Em maio de 1992, a Popular Mechanics relatou o futuro brilhante das naves com asas no solo, conhecidas no ekranoplane russo. Esse futuro nunca veio.
Na edição de maio de 1992, a Popular Mechanics relatou o futuro brilhante da nave asa-no-solo (WIG), conhecida em russo como ekranoplane. Surgido de um projeto secreto da União Soviética, o Orlyonok representava o que esse futuro poderia ser. Nesta visão ambiciosa de viagens, frotas de navios pairando cruzariam os oceanos transportando passageiros e carga. É um futuro que nunca chegou, e hoje os ekranoplanos são encontrados principalmente em museus .
Em meio às ruínas de um império desgastado pelo longo impasse latente da Guerra Fria, estão espalhadas joias de tecnologia. Nascidos de décadas de trabalho secreto das melhores mentes que esta vasta nação conseguiu reunir, muitos são diferentes de tudo que o Mundo Livre já viu.
Uma dessas joias é chamada Orlyonok, ou Little Eagle. meio avião, meio embarcação, seu protótipo emergiu silenciosamente de um estaleiroao longo das margens do rio Volga, na Rússia, há mais de uma década. É a realização de um conceito com o qual os engenheiros ocidentais apenas brincaram.
Capaz de deslizar alguns metros sobre as ondas a 250 mph e pousar 30 toneladas de tropas, mísseis e suprimentos em uma cabeça de praia em guerra, Orlyonok foi projetado para lutar contra umguerra que nunca veio. Agora, desesperados para fazer seu vasto investimento valer a pena, os construtores de Orlyonok estão procurando novos mercados e começando a compartilhar seus segredos.
As linhas de comunicação entre o Oriente e o Ocidente ainda são instáveis. Mas as entrevistas com fontes russas e aerodinamicistas ocidentais estão começando a produzir uma visão detalhada de uma tecnologia que poderia, se devidamente alimentada, proporcionar o primeiro grande avanço no transporte de alta velocidade desde que a Boeing trouxe o voo a jato para as massas.
Orlyonok
Uma ilustração do Orlyonok
O Orlyonok é uma máquina enorme e complexa. Com um comprimento de 190 pés e um peso máximo de decolagem de 275.000 libras, está na escala de um avião largo de tamanho médio como o Boeing 767. O que diferencia Orlyonok, no entanto, é que, junto com um punhado de aviões russos semelhantes embarcação, é a primeira máquina voadora prática em grande escala construída para aproveitar um poderoso fenômeno aerodinâmico conhecido como efeito solo.
Familiar desde os primórdios da aviação, o efeito solo é o que explica o simples fato de as naves aladas voarem com mais eficiência quando estão próximas ao solo. Ele funciona alterando os padrões de fluxo de ar para aumentar a sustentação e reduzir o arrasto.
Em voo normal, o ar de alta pressão que sobe por baixo de cada ponta de asa agita correntes semelhantes a tornados, chamadas de vórtices nas pontas das asas. Eles voltam da asa e desviam a corrente de ar que passa para baixo. Isso dá à direção geral do fluxo de ar uma ligeira inclinação para baixo. E como a sustentação é perpendicular à corrente de ar, a asa tende a puxar o avião ligeiramente para trás e também para cima.
Os aerodinamicistas desenvolveram uma série de maneiras de lidar com isso, incluindo os winglets agora comuns nas pontas das asas dos aviões. Mas nada disso se compara à eficácia de voar tão baixo que o solo bloqueie os vórtices em espiral.
Embora qualquer avião possa se beneficiar do efeito solo simplesmente ficando a cerca de meia envergadura da superfície, é necessário um tipo diferente de veículo aéreo para tirar o máximo proveito disso.
A recompensa é substancial, entretanto. Um veículo de efeito solo especialmente construído - conhecido como nave asa no solo (WIG) ou ekranoplane em russo - pode voar com cerca de um quinto da potência de um avião de tamanho semelhante voando sem efeito solo. Isso significa cinco vezes a eficiência de combustível.
Flarecraft
O Flarecraft
Ao longo dos anos, vários pequenos protótipos foram construídos para testar todos os tipos de configurações de WIG. Um dos mais avançados é o Flarecraft de 2 lugares, que apareceu em nossa capa de julho de 1989 (acima) e recentemente entrou em produção. Mas todos esses são brinquedos aerodinâmicos em comparação com o que os russos construíram.
“Eles estão, sem dúvida, 30 anos à frente do Ocidente”, diz Stephan Hooker, um importante especialista em efeitos de solo dos EUA que visitou vários escritórios de design russos.
Essa sofisticação é baseada não apenas em análises teóricas sólidas e testes completos, mas em décadas de experiência prática. Onde outros esboçaram, os russos construíram. Uma amostra do know-how resultante pode ser encontrada em Orlyonok. Embora os russos sejam rápidos em apontar que este não é seu design mais avançado, é de longe a WIG mais avançada a que os ocidentais têm acesso.
Um recurso-chave originado pelos russos, e embutido em todos os seus grandes WIGs, é a capacidade de usar algo chamado de efeito Power-Augmented Ram (PAR). No caso de Orlyonok , isso é criado por um par de turbofans Kuznetsov NK-8 montados dentro do nariz. Bicos giratórios direcionam a exaustão de volta para baixo das asas, onde fica presa por flaps da borda de fuga e placas finais das pontas das asas. O resultado é uma almofada de ar que levanta a nave da superfície e permite que ela se mova facilmente em baixas velocidades, como um hovercraft.
O PAR resolve um problema que sempre perseguiu os projetistas de hidroaviões. Ou seja, essa água é cerca de 800 vezes mais densa que o ar. Isso significa que é necessária uma enorme quantidade de energia para fazer um avião se mover na água rápido o suficiente para decolar. Historicamente, a solução tem sido sacrificar o desempenho de vôo ao dominar a nave e dar a ela uma grande área de asa para que possa voar em baixa velocidade. PAR reduz a necessidade de tais compromissos.
Filho de um monstro do mar
O design de Orlyonok foi desenvolvido pelo falecido Rostislav Evgenyevich Alekseev, uma figura reverenciada na aerodinâmica soviética. Um esforço anterior dele, conhecido no Ocidente como o "Marinheiro Cáspio", é a fonte da forma básica de Orlyonok . Construído no início dos anos 1960, aquele navio único era movido por 10 motores de turbina e era cerca de 300 pés de comprimento, tornando-se uma das maiores aeronaves já construídas.
Nos designs de Alekseev, a sustentação vem de uma asa atarracada e de baixa relação de aspecto montada na meia nau e uma grande superfície de cauda horizontal montada no topo da nadadeira vertical. Esta configuração de asa dupla supera a instabilidade longitudinal que tem afetado outros veículos de efeito solo. O problema surge de uma tendência do centro de pressão que suporta a nave se mover para frente e para trás com as mudanças de altitude. Alekseev localiza as superfícies da cauda altas o suficiente fora do efeito de solo e as modela de modo que essas dinâmicas complexas não sejam um problema.
No caso de Orlyonok, a cauda vertical alta também fornece o poleiro para um motor turboélice Kuznetsov NK-12, bem conhecido da OTAN por seu uso no bombardeiro estratégico Bear. Equipado com duas hélices contra-rotativas, ele libera 15.000 cavalos de potência para conduzir Orlyonok em vôo de cruzeiro, durante o qual os motores PAR dianteiros são normalmente desligados. Não apenas o turboélice é mais eficiente do que um jato, mas seu passo variável oferece notável capacidade de manobra em baixa velocidade no modo PAR.
Como é pilotar uma nave tão pouco ortodoxa? Valentin Vassilyevich Nazarov, designer-chefe do bureau de design Ekolen e um dos pilotos de teste de Orlyonok , falou conosco sobre isso por telefone de São Petersburgo, Rússia.
“O procedimento é semelhante ao de qualquer aparelho voador”, diz ele. “É preciso ligar os motores, colocar toda a tripulação em seus lugares, verificar todo o equipamento, aquecer os motores de decolagem e o motor principal. Em seguida, os motores de decolagem começam a bombear o ar sob a asa e o movimento horizontal começa. A embarcação começa a se erguer da água. Ele ganha velocidade de até 150 km/h (93 mph). Depois disso, o piloto pode usar todas as superfícies aerodinâmicas para voar a nave.” A altitude de cruzeiro normal é entre 25 e 40 pés, dependendo da altura da onda.
Parte da tensão de manter a altitude com tanta precisão é aliviada por um sistema de controle de voo computadorizado, que usa dados de Doppler de varredura de superfície e radares convencionais. Para evitar obstáculos, altitudes de até 5000 pés são atingíveis, mas com um alto custo de eficiência.
Uma ilustração de um ekranoplano comercial operado pela American Airlines
Embora notável em muitos aspectos, Orlyonok representa o passado, e não o futuro, do voo com efeito asa no solo. "Orlyonok já é história", diz Nazarov. Sem dinheiro, mas cheio de ideias, Ekolen já projetou uma série de novos ekranoplanos civis para substituí-lo.
De acordo com o presidente da agência, Ilya Lvovich Gerlozin, isso representa uma abordagem totalmente diferente. “Eu usaria apenas uma palavra para descrevê-lo: conforto. Em Orlyonok , não havia conforto porque costumava ser um veículo militar. ”Nem Nazarov nem Gerlozin discutiam detalhes da nova nave, cujos elementos dizem que agora estão sendo patenteados.
Os esforços de Ekolen representam apenas uma pequena parte da atividade dos ekranoplanos que agora emergem do sigilo na ex-União Soviética. Outro consórcio muito maior também é conhecido por realizar o trabalho de Alekseev. Além disso, uma abordagem substancialmente diferente, mas igualmente refinada, está supostamente sendo seguida pelos seguidores do designer italiano/soviético Roberto di Bartini. Seus esforços poderiam levar a veículos adequados para viajar pela tundra árida da Sibéria, bem como sobre a água.
No entanto, nenhuma empresa russa tem recursos para empreender um grande programa de construção por conta própria. Todos procuram parceiros estrangeiros.
A próxima onda
Um ekranoplano abandonado no Mar Cáspio, em foto de 6 de outubro de 2020
Um americano muito interessado em manter esse relacionamento é Stephan Hooker. Sua empresa de engenharia, Aerocon, foi contratada pela Agência de Projetos de Pesquisa Avançada de Defesa (DARPA) do Pentágono para explorar o potencial do voo de efeito asa no solo. A esperança é que se torne uma tecnologia de considerável valor militar e econômico para os Estados Unidos.
O resultado do pensamento de Hooker é que, se os WIGs devem ser práticos como transportes de longo alcance, eles terão que ser grandes - muito grandes. Típico dos primeiros estudos de design conceitual com que ele está trabalhando é uma nave de 150 metros de comprimento, pesando 4,5 milhões de quilos. Ele chama essa classe de veículo de "nave-asa".
Inicialmente, a ideia de construir uma máquina voadora com aproximadamente 10 vezes o tamanho do maior avião da Terra parece estranha - mas os argumentos de Hooker são lógicos. Eles começam com economia. “Se você é um projetista de aviões comerciais da Boeing, centavos por assento-milha é o seu grande diferencial”, diz ele. Essa consideração manteve a pressão para construir aeronaves cada vez maiores.
Conforme a progressão continua, no entanto, as demandas de aerodinâmica e integridade estrutural começam a se chocar. A aerodinâmica exige que as asas cresçam cada vez mais e mais finas para que a velocidade e a eficiência sejam mantidas. Eventualmente, torna-se impossível torná-los fortes o suficiente para resistir à flexão.
A solução de Hooker é integrar a asa com a fuselagem. "Você tem que trazer a estrutura de volta. Faça com que pareça uma caixa de lenços de papel", diz ele. "Você constrói navios que se parecem com isso e são muito mais pesados do que 10 milhões de libras." Isso resolve o problema estrutural, mas leva para uma forma que carece de eficiência aerodinâmica. A menos que você voe com efeito de solo.
Isso introduz a questão da navegabilidade. Como diz Hooker, "O avião de tamanho padrão não pode competir com a onda do mar de tamanho padrão". Portanto, em condições típicas de oceano aberto, você teria que voar alto demais para usar o efeito de solo. a única maneira de contornar isso é construir uma aeronave maior. Não só ela será capaz de sobreviver ao impacto de uma onda ocasional, mas também terá uma envergadura maior e, portanto, será capaz de permanecer no efeito solo até altitudes mais elevadas. Em outras palavras , diz Hooker, “Para construir uma aeronave grande, tenho que construir uma aeronave enorme”.
Inquestionavelmente, construir uma nave espacial seria um empreendimento gigantesco. Mas não seria sem precedentes. Harvey Chaplin, diretor de tecnologia da Divisão Carderock do Naval Service Weapons Center, compara isso ao esforço que levou ao jato de transporte C-5 Galaxy da Força Aérea. “Você realmente precisa estar motivado para fazer isso”, diz ele. “Mas, se alguém desse esse passo, teria uma recompensa comercial”.
Hooker estima que as asas podem reduzir o custo da viagem entre aqui e a Europa para algo entre US $ 75 e US $ 100 por pessoa, e torná-lo muito mais confortável. "Eles são um pouco como os antigos navios oceânicos em termos de disponibilidade de espaço", disse Wayne Thiessen, um colega de Hooker na Aerocon.
Além do mais, os tempos de travessia não sofreriam significativamente. Os conceitos atuais de Hooker seriam capazes de cerca de 500 nós, apenas um pouco mais lento do que um jato. E, como a atual frota de aviões a jato, as asas poderiam ser chamadas para servir como transportes militares, quando necessário. Mas sua tremenda carga útil e alcance de 10.000 milhas os tornariam muito mais adequados para essa função.
Em última análise, a visão de Hooker é de um mundo mais próximo. "Como engenheiros, nossas raízes estão na construção de pontes", explica ele. E com as barreiras políticas entre os países agora desmoronando, os engenheiros podem finalmente continuar com a tarefa de transpor as barreiras geográficas que permanecem.
Até 2020, o ecranoplano Lun definhou numa base naval russa. Nesse ano de 2022, ele começou a ser transportado para um museu militar em Derbent (Rússia). Transportar a máquina de 385 toneladas pelo mar não foi uma tarefa simples. No caminho, o monstro ameaçou afundar após um vazamento e foi abandonado em uma praia, a alguns quilômetros do seu destino final. Virou atração turística.
Via Popular Mechanics e Extra