As principais notícias sobre aviação e espaço você acompanha aqui. Acidentes, incidentes, negócios, tecnologia, novidades, curiosidades, fotos, vídeos e assuntos relacionados.
Visite o site Desastres Aéreos, o maior banco de dados de acidentes e incidentes aéreos do Brasil.
O módulo de comando da Apollo 17 America desce em direção à superfície do
Oceano Pacífico Sul sob três paraquedas (NASA)
Em 19 de dezembro de 1972, às 14h25( EST), após 12 dias, 13 horas, 51 minutos e 59 segundos da partida do Centro Espacial Kennedy, em Cabo Canaveral, na Flórida, o módulo de comando da Apollo 17 América (CM-112) voltou à Terra, amerissando no Oceano Pacífico Sul, aproximadamente 350 milhas (563 quilômetros) a sudeste de Samoa.
Os três paraquedas principais de vela circular de 83 pés e 6 polegadas de diâmetro (25,451 metros) foram lançados a uma altitude de 10.500 pés (3.200 metros) e diminuíram a velocidade da cápsula para 22 milhas por hora (35,4 quilômetros por hora) antes de atingir a superfície do oceano.
O USS Ticonderoga (CVS-14) se aproxima lentamente do módulo de comando da Apollo 17.
Os nadadores de resgate fixaram um colar de flutuação como medida de segurança (NASA)
O pouso teve um alto grau de precisão, chegando a 4,0 milhas (6,44 quilômetros) do navio de recuperação, o porta-aviões USS Ticonderog a (CVS-14).
A tripulação foi apanhada por um helicóptero Sikorsky SH-3G Sea King, Bu. Nº 149930, do HC-1, e transportado para Ticonderoga . Os três astronautas, Eugene A. Cernan, Ronald A. Evans e Harrison H. Schmitt, subiram a bordo do porta-aviões 52 minutos após o respingo.
Um astronauta da Apollo 17 é içado a bordo do Sikorsky SH-3G Sea King, No. 149930.
O USS Ticonderoga ao fundo, de prontidão, aguarda o astronauta (NASA)
O splashdown da Apollo 17 pôs fim à era de exploração tripulada da Lua, que havia começado apenas 3 anos, 3 dias, 5 horas, 52 minutos e 59 segundos antes com o lançamento da Apollo 11.
Apenas 12 homens colocaram os pés na Lua. Em 47 anos, nenhum humano voltou lá.
Módulo de aterrissagem lunar Apollo 17 e rover lunar na superfície da Lua (NASA)
Em 14 de dezembro de 1972, às 4:54:36, CST (horário de Houston), o estágio de subida do Módulo Lunar da Apollo 17 decolou do local de pouso no Vale Taurus-Littrow, na Lua. A bordo estavam o Comandante da Missão Eugene A. Cernan e o Piloto LM, Harrison H. Schmitt.
Os dois astronautas estiveram na superfície da Lua por 3 dias, 2 horas, 59 minutos e 40 segundos. Durante esse tempo, eles fizeram três excursões fora do módulo lunar, totalizando 22 horas, 3 minutos e 57 segundos.
O estágio de subida da Apollo 17 decola do vale Taurus-Littrow às 2254 UTC, 14 de dezembro de 1972. A decolagem foi capturada por uma câmera de televisão deixada na superfície da Lua.(NASA)
A Apollo 17 foi a última missão tripulada à Lua no século XX. Gene Cernan foi o último homem a ficar na superfície da lua.
Em 11 de dezembro de 1972, às 19:54:58 (UTC) o Módulo lunar da Apollo 17, com os astronautas Eugene A. Cernan e Harrison H. Schmitt pousou no Vale Taurus-Littrow, na Lua.
A Apollo 17 foi a última missão lunar tripulada.
Gene Cernan foi o último humano a permanecer na superfície lunar.
Em 21 de dezembro de 1968, às 12h51 (UTC), a Apollo 8 decolou do Complexo de Lançamento 39A no Centro Espacial Kennedy, Cabo Canaveral, na Flórida (EUA). A bordo estavam o Comandante da Missão, Coronel Frank Frederick Borman II, Força Aérea dos Estados Unidos; Piloto do Módulo de Comando, Capitão James Arthur Lovell, Jr., Marinha dos Estados Unidos; e Piloto do Módulo Lunar, Major William A. Anders, Força Aérea dos EUA.
A tripulação da Apollo 8 é fotografada posando em um simulador do Centro Espacial Kennedy (KSC) em seus trajes de pressão total, 22 de novembro de 1968. Da esquerda para a direita estão: James A. Lovell Jr., William A. Anders e Frank Borman. (NASA)
A Apollo 8 foi a segunda missão tripulada do programa Apollo. Foi a primeira espaçonave tripulada a deixar a órbita da Terra, viajar e orbitar a Lua e, em seguida, retornar à Terra.
Em 7 de dezembro de 1972, às 05h33m63 (UTC) (12h33, horário padrão do leste), a Apollo 17, a última missão tripulada à Lua no século 20, decolou do Complexo de Lançamento 39A no Centro Espacial Kennedy, Cabo Canaveral, na Flórida (EUA). O destino era o vale Taurus-Littrow, na Lua.
A Apollo 17 (AS-512) na plataforma do Complexo de Lançamento 39A, em 21.11.1972 (NASA)
O Comandante da Missão, em seu terceiro voo espacial, era Eugene A. Cernan. O Piloto do Módulo de Comando foi Ronald A. Evans, em seu primeiro voo espacial, e o Piloto do Módulo Lunar foi Harrison H. Schmitt, também em seu primeiro voo espacial.
Gene Cernan, sentado, com Harrison Schmitt e Ronald Evans (NASA)
Schmitt foi colocado na tripulação porque era geólogo profissional. Ele substituiu Joe Engle, um experiente piloto de testes que havia feito dezesseis voos no avião-foguete de pesquisa hipersônica X-15. Três desses voos foram superiores à altitude de 50 milhas, qualificando Engle para asas de astronauta da Força Aérea dos EUA.
O lançamento da Apollo 17 foi atrasado por 2 horas e 40 minutos, devido a um pequeno defeito mecânico. Quando decolou, o lançamento foi testemunhado por mais de 500.000 pessoas.
Apollo 17 / Saturn V (AS-512) no Pad 39A durante a contagem regressiva (NASA)
O foguete Saturn V era um veículo de lançamento pesado movido a combustível líquido, de três estágios. Totalmente montado com o Módulo de Comando e Serviço Apollo, tinha 110,642 metros de altura.
A Apollo 17 (AS-512) decola do Complexo de Lançamento 39A às 05:33:00 UTC, em 7 de dezembro de 1972 (NASA)
O primeiro e o segundo estágios tinham 33 pés (10,058 metros) de diâmetro. Totalmente carregado e abastecido, o foguete pesava 6.200.000 libras (2.948.350 kg). Ele poderia elevar uma carga útil de 260.000 libras (117.934 kg) para a órbita terrestre baixa.
A Apollo 17 decolando (NASA)
Dezoito foguetes Saturno V foram construídos. Eles foram as máquinas mais poderosas já construídas pelo homem. A Apollo 17 foi lançada 3 anos, 4 meses, 20 dias, 16 horas, 1 minuto e 0 segundos após a Apollo 11, o primeiro voo tripulado para a Lua.
Aeronave supersecreta é operada pela força militar dos EUA e já ficou quase mil dias na órbita da Terra; saiba mais.
Avião espacial robótico dos EUA bate novo recorde: 900 dias em órbita (Divulgação: Boeing)
O veículo espacial X-37B é um avião produzido pela Boeing Space e utilizado em missões no espaço pela Força Aérea Americana. Dentre as suas principais funções, a aeronave se destaca por testar novas tecnologias na órbita da Terra, a fim de que os estudiosos possam concluir pesquisas e criar novos equipamentos. Em 7 de dezembro, o avião será lançado novamente ao espaço e, por isso, decidimos compartilhar cinco curiosidades sobre ele para você se informar.
1. O avião é reutilizável
Avião espacial X-37B que será utilizado na missão ultra secreta (Crédito: Força Espacial do Estados Unidos)
Como o próprio significado já entrega, um avião espacial reutilizável pode ser enviado para fora do planeta várias vezes em um curto período de tempo se comparado com os demais veículos. Isso porque os seus sistemas internos e a sua estrutura foram projetados para serem mais resistentes.
A vantagem de uma nave reutilizável é que os custos para repará-la são menores do que montar novas equipes de profissionais para construir outra aeronave. Com a tecnologia reutilizável, o custo é menor e o tempo de espera para enviar o veículo para o espaço também.
2. Primeiro avião espacial não tripulado
O X-37B é o primeiro avião produzido pelos Estados Unidos a não ser tripulado. Ou seja, ele não tem astronautas e é controlado remotamente de uma base de controle, localizada na estação de onde ele foi enviado. Apesar de correr o risco de perder o controle da aeronave, um veículo não tripulado não coloca a vida de ninguém em perigo em caso de falhas.
3. As missões são ultrassecretas
(Crédito: Sergey Nivens/Shutterstock)
Considerando toda a tecnologia envolvida na produção e controle do avião, e que ele é operado pela força militar norte-americana, qualquer detalhe preciso sobre as missões é estritamente confidencial. Quando entrevistados, alguns profissionais comentaram substancialmente sobre alguns propósitos por trás do lançamento da aeronave no espaço, mas nada muito detalhado.
Parte desse segredo se deve a preservar as descobertas científicas e astronômicas até que os estudiosos tenham pleno conhecimento sobre elas e possam compartilhar. Noutros casos, manter as missões em segredo também é uma forma de combater que outras nações detenham alguma vantagem sobre os Estados Unidos.
4. Contribui para pesquisas envolvendo o Sol
Dentre as pouquíssimas informações que os profissionais divulgaram ao público, uma delas consta que no próximo voo, marcado para 7 de dezembro deste ano, o avião irá levar ao espaço um hardware chamado “Seeds-2”. O equipamento foi confeccionado pela NASA com o intuito de analisar a influência da radiação espacial sobre as plantas e sementes dentro de naves espaciais.
Em outras palavras, verificar como essa radiação afeta plantas que estejam guardadas dentro das aeronaves. Isso é importante porque se, algum dia, o ser humano conseguir cultivar a vegetação em outro planeta, primeiro será necessário transportá-la até lá. Nisso, é imprescindível verificar se estas plantas e sementes sofreriam algum dano durante o percurso.
5. Ele já passou quase mil dias em órbita
(Crédito: Dima Zel/Shutterstock)
Após aterrissar na Terra em 12 de novembro de 2022, o X-37B havia ficado quase mil dias em uma missão secreta na órbita do planeta. Mais especificamente, foram um total de 908 dias flutuando e coletando informações para sua base de operação nos Estados Unidos.
Apesar de os detalhes serem escassos, foi divulgado que um dos objetivos era lançar na órbita da Terra o satélite FalconSat-8, cujo lançamento foi feito com sucesso. Até o momento, as informações são de que o satélite ainda está em órbita.
O filme “First Orbit” recria todo o primeiro voo ao espaço realizado nesse dia em 1961, quando o cosmonauta russo Yuri Gagarin fez seu voo orbital. O filme foi totalmente filmado a partir da Estação Espacial Internacional, misturando com imagens originais do voo de Gagarin, incluindo o áudio captado durante a missão de 1961.
Em 9 de novembro de 1967, foi lançado pela primeira vez o foguete Saturno V, também chamado de "Foguete Lunar" ("Moon Rocket") na missão Apollo 4.
Saturn V (AS-501) na plataforma de lançamento ao pôr do sol, na noite anterior ao lançamento, em 8 de novembro de 1967 - Missão Apollo 4 (Foto: NASA)
O Saturno V foi o foguete usado nas missões Apollo e Skylab. Foi desenvolvido por Wernher von Braun no Marshall Space Flight Center em Huntsville, Alabama juntamente com Boeing, North American Aviation, Douglas Aircraft Company sob coordenação da IBM. Ele possuia três andares (estágios), propelido pelos cinco poderosos motores F-1 do primeiro andar, mais os motores J-2 dos andares seguintes.
A Apollo 4 - Saturno V (AS-501) decola às 12:00:01 UTC, 9 de novembro de 1967 (Foto: NASA)
A contagem regressiva de 104 horas começou em 30 de outubro e, após atrasos, o lançamento ocorreu em 9 de novembro de 1967. Lançado com sucesso do Cabo Kennedy, o voo teve duração de 8h37min e a nave foi recuperada sem problemas. A nave, deveria se chamar Apollo 2, mas como ela foi reprojetada após o acidente ocorrido com a Apollo 1, que vitimou os astronautas Gus Grissom, Edward White e Roger Chaffee em janeiro de 1967, e recebeu esse nome em homenagem a eles: Apollo 4, 3 vítimas da Apollo 1 mais um.
Os três andares do foguete, chamados S-IC (primeiro andar), S-II (segundo andar) e S-IVB (terceiro andar), usavam oxigénio líquido (lox) como oxidante. O primeiro andar usava RP-1 como combustível, enquanto os segundo e terceiro usavam hidrogénio líquido.
O foguete foi lançado 13 vezes no Centro Espacial John F. Kennedy, na Flórida, sem nenhuma perda de carga ou tripulação. Em 2018, continua a ser o mais alto, mais pesado e mais potente (em termos de impulso total) foguete já operado, detendo ainda o recorde de maior e mais pesada carga útil já lançada à órbita terrestre baixa. Seu último voo lançou em órbita o laboratório espacial Skylab.
Os recordes de maior massa e tamanho estabelecidos pelo Saturno V encontram-se ameaçados pelo projeto Big Falcon Rocket (BFR), da SpaceX, caso o mesmo venha a se tornar realidade conforme o descrito em seu projeto. O projeto do BFR, porém, não prevê um impulso total maior que os três estágios do Saturno V, que deve manter seu status de foguete mais potente já construído intacto por anos à frente.
Imagem composta de todos os lançamentos da Saturno V (Imagem: Wikipedia)
Dezoito foguetes Saturno V foram construídos. Eles foram as máquinas mais poderosas já construídas pelo homem.
A Estação Espacial Internacional poderia voar pelos céus da Terra, como um avião? Um curioso vídeo mostra como seria essa situação, com a ISS viajando a cerca de 27,6 mil km/h bem acima das nossas cabeças.
Laika, confinada em sua cápsula em teste de ambientação antes do lançamento. Ela não tinha espaço para se mover, ficar de pé ou se virar. Nenhuma condição foi dada para devolvê-la em segurança à Terra
Em 3 de novembro de 1957, Laika, uma cadela de 3 anos, morreu na órbita da Terra, confinada em uma pequena cápsula chamada Sputnik 2. A causa de sua morte foi relatada de várias maneiras como eutanásia ou falta de oxigênio, mas relatórios recentes afirmam que ela morreu de superaquecimento quando o sistema de resfriamento do satélite falhou.
Laika durante sua fase de treinamento
Laika era um cachorro vira-lata encontrado nas ruas de Moscou. Ela foi treinada para aceitar gaiolas progressivamente menores por até 20 dias de cada vez e comer um alimento gelatinoso.
Ela foi colocada em uma centrífuga para expô-la a altas acelerações. Finalmente incapaz de se mover devido ao confinamento, suas funções corporais normais começaram a se deteriorar.
Dois dias antes de ser lançada em órbita, Laika foi colocada dentro de sua cápsula espacial. As temperaturas no local de lançamento eram extremamente baixas.
O traje espacial experimental usado por Laika em exibição no Museu Memorial da Cosmonáutica em Moscou
O Sputnik 2 foi lançado às 02h30 (UTC) de 3 de novembro de 1957. Durante o lançamento, a respiração de Laika aumentou para quatro vezes o normal e sua frequência cardíaca subiu para 240 batimentos por minuto.
Depois de atingir a órbita, o sistema de resfriamento da cápsula foi incapaz de controlar o aumento da temperatura, que logo atingiu 40°C. A telemetria indicava que o cão estava sob alto estresse. Durante a quarta órbita, Laika morreu.
O sistema de suporte de vida da cápsula espacial soviética era completamente inadequado. As condições às quais Laika foi exposta durante seu treinamento e voo espacial real foram desumanas. Não havia meio de devolvê-la em segurança à Terra.
Monumento dedicado à Laika na Rússia
Laika figura entre os grandes nomes da conquista espacial soviética
Oleg Gazenko, um dos cientistas responsáveis por seu sofrimento e morte disse: “Quanto mais o tempo passa, mais lamento por isso. Não deveríamos ter feito isso... Não aprendemos o suficiente com esta missão para justificar a morte do cachorro.”
O governo soviético ocultou a informação sobre a morte de Laika. Por uma semana, os jornais locais publicaram boletins informativos sobre a saúde da cadelinha que, na verdade, já estava morta. A informação repassada dava margem para que a população pensasse que ela poderia retornar.
A mídia mundial se admirava do feito soviético e manifestava preocupação com o viajante de quatro patas. Mas quando a agência de notícias soviética informou que Laika fora sacrificada em órbita "por motivos de humanidade" , os aplausos se transformaram protestos de defensores de animais.
Centenas de cartas foram enviadas a Moscou e às Nações Unidas denunciando a "crueldade" do programa espacial. Algumas argumentavam que teria sido melhor mandar Khrushchev ao espaço em vez do cachorro.
Na Terra, levaria entre 48 e 72 horas se forem feitas paradas. Em Júpiter, não haveria combustível suficiente.
Júpiter e Terra (Imagem: NASA)
Júpiter é o maior planeta do Sistema Solar. Dentro deste gigante gasoso caberiam cerca de 1321 Terras, tornando sua superfície (se existisse) uma extensão sem precedentes para a nossa espécie. Portanto, surge a pergunta de quanto tempo levaria para percorrer este mundo, que se destaca como um dos nossos protetores no Sistema Solar.
Para esta análise, vamos ignorar o fato de que as tempestades não permitiriam que uma aeronave comercial voasse pelos céus de Júpiter. Também deixamos de lado a gravidade desse mundo, que, de acordo com as teorias científicas, não possui uma superfície para aterrissar.
Portanto, estamos considerando apenas a extensão ou amplitude do planeta. A distância a percorrer seria muito maior do que a da Terra, tornando a travessia de todo esse mundo uma proeza que levaria anos.
Circundar toda a Terra, sem escalas, poderia levar de 24 a 36 horas. Com paradas mínimas para reabastecer de combustível, isso poderia ser estendido para 48 a 60 horas. Portanto, vamos arredondar para dois dias.
Um erro comum ao fazer esse cálculo (que também cometemos) é aplicar uma regra de três levando em consideração o volume de Júpiter, que é cerca de 1321 vezes o volume da Terra.
Se aplicássemos essa equação incorreta, o tempo aumentaria para 2642 dias de voo, o que equivale a 7 anos e 2 meses viajando por toda a superfície.
No entanto, a realidade é que o que deve ser considerado é o diâmetro de Júpiter, que é cerca de 11 vezes maior que o da Terra. Isso significa que percorrer todo o gigante gasoso em um avião comercial levaria no mínimo cerca de 22 dias.
Claramente, se tivéssemos um planeta habitável desse tamanho, provavelmente as tecnologias seriam mais avançadas para resolver esse problema de viagens dentro do mesmo mundo.
Nave não tripulada foi desenvolvida pela Boeing e se assemelha a ônibus espacial usado pela Nasa; detalhes do projeto são secretos.
Ilustração de avião espacial ultrassecreto dos EUA (Imagem: Boeing Space/Divulgação)
Em uma rara declaração pública, a Força Espacial dos Estados Unidos anunciou que vai começar a executar uma série de “manobras inovadoras” com o avião espacial ultrassecreto X-37B.
O veículo vai testar a técnica conhecida como “aerofrenagem”, que usa a força de arrasto atmosférico para ajudar a diminuir a altura da órbita de uma espaçonave enquanto gasta o mínimo de combustível.
Após a mudança de órbita, o avião vai descartar “com segurança” componentes do módulo na órbita da Terra, possibilitando um “retorno seguro”, segundo as autoridades.
Lançamento do avião espacial com foguete da SpaceX (Imagem: USSF/Divulgação)
Esta é a primeira vez que a Força Espacial dos EUA e o X-37B realizam essa manobra dinâmica. Os testes têm como base conhecimentos adquiridos em seis missões anteriores e também de outras operações na Lua e em Marte.
“Esta nova e eficiente série de manobras demonstra o comprometimento da Força Espacial em alcançar inovações revolucionárias ao conduzir missões de segurança nacional no espaço”, disse o secretário da Força Aérea, Frank Kendall.
Projeto ultrassecreto
O avião X-37B decolou para a sétima missão espacial em dezembro de 2023, após o lançamento do Centro Espacial Kennedy da NASA, na Flórida, com suporte de um foguete SpaceX Falcon Heavy.
Em julho de 2022, o veículo bateu recorde de maior tempo em órbita para uma nave desse tipo após voar ao redor da Terra por 908 dias, segundo o site IFLScience. Ainda não há previsão de quando o novo veículo retornará ao planeta.
Nave “prima” de avião X-37B após voo espacial (Imagem: Boeing Space)
A nave não tripulada foi desenvolvida pela Boeing e é capaz de voar em órbita baixa, entre 240 e 800 quilômetros acima da Terra, com velocidade de 28.200 quilômetros por hora. O modelo se assemelha ao ônibus espacial usado pela NASA entre 1981 e 2011.
A Força Espacial americana diz que o avião X-37B faz parte de um projeto de “redução de risco, experimentação e desenvolvimento de conceito de operações para tecnologias de veículos espaciais reutilizáveis”. Os detalhes, no entanto, nunca foram divulgados publicamente.
A Apollo 7 Saturn 1B (AS-205) decola do Complexo de Lançamento 34, Estação da Força Aérea de Cape Kennedy, 15:02:45 UTC, 11 de outubro de 1968 (NASA)
Em 11 de outubro de 1968, às 15h02m45s UTC, a Apollo 7, a primeira espaçonave Apollo tripulada, foi lançada a bordo de um foguete Saturn IB do Complexo de Lançamento 34, Estação da Força Aérea Cape Kennedy, Cape Kennedy, Flórida.
A tripulação de voo era o Capitão Walter M. (“Wally”) Schirra, da Marinha dos Estados Unidos, o comandante da missão, em seu terceiro voo espacial; Major Donn F. Eisele, da Força Aérea dos EUA, o Piloto do Módulo de Comando, em seu primeiro voo espacial; e Major R. Walter Cunningham, US Marine Corps, Lunar Module Pilot, também em seu primeiro vôo espacial.
A tripulação de voo da Apollo 7, da esquerda para a direita: Donn Eisele, USAF, Capain Walter M. ("Wally") Schirra, USN, e Major R. Walter Cunningham, USMC (NASA)
A missão foi projetada para testar a espaçonave Apollo e seus sistemas. Um objetivo principal era o teste do Sistema de Propulsão de Serviço (SPS), que incluía um motor de foguete Aerojet AJ10-137 reiniciável que colocaria um Módulo de Comando e Serviço Apollo dentro e fora da órbita lunar em missões futuras.
O motor SPS foi construído pela Aerojet General Corporation, Azusa, Califórnia. Queimou uma combinação de combustível hipergólico de Aerozine 50 (uma variante da hidrazina) e tetraóxido de nitrogênio, produzindo 20.500 libras de empuxo. Ele foi projetado para uma duração de 750 segundos, ou 50 reinicializações durante um voo. Este motor foi acionado oito vezes e funcionou perfeitamente.
A duração do voo da Apollo 7 foi de 10 dias, 20 horas, 9 minutos e 3 segundos, durante os quais orbitou a Terra 163 vezes. A espaçonave caiu em 22 de outubro de 1968, a aproximadamente 230 milhas (370 quilômetros) a sudoeste de Bermuda, no Oceano Atlântico, a 8 milhas (13 quilômetros) do navio de resgate, o porta-aviões USS Essex (CVS-9).
O módulo de comando Apollo era uma cápsula espacial cônica projetada e construída pela North American Aviation para transportar uma tripulação de três pessoas em missões espaciais de duas semanas ou mais.
A Apollo 7 (CSM-101) foi a primeira cápsula do Bloco II, que foi amplamente redesenhada após o incêndio da Apollo 1, que resultou na morte de três astronautas. A cápsula do Bloco II tinha 10 pés e 7 polegadas (3.226 metros) de altura e 12 pés e 10 polegadas (3.912 metros) de diâmetro. Ele pesava 12.250 libras (5.557 kg). Havia 218 pés cúbicos (6,17 metros cúbicos) de espaço habitável no interior.
Apollo 7/Saturn IB AS-205.at Launch Complex 34 (NASA)
O Saturn IB consistia em um primeiro estágio S-IB e um segundo estágio S-IVB. O S-IB foi construído pela Chrysler. Ele era movido por oito motores Rocketdyne H-1, queimando RP-1 e oxigênio líquido.
Oito tanques de combustível de foguete Redstone contendo o combustível RP-1 cercaram um tanque de foguete de Júpiter contendo o oxigênio líquido. O empuxo total do estágio S-IB era de 1.600.000 libras e carregava propelente suficiente para 150 segundos de queima. Isso elevaria o veículo a uma altitude de 37 milhas náuticas (69 quilômetros).
O estágio S-IVB construído por Douglas era movido por um motor Rocketdyne J-2, alimentado por hidrogênio líquido e oxigênio líquido. O único motor produzia 200.000 libras de empuxo e tinha combustível suficiente para 480 segundos de queima.
O foguete Saturn IB mediu 141 pés e 6 polegadas (43,13 metros) sem carga útil. Era capaz de lançar uma carga útil de 46.000 libras (20.865 quilogramas) para a órbita da Terra.
Apollo 7 Saturn 1B AS-205 em voo acima da Estação da Força Aérea Cape Kennedy, em 11 de outubro de 1968 (NASA)
Apollo 7 a 35.000 pés (10.668 metros) (NASA)
Separação do primeiro estágio da Apollo 7 Saturn IB (NASA)
Sputnik foi o nome do programa, desenvolvido pelos soviéticos, responsável por enviar o primeiro satélite artificial, nomeado Sputnik 1, para a órbita terrestre em 1957. Esse acontecimento foi resultado de anos de estudos realizados por cientistas do país e um marco histórico, porque é considerado o evento que iniciou a corrida espacial.
Contexto
O lançamento do Sputnik 1, o primeiro satélite artificial produzido pelo programa soviético, aconteceu em 4 de outubro de 1957 e deu início à corrida espacial. Esse acontecimento foi um dos capítulos que marcou a Guerra Fria, a disputa político-ideológica travada por norte-americanos e soviéticos a partir de 1947.
Durante essa guerra, norte-americanos e soviéticos disputaram a hegemonia mundial, e essa disputa resultou na polarização do mundo e no surgimento de grandes blocos de apoio para cada um desses países. O resultado dessa polarização e da busca pela hegemonia foi que norte-americanos e soviéticos disputaram o domínio em diferentes áreas.
A disputa pelo poder bélico foi uma dessas áreas e levou americanos e soviéticos a investirem no desenvolvimento de mísseis e de armamentos mais potentes, como bombas nucleares e termonucleares. A produção de novos mísseis e foguetes acabou também repercutindo no investimento tecnológico para a exploração espacial.
Os soviéticos, assim como os norte-americanos, tiveram contato com os detalhes de um programa alemão que resultou na produção do primeiro míssil balístico da história e usaram isso para desenvolver seus próprios programas. Isso levou a grandes avanços na área de produção de mísseis e foguetes após a Segunda Guerra Mundial.
Sergei Korolev foi o cientista responsável pelo projeto que levou os soviéticos a lançarem o primeiro satélite
No caso dos soviéticos, grande parte desses avanços foi realizada pelo cientista ucraniano Sergei Pavlovitch Korolev, que, a partir de 1946, dedicou-se a programas que produziam mísseis nucleares e foguetes espaciais. Da pesquisa conduzida por Korolev, nasceu o Semiorka, um foguete que conseguia transportar um peso de até 1300 kg.
O Semiorka foi aprovado para lançar o primeiro satélite soviético, em 1956, pela Academia de Ciências da União Soviética. No entanto, esse acontecimento só se deu, primeiramente, pela contribuição científica de Korolev para o desenvolvimento tanto do satélite quanto do foguete e, principalmente, porque ele foi o responsável por convencer o governo soviético da importância de investir nesse programa.
Korolev utilizou de um estudo sobre satélites realizado por Mikhail Tikhonravov e conseguiu convencer o alto escalão do governo soviético de que investir no desenvolvimento de satélites poderia ter relevante papel nas questões militares. Além disso, foi do conhecimento do governo soviético que os norte-americanos já promoviam estudos na área.
Projeto Sputnik
Em 1952, um projeto internacional de cientistas anunciou que 1957 seria o Ano Geofísico Internacional, com o objetivo de que diferentes países do planeta reunissem esforços a fim de realizar estudos importantes para o entendimento dos fenômenos terrestres. Os soviéticos estipularam que seu satélite deveria ser lançado antes do início desse marco.
Veículo de lançamento do Sputnik 1
Entre 1955 e 1956, os soviéticos realizaram uma série de estudos para viabilizar o projeto de envio do satélite para o espaço, e, em 30 de janeiro de 1956, foi aprovado pelo governo a criação desse satélite que, a princípio, recebeu o nome de Objeto D. Esse projeto, no entanto, sofreu inúmeros atrasos, e Korolev resolveu reformulá-lo.
Em vez de lançar um satélite com mais de 1000 kg, Korolev convenceu o governo soviético a lançar dois satélites com um peso menor de 100 kg, sob o argumento de que era necessário enviar o satélite primeiro que os norte-americanos. Apesar de três fracassos iniciais, Korolev conseguiu dois testes de sucesso e obteve autorização para lançar o PS-1, que ficou depois conhecido como Sputnik 1.
O lançamento do Sputnik 1 ficou marcado para o dia 6 de outubro de 1957, mas, como Korolev estava temeroso de que os norte-americanos lançassem seu satélite primeiro que os soviéticos, ele optou por antecipar o lançamento para o dia 4. O Sputnik 1 foi lançado da base localizada em Tyuratam, no Cazaquistão, às 22h28m no horário de Moscou.
O Sputnik 1 tinha 83,6 kg, com um diâmetro de 58 cm, e foi produzido de uma liga de alumínio. As antenas do Sputnik 1, responsáveis por enviar o sinal de rádio, tinham 2,4 m e 2,9 m de comprimento.
Réplica do Sputnik 1, primeiro satélite enviado pelos soviéticos
Repercussão nos EUA
O lançamento do Sputnik 1 foi um grande feito científico e surtiu grande repercussão no mundo e na própria União Soviética. A princípio, a maior repercussão deu-se nos Estados Unidos, e a opinião pública voltou-se contra o presidente dos Estados Unidos, Dwight Eisenhower, acusando-o de permitir que os EUA fossem tecnologicamente ultrapassados pelos soviéticos.
Os norte-americanos pretendiam responder o feito soviético com o lançamento de um satélite do projeto Vanguard. O primeiro teste feito por eles aconteceu em 6 de dezembro de 1957 e foi um desastre, pois o foguete que transportava o satélite explodiu. Só em janeiro de 1958 que os norte-americanos conseguiram lançar seu primeiro satélite: o Explorer 1.
Depois do lançamento do Explorer 1, o primeiro satélite norte-americano, o governo dos Estados Unidos ordenou a criação da National Aeronautics Space Administration, mais conhecida como NASA. É essa agência que coordena todas as atividades relacionadas com o espaço desde 1958.
Fonte: Daniel Neves (brasilescola.uol.com.br) / thisdayinaviation.com - Imagens: Reprodução
A Radian Aeroespacial deu um passo mais perto de alcançar o “santo graal” do voo espacial: um avião espacial reutilizável que pode decolar de um campo de pouso e pousar em uma pista como um avião convencional. A startup acaba de anunciar a conclusão de uma série de testes em solo em Abu Dhabi no início deste verão.
Os testes foram concluídos com um protótipo de veículo de voo em subescala que a empresa está chamando de PFV01. O principal objetivo do teste period gerar dados sobre como o veículo voaria e se comportaria, e comparar esses dados com simulações que a empresa vem fazendo nos últimos anos. Embora o veículo não tenha voado, ele realizou uma série de pequenos saltos na pista, disseram executivos ao TechCrunch em uma entrevista recente.
O PFV01 é muito menor que o veículo remaining, com cerca de 4,5 metros de comprimento, mas os dados ainda ajudam a informar peças-chave do projeto remaining e dos sistemas de controle de voo, como onde o trem de pouso deve ser localizado ou onde o centro de gravidade deve estar para maximizar a estabilidade no ar, explicou o cofundador e CTO Livingston Holder.
“Este veículo nos dá a capacidade de ajustar o centro de gravidade para frente e para trás, para cima e para baixo, nos dá a capacidade de ajustar a localização do trem de pouso. Esses ajustes nos dão suggestions do mundo actual sobre o que nossos dados analíticos dizem”, disse ele. “Onde quer que haja ambiguidade… essa é uma das coisas que o PFV realmente nos dá a oportunidade de fazer, é reduzir a incerteza para que tenhamos melhor fidelidade com nossos processos analíticos à medida que vamos mais rápido com o veículo e fazemos mais voos.”
O plano é que o avião espacial Radian One decole de um trenó ferroviário de aproximadamente duas milhas de comprimento, acione os motores em órbita e então retorne à Terra em uma pista regular. O conceito é considerado um santo graal porque remover a necessidade de um veículo de lançamento torna o espaço, de certa forma, tão acessível aos veículos espaciais quanto a atmosfera superior é para os aviões.
A economia também é promissora: um avião espacial reutilizável poderia fazer viagens de e para o espaço diariamente ou até com mais frequência, e com margens melhores para começar. Já foi tentado antes; um dos exemplos mais notáveis é o programa X-33 da NASA para desenvolver um avião espacial suborbital. Holder liderou o esforço X-33 da Boeing.
“O ao menos uma coisa interessante que esse sistema tem o potencial de fazer é lançar satélites”, disse o cofundador e CRO da Radian, Jeff Feige. “O que é realmente impressionante sobre a Radian é que é um sistema que pode fazer uma ampla, ampla gama de missões, então ele basicamente acessa um mercado muito maior do que um foguete tradicional. Você não só pode potencialmente lançar algo, mas pode fazer a manutenção, pode recuperá-lo. Podemos trazer cargas úteis inteiras ou satélites do espaço. Podemos transportar pessoas para cima. Podemos mergulhar na atmosfera e, teoricamente, soltar coisas ou observar coisas no planeta. Então, há uma gama muito mais ampla de capacidade.”
O design é dramaticamente diferente de um foguete vertical, e isso significa que o processo de desenvolvimento também é diferente, observou Feige: “Você tem que se aposentar de muitos riscos cedo.” Então, enquanto as empresas de foguetes devem construir veículos em escala actual, o estilo gradual de desenvolvimento de aviões espaciais se assemelha mais a como um avião é desenvolvido.
A startup sediada em Seattle não está divulgando nenhuma especificação técnica dos testes, como as velocidades máximas do veículo ou por quanto tempo ele estava taxiando, mas Holder disse que o PFV01 “atingiu sua velocidade para decolagem”. Agora, a empresa passará algum tempo analisando todos os dados coletados dos testes antes de embarcar em uma série de testes de táxi de alta velocidade e no início dos testes de voo reais. Paralelamente a isso, a empresa estará trabalhando para obter aprovação regulatória para operar em um aeroporto diferente nos Emirados Árabes Unidos e voar para lá.
Executivos da empresa dizem que esperam iniciar voos em grande escala do avião espacial Radian One em 2028. A empresa levantou US$ 27,5 milhões até o momento em financiamento conhecido de investidores, incluindo High quality Construction Ventures, EXOR, The Enterprise Collective, Helios Capital, SpaceFund, Gaingels, The Non-public Shares Fund, Explorer 1 Fund e Sort One Ventures.
O Gulfstream foi modificado para voar como o orbitador do ônibus espacial.
O Gulfstream II da NASA (Foto: NASA)
Embora o Gulfstream seja conhecido principalmente como jato particular, a aeronave já desempenhou um papel crucial na indústria espacial. A variação Gulfstream II, produzida pela primeira vez em 1967, foi implantada pela NASA na década de 1980 como meio de treinar pilotos em pousos perfeitos do orbitador do ônibus espacial da NASA.
Programa do ônibus espacial da NASA
Como o quarto programa de voo espacial humano, a era dos ônibus espaciais da NASA mudou a história. O orbitador lançado com dois foguetes propulsores sólidos reutilizáveis voou pela primeira vez em 12 de abril de 1981 e, em 30 anos, foi crucial para muitas missões no espaço.
A frota, incluindo Columbia, Challenger, Discovery, Atlantic e Endeavour, fez parte da construção da Estação Espacial Internacional, prestando serviços para o Telescópio Espacial Hubble, recuperando satélites, cargas úteis e transportando astronautas para o espaço.
O ônibus espacial foi a primeira espaçonave reutilizável, lançando-se verticalmente ao espaço e pousando como um avião. Operou 135 missões e enviou 355 astronautas ao espaço, mas depois que o programa se tornou muito caro e perigoso, a missão final do ônibus espacial operou em 21 de julho de 2011, depois que o Atlantis estacionou no Centro Espacial Kennedy da NASA, na Flórida.
Aeronave de treinamento de transporte
Que o jato particular Gulfstream II. O orbitador do ônibus espacial era conhecido como um “tijolo voador” pelos pilotos que o operavam, pois era complicado de manobrar e o pouso era uma experiência completa. Devido à natureza do orbitador, ele não poderia ser treinado como uma aeronave. Portanto, em 1973, a NASA decidiu modificar quatro jatos Grumman Gulfstream II para se tornarem uma aeronave de treinamento de ônibus espacial (STA).
A aeronave foi alterada para imitar a configuração e a cabine do orbitador quase perfeitamente para treinamento. Dentro da aeronave havia computadores e simuladores que faziam os pilotos se sentirem como se estivessem pilotando uma espaçonave sem motor, segundo a NASA. Isso significava que enquanto os pilotos estivessem encarregados de controlar o avião, o computador decidiria como o ônibus real reagiria. NASA disse:
“Quando o astronauta puxa o manche para trás, por exemplo, o computador decide como um orbitador real reagiria. Em seguida, o computador move a asa e a cauda para fazer o STA agir da mesma maneira. O movimento leva apenas 50 milissegundos para ocorrer, então o piloto não sente nenhum atraso.”
Em 1973, a NASA encomendou duas aeronaves GII modificadas para servir como treinadores de aproximação e pouso para astronautas do ônibus espacial. Embora essas aves tenham se aposentado, a frota da agência ainda inclui aeronaves da Gulfstream (Foto: NASA)
O STA foi construído para reverter seus motores em vôo e operava com dois conjuntos de rodas de pouso principais. A NASA disse que para corresponder à taxa de descida do ônibus espacial e ao perfil de arrasto a 37.000 pés, o trem de pouso principal foi abaixado e o impulso do motor foi revertido. Além disso, os flaps seriam desviados para cima para diminuir a sustentação.
No que foi considerado como “mergulhar de cabeça em uma faixa de concreto a seis milhas de altura”, de acordo com a NASA, o “padrão de pouso” da espaçonave significava que a Gulfstream voaria a 300 mph durante um mergulho, que é “várias vezes mais íngreme do que o de um avião comercial.
A agência espacial disse que as tampas foram instaladas no lado esquerdo das janelas da cabine para imitar a visão que os astronautas teriam da cabine do ônibus espacial. O lado direito da cabine tinha controles e displays convencionais.
Aproximando-se da pista, se os pilotos acertassem a velocidade, uma luz verde no painel de instrumentos simularia um pouso quando os olhos do piloto estivessem 32 pés acima da pista, imitando a posição exata que a cabeça do piloto estaria em um pouso real. A NASA declarou:
“No exercício, o STA ainda está voando a 6 m (20 pés) acima do solo. O piloto instrutor desmarca o modo de simulação, armazena os reversores e executa uma arremetida, nunca – durante as aproximações de treino – pousando a aeronave de fato.”
Gulfstream II para treinamento em ônibus espaciais da NASA (Foto: NASA)
Os quatro STAs geralmente estavam localizados no local de operação avançada da NASA em El Paso, Texas, e os astronautas praticavam no Shuttle Landing Facility e no White Sands Space Harbor.
Treinamento no Gulfstream
Em 2007, a NASA publicou um artigo sobre como era pilotar o STA, com a colaboração de Jack “Trip” Nickel, um piloto de pesquisa, e de Alyson Hickey, uma engenheira de simulações de voo.
O artigo dizia que a aeronave de treinamento era significativa porque, no orbitador real, os comandantes só tinham uma chance de pousar a espaçonave de 110 toneladas. Isso ocorre porque não há chances de dar uma volta, já que a espaçonave não possui motores atmosféricos para ganhar impulso extra, portanto, realizar um pouso perfeito foi crucial.
Níquel disse: “O ônibus espacial tem características de vôo de tijolo, basicamente, com asas. Num avião como este, um jato corporativo, não há céu visível na cabine dianteira. Tudo o que você vê pela janela é sujeira, não há absolutamente nenhum céu. Então, é uma sensação muito ameaçadora. Com os motores em marcha-ré, você está pendurado no cinto."
"Você obtém a dinâmica real do ar real passando por cima da aeronave (e) simplesmente não pode modelar isso com um computador. Simplesmente não há comparação com estar no ar real, vendo os auxílios de pouso reais. Este é apenas o real coisa."
Durante o treinamento, Nickel garantiria a segurança da aeronave, e Hickey monitorava o computador e desempenhava o papel de piloto do ônibus espacial informando os astronautas a bordo. Durante o treinamento, Hickey sentava-se atrás e entre o astronauta à esquerda e o instrutor à direita.
Hickey executaria toda a simulação e, em parceria com Nickel, os dois apresentariam problemas que poderiam acontecer na vida real para o comandante praticante do ônibus espacial resolver.
Nickel disse que esta aeronave funcionou nos “limites estruturais de velocidade no ar em simulação (modo)”, mas a recompensa foi um treinamento realista para pilotos que só tiveram “uma chance” de pousar o avião espacial.
Ônibus espacial Columbia da NASA (Foto: NASA)
A aposentadoria da aeronave
O Gulfstream foi crucial para treinar astronautas na difícil tarefa de pilotar o ônibus espacial. Após milhares de horas e 946 dias de voo, o jato pousou no Aeroporto Internacional Rick Husband Amarillo e taxiou em direção ao Texas Air and Space Museum como local de descanso final em 21 de setembro de 2011. Sua aposentadoria foi sinônimo do encerramento do programa do ônibus espacial.
Two shuttles, two T-38s and one Gulfstream II Shuttle Training Aircraft = too much awesome in one picture to handle. Credit: NASA/Robert Markowitz pic.twitter.com/EtAs1jtf0K
A aeronave é apenas um dos vários outros modelos de aeronaves a serem aposentados pela NASA à medida que a agência continua a se adaptar aos requisitos modernos. Notavelmente, um Boeing 747SP que carregava um telescópio para o Observatório Estratosférico de Astronomia Infravermelha (SOFIA) foi aposentado em outubro passado. A unidade fez parte de várias missões revolucionárias.
O avião foi utilizado anteriormente pela Pan American e pela United Airlines antes de chegar às instalações da NASA em 1996. Ele fez parte de uma série de descobertas em todo o universo .
Boeing 747SP (SOFIA) (Foto: NASA)
Além disso, na virada de 2023, a NASA observou que estava se preparando para abandonar sua antiga aeronave DC-8. O jato modificado tem sido usado como laboratório voador, coletando dados cruciais no mundo da exploração espacial. O homem de 54 anos abre caminho para uma aeronave um pouco mais moderna na forma de um Boeing 777.
Ao todo, a NASA implantou bem uma série de modelos comerciais e civis para suas aventuras acima. Este factor continuará a prevalecer neste próximo capítulo da aviação, com o grupo continuando a colaborar com os fabricantes norte-americanos. No início deste ano, concedeu à Boeing um contrato de voo sustentável com a esperança de produzir um demonstrador em escala real durante os próximos cinco anos.