

(Imagem: Spike Supersonic)
Por outro lado, outra proposta supersônica não possui janela alguma. O Spike S-512 está em desenvolvimento pela Spike Aerospace, com sede em Boston. Esta será uma aeronave menor de 12 a 18 assentos. Porém, terá uma cabine sem janelas com imagens externas projetadas em seu interior.

Há muito entusiasmo sobre o futuro do voo supersônico. Ainda assim, no que diz respeito aos designs finais, teremos que esperar para ver.

Com diversas instituições determinadas a entrar numa nova era supersónica, é apenas uma questão de tempo até vermos outra geração de aeronaves de alta velocidade nos céus. No entanto, foi o Concorde que abriu o caminho para um mercado supersônico comercial há cinco décadas.

O Concorde foi uma aeronave e uma conquista técnica incríveis. É sempre bom relembrar seu funcionamento e diferenças. As janelas foram apenas um deles.

Com informações do Simple Flying