Os cientistas ainda não descobriram como impedir que as aeronaves produzam essas trilhas de vapor d'água em alta altitude.
Por Fernando Valduga (Cavok)
Fóruns militares online como o SecretProjects enlouqueceram no ano passado por causa de uma imagem granulada e indistinta de uma aeronave. O aprimoramento digital básico mostrou uma nave com asas de morcego diferente de qualquer avião militar conhecido dos EUA, em silhueta contra o céu azul.
O consenso entre a mídia de defesa era que essa nave misteriosa deveria ser um drone furtivo RQ-180 ultrassecreto, usado para missões de espionagem nas áreas mais sensíveis – como o Irã, outras partes do Oriente Médio e áreas próximas à China.
Foi a segunda de três dessas fotografias a surgir nos últimos anos. Todas as três aeronaves foram descobertas pelo mesmo recurso decididamente não furtivo.
“Ouvi um leve ruído de aeronave e notei um rastro de fumaça bem acima de nós”, disse Joerg Arnu, que testemunhou a terceira aeronave misteriosa, ao The Drive, um site focado em cultura automotiva e assuntos militares.
Esse rastro – uma trilha de vapor d’água semelhante a uma nuvem produzida por aeronaves em alta altitude – os levou direto ao avião misterioso, como uma longa flecha branca dizendo “aqui estou”.
“É o equivalente furtivo de sair do banheiro, arrastando papel higiênico atrás do sapato”, diz Scott Lowe, um fotógrafo que capturou uma imagem rara de um avião espião U-2 depois de perceber seu rastro no início do ano passado.
Amazing, a U-2 spy plane (68-10336) passing over Glendale at 60k feet. This is the first one I've been able to spot at altitude. https://t.co/ew8VqoUIHx pic.twitter.com/JJhcVDotC2
— Scott Lowe (@tropicostation) February 4, 2021
A tecnologia furtiva reduziu drasticamente as assinaturas de radar e infravermelho de aeronaves que alertavam as defesas aéreas sobre sua presença. Anteriormente, as aeronaves eram frequentemente detectadas por radar a longo alcance. Os engenheiros também desenvolveram uma variedade de técnicas para eliminar completamente os rastros. Então, por que algumas aeronaves supostamente “secretas” ainda os deixam para trás?
Prepare-se para mergulhar no mundo das artes das trevas da aviação – de fumaça e espelhos, ácido e lasers.
De Metal e Espelhos
Trilhas de condensação (ou rastros de condensação) são visíveis pelo mesmo motivo que a respiração ou o escapamento do carro em um dia frio. O ar quente e úmido se mistura com o ar frio e seco e cria condensação. No caso dos rastros, a condensação assume a forma de minúsculos cristais de gelo. Eles se formam em torno de minúsculas partículas, principalmente fuligem, no escapamento do motor.
Os rastros se tornaram um problema pela primeira vez durante a Segunda Guerra Mundial, quando as formações de bombardeiros em massa das Forças Aéreas do Exército dos EUA deixaram grandes faixas de rastros no céu. Os caças alemães podiam ver os rastros a quilômetros de distância, muito antes de os próprios aviões serem visíveis, e aprenderam a se concentrar neles para fazer interceptações.
Os magos técnicos desenvolveram o chaff (palha), feito de minúsculas tiras metálicas, para os aviões se posicionarem atrás deles como nuvens reflexivas. Ajudou a cegar o radar alemão, mas os rastros ainda permaneceram visíveis. Isso fez dos ataques noturnos a opção preferida. Após a guerra, os jatos substituíram os motores a pistão; infelizmente, eles deixaram rastros ainda mais distintos.
Os pilotos logo descobriram que os rastros podiam ser eliminados mudando ligeiramente a altitude, embora a ciência por trás disso não fosse totalmente compreendida até a década de 1950.
Uma aeronave AC-130 Gunship da Força Aérea dos EUA executa uma manobra evasiva e lança chaff e sinalizadores durante uma demonstração de poder de fogo no Nevada Test and Training Range em Nevada. |
“Em teoria, sempre haverá ar mais seco alguns milhares de pés acima de você”, diz Adam Durant, CEO da SATAVIA, que produz modelagem de trilha de condensação e software de previsão. Isso geralmente facilita a localização de um nível em que os rastros não se formem.
O problema era que os pilotos às vezes não percebiam que estavam deixando um rastro até que fosse tarde demais e devido à visibilidade limitada atrás deles. Isso foi literalmente uma questão de vida ou morte para os pilotos dos aviões espiões U-2 da CIA sobrevoando o território soviético. Os pilotos logo descobriram uma solução simples: equipar a aeronave com um espelho retrovisor fora do cockpit para dar uma visão por trás da aeronave.
Os testes foram realizados com o “Artigo 349”, um U-2 especialmente modificado (abaixo) para testar uma variedade de tecnologias furtivas, incluindo tinta anti-radar conhecida como “veludo preto” e um espelho retrovisor. Os detalhes do projeto de 1958 só foram divulgados em 2003 e, mesmo assim, os relatórios foram redigidos, mas é evidente que os fabricantes de U-2 Lockheed e a Força Aérea dos EUA estiveram envolvidos na avaliação.
“É opinião da Operação que esta instalação é um ativo valioso”, de acordo com a avaliação da CIA em ‘Rear View Mirror’. “A necessidade aumentará com o passar do tempo, com base em estimativas das futuras capacidades russas de interceptação.”
Os testes mostraram que o piloto podia ver um rastro quando ele tinha menos de um quilômetro de comprimento; esperava-se que também pudesse ser útil para localizar caças interceptadores. O espelho retrovisor externo tornou-se equipamento padrão e foi instalado em muitas versões subsequentes do U-2.
Uma cortina de fumaça sulfúrica
Enquanto isso, os engenheiros da USAF procuravam soluções que não exigissem que a aeronave mudasse sua rota de voo. Eles se concentraram nas partículas do escapamento em torno das quais as gotas de água se formam.
“O número de cristais de gelo depende muito do número de partículas de fuligem. Se fôssemos reduzi-los, isso reduziria o rastro”, diz o Dr. Marc Stettler, especialista em emissões de transporte da University College, em Londres.
Os pesquisadores descobriram que um dos principais contribuintes era o trióxido de enxofre, que resultou da combustão do enxofre no combustível, então eles tentaram misturas de combustível com baixo teor de enxofre. Em última análise, o efeito não foi suficiente, mas a pesquisa continuou por alguns anos.
A mesma pesquisa revelou que pode haver outra maneira de lidar com rastros alterando o combustível. Em vez de impedir a formação de um rastro reduzindo o enxofre, eles aumentaram a quantidade de enxofre para que houvesse ainda mais partículas no escapamento. A ideia era que isso mudaria o tamanho das gotas no rastro para torná-lo invisível.
De acordo com um estudo da Força Aérea dos Estados Unidos de 1962, se o tamanho da partícula pudesse ser reduzido para menos de meio mícron, o rastro apareceria como uma névoa azul em vez de uma trilha branca: “De qualquer distância, essa névoa azul seria substancialmente invisível por causa de a falta de contraste com a atmosfera.”
Os pesquisadores passaram a soprar dióxido de enxofre diretamente na entrada de ar, mas mesmo isso não foi suficiente. O Dr. Roger Teoh, que está explorando o impacto da aviação nas mudanças climáticas no Imperial College, em Londres, diz que mesmo grandes aumentos no teor de enxofre falharam em surtir o efeito desejado. “A adição de grandes quantidades de enxofre levou apenas a uma redução muito pequena na formação do rastro; e pode haver consequências não intencionais”, diz Teoh.
Injeções de ácido eficazes, mas prejudiciais
Em 1961, a Força Aérea dos EUA havia conseguido algo incrível. Fotografias de uma demonstração com um bombardeiro B-47 Stratojet quadrimotor mostram os motores de um lado deixando um rastro normal como de costume, mas nada visível do outro lado. O bombardeiro havia sido equipado com um novo sistema que injetava ácido clorossulfônico no escapamento. Isso conseguiu o que os experimentos com enxofre não conseguiram: produzir um rastro com partículas minúsculas demais para serem vistas.
A técnica foi altamente eficaz, mas o equipamento de supressão de rastro adicionou 400 libras ao bombardeiro, reduzindo a carga de bombas. Além disso, o avião precisava de um suprimento de produtos químicos de supressão de rastro igual a cerca de dois por cento do combustível, adicionando potencialmente mais 2.000 libras.
Embora não haja registro da tecnologia sendo implantada em bombardeiros, o sistema ‘no-con’ foi instalado em drones Ryan Firebee voando em missões de reconhecimento sobre o Vietnã e a China. Esses pequenos e rápidos drones movidos a jato geralmente evitavam a observação, mas às vezes eram denunciados por seus rastros.
O sistema de injeção de ácido conseguiu manter os pequenos drones invisíveis, mas era impopular por outros motivos. O ácido clorossulfônico é extremamente corrosivo e danifica os motores, encurtando sua vida útil. Também é altamente tóxico e perigoso para as equipes de terra.
Detectando rastros com lasers
Quando o bombardeiro B-2 Spirit estava sendo desenvolvido no final dos anos 80, ele foi inicialmente equipado com um sistema de injeção de ácido clorossulfônico semelhante ao dos Firebees. No entanto, por razões que nunca foram divulgadas, isso nunca foi usado.
O motivo pode ter sido ambiental; havia uma consciência crescente de que a pulverização secreta de produtos químicos altamente tóxicos de aeronaves poderia atrair críticas. Isso foi antes mesmo do surgimento das teorias da conspiração do “chemtrail” dos anos 90, que acusavam o governo dos EUA de pulverizar substâncias químicas misteriosas de aeronaves que deixavam rastros duradouros. Não há evidências de que essa teoria esteja conectada com a pesquisa real de rastros – cujo objetivo era impedir a formação de tais rastros.
O secretário da Força Aérea dos EUA, Edward Aldridge, revelou que uma solução alternativa havia sido encontrada em uma coletiva de imprensa de 1989 sobre o B-2, mas manteve os jornalistas tentando adivinhar qual era a nova tecnologia. “O problema do rastro foi resolvido, mas não vou dizer como”, disse Aldridge.
Houve muita especulação de que a solução seria um novo aditivo de combustível ou um sistema de defletores para misturar o ar frio com o escapamento (veja abaixo).
O Espião da Trilha de Condensação Furtiva
Noshir Gowadia era um engenheiro que trabalhava no complexo sistema de exaustão do furtivo B-2. Seu projeto ajudou a garantir que o ar frio fosse misturado com o escapamento do jato quente antes de deixar o avião, para diluir o traço térmico do avião e torná-lo mais difícil de detectar com imagens infravermelhas.
Gowadia usou sua experiência para redesenhar bicos de jato com o objetivo de eliminar rastros visíveis. Isso envolvia um “campo de fluxo não uniforme” – uma região de mistura turbulenta – que espalharia tanto as gotas de água que qualquer rastro seria invisível ao olho humano e a outros sensores. A USAF achou que havia encontrado uma solução para o problema do rastro e concedeu a Gowadia um contrato para desenvolver seu conceito em um produto acabado.
No entanto, em 2011, Gowadia foi condenado por espionagem – especificamente, passar detalhes de escapamentos furtivos para a China – e sentenciado a 32 anos. O projeto de redesenho do bocal foi descontinuado e não está claro se essa técnica pode efetivamente eliminar rastros.
Foi apenas anos depois que o verdadeiro segredo foi revelado como sendo o PAS, ou Pilot Alert System. Desenvolvido pela empresa de sensores Ophir, o PAS usa uma forma de lidar: ele dispara um feixe de laser de volta ao escapamento do jato e mede a dispersão da luz nas partículas de gelo. Isso pode detectar imediatamente quando um rastro começa a se formar, avisando o piloto para mudar de altitude antes que se torne visível.
O PAS foi certamente uma melhoria em relação ao espelho retrovisor do U-2, mas o que os planejadores da Força Aérea dos EUA realmente queriam era poder voar sem qualquer risco de formação de rastros em primeiro lugar.
Voltar ao básico
Mudar a altitude funciona porque os rastros só se formam em condições particulares de temperatura e umidade. O cientista alemão Ernst Schmidt deu os primeiros passos para uma compreensão científica do processo em 1941 e, em 1953, Herbert Appleman, da American Meteorological Society, desenvolveu uma fórmula precisa para a formação do rastro. Conhecido como critério de Schmidt-Appleman, isso pode ser claramente expresso como um gráfico de temperatura e umidade: para evitar a formação de rastros, apenas evite a área mapeada no meio do gráfico.
Os planejadores da Força Aérea dos EUA usaram o Critério Schmidt-Appleman para desenvolver modelos de software cada vez mais sofisticados para prever onde os rastros se formarão. Em 1998, a USAF avaliou seu software JETRAX como 84% confiável para determinar se rastros apareceriam em uma trajetória de voo. Os planejadores podem redirecionar missões furtivas para evitar deixar rastros no céu.
Embora o software de previsão militar sempre tenha sido mantido em sigilo, houve um aumento nos desenvolvimentos no setor comercial. O motivo: as mudanças climáticas.
Uma razão mais ecológica para evitar trilhas de condensação
Enquanto alguns rastros desaparecem rapidamente, outros se espalham para formar nuvens cirrus de alta altitude, que têm um efeito de aquecimento significativo. Na verdade, o efeito de aquecimento dos rastros de cirrus é realmente maior do que o do CO2 da queima de combustível de aviação. A remoção dos rastros tornaria o voo menos prejudicial ao planeta.
“Os rastros representam 59% do impacto climático das viagens aéreas. Isso equivale a 1,8 bilhão de toneladas de CO2 por ano”, diz Durant. DECISIONX:NETZERO é o modelo de atmosfera planetária da SATAVIA, conduzido por Inteligência Artificial e alimentado com dados meteorológicos comerciais. A chave, apropriadamente, é a computação em nuvem, que torna o cálculo intensivo acessível. Isso permite que o sistema divida o globo em células de cinco quilômetros quadrados, empilhadas com sessenta de profundidade.
“Utilizamos os conjuntos de dados climáticos em escala global para conduzir um modelo baseado em física da dinâmica atmosférica que nos mostra a probabilidade de gerar um rastro em qualquer rota”, diz Durant.
Enquanto a maioria dos modelos meteorológicos se concentra no que está acontecendo no nível do solo, o SATAVIA analisa a altitude de cruzeiro da aeronave e aplica algoritmos de formação de rastros. Crucialmente, ao mostrar as condições em sessenta altitudes diferentes, permite que o plano de voo evite o risco de trilhas de condensação.
Durant observa que, embora isso exija alguns esforços no gerenciamento do tráfego aéreo, um pequeno número de voos produz os rastros mais prejudiciais e duradouros. Ele diz que a maior parte do benefício poderia ser obtida com o redirecionamento de apenas 5% dos voos.
Depois de um esquema piloto bem-sucedido com a companhia aérea Etihad para testar o software na prática, a empresa está refinando seu modelo em um produto comercial. Durant não tem conhecimento de nada parecido no mundo comercial, mas os militares, com seu enorme poder de computação, podem muito bem ter algo comparável.
Tecnologia furtiva ainda sob sigilo
Pode haver outros desenvolvimentos neste campo que não são públicos. Uma patente de 2014 da fabricante de motores Rolls Royce vincula um sensor semelhante ao PALS a um sistema de controle do motor. A patente afirma que, ao alterar a eficiência do motor, o escapamento pode ser alterado para evitar a formação de rastros. A Rolls Royce recusou-se a discutir este ou outro trabalho nesta área, como um plano bizarro para zapear o escapamento com micro-ondas para evitar a formação de cristais de gelo.
“Geralmente, um motor mais eficiente pode aumentar ligeiramente a formação de rastro porque o ar no escapamento deixa o motor em temperatura mais baixa”, diz Teoh. “Portanto, a redução da formação de rastro só pode ser alcançada diminuindo a eficiência do motor, o que provavelmente tem o custo de aumentar o consumo de combustível.”
Teoh também observa que novos tipos de combustores de motor também podem diminuir drasticamente a quantidade de fuligem no escapamento, garantindo que o combustível seja totalmente queimado antes de chegar ao escapamento. “O último banco de dados de emissões de aeronaves da ICAO, um conjunto de dados disponível ao público, mostra que diferentes tipos de combustor podem reduzir significativamente o número de partículas de fuligem em até quatro ordens de magnitude”, diz Teoh. Isso representaria um fator de dez mil, o que poderia ser suficiente para eliminar rastros visíveis.
Os aviões espiões ainda podem deixar rastros em lugares onde não estão tentando ficar escondidos – daí a foto da sorte de Lowe daquele U-2. “Sem um rastro ou luz perfeita, o U-2 é invisível”, diz Lowe. “Eu nunca teria notado isso de outra forma.”
O suposto RQ-180 sobrevoando as Filipinas (Foto: Michael Fugnit) |
Mas no caso das fotos do RQ-180, você deve se perguntar por que a mesma aeronave supostamente supersecreta deixou rastros altamente visíveis três vezes seguidas, sempre em plena luz do dia sobre uma área povoada? Uma vez pode ser explicado por acidente, duas vezes sugeriria uma falha no aprendizado, mas três vezes começa a parecer deliberado.
O ponto principal é que estamos vendo os rastros, que estão nos levando à aeronave, porque eles querem que o façamos. Essa linha no céu é um ponteiro deliberado. Por que isso deveria acontecer e o que realmente está sendo mantido oculto – esse é outro mistério.
Via Fernando Valduga (Cavok) com Popular Mechanics