Mostrando postagens com marcador Como Funciona. Mostrar todas as postagens
Mostrando postagens com marcador Como Funciona. Mostrar todas as postagens

sexta-feira, 9 de janeiro de 2026

Vídeo: Avião SEM FREIO em CONGONHAS! O QUE ACONTECE?


Gravamos na madrugada, com acesso exclusivo à pista do Aeroporto de Congonhas, para mostrar em detalhes como funciona o novo sistema EMAS, desenvolvido para prevenir excursões de pista e aumentar a segurança operacional em um dos aeroportos mais movimentados do Brasil.

No vídeo, acompanhamos desde a fase de construção até como o EMAS está atualmente, explicando de forma clara como ele é capaz de desacelerar uma aeronave em situação de emergência.

Além disso, registramos a iluminação noturna, procedimentos de segurança e diversos detalhes que garantem a operação segura em Congonhas. Um conteúdo raro, com imagens inéditas da pista fechada e bastidores que o público normalmente não vê, revelando como a aviação brasileira segue evoluindo para proteger passageiros e tripulações.

Qual é a finalidade dos cones de nariz de aeronaves?


No dia 9 de junho de 2024, o voo 434 da Austrian Airlines decolou de Palma de Mallorca, na Espanha, para um voo de rotina de volta à sua base em Viena , Áustria. A bordo do Airbus A320 naquela tarde de domingo estavam seis tripulantes e 173 passageiros, a maioria retornando para casa após uma semana relaxando no sol espanhol.

A320 (Foto: Austrian Airlines)
Mas o voo sem incidentes rapidamente se transformou em uma viagem de tirar o fôlego minutos antes do pouso, quando a aeronave desceu 20.000 pés. Aparentemente, sem aviso, ela voou para uma célula de tempestade severa e foi atingida por turbulência e granizos estimados em até 4 cm de diâmetro. O clima estava tão severo que os pilotos emitiram um chamado de socorro , mas, felizmente, eles pousaram em segurança em Viena, sem causar danos a ninguém a bordo. 

Como um passageiro disse mais tarde à BBC: “O voo ficou super agitado, e podíamos sentir o granizo batendo no avião. Várias pessoas gritaram. Vi pedaços de alguma coisa pela janela, mas só quando saímos do avião é que percebi o que era. A frente inteira do avião estava destruída. Eram partes do cone do nariz que eu vi voando.”

O que há no cone do nariz de uma aeronave?


Uma vez no solo, a extensão dos danos causados ​​pelo granizo na aeronave tornou-se dramaticamente aparente, pois resultou na destruição total do radome da aeronave. O radome, uma junção de "radar" e "dome", é o nariz da aeronave. Como o ponto inicial da aeronave para fazer contato com o ar durante o voo, sua primeira tarefa é garantir o fluxo aerodinâmico de ar sobre a superfície da aeronave. Danos graves ao radome, como os infligidos ao OS434, colocam a operação segura da aeronave em risco.


No entanto, o radome também serve para outra função crítica. Dentro dele, há vários instrumentos que os pilotos usam para monitorar o clima e gerenciar pousos baseados em instrumentos. Veja a foto abaixo de um radome elevado de um Airbus A320, como o usado no voo OS434. Ele contém a antena do radar meteorológico aerotransportado (AWR) (a grande placa dourada), a antena localizadora ILS/GLS (a alça branca) e a antena glideslope (a aba branca abaixo da antena localizadora).

Radome (Foto: Airbus)
Veja para que cada um deles é usado:

A antena do radar meteorológico aerotransportado (AWR)


O AWR é um radar meteorológico de bordo que permite aos pilotos identificar áreas com condições climáticas severas. A antena direcional realiza varreduras longitudinais e verticais, emitindo ondas de rádio no espectro de super alta frequência (em torno de 9 GHz) que ricocheteiam na água ou no gelo para detectar sua presença. A maioria dos radares comerciais também usa o efeito Doppler para determinar a velocidade de gotículas de água ou gelo para prever turbulência.

Radar meteorológico (Foto: Honeywell)
Os AWRs são responsáveis ​​por alertar os pilotos sobre fenômenos meteorológicos que podem interromper o voo ou até mesmo colocar a aeronave em risco, como ventos fortes, tempestades, granizo e gelo. Os pilotos recebem informações obtidas por meio do AWR usando uma gama de cores que se relacionam com a intensidade do fenômeno meteorológico: verde para precipitação leve e roxo para precipitação severa.


A antena localizadora ILS/GLS para alinhamento lateral


Isso faz parte do sistema de pouso por instrumentos (ILS) da aeronave. A antena localizadora do ILS é responsável por captar os sinais de rádio emitidos pelo localizador do ILS situado no final da pista. Esses sinais fornecem orientação horizontal, e a antena localizadora do ILS pode interpretá-los para garantir que a aeronave esteja alinhada com a linha central da pista.

Pouso do Airbus A340-300 (Foto: Igor Karasi/Shutterstock)
O GLS (Ground-Based Augmentation System Landing System) usa os mesmos princípios do ILS. No entanto, a principal diferença entre os dois é que o GLS usa um número de canal de cinco dígitos em vez de uma frequência de rádio e é menos suscetível à interferência de outras aeronaves .

A antena glideslope para alinhamento vertical


A antena de rampa de planeio gerencia o posicionamento vertical da aeronave para aproximação e pouso. Ela recebe sinais da unidade terrestre, geralmente posicionada de 750 a 1250 pés abaixo da pista, e garante que a aeronave esteja descendo no ângulo e na taxa corretos. O ângulo da rampa de planeio é normalmente de 3 graus, mas pode variar dependendo do terreno ou dos requisitos da pista. Por exemplo, o Aeroporto London City costumava ter uma rampa de planeio de 7,5 graus devido aos edifícios ao redor e uma pista mais curta, que desde então foi reduzida para 5,5 graus com uma extensão da pista.

Embraer E190 partindo do Aeroporto London City (Foto: Roberto La Rosa/Shutterstock)

Do que é feito um radome de aeronave?


Radomos em aeronaves comerciais compreendem uma estrutura sanduíche composta que consiste em um núcleo de favo de mel entre as peles interna e externa. Essas peles eram fabricadas anteriormente a partir de materiais como Kevlar e quartzo, mas os radomos mais recentes são fabricados a partir de materiais de vidro S-2.

Radome (Foto: Airbus)
O vidro S-2 foi originalmente desenvolvido para aplicações de mísseis militares e agora é usado em várias aplicações, de sistemas de blindagem composta a equipamentos de respiração de bombeiros, tênis de corrida e filtros catalíticos. Como material, ele oferece o melhor equilíbrio entre a resistência necessária para proteger o equipamento dentro do radome sem interferir nas ondas de rádio que o equipamento é projetado para enviar e receber.

Quais são os riscos para um radome de aeronave?


No entanto, como o incidente com OS434 demonstrou, fatores ambientais ainda podem danificar facilmente os radomes. Especificamente, os riscos enfrentados pelos radomes incluem:
  • Clima: Granizo é uma das principais causas de danos a radomos, e a Austrian Airlines certamente não está sozinha nessa experiência. A Simple Flying tem relatado regularmente danos causados ​​por granizo a aeronaves de frotas de companhias aéreas como Emirates , Azul e WestJet.
  • Raios: Os radomos são propensos a raios , então faixas desviadoras de raios são aplicadas ao longo da superfície externa do radomo para dissipar a carga elétrica com segurança.
  • Vida selvagem: Outra causa comum de danos ao radome são colisões com pássaros. A Airbus ressalta que, mesmo que os danos causados ​​por uma colisão com pássaros não sejam imediatamente aparentes, o radome precisa ser cuidadosamente inspecionado para verificar se há descolamento da pele do radome.
  • Entrada de água: radomos danificados podem permitir a entrada de água, causando riscos à segurança, problemas de desempenho da antena do radar e bolsas de água no radomo.
  • Equipamentos aeroportuários e FOD: As aeronaves são suscetíveis a danos no radome se entrarem em contato com outras aeronaves ou equipamentos no pátio ou com detritos de objetos estranhos que sejam lançados pela instalação.
(Foto: Muratart/Shutterstock)
Dados esses riscos e o desgaste geral incorrido por um radome em uma aeronave bem utilizada, as companhias aéreas levam a manutenção e as inspeções do radome muito a sério. Inspeções visuais são conduzidas durante verificações pré-voo para procurar danos ou defeitos óbvios, inspeções detalhadas são realizadas após qualquer impacto (por menor que seja) e as inspeções do radome fazem parte dos cronogramas regulares de manutenção. No entanto, isso geralmente tem que acontecer em locais de teste fora do hangar de manutenção devido ao risco de radiação do equipamento de radar.

Com informações do Simple Flying

domingo, 4 de janeiro de 2026

Como saber qual o modelo e a configuração do avião que você vai viajar?

Saber em qual aeronave será realizado o voo pode ser algo bastante óbvio para viajantes experientes, mas muitas vezes é um verdadeiro mistério para quem não viaja tanto assim, ou não está familiarizado com os modelos de aeronaves existentes. Aliás, tirando os entusiastas da aviação, nenhum viajante é obrigado a saber a diferença entre um Airbus A380 e um A321, ou entre um Boeing 777 e um 737, não é mesmo?

Pensando nisso, separamos algumas dicas para que você possa matar a curiosidade e obter mais informações sobre o avião em que vai viajar, antes mesmo de chegar ao aeroporto. Além do modelo e da configuração interna, é possível descobrir dados como data de fabricação e quais foram os últimos voos realizados por ele.

Fabricante e modelo do avião

Essa é a informação mais fácil de ser obtida. A maioria das companhias e agências de viagem online já informam o tipo de aeronave previsto em cada rota, em seus canais de venda. E se, por acaso, você não prestar atenção, ainda tem a chance de conferir isso na hora de marcar os assentos ou mesmo depois, ao receber a sua confirmação de compra por e-mail.

Fabricante e modelo normalmente são informados na hora da compra

É importante ter em mente que quanto maior for a antecedência da compra e maior a variedade de aeronaves na frota daquela companhia, maior será a chance de haver mudança de aeronave até a data da sua viagem. E acredite, é bem frustrante quando você espera embarcar em um Airbus A330 com configuração 2-4-2, e na hora se depara com um Boeing 777 na configuração 3-3-3. Isso já aconteceu comigo! E, dependendo do assento escolhido, uma nova aeronave pode fazer muita diferença!

Além da configuração, a qualidade das cabines pode mudar muito de uma aeronave para outra, mesmo que elas sejam da mesma empresa. Por exemplo, a distância entre os assentos pode ser maior ou menor, o sistema de entretenimento pode ser mais moderno, ou não existir, e a aeronave pode ter mais ou menos banheiros, por exemplo.

Para quem viaja em classe executiva a mudança pode ser ainda mais significativa, pois pode ser a diferença entre viajar numa poltrona-cama que reclina 180 graus, ou numa poltrona antiga, com reclinação parcial.

Configuração da cabine

Com o modelo do avião e o número do voo em mãos já é possível descobrir mais algumas coisinhas, como por exemplo, a disposição das poltronas e se há tomadas ou telas de entretenimento individual; o que é bastante útil para te ajudar na hora de escolher os melhores lugares do avião.

Nem sempre esses dados estão disponíveis nos sites das companhias aéreas de forma clara. Mesmo que você acesse os detalhes de sua reserva, pode ter dificuldade em encontrá-los. Nessas horas vale recorrer ao SeatGuru, site que reúne mapas internos de aviões das principais companhias aéreas do mundo. Basta digitar a companhia aérea e o número do voo para que as opções de aeronave daquela rota apareçam. Aí é só clicar no modelo de avião para ver os detalhes.

Ao lado do mapa o Seatguru também exibe informações sobre o espaço para as pernas, se há tomadas nas poltronas, telas individuais e outros detalhes.

Como exemplo pesquisei o voo AD5062 da Azul, entre Campinas (VCP) e Fortaleza (FOR), que nessa data seria feito por um Airbus A330-200 conforme indicado no site da companhia:

Clique na imagem para ampliá-la

É comum que algumas rotas de determinadas companhias sejam atendidas por mais de um modelo de avião. Como o caso da Rota São Paulo (GRU) – Manaus (MAO). Na Latam ela pode ser operada tanto em um Airbus A321 com 220 lugares na clássica disposição 3-3, por um Airbus A350 com 339 lugares ou até mesmo por um Boeing 777 para 379 passageiros. O Seatguru vai exibir todos os modelos usados na rota, então é necessário saber o modelo antes de fazer sua consulta.

Mesmo em companhias com frotas com poucas variações como é o caso da GOL, as diferenças existem. No Boeing 737-700, por exemplo, as poltronas 7A e 7F não possuem janela (você fica literalmente de cara para a parede!). Já o mesmo não ocorre no Boeing 737-800, onde são as poltronas 10A, 11A e 11F que não têm janela. Nesse caso saber mais sobre a aeronave em que você vai viajar pode ser a diferença entre poder apreciar a vista ou não. Então vale a pena investir um tempinho nisso ao planejar as suas férias.

Histórico da aeronave

Agora, se você é do tipo curioso e quer saber todos os detalhes sobre o avião em que vai viajar é possível descobrir de antemão a matrícula da aeronave. Com esse registro, você consegue saber a data de fabricação, o histórico (por quais companhias ele já passou), quais os voos recentes que fez antes de você embarcar e quais serão os próximos destinos visitados por ele.

Um bom lugar para fazer esse tipo de pesquisa é no site Flightradar24. Basta digitar o código do voo na campo de busca e clicar sobre ele para abrir a lista com as informações do voo. Será exibido o histórico dos últimos 7 dias com as matriculas dos aviões que foram utilizados e a programação para os próximos 9 dias naquela rota (na versão paga esse intervalo é maior). É comum que a matricula dos voos futuros só apareça um ou dois dias antes da viagem, então não adianta pesquisar com tanta antecedência. (Em alguns casos a matrícula pode aparecer momentos antes da partida ou até mesmo depois que o voo já tiver sido concluído).

Como exemplo fiz uma pesquisa para o voo Latam LA4626, de São Paulo (GRU) para Fortaleza (FOR) que nessa data seria realizado em um Boeing 767-316(ER) de prefixo PT-MOF:

Clique na imagem para ampliá-la

Ao clicar na matrícula do avião você é redirecionado para uma outra lista, que exibe todos os últimos voos feitos por ele além de indicar qual será o próximo voo a ser realizado. No exemplo, o Boeing 767 da latam havia feito o trecho Santiago (SCL) – São Paulo (GRU) e depois faria a rota Fortaleza (FOR) – Miami (MIA):

Clique na imagem para ampliá-la

Assim você consegue saber por onde ele passou. Foi dessa forma que descobri que o A350 que me levou de São Paulo para Manaus tinha vindo de Madrid na review de como é voar em assento de classe executiva em voo nacional que fiz para o canal do Melhores destinos no Youtube.

Já para saber a idade da aeronave, por quais empresas ela passou e se teve outros códigos de registro sites como o Airframes, Planespotters ou Airfleets podem ser bem úteis. No Airframes é necessário criar um cadastro gratuito para fazer as pesquisa (anote seu usuário e senha, pois não é possível recuperar em caso de esquecimento) e depois no menu escolher a opção “Aircraft” e digitar o registro no campo “Registration”. Já no Planespotters e Airfleets é possível fazer a pesquisa sem ser cadastrado, basta digitar o código de registro no campo de busca.

Por:Sandro Kurovski (melhoresdestinos.com.br)

Qual é o tipo de combustível do avião?


Uma das maiores curiosidades sobre os aviões é sobre o tipo de combustível utilizado. Por mais que se saiba que as aeronaves de grande porte utilizem a querosene de aviação e as de pequeno porte utilizem a gasolina, há grandes diferenças entre essas versões e as convencionais, que podemos comprar livremente por aí.

E diante de um cenário onde as empresas aéreas e fabricantes de aeronaves buscam reduzir ao máximo o nível de emissão de gases na atmosfera, é possível que logo vejamos mais opções disponíveis no mercado, inclusive com a participação da energia elétrica, forte tendência já entre os carros.

Para que o leitor entenda melhor, separamos quais os combustíveis disponíveis para os aviões e quais podem surgir no futuro. Confira!

Querosene de aviação


O querosene de aviação é o principal combustível utilizado na aviação comercial atualmente. Fabricado em três tipos, ele é bem diferente do querosene que compramos em lojas de materiais de construção, por exemplo, já que seu processo de refino e octanagem é feito pensando no desempenho de uma aeronave.

Abastecimento dos aviões comerciais é feito essencialmente de querosene
(Imagem: Divulgação/Chalabala/Envato)
O processo de produção do querosene de aviação varia pouco de marca para marca. Basicamente ele é gerado por um tipo de refino chamado "fracionamento por destilação atmosférica". Esse processo vai da vaporização dos hidrocarbonetos ao ponto mais elevado de ebulição da matéria-prima, no caso, o petróleo, que gira em torno de 170ºC a 240°C a mais que a gasolina comum.

Atualmente, existem três tipos de querosene de aviação:

Jet A

Disponível apenas em alguns aeroportos de países com clima mais frio, como o Canadá, o Jet A tem ponto de congelamento de -40ºC. Sua diferença para o A-1, mais usado no mundo, é a adição de substâncias e aditivos, como antioxidantes e inibidores de congelamento, também presentes no Jet B, este usado em países essencialmente congelantes.

Jet A-1

O Jet A-1, que no Brasil se chama QAV-1, é o querosene de aviação tradicional, usado em motores a turbina, tanto em aviões quanto em helicópteros. Seu ponto de congelamento é de -47ºC, mas não tem os mesmos aditivos do Jet A ou Jet B.

Jet B

O querosene Jet B é o mais complexo dos três modelos. Seu alto grau de volatilidade permite um ponto de congelamento bem inferior, ou seja, ultrapassando os -47ºC do Jet A-1. Ele é usado em regiões como Groelândia, Polo Sul e Sibéria, justamente por suportar temperaturas baixíssimas.

Gasolina de aviação


A gasolina de aviação, chamada de AVGAS, é bem parecida com a que utilizamos nos carros de passeio. A diferença está no nível de octanagem e no grau de pureza, já que não há mistura com etanol e o uso de outras substâncias, como o chumbo, presente na gasolina comum.

A gasolina de aviação é usada em aviões de pequeno porte
(Imagem: Divulgação/DanThornberg/Envato)
A AVGAS é usada em aviões de pequeno porte, como os monomotores utilizados na agricultura, por exemplo, ou até mesmo em aviões de competição e corrida, que fazem acrobacias.

Outros tipos de combustível para aviões


Além da gasolina e do querosene, outro combustível que está em alta para aviões e deve aparecer mais no mercado de aviação comercial é o SAF, ou combustível de avião renovável.

O SAF é produzido a partir de matérias-primas renováveis, como óleo de cozinha usado ou resíduos sólidos urbanos, e pode reduzir as emissões de CO2 do ciclo de vida em até 80% em relação ao querosene de aviação. Atualmente, regras internacionais exigem que a quantidade de SAF para operações regulares seja de, no máximo, 50%.

Além desse produto, os aviões devem receber, em breve, variantes com motorização elétrica ou, pelo menos, com powertrain híbrido. Há, inclusive, testes com essas aeronaves em andamento.

sábado, 3 de janeiro de 2026

Como os aviões sabem para onde ir (História da navegação aérea)


Com o GPS no seu carro, você pode simplesmente digitar para onde quer ir, e o GPS calculará o tempo estimado de chegada e a rota mais rápida. Você já se perguntou como um avião pode fazer o mesmo? Sim, a tecnologia GPS já era utilizada em aviões antes dos carros. Mas você pode facilmente ver como ela funciona mais em carros do que em aviões.

Como os aviões sabem para onde ir?


No carro, o GPS possui um mapa de ruas e rodovias. O GPS usa sinais para determinar o fluxo de tráfego, a velocidade e a distância até o destino. O motorista pode seguir essas coordenadas até o seu destino.

Em aviões, existem mapas rodoviários de rotas aéreas. O GPS do avião usa sinais para analisar o vento, o clima e a distância até o destino. As informações são inseridas na Caixa Preta, que contém dados do sistema de referência e sinais de radionavegação para guiar o avião até o destino desejado utilizando as rotas aéreas.

História da Navegação Aérea


Nos primeiros anos da pilotagem, os pilotos navegavam por marcos visuais ou por navegação astronômica. Os carteiros, no início de 1900, navegavam usando fogueiras. As fogueiras, a pilotagem, a navegação estimada, o VOR e o GPS foram formas utilizadas pelos pilotos ao longo dos anos.

Pilotagem

Praticagem é uma técnica que utiliza pontos fixos como referência ou guia. Esta técnica é uma das primeiras técnicas de navegação ensinadas aos práticos. A técnica incluía a identificação de pontos de referência, como rios, cidades, montanhas, torres e lagos, e a comparação com cartas náuticas impressas.

À noite, os pilotos podem usar rodovias, aeroportos e luzes da cidade para navegar. A pilotagem é uma técnica simples de navegação. Mas não é uma técnica de navegação eficiente. A pilotagem é limitada pelas condições meteorológicas quando a aeronave está no solo, e a visão do piloto é limitada.


Estimativa de posição

Estimativa é um processo para determinar a distância entre os pontos de controle e a localização da aeronave, calculando o tempo e a distância com base em uma velocidade específica. Uma maneira mais eficiente de determinar sua posição e manter uma rota programada é usar pilotagem e estimativa em conjunto.

Farol Não Direcional (NBD)

O Non-Directional Beacon é um transmissor de radiofarol de baixa frequência baseado em solo. É usado como abordagem instrumental para plataformas offshore e aeroportos. O sinal do Non-Directional Beacon é omnidirecional e é recebido pelo Automatic Directional Finder (ADF), um instrumento padrão em aeronaves.

O ADF decifra o sinal e informa ao piloto a localização dos beacons e sua localização em relação a eles. A frequência NBD é inserida no instrumento ADF, que fornece ao piloto instruções sobre como chegar à estação. O sinal é transmitido 24 horas por dia, 7 dias por semana, ininterruptamente.

Alcance Omnidirecional VHF (VOR)

VOR é um sistema de navegação de curto alcance utilizado por aeronaves. O VOR permite que a aeronave determine sua localização ou posição e permaneça no curso atual dos sinais transmitidos por radiofaróis fixos no solo.

O sistema VOR consiste em uma estação VOR, um instrumento que exibe e interpreta dados e uma antena da aeronave. O piloto pode visualizar a posição da aeronave em relação aos beacons a partir da estação terrestre.

Estação Terrestre VOR
Há dois sinais emitidos pela estação VOR. Um sinal é rotativo e o outro emite simultaneamente em todas as direções, ou seja, em todas as direções.

Os sinais são medidos e a diferença de fase determina a posição radial ou linear da estação VOR. O posicionamento varia entre 0 e 360 ​​graus. As posições são 180 graus Sul, 90 graus Leste, 270 graus Oeste e 360 ​​graus Norte.

Com o posicionamento e o equipamento de medição, é possível determinar a posição precisa de uma determinada estação terrestre de VOR. Os Estados Unidos têm aproximadamente 1.000 estações VOR em todo o país. As estações VOR são usadas principalmente em conexão com determinadas rotas e vias aéreas no céu.

Sistema de Posicionamento Global (GPS)


O GPS é mais preciso do que outros sistemas de navegação e é o mais confiável. Voar com GPS é mais eficiente e pode economizar tempo e dinheiro.

GPS é um sistema global de navegação por satélite criado pelo Departamento de Defesa em 1973. O Sistema de Posição Global pode fornecer informações de tempo e geolocalização para receptores GPS em todo o mundo.

Não é necessário que o usuário transmita dados ao sistema de navegação. O GPS opera independentemente da internet ou de sinais telefônicos, embora o uso desses sinais possa aumentar a utilidade do GPS.

O GPS é baseado em dados adquiridos por satélites, que são transmitidos da estação em solo para o receptor GPS da aeronave. A direção, velocidade e distância são inseridas no Sistema de Gerenciamento de Voo (FMS) (Caixa Preta).

Mapas rodoviários do céu


As vias aéreas são caminhos que mantêm o tráfego aéreo separado e organizado.

As cartas de rota fornecem um esboço das rotas aéreas do céu. Assim como os mapas para carros, as cartas de rota fornecem um mapa rodoviário do céu para aeronaves e mostram como as rotas aéreas estão conectadas.

O sistema funciona da seguinte forma: um despachante analisa os ventos e o clima entre dois destinos. O sistema de transporte aéreo pode determinar a rota mais econômica.

Sistema de Gerenciamento de Voo (FMS) ou Caixa Preta


Uma vez determinada a rota, as informações são inseridas no Sistema de Gerenciamento de Voo (FMS). A Caixa Preta é considerada o cérebro da navegação da aeronave.

Os sistemas de gerenciamento de voo utilizam vários dos sinais e sensores abaixo para ajudar a aeronave a manter sua posição e guiá-la até seu destino. Abaixo estão os sinais incluídos no FMS.

Sistema de Posicionamento Global (GPS)


Sistemas de Referência Inercial (IRS) são dispositivos que utilizam sensores de movimento, sensores de rotação e um computador para calcular a velocidade, a posição e a orientação de objetos em movimento sem referências externas.

Auxílios de rádio


Sinais de navegação, dados de GPS e sistema de referência inercial são alimentados no sistema FMS para garantir a precisão. O FMS também contém auxílios à navegação, aerovias necessárias para as rotas e um enorme banco de dados de aeroportos. Uma vez determinada a rota, ela é enviada eletronicamente para o Centro de Tráfego Aéreo.

O Centro de Tráfego Aéreo analisa a rota proposta e determina se o tráfego aéreo atual pode acomodá-la. O Controlador de Tráfego Aéreo local informará o piloto durante a decolagem pré-voo se a rota está livre. Se estiver, o piloto poderá prosseguir.

Com informações do AeroCorner.com

quinta-feira, 1 de janeiro de 2026

Como os aeroportos lidam com a neve?

A neve pode ser uma verdadeira dor de cabeça para aeroportos e companhias aéreas. Como tal, ambas as partes devem tomar medidas para minimizar o perigo e perturbações causados ​​pelo clima invernal.

Neve, aeroportos, companhias aéreas (Foto: Getty Images)

Limpando a neve das pistas e pistas de taxiamento


Uma parte crucial de manter os aeroportos abertos durante o inverno adverso é gerenciar com eficácia o acúmulo de neve e gelo nas pistas de taxiamento. A aeronave pode pousar no gelo, como a Austrália prova com seus voos de abastecimento do Airbus A319 para a Antártica. No entanto, não é o ideal.

Em primeiro lugar, a neve na pista pode cobrir as marcações da pista e, potencialmente, as luzes, dependendo de sua profundidade. Também afetará as capacidades de decolagem e frenagem da aeronave. Isso pode se tornar especialmente perigoso se as superfícies ficarem geladas. Basta dar uma olhada nesta aeronave S7 russa deslizando na pista de taxiamento:


Assim, em dias de muita neve, não é incomum ver uma equipe de limpa-neves cuidando das pistas e pistas de taxiamento para mantê-los longe de neve e gelo. Pode parecer estranho ver essas máquinas em um aeroporto como o London Heathrow, onde a neve é ​​rara. Mas, apenas um dia de neve pesada em um dos aeroportos mais movimentados do mundo pode causar estragos em todo o globo.

Limpadores de neve podem ser vistos removendo a neve das pistas e
pistas de taxiamento (Foto: Getty Images)

Além de manter as pistas de taxiamento e pistas desimpedidas, os aeroportos também procurarão garantir que a sinalização essencial do aeroporto seja mantida livre de neve. A sinalização, como os indicadores das pistas, são necessários para alertar os pilotos que estão taxiando as aeronaves onde estão e para onde estão indo.

A sinalização essencial também deve ser mantida livre de neve (Foto: Getty Images)

O descongelamento das aeronaves


Outra parte crucial das operações do aeroporto de inverno é descongelar as aeronaves antes de sua partida. O fluido de descongelamento pode ser pulverizado em um avião antes da partida para remover qualquer neve ou gelo acumulado nas superfícies de voo da aeronave. Se eles permanecessem, eles poderiam interromper o fluxo de ar nas superfícies de voo. No pior dos casos, isso pode derrubar um avião.

O degelo remove o gelo e a neve acumulados na aeronave (Foto: Getty Images)

De acordo com a NASA, existem quatro tipos diferentes de fluidos de degelo e anticongelante, convenientemente chamados de tipo I, II, III e IV. Os fluidos do tipo um são muito diluídos e sairão rapidamente de uma aeronave em movimento no ar. Os demais líquidos são um pouco mais espessos, o que significa que permanecem na aeronave por mais tempo. No entanto, eles também requerem uma maior velocidade no ar para explodir das asas.

A NASA afirma que o Tipo IV, o mais espesso do lote, pode proteger a aeronave do gelo ou congelamento por até uma hora e 15 minutos. No entanto, requer uma velocidade no ar de 100 nós para remover o gelo.

quarta-feira, 31 de dezembro de 2025

Porca de Jesus: peça de nome curioso derruba helicópteros se der problema

Helicóptero Bell 206B: Modelo conta com a porca de Jesus para prender o rotor principal
ao eixo do motor da aeronave (Imagem: Lance Andrewes)
Na aviação, nenhuma falha é desejável. Entretanto, algumas são mais ou menos graves do que outras.

Se um trem de pouso não baixar, por exemplo, é possível fazer um pouso de barriga em algumas situações. Se um instrumento no painel não está operante, é corriqueiro que haja outro redundante que possa ser utilizado em seu lugar.

Em alguns helicópteros, entretanto, uma peça em particular tem um apelido inusitado devido à sua importância: A porca de Jesus. Ela é de fundamental importância, pois é ela quem segura o rotor principal do helicóptero (a espécie de hélice que fica na parte de cima da aeronave).

Localização da porca de Jesus no helicóptero Bell 206
(Imagem: Intervenção sobre foto do Exército dos EUA)
Sem essa porca de retenção, ele se solta, e a aeronave perde sua sustentação e termina caindo, consequentemente. Nem todos os helicópteros possuem o mesmo tipo de fixação, e essa peça pode variar entre os vários modelos existentes. Devido à sua importância, antes de decolar, sempre é preciso checar se ela está no lugar.

Apelido


Porca de Jesus, que prende o rotor principal ao eixo vertical do helicóptero
(Imagem: Alan Radecki Akradecki/CC BY-SA 4.0)
Esse nome é uma brincadeira, com várias versões para sua origem: se houver alguma falha com ela, só rezando para Jesus para ser salvo. Também há quem diga que, quando essa porca se solta durante o voo, o piloto diz imediatamente: "Jesus".

Outro comentário comum entre mecânicos do setor é que, caso ela quebre, obrigatoriamente, a próxima figura que você irá encontrar será ele, Jesus.

Esse apelido também é dado a peças estruturais importantes em outras aeronaves. Geralmente, são itens que, quando falham, causam acidentes graves, com quedas.

Acidentes são fatais


A chance de sobrevivência em um acidente quando o rotor principal escapa é muito baixa. Caso ocorra em voo, o helicóptero irá cair.

Se estiver no solo, ainda é necessário levar em consideração se as pás não irão colidir com a cabine onde estão os tripulantes e passageiros.

Em abril de 2000, um helicóptero Bell 206 sofreu um acidente no Canadá pela ausência da porca de Jesus. Ele havia decolado e voado por alguns minutos com o piloto e um engenheiro de manutenção para fazer testes na aeronave. Após anunciarem que retornariam ao hangar onde estava sendo feito um procedimento de manutenção, o rotor principal do helicóptero se soltou, e as pás acertaram a cabine, matando os dois a bordo. Após a queda, ainda houve um incêndio, que destruiu a aeronave.

O relatório de investigação do acidente identificou que o helicóptero decolou sem a porca de Jesus. Ela foi encontrada no hangar junto com seus componentes de fixação, já que havia sido removida para ser pintada. Também se concluiu que o piloto não checou se a porca de fixação estava no lugar antes de decolar, assim como não havia nenhum recado na cabine para avisá-lo sobre isso. Nenhum documento da aeronave indicava a remoção da peça, e três funcionários que auxiliaram na retirada da porca de Jesus estavam presentes no momento da decolagem. Nenhum deles havia se lembrado de que a peça não estava no lugar, segundo o relatório.

Por Alexandre Saconi (UOL) - Fontes: Misak Reis, inspetor de manutenção da Helimarte, e Conselho de Segurança de Transporte do Canadá

Vídeo: Como as bagagens chegam até o avião?


Você comprou sua passagem, vai viajar e aí começa a arrumar a sua mala. Já se perguntou "qual será o caminho que essa mala faz até chegar no avião?". No vídeo de hoje Lito Sousa nos mostra como é o caminho que a sua mala percorre desde o momento em que você deixa ali na balança, até chegar na esteira lá do seu aeroporto de destino.

Por que as descargas dos banheiros das aeronaves são tão barulhentas?

Nem é preciso dizer que o som da descarga de uma descarga de um avião é ensurdecedor. Considerando que o sistema de ventilação da aeronave e os motores combinados já estão fornecendo ruído ambiente suficiente para abafar uma conversa normal de fala, o fato de que a descarga de um banheiro atravessa esses sons e pode ser ouvido no meio da cabine, é um eufemismo chamar isso ruído 'alto'. 

Mas por que a descarga do banheiro de um avião é muito mais alta do que a descarga de um banheiro doméstico comum?

O volume da descarga do vaso sanitário de uma aeronave é aproximadamente equivalente a estar a um ou dois metros de uma serra elétrica ou a ficar em uma plataforma e ser ultrapassado por um trem em movimento.

Foto: Getty Images

De acordo com o Wall Street Journal, o banheiro é essencialmente a parte mais barulhenta da experiência de voo, relatando que os anúncios da tripulação normalmente variam entre 92 e 95 decibéis. Em comparação, as descargas do vaso sanitário atingem 100 decibéis - junto com fortes batidas na porta do compartimento superior. Certamente há uma boa explicação para isso.

Então, por que a descarga do banheiro dos aviões faz um barulho tão alto?

Simplificando, o volume da descarga é devido a um vácuo parcial que suga o conteúdo do vaso sanitário para o tanque de dejetos da aeronave. Considerando que seu 'banheiro subterrâneo' padrão é drenado com a liberação de cinco a dez litros de água, não é tão viável dedicar tanto espaço e combustível para transportar tanta água para banheiros no céu. E então, é claro, haveria a complicada questão de derramamento durante a decolagem, pouso e turbulência!

Provavelmente não é necessário incluir um exemplo. Mesmo assim, caso você não saiba o som da descarga do vaso sanitário de uma aeronave (ou, mais provavelmente, tenha esquecido depois de ter passado tanto tempo no solo), aqui está um videoclipe para sua conveniência:

De acordo com o site The Points Guy, o banheiro moderno da aeronave foi inventado por James Kemper, que patenteou o banheiro a vácuo em 1975. Esta invenção foi então instalada nos aviões da Boeing em 1982. Em vez de usar a combinação convencional de água e gravidade, um vácuo é usado para mover água e resíduos em alta velocidade para o tanque de resíduos. De acordo com o CBC, o conteúdo liberado pode se mover a altas velocidades de até 150 metros por segundo - ou 300 milhas por hora!

Os banheiros da aeronave também são cobertos com um revestimento antiaderente para garantir que a bacia seja completamente esvaziada (Foto: Tiowiafuk)

Descendo para os tanques de resíduos

Como você deve saber, a cabine de passageiros de uma aeronave é pressurizada a uma altitude superior. O sistema sanitário da aeronave inclui uma válvula que mantém essa diferença de pressão. Na descarga, a válvula se abre e, em seguida, esse resíduo é sugado pelos tubos que enchem o tanque.

Dependendo do tamanho da aeronave, há um ou mais tanques localizados na parte traseira do avião, embaixo do piso. Os banheiros se conectam a esses tanques por meio de tubulações instaladas em toda a extensão da aeronave. Portanto, sempre que alguém da primeira classe ou classe executiva descarrega, esses conteúdos estão sendo movidos em alta velocidade para a parte traseira da aeronave.

Remoção de dejeto sanitário de aeronaves

Parte do tempo que uma aeronave passa no portão do aeroporto geralmente inclui o esvaziamento de seus tanques de resíduos (Foto: mnts)

Provavelmente também não ajuda o fato de você normalmente ter a porta do banheiro fechada quando você aperta o botão para dar descarga. Como as ondas sonoras têm poucos lugares para ir, isso inevitavelmente intensificaria o fluxo ao ricochetear no espaço confinado.

terça-feira, 30 de dezembro de 2025

Com que frequência os aviões trocam os pneus?

Pneus de aeronaves são expostos a enormes forças e tensões. Depois de quantos ciclos de voo eles precisam ser trocados?

Boeing 757-351, prefixo N589NW, da Delta Air Lines (Foto: Vincenzo Pace)
Sejamos honestos. No momento em que a aeronave pousa na pista , a maioria dos passageiros converte-se temporariamente em pilotos de treinamento especializados, prontos para julgar as habilidades daqueles que pilotam o avião. Além de avaliar as habilidades de pouso dos pilotos, você também deve ter se perguntado qual deve ser a resistência dos pneus da aeronave para suportar o peso de um jato de passageiros durante o pouso e com que frequência eles precisam ser trocados.

Com que frequência os pneus das aeronaves são trocados?


A resposta mais correta para essa pergunta provavelmente é "depende". De fato, várias variáveis ​​afetam quando uma aeronave precisa trocar um ou mais pneus.
De um modo geral, é seguro afirmar que os pneus de aeronaves podem realizar entre 150 a 400 pousos. Os fatores que determinam quantas aterrissagens um avião pode realmente realizar sem trocar os pneus são múltiplos e de diferentes naturezas. 

Em primeiro lugar, cada tipo de aeronave precisa ser considerado individualmente, pois suas características técnicas, estrutura da fuselagem e capacidades de carga contribuem para diferentes prazos em relação à troca de pneus. Embora todas as aeronaves devam seguir cronogramas e prazos de manutenção específicos definidos pelos fabricantes e órgãos reguladores, a vida útil real de um pneu de aeronave geralmente é de 70% de sua durabilidade "teórica".

Boeing 737-823, prefixo N915NN, da American Airlines (TWA Heritage Livery) (Foto: Vincenzo Pace)

Quais são as principais variáveis ​​que afetam a troca de pneus?


Entre todos os fatores que afetam a vida útil de um pneu de aeronave, encontram-se as condições climáticas, superfícies danificadas da pista, danos causados ​​por detritos da pista (Foreign Object Debris - FOD) e fadiga térmica.

No último exemplo, por exemplo, os pneus são expostos a enormes saltos de temperatura, variando de 60 graus Celsius negativos em altitude de cruzeiro a temperaturas escaldantes do solo em países quentes. Essas diferenças de temperatura relevantes podem afetar negativamente a pressão dos pneus. 

Por exemplo, se o pneu de um avião estiver murcho, os motores precisam de mais impulso no solo, aumentando assim o consumo de combustível, porque as rodas cobrem mais área de superfície. Por outro lado, se um pneu estiver cheio demais, a banda de rodagem, ou seja, a parte central do pneu, vai receber mais carga, desgastando-se mais rapidamente.

Detalhes do Servus da Austrian Airlines (Foto: Photofex_AUT/Shutterstock)

As condições operacionais únicas dos pneus de aeronaves


A principal razão pela qual é praticamente impossível dizer após quantos ciclos (decolagens e pousos) os pneus de aeronaves precisam ser trocados são suas complexas condições de operação.

É preciso considerar que no momento em que uma aeronave toca na pista, forças de impacto de dezenas a centenas de toneladas aceleram os pneus de zero a aproximadamente 150 mph (241 km/h) em uma fração de segundo. Essa aceleração instantânea se traduz em desgaste rápido e na criação de chevrons, ou seja, cortes na banda de rodagem em forma de V plano.

Boeing 757 da Iceland Air  pousando em Vancouver (Foto: yvr_luis/Shutterstock)
Além do atrito, os sulcos de chuva contribuem fortemente para o rápido desgaste dos pneus das aeronaves. Ranhuras de chuva são cortadas na área de toque das pistas para canalizar a água para reduzir a possibilidade de a aeronave sofrer eventos de hidroplanagem durante o pouso. 

Esses sulcos geralmente têm 0,8 polegadas (9 milímetros) de profundidade e largura e são normalmente colocados a uma polegada (2,5 centímetros) de distância. Embora extremamente úteis quando chove, os sulcos de chuva contribuem para chevroning quando as aeronaves pousam em condições secas.

Verificação pré-voo


Nem é preciso dizer que o estado dos pneus da aeronave é de suma importância para a segurança de um voo.

Portanto, os pneus são verificados antes de cada decolagem pelo piloto que faz a verificação externa e por um técnico de fuselagem. Nesta fase, quem faz a avaliação procura principalmente possíveis danos causados ​​por FODs ou outros sinais de desgaste. Além do desgaste, a profundidade do piso é um aspecto importante a avaliar. Em média, 0,06 a 0,09 polegadas (1,59 a 2,38 milímetros) são considerados suficientes para que o pneu passe na verificação.

Detalhe de um pneu de avião (Foto: Jaromir Chalabala/Shutterstock)

Fatos interessantes sobre pneus de aeronaves


Embora possa ser percebido como um risco seguro, é comum na aviação reformar pneus.

Por um lado, os pneus de aeronaves são particularmente caros . Portanto, dar uma segunda vida a pneus velhos ajuda as companhias aéreas a reduzir seus custos. Por outro lado, esta prática é amplamente aceita pelas autoridades de segurança e pelos fabricantes. Basta dizer que a profundidade do piso de um pneu reformado pode chegar a 0,5 polegadas (1,27 centímetros).

Boeing 777-3DZ(ER) da Qatar Airways (Foto: Vincenzo Pace)
Como os pneus das aeronaves são expostos a altas temperaturas, principalmente por causa do calor gerado pelos freios, o nitrogênio é bombeado para os pneus, não o ar. De fato, o oxigênio no ar ambiente pode inflamar se exposto às altas temperaturas de várias centenas de graus do sistema de freio. 

Ainda assim, por causa do risco de explosão, os operários sempre esperam um certo tempo após o pouso da aeronave antes de se aproximarem dos pneus. Também é sugerido aproximar os pneus pela frente ou por trás, não pela lateral. Com efeito, as laterais são mais frágeis do que a estrutura central, traduzindo-se nestas partes por serem as primeiras a ruir em caso de explosão.

Via Simple Flying, Quora e Hydro.aero

domingo, 28 de dezembro de 2025

Fenômeno aerodinâmico: uma visão detalhada do "canto do caixão"

As explicações sobre o canto do caixão às vezes são vagas ou carentes de detalhes.


O canto do caixão é um daqueles fenômenos que se fala muito dentro e fora da indústria da aviação. No entanto, a maioria das explicações sobre o canto do caixão são muitas vezes vagas e não explicadas com tantos detalhes. Neste artigo, vamos aprofundar o tópico e discutir o que realmente é o canto do caixão.

Efeitos de voo e compressibilidade em alta velocidade


A maioria dos transportes a jato no mundo viaja na região transônica. Em média, um jato típico viaja a velocidades que variam de 78% a 85% da velocidade do som. Ou, em termos técnicos, 0,78 a 0,85 número Mach. Então, o que significa o número de Mach? Mach é a velocidade de um objeto em relação à velocidade do som.

Por exemplo, se um objeto está viajando a 0,1 Mach, isso significa simplesmente que o objeto tem uma velocidade que é 10% da velocidade do som. Se o mesmo objeto se move a Mach 1, isso implica que ele está viajando a 100% da velocidade do som, ou tem a mesma velocidade que a velocidade do som. Quando um objeto atinge Mach 1, diz-se que é supersônico, e quando a velocidade ultrapassa Mach 1, o objeto se move para o regime supersônico.

Cone de vapor do F-18 durante o voo supersônico (Foto: Kevin Dickert via Wikimedia)
Então, por que o número de Mach é tão importante? Para entender isso, visualize uma aeronave parada no solo. Se você bater no nariz dele com um martelo, você ouvirá um som. Este som é transportado por ondas de pressão que viajam à velocidade do som no solo, que é de cerca de 340 m/s. Agora imagine a aeronave se movendo a uma certa velocidade. Se você atingir a aeronave enquanto ela estiver em movimento, a onda de pressão ainda viajará na velocidade do som. No entanto, desta vez devido ao movimento da aeronave, a distância entre a onda de pressão principal e a aeronave diminui. À medida que a velocidade da aeronave aumenta cada vez mais, essa distância diminui ainda mais.

Como a aeronave se fecha em suas ondas de pressão com o aumento da velocidade
(Imagem: Chabacano via Wikimedia)
Na vida real, quando uma aeronave se aproxima de Mach 0,4, a compressibilidade do ar se torna um fator. Como mencionado anteriormente, à medida que a aeronave acelera, ela começa a acompanhar suas ondas de pressão. Abaixo de 0,4 Mach, a onda de pressão age como um carro de polícia que libera o trânsito para o Presidente. As ondas de pressão avisam as moléculas de ar à frente da aeronave para abrir caminho para ela.

Mas à medida que a aeronave se aproxima de sua onda de pressão, ela não pode mais avisar as partículas de ar. Como não há aviso, o ar é subitamente submetido a grandes mudanças que aumentam sua densidade, temperatura e pressão. Em algum momento, se a aeronave acelerar até Mach 1, ela finalmente alcançará suas ondas de pressão. Isso faz com que as ondas de pressão se acumulem, formando ondas de choque.

Durante uma subida, a True Air Speed ​​(TAS) de uma aeronave aumenta devido à redução da densidade. Juntamente com o TAS, a velocidade do som também diminui porque a velocidade do som é diretamente proporcional à temperatura. À medida que a temperatura diminui com a altitude , reduz a velocidade do som. O que isso significa é que, à medida que uma aeronave sobe cada vez mais alto, seu número Mach aumenta. A fórmula para o número de Mach é a seguinte:

Mach = TAS/LSS, onde TAS é a velocidade real do ar e LSS é a velocidade local do som.

À medida que uma aeronave sobe, seu TAS aumenta, o que aumenta seu número Mach
(Foto:  National Archives at College Park via Wikimedia Commons)
Isso é importante porque se uma aeronave que não foi projetada para ir acima da velocidade do som for acima dela, coisas indesejáveis ​​podem acontecer, como perda de controle. Em uma aeronave, a velocidade do fluxo é a mais alta nas asas e, portanto, é a parte mais provável que pode ir além da velocidade do som mais rapidamente.

Então, agora deixe-me introduzir um novo termo. O número de Mach Crítico. O número Critical Mach, ou Mcrit para abreviar, é a velocidade mostrada no indicador de velocidade da aeronave quando uma parte de uma aeronave se torna sônica. Em uma aeronave típica, a asa atingirá Mach 1 muito antes de qualquer outra parte da aeronave e, se a aeronave for projetada para voo subsônico, seu número de Mach crítico desempenha um papel importante na velocidade mais alta que pode atingir.

Assim, os designers criaram designs de asas que podem desacelerar o Mcrit, incluindo o uso de asas varridas e aerofólios supercríticos.

Parada de alta velocidade e parada de baixa velocidade


Um estol de alta velocidade é causado pela formação de ondas de choque. Por causa das mudanças drásticas que são trazidas ao fluxo de ar pela presença de uma onda de choque, ela causa a separação do fluxo logo atrás dela. Um choque que está preso à asa, consequentemente, faz com que o fluxo de ar se separe da asa, e isso leva à perda de sustentação. Isso é chamado de estol de alta velocidade. Com o aumento da altitude, a aeronave se aproxima de Mach 1 e, por esse motivo, com o aumento da altitude, a velocidade para estol em alta velocidade diminui.

As ondas de choque podem causar a separação do fluxo, o que pode levar a
um estol de alta velocidade (Foto: Oxford ATPL)
Por outro lado, o aumento da altitude faz com que o estol de baixa velocidade aumente. Consulte este artigo para obter uma explicação detalhada do fenômeno de estol em baixa velocidade. O estol de baixa velocidade aumenta com a altitude devido à compressibilidade. Conforme explicado anteriormente, à medida que a velocidade da aeronave aumenta, o fluxo de ar não é mais avisado. Devido a esta razão, à medida que a borda de ataque da asa atinge o fluxo de ar, ela é feita para se curvar sobre a asa em um ângulo mais acentuado.

Em velocidades normais, o fluxo de ar começa a divergir e subir muito à frente do bordo de ataque da asa. Devido ao ângulo de aproximação acentuado do fluxo de ar, a região de menor pressão na asa ocorre muito mais próxima do bordo de ataque, fazendo com que o gradiente de pressão adverso afete uma área maior da asa. Isso faz com que a asa estole em um ângulo de ataque mais baixo devido à separação precoce do fluxo.

Um aumento na altitude aumenta a velocidade de estol em baixa velocidade (Imagem: Oxford ATPL)
Agora, entende-se que com o aumento da altitude e da velocidade, o estol de alta e baixa velocidade se aproxima. Um aumenta enquanto o outro diminui. Em alguma altitude, essas duas velocidades se tornam uma única velocidade. Essa altitude é chamada de teto aerodinâmico da aeronave. Quando você chegar a esse teto, parabéns, você chegou oficialmente ao canto do caixão.

A que distância do canto do caixão os aviões voam?


Para aviões de passageiros, existem regulamentos que regem seus padrões de certificação. Uma delas é que, no teto mais alto, a aeronave deve poder manobrar com pelo menos 0,3 gs. Isso significa que a aeronave deve ter margem suficiente para manobras do piloto sem encontrar um bufê de alta velocidade ou um bufê de baixa velocidade. O buffet é o tremor da aeronave que é experimentado em um estol devido ao fluxo de ar separado atingindo as superfícies da cauda da aeronave.

A maioria dos fabricantes de aeronaves fornece gráficos de início de buffet nos manuais de voo, que os pilotos podem usar para determinar a altitude, velocidade e peso em que o buffet de baixa e alta velocidade pode ocorrer. Abaixo está o gráfico de início de buffet de um Airbus A320 com um exemplo trabalhado. Primeiro, vamos olhar para a linha amarela. Quando a linha de um fator de carga de 1,0 com um peso de aeronave de 60 Toneladas é estendida para uma altitude de 41.000 pés, pode-se observar que o buffet de baixa velocidade ocorre a Mach 0,65.

Gráfico de início de buffet do Airbus A320 (Foto: Airbus A320 AFM)
Para verificar o buffet de alta velocidade, cruzando a Mach 0,80, podemos ver que isso acontece com um fator de carga de cerca de 1,2 g. Agora, olhe para a linha vermelha, que está configurada para uma altitude de 37.000 pés. Da mesma forma que antes, com um fator de carga de 1,0 e um peso de 60 Toneladas, o buffet de baixa velocidade ocorre desta vez a uma velocidade de 0,62 Mach e na mesma velocidade de 0,80 Mach, o buffet de alta velocidade ocorre com um fator de carga de 1,4 g. Pode-se ver neste exemplo que com o aumento da altitude, a margem do buffet de baixa e alta velocidade diminui.

O cockpit do U2 é exibido enquanto voa a 70.000 pés. Quando a essa altitude, ele voa
muito perto do canto do caixão (Imagem: Christopher Michel via Wikimedia)
Afastando-se dos aviões de passageiros, os aviões militares de reconhecimento, o muito famoso U2 Dragonfly voa perto de seu canto de caixão. Quando em cruzeiro, a diferença entre seu bufê de estol de baixa velocidade e alta velocidade é de apenas 5 nós.

Edição de texto e imagens por Jorge Tadeu com informações do site Simple Flying