domingo, 14 de novembro de 2021

A história da Boeing: dos hidroaviões ao 777X

A fábrica principal da Boeing está localizada perto de Seattle em Everett, Washington (Foto: Getty Images)
O fabricante aeroespacial norte-americano Boeing é um dos nomes mais conhecidos em toda a aviação. A empresa sediada em Chicago emprega mais de 140.000 pessoas em todo o mundo e produz aeronaves comerciais e militares. Ao longo de mais de um século de operações, produziu alguns dos aviões comerciais mais icônicos de todos os tempos, como a famosa família 747.

Fundada há mais de um século em 1916 como Pacific Aero Products Company, a Boeing assumiu sua identidade atual um ano depois. O nome vem de seu fundador, o magnata americano da madeira William Boeing. Nas décadas que se seguiram, passou da produção de dois lugares como o Modelo 1 para alguns dos maiores jatos de grande porte do mundo.

No início


Embora a Boeing tenha surgido em 1916 como a Pacific Aero Products, suas raízes estão um pouco mais antigas. De acordo com a empresa, William Boeing desenvolveu pela primeira vez um fascínio por aeronaves quando compareceu ao primeiro Los Angeles International Air Meet em janeiro de 1910. Apenas dois meses depois, aos 28 anos, ele comprou o que se tornaria sua primeira fábrica.

Embora a paixão da Boeing pela aviação fosse forte, ele não experimentou seu primeiro voo até cinco anos depois. Isso aconteceu em julho de 1915, quando teve a chance de experimentar a alegria de voar no hidroavião Curtiss, acompanhado de Terah Maroney. Maroney foi uma das pioneiras da aviação nos Estados Unidos e era conhecida por suas façanhas de barnstorming.

As primeiras aeronaves da Boeing, como o Modelo 1, eram hidroaviões
(Foto: KudzuVine via Wikimedia Commons)

Primeira aeronave da Boeing


Um ano depois, a Boeing começou a produzir aeronaves, resultando no primeiro voo do Modelo 1 em junho de 1916. Também conhecido como Hidroavião B & W, dois exemplares desse projeto acabariam sendo produzidos. Depois que a Marinha dos EUA rejeitou os avanços da Boeing, tornou-se a primeira venda internacional da empresa. Eles finalmente foram para a Escola de Voo da Nova Zelândia.

Foi em torno desse tipo que William Boeing oficialmente incorporou sua empresa com o nome Pacific Aero Products. Ela então se tornou a Boeing Airplane Company em abril de 1917, logo após a entrada dos Estados Unidos na Primeira Guerra Mundial. Com o conflito crescendo, a Marinha dos Estados Unidos foi mais receptiva aos produtos da Boeing e encomendou 50 hidroaviões Modelo 2 em julho daquele ano.

A Boeing produziu 56 Modelos 2s (Foto: Museu de História e Indústria via Wikimedia Commons)

Movendo-se para aviões comerciais


Com o fim da guerra, a Boeing teve que diversificar seu portfólio e aproveitar o espírito do correio aéreo. Para esse setor, produziu o B-1 Flying Boat, que chegou a operar voos internacionais para o vizinho Canadá. Em meados da década de 1920, ela começou a produzir um avião de correio aéreo terrestre conhecido como Modelo 40. Este também foi um dos primeiros projetos de avião comercial, operado por empresas como Varney Airlines, Pacific Air transport e sua própria companhia, Boeing Air Transport .

O Modelo 40 era um biplano, assim como o maior Modelo 80 que se seguiu no final dos anos 1920. No entanto, com o passar dos anos 1930, a Boeing mudou sua ênfase para as configurações de monoplano. Isso resultou na produção do Modelo 247, que era um design todo em metal que superava outros aviões contemporâneos em termos de velocidade e segurança.

O Boeing 247 estabeleceu o padrão para uma nova geração de aviões comerciais
(Foto: Getty Images)
Durante os primeiros anos da Segunda Guerra Mundial, 1940 viu o modelo 307 'Stratoliner' da Boeing entrar em serviço com a Pan Am. Este projeto poderia voar até 20.000 pés, graças ao fato de ser o primeiro avião comercial com cabine pressurizada. No entanto, a Boeing construiu apenas 10, já que o conflito levou a uma mudança de foco. Para o resto da guerra, construiu bombardeiros como o B-17 'Flying Fortress' e o B-29 'Superfortress'. O fim da guerra causou perdas generalizadas de empregos na Boeing.

Um catalisador para uma nova era de viagens aéreas


Após o conflito, a Boeing tentou se recuperar com o lançamento de seu novo design 377 'Stratocruiser'. Ele entrou em serviço em 1949 com a Pan Am, mas as vendas baixas, totalizando apenas 56 aeronaves, forçaram um repensar. Isso levou a empresa a se concentrar no desenvolvimento de aeronaves a jato. Como tal, no início dos anos 1950 desenvolveu um protótipo conhecido como 367-80.

O 367-80 foi uma grande aposta financeira para a Boeing, mas valeu a pena (Foto: Getty Images)
Isso resultou na produção de um jato de quatro motores que a Boeing apelidou de 707. Isso entrou em serviço com a Pan Am em 1968 e teve um grande impacto, vendendo 865 unidades mais 154 720 de fuselagem curta. Embora não tenha sido o primeiro jato do mundo (esta honra coube ao de Havilland Comet), o 707 é amplamente considerado como tendo catalisado a 'era do jato'.

A era do jato foi o prenúncio de mudanças tecnológicas e sociais. A nova tecnologia tornou as aeronaves mais rápidas e maiores, permitindo que mais pessoas de uma ampla gama de origens viajassem mais. A Boeing levou isso ao extremo em 1970, quando seu famoso 747 entrou em serviço com a Pan Am. Também conhecido como jato jumbo, este foi o primeiro avião de passageiros widebody do mundo.

A Boeing projetou o 747 para transportar 2,5 vezes mais passageiros do que o 707 (Foto: Getty Images)

Twinjets e problemas


A Boeing teve grande sucesso com o 747, que vendeu mais de 1.500 unidades. Ele permanece em produção meio século depois, com os exemplares finais definidos para entrega no próximo ano. No entanto, desde o lançamento do jumbo, ele se concentrou principalmente em projetos de dois jatos.

O advento do ETOPS permitiu que ela produzisse carrocerias de dois motores com capacidades de longa distância. Isso inclui as famílias 767, 777 e 787 'Dreamliner'. Em termos de corpos estreitos, o trijet 727 levou ao desenvolvimento do 757 bimotor . Ambos tiveram um sucesso comercial significativo, cada um vendendo mais de 1.000 unidades.

O avião de passageiros mais popular da Boeing também foi um narrowbody bimotor, ou seja, a série 737. Com cerca de 11.000 unidades produzidas, esta é uma das famílias de aeronaves mais difundidas de todos os tempos . No entanto, acidentes fatais envolvendo a nova série 737 MAX fizeram com que esses narrowbodies de próxima geração fossem aterrados por 20 meses em 2019 e 2020.

As famílias 777X e 737 MAX ganharam as manchetes nos últimos anos (Foto: Getty Images)

Céus mais claros à frente


Depois de resistir à espada de dois gumes dos encalhes do MAX e da pandemia do coronavírus, a Boeing agora olha para o futuro. Já se passou quase um ano desde que a FAA liberou o jato para retornar aos céus, e a Boeing pôde começar a entregar sua carteira de aeronaves MAX. Dados de ch-aviation.com mostram que mais de 400 estão ativos no momento.

A Boeing também está trabalhando para o lançamento de sua nova série 777X. Consistindo nas variantes 777-8 e 777-9, espera que este widebody de próxima geração entre em serviço dentro de dois anos . Ele fez seu primeiro voo em janeiro de 2020, e a variante maior do 777-9 deve ser o avião de passageiros mais longo do mundo. É montado na fábrica da Boeing em Everett, perto de Seattle. Destacando o tamanho da Boeing, este complexo apresenta o maior edifício do mundo em volume.

10 voos fascinantes com recorde mundial do Guinness

Você conhece algum recorde mundial da aviação? Vamos dar uma olhada mais de perto e explorar nossos 10 principais voos recordes mundiais do Guinness relacionados à aviação!

10. O voo comercial sem escalas mais longo do mundo



A Singapore Airlines opera atualmente o voo comercial programado mais longo do mundo.

Inaugurada pela primeira vez em 2004, a viagem de 16.600 km foi feita pela frota das companhias aéreas A340-500. No entanto, com o aumento dos custos de combustível, ineficiência e falta de lucratividade, a companhia aérea foi forçada a interromper seu voo de 18 horas.


Em 2018, com o lançamento do Airbus A350-900ULR (Ultra Long Range), a Singapore Airlines retomou seus serviços para Nova York! Atualmente, o serviço sem escalas opera como uma rota de viagem vacinada entre Cingapura e o JFK de Nova York.

9. Maior Tempo de Aerotransportado por um Avião


Se você pensou que o voo sem escalas de 18 horas da Singapore Airlines era longo, você ficará surpreso!

Com tecnologia inovadora e motores mais eficientes em termos de combustível, era de se esperar que esse recorde mundial fosse alcançado por um avião comercial moderno. No entanto, como a imagem abaixo sugere, um Cessna C172 foi coroado o campeão deste título. Então, como exatamente isso aconteceu?

(Foto via WikiMedia Commons/Mr. Satterly)
O ano era 1985 e dois pilotos ambiciosos estavam planejando algo inédito! Voando em um Cessna C172 por vários dias seguidos sem pousar! Os dois pilotos, Bob Timm e John Cook modificaram seu C172 instalando um tanque de combustível de 95 galões, um colchão e uma pia. Chegou o grande dia e partiram para a sua incrível viagem, que durou um total de 64 dias, 22 horas e 19 minutos!

Voando pela Califórnia e pelo deserto de Nevada, o reabastecimento foi possível voando baixo nível ao lado de um caminhão de combustível duas vezes por dia. Uma mangueira do caminhão foi então içada até o avião. Dois meses depois, a aeronave finalmente pousou de volta ao solo e um recorde mundial do Guinness foi estabelecido!

Hoje, o Cessna usado para aquele voo pode ser encontrado pendurado no teto do Aeroporto Internacional McCarran em Las Vegas. Você consegue se imaginar preso em um avião por tanto tempo?

8. O maior volume já transportado por via aérea


Enquanto muitos de nós não viajamos muito em 2020, o poderoso Antonov An-225 estava ocupado voando e até estabeleceu outro recorde mundial. Transportou 150 toneladas métricas de carga da China até Paris, França.


A carga a bordo incluía máscaras médicas, luvas e outras roupas de proteção. Segundo relatos, o pessoal de terra demorou mais de 10 horas para descarregar a carga.

7. Primeiro voo totalmente vacinado do mundo


No dia 6 de abril de 2021, a Qatar Airways operou o primeiro voo do mundo totalmente vacinado com COVID-19 de Doha. O voo QR6421, operado por um A350-1000 com registro A7-ANF, transportou 144 passageiros vacinados e 18 tripulantes a bordo.


O voo. partiu do Aeroporto Internacional de Hamad às 11h45, com tempo previsto de voo de 3 horas e 15 minutos. O voo foi rumo ao Golfo Pérsico, Emirados Árabes Unidos e Omã.

6. Maioria das nacionalidades a bordo de um voo


Em 29 de novembro de 2019, a Emirates operou um voo histórico único do A380, marcando o 48º Dia Nacional dos Emirados Árabes Unidos e o Ano da Tolerância dos Emirados Árabes Unidos. 145 nacionalidades, mais de 500 passageiros e um caleidoscópio de culturas se juntaram para fazer história no voo EK2019 da Emirates.


O A380 com pintura especial “Ano da Tolerância” foi operado no voo EK2019; O registro da aeronave foi A6-EVB, um A380 classe 2 com capacidade para 615 passageiros.


O voo recebeu passageiros de diferentes origens, etnias, religiões e culturas; incluiu funcionários, famílias e crianças, bem como pessoas de determinação. Os passageiros foram incentivados a viajar com suas roupas nacionais e, ao longo do voo, seus trajes coloridos se tornaram uma colagem vibrante homenageando suas diferentes heranças e tradições.

5. O voo comercial mais curto do mundo


Se você consegue prender a respiração por mais de 53 segundos , parabéns, você acaba de gastar mais tempo do que o voo mais curto do mundo!


A viagem nos leva à ilha Orkney, na Escócia, onde a Loganair opera serviços diários entre as duas ilhas de Westray e Papa Westray.

O voo de 2,7 quilômetros está sendo realizado por um Britten-Norman BN2B-26 Islander.

4. Voo doméstico mais longo


Senhoras e senhores, bem-vindos a bordo do voo da Air France de Paris para a Ilha da Reunião!

Da Europa continental à ilha tropical de Reunião, a Air France opera o voo doméstico mais longo do mundo, com um tempo médio de voo de 10 horas e 30 minutos! Normalmente pilotado por um Boeing 777, os passageiros neste voo só precisam ter uma carteira de identidade, já que, tecnicamente, nunca saem do país. Como você se sentiria após voar por mais de 10 horas apenas para pousar de volta no mesmo país de onde partiu?


Durante o COVID, o voo doméstico comercial mais longo do mundo foi o voo TN64 operado pela Air Tahiti Nui. O voo operado entre Papette e Paris CDG. Percorreu 15.715 quilômetros (9.765 mi; 8.485 nm) levando aproximadamente 16 horas e 20 minutos.

A French Bee operou o mais longo voo doméstico de carga sem escalas, do Taiti a Paris em 14 de maio de 2020.

3. A maior aeronave do mundo


Muitos tendem a acreditar que o Antonov AN-225 é a maior aeronave do mundo. No entanto, este não é o caso. Com um comprimento de 73 metros, uma altura de 15 metros e uma largura de 117 metros , o Stratolaunch ganhou vitoriosamente o título de maior aeronave do mundo. Seu uso pretendido é transportar e lançar foguetes a uma altitude de 35.000 pés!

2. Tempo e voo de passageiros mais longo do mundo


A Qantas quebrou não um, mas dois recordes mundiais quando voou no dia 13 de novembro de 2019, sem escalas de Londres a Sydney. O voo da Qantas QF7879, também conhecido como “Projeto Sunrise”, esteve no ar por 19 horas e 19 minutos e cobriu uma distância total de 17.800 quilômetros.


Este voo único foi conduzido como um voo de pesquisa para ver como o corpo humano se comportaria e se adaptaria a um voo tão longo.

1. A maior quantidade de passageiros a bordo de uma aeronave


No dia 24 de maio de 1991, 1.088 pessoas foram transportadas da Etiópia para Israel usando um El Al Boeing 747. Com o codinome “Operação Salomon“, o voo serviu como um voo de evacuação e pousou em Israel com dois passageiros adicionais, pois dois bebês nasceram em o voo.


O Boeing 747-200 usado para este voo tinha uma ocupação máxima de 480 passageiros. Com mais de mil pessoas amontoadas nesta rainha dos céus, um recorde mundial foi estabelecido para o maior número de passageiros a bordo de uma aeronave.

Vídeo: Mayday Desastres Aéreos - Alitalia voo 404 - Inclinação Mortal


Aconteceu em 14 de novembro de 1990: Voo 404 da Alitalia - Inclinação Mortal


No dia 14 de novembro de 1990, um jato de passageiros italiano ao se aproximar de Zurique, na Suíça, de repente se chocou contra uma montanha perto do aeroporto, rasgando uma faixa de destruição pela floresta e matando todos os 46 passageiros e tripulantes. A queda parecia ser um caso clássico de voo controlado no terreno, um tipo de acidente quase sempre causado por erro do piloto - e de fato, a princípio parecia que os pilotos haviam erroneamente iniciado a descida muito cedo. 

Mas, ao tentar explicar por que fizeram isso, os investigadores descobriram que, embora o erro humano tenha desempenhado um papel fundamental, a causa mais próxima foi uma falha mecânica nas profundezas do sistema de navegação do avião. Um curto-circuito induziu a tripulação a voar seu avião direto para o solo, e desativou os avisos que os teriam alertado sobre o perigo - uma falha tão insidiosa que os investigadores tiveram que se esforçar para corrigir o problema antes que pudesse matar novamente.


O voo 404 da Alitalia era um voo internacional regular de Milão, na Itália para Zurique, na Suíça. Em 1990, a Alitalia, a companhia aérea de bandeira estatal da Itália, operou o breve voo usando o McDonnell Douglas DC-9-32, prefixo I-ATJA (foto acima), do qual possuía vários exemplares antigos originalmente construídos na década de 1970. Esses DC-9s de geração mais velha continham alguns equipamentos que poderiam ter ficado melhores em um museu, mas até agora isso não causou nenhum problema. 

Na manhã do dia 14 de novembro de 1990, os pilotos de um desses DC-9s relataram um problema com o equipamento de navegação do avião durante a aproximação para Dusseldorf, na Alemanha. Especificamente, o problema surgiu com um dos dois receptores NAV da aeronave, o par de computadores que detecta os sinais do sistema de pouso por instrumentos (ILS) de um aeroporto e, em seguida, transmite esses dados aos instrumentos da cabine de comando para que os pilotos possam encontrar a pista em condições de baixa visibilidade. 

Várias horas depois, outra tripulação fez uma viagem de ida e volta de Milão a Frankfurt e observou problemas semelhantes no segundo receptor NAV. Depois que o avião retornou ao Aeroporto Linate de Milão, os mecânicos da Alitalia substituíram os dois receptores NAV, corrigindo o problema.


Depois de instalar os novos receptores NAV, os mecânicos os testaram para garantir que funcionassem corretamente. O receptor NAV detecta três tipos principais de sinais: waypoints de navegação chamados beacons VOR; localizer beacons, que transmitem um feixe estreito na linha central estendida da pista para ajudar os aviões a se alinharem a ela; e glide slopes, que produzem um sinal direcionado que pode ser seguido para manter o ângulo correto de descida na aproximação da pista. 

Enquanto o DC-9 estava estacionado no solo em Linate, os mecânicos foram capazes de sintonizar os faróis VOR próximos e um localizador, confirmando que os receptores NAV os rastrearam corretamente. Mas o avião estava estacionado em uma posição onde não podia captar o sinal do glide slope de Linate, então eles não puderam verificar este último componente. 

Os mecânicos liberaram a aeronave para o voo sem realizar esta verificação, mas deixaram uma nota no registro técnico informando que uma aproximação usando o ILS deve ser conduzida em condições claras para confirmar que os receptores NAV estavam captando corretamente os sinais de planeio. Somente após a conclusão desta verificação eles poderiam ser usados ​​para conduzir uma abordagem ILS real sob condições em que os pilotos dependeriam de seus instrumentos para navegar.


No final das contas, havia um problema com a capacidade do receptor NAV nº 1 (lado do capitão) de rastrear um declive. Pensa-se que um defeito de soldagem no componente eletrônico que transmite os dados de glide slope já processados ​​para os instrumentos da cabine criou um curto-circuito que impediu a informação de sair do receptor NAV. 

Um receptor NAV moderno poderia detectar esse tipo de falha e exibir um sinalizador de alerta de “falha de glide slope” nos instrumentos afetados, mas este não era um receptor moderno. O receptor NAV nº 1 neste avião era um King KNR-6030, um modelo mais antigo que só podia exibir um sinalizador de falha se uma falha ocorresse durante o processamento dos dados. Se os dados foram processados ​​corretamente, mas não conseguiram alcançar os instrumentos da cabine, nenhuma bandeira de falha seria produzida. 

Este DC-9 usava instrumentos analógicos de glide slope, onde uma agulha se desviaria fisicamente com base na distância do avião acima ou abaixo do glide slope. Portanto, na ausência de qualquer deflexão, a agulha necessariamente deveria permanecer na posição “em curso”. Portanto, quando o receptor NAV nº 1 entrava em curto-circuito, evitando que o sinal do glide slope alcançasse os instrumentos, a indicação do glide slope nos instrumentos do capitão voltaria para "no curso" e nenhuma bandeira de advertência seria produzida.


A próxima viagem programada do DC-9 foi o voo 404 para Zurique. No comando deste voo estavam o Capitão Raffaele Liberti, um piloto experiente com mais de 10.000 horas de voo; e o primeiro oficial Massimo De Fraia, um jovem recém-contratado com muito menos tempo no DC-9. 

Quatro comissários de bordo e 40 passageiros se juntaram a eles no voo, a maioria empresários suíços voltando para Zurique. O voo 404 decolou às 18h36 e subiu à altitude de cruzeiro de 20.000 pés, passando rapidamente sobre o vazio escuro dos Alpes. 

A fase do cruzeiro foi extremamente curta e, por volta das 6h52, eles já haviam começado a descida para o aeroporto Kloten de Zurique. O plano era contornar o aeroporto e se aproximar da pista 14 pelo noroeste usando o sistema de pouso por instrumentos. Embora o tempo estivesse nublado, as nuvens chegaram ao fundo a cerca de 4.000 pés, bem acima de qualquer terreno; portanto, eles foram autorizados a usar os receptores NAV ainda não testados, uma vez que deveriam ser capazes de determinar visualmente se estavam alinhados com a pista ou não. 

Mas inicialmente houve alguma discordância sobre qual pista usar, dado o vento; três pistas diferentes foram sugeridas antes que a tripulação se fixasse em 14, aquela que lhes foi oferecida pelos controladores. Quando o capitão Liberti começou a dar instruções sobre a abordagem, o primeiro oficial De Fraia tinha um mapa de uma pista diferente à sua frente, e mais confusão se seguiu até que Liberti disse a ele para guardá-lo. 

Localização do voo 404 em uma visão geral dos últimos minutos do voo. Comunicados relevantes estão circulados
Embora o briefing de aproximação estivesse incompleto, tudo estava normal, já que o voo 404 começou uma série de curvas descendentes antes de se alinhar com a pista. Às 7h02, o Capitão Liberti observou que eles estavam indo rápido demais, então disse ao Primeiro Oficial De Fraia (que era o piloto voando): “Eu desaceleraria ainda mais, porque depois de passar pela travessia [da soleira] não adianta correr; quanto mais você se apressa, mais você foge, entende?” 

Ele sentiu que, quando eles tivessem passado pela pista e estivessem se preparando para fazer a volta, não seria econômico voar rápido, pois isso os faria ultrapassar ainda mais os limites. 

Momentos depois, o controlador de Zurique contatou o voo e pediu que desacelerasse para 210 nós, porque estava chegando muito perto do avião à sua frente no padrão de tráfego. "Você vê?" Liberti disse a De Fraia. O primeiro oficial colocou os manetes de volta em marcha lenta, diminuindo a velocidade e aumentando a razão de descida. 

Às 7h06, o controlador instruiu o voo 404 a descer para 4.000 pés e liberou-os para uma aproximação ILS para a pista 14. Um minuto depois, o voo 404 chegou ao topo da aproximação a uma altitude de 4.000 pés. A expectativa era que eles permanecessem nessa altitude até interceptarem a rampa de planeio por baixo, o que ocorreria a 15 quilômetros da pista. Mas, naquele momento, os instrumentos do capitão Liberti mostraram que já haviam se alinhado com o glide slope, por causa do curto-circuito no receptor NAV nº 1, que fez com que seus instrumentos passassem para a indicação “em curso”. Ele, portanto, acreditava que, como já estavam no caminho de planagem, poderiam começar a descer imediatamente. 

Contudo, Os instrumentos do primeiro oficial De Fraia os mostraram corretamente bem abaixo do glide slope, causando uma incompatibilidade. "Você tem o deslize aqui?" Liberti perguntou. “Em um eu não tenho”, respondeu De Fraia. “Tudo bem, então vamos fazer no outro”, disse Liberti. Aqui ele cometeu um erro crítico: por não ter percebido o fato de que eles estavam abaixo do glide slope, ele presumiu que os instrumentos de De Fraia estavam errados e os seus, corretos, embora o contrário fosse verdadeiro. 


Em resposta à determinação de Liberti, De Fraia girou o seletor do rádio para a posição “rádio 1”, fazendo com que os dois conjuntos de instrumentos fornecessem seus dados do receptor nº 1 NAV. O indicador de glide slope de De Fraia então mudou para mostrá-los em curso, como o de Liberti, e ambos os pilotos acreditaram que o problema havia sido resolvido. 

De Fraia então começou a descida de 4.000 pés, acreditando que eles estavam no planeio correto. Na realidade, eles haviam começado a descida a uma distância de 21 quilômetros da pista em vez de 15, colocando-os cerca de 1.200 pés abaixo do planeio real. Conforme o voo 404 desceu, os pilotos fizeram contato visual com a pista. Mas um perigo oculto espreitava entre eles e o aeroporto: o Stadlerberg, de 2.110 pés, uma pequena montanha localizada a cerca de 11 quilômetros do limiar da pista 14. 

Naquela noite, o Stadlerberg foi envolto em uma nuvem e escondido contra um fundo escuro, tornando-o totalmente invisível - como voar em um buraco negro. Para piorar a situação, o Aeroporto de Kloten não tinha um Indicador de Caminho de Aproximação de Precisão, ou PAPI, um conjunto de luzes próximo à pista que mudam de cor se uma aeronave se aproximando muito alta ou muito baixa. Portanto, nenhuma indicação visual de que eles estavam muito baixos existiria até que a massa negra de Stadlerberg se erguesse na frente deles.


A uma distância de 7 quilômetros do aeroporto estava um farol de navegação chamado marcador externo, que os pilotos sabiam que deveriam passar a uma altura de 1.250 pés acima do solo. Mas às 7h10, já tendo descido a uma altitude de 1.100 pés acima do solo, o capitão Liberti relatou que eles estavam a cerca de 7 quilômetros de distância do marcador externo. 

De repente, o primeiro oficial De Fraia percebeu que algo devia estar errado - como eles poderiam estar a 1.100 pés acima do nível do solo e na encosta plana se ainda estivessem bem aquém do marcador externo? "Já não passamos?" ele perguntou. "Não passamos pelo marcador externo?" “Não, não, ainda não mudou...” disse Liberti. "Oh, aqui está me dando...". Seu pensamento foi interrompido por uma transmissão do controle de tráfego aéreo, já que o controlador de aproximação deu a eles a frequência para contatar a torre para liberação de pouso. 

Depois de reconhecer a transmissão, Liberti disse: “Isso não faz sentido para mim”. Ele também percebeu o problema que estava fazendo seu primeiro oficial hesitar. “Nem para mim”, disse De Fraia. A aeronave ainda estava indo direto para o cume do Stadlerberg, mas parecia que a tripulação estava começando a entender o problema.

O altímetro de ponteiro de bateria no voo 404 da Alitalia, como deveria
ter aparecido às 7h08m57s. Consegue ler?
Nesse ponto, o capitão Liberti cometeu outro erro crítico. Ele olhou para o altímetro para tentar avaliar a altura, mas interpretou mal. Os altímetros instalados no avião eram de um tipo antiquado chamado “ponteiro de tambor”, no qual a altitude da aeronave em milhares de pés é exibida em um tambor giratório e incrementos em centenas eram exibidos usando uma agulha em um medidor. 

O problema com os altímetros de ponteiro de bateria era que eram necessários dois passos para lê-los; e o tambor era pequeno e difícil de ver, especialmente quando girava na metade de um número para o próximo, ou quando a agulha do medidor se movia na frente dele. Como resultado, os pilotos freqüentemente interpretam mal esse tipo de altímetro, derivando uma altitude 1.000 pés acima ou abaixo de sua altitude real. Pensa-se que enquanto ele tentava descobrir o que estava acontecendo, O capitão Liberti interpretou mal a altitude em 300 metros. 

Naquela época, o voo 404 estava cerca de 1.250 pés abaixo do glide slope, mas como ele interpretou mal o altímetro, quando Liberti cruzou sua observação com a altura que eles deveriam estar, ele passou a acreditar que eles estavam apenas 250 pés abaixo do glide slope, e que foi essa discrepância relativamente pequena que perturbou o primeiro oficial. 


“Puxe, puxe, puxe, puxe”, disse Liberti a De Fraia, com a intenção de fazer o primeiro oficial parar de descer e nivelar o avião até que interceptassem a rampa plana novamente. O primeiro oficial De Fraia tinha uma imagem muito mais terrível da situação. 

“Dê a volta,” ele disse, alcançando os manetes e puxando sua coluna de controle para subir. Mas o capitão Liberti acreditava que a abordagem ainda poderia ser salva. "Não, não, não, pegue o planador!" disse ele, e De Fraia abortou sua tentativa nascente de dar a volta. "Você pode segurá-lo?" Liberti perguntou. 

À frente deles, as luzes da pista começaram a desaparecer atrás do Stadlerberg envolto em névoa. “Sim”, disse De Fraia, timidamente. “Espere, vamos tentar...” Antes que Liberti pudesse terminar sua frase, a montanha se ergueu em seu caminho sem aviso. 

Não houve tempo para reagir; uma fração de segundo depois, a fuselagem dianteira e a asa direita do DC-9 atingiram árvores, arrancando pedaços dos flaps externos direitos, ripas e ponta da asa. A asa direita perdeu sustentação e o avião rolou com força para a direita ao mergulhar na floresta. 

O voo 404 rolou invertido e caiu no chão de cabeça para baixo, provocando uma enorme explosão que enviou destroços em chamas por entre as árvores por várias centenas de metros. Embora o impacto não tenha sido necessariamente fatal para todos os passageiros, a explosão e o fogo consumiram os destroços em meros segundos, matando rapidamente qualquer um que permanecesse. Quando alguém percebeu que o avião estava desaparecido, todos os 46 passageiros e tripulantes estavam mortos. 


No aeroporto de Kloten, os controladores logo perceberam que o voo 404 da Alitalia havia desaparecido do radar. Depois de não receber nenhuma resposta do avião, o controlador de abordagem perguntou a outro voo próximo: "Você tem uma aeronave à vista cerca de duas milhas à sua frente?" “Espera”, disse o voo. 

Depois de alguns momentos, eles responderam: “Há um incêndio no chão, mas não temos tráfego à vista”. Os controladores imediatamente soaram o alarme de colisão, então cancelaram as autorizações de aproximação de todas as aeronaves que chegavam e desligaram o aeroporto enquanto os serviços de emergência corriam para o local. 

Não demorou muito para que os bombeiros localizassem o local do acidente ao lado do Stadlerberg, onde começaram a controlar o fogo antes que ele se espalhasse pela floresta próxima. Conforme as chamas diminuíram, as equipes de resgate se moveram para procurar as vítimas, mas logo ficou claro que ninguém havia sobrevivido. Uma tenda de primeiros socorros, montada para cuidar dos feridos, estava abandonada em meio à chuva que caía.


Investigadores suíços, italianos e americanos logo convergiram para o local para determinar a causa. Em virtude do fato de que o local do acidente estava alinhado com a pista e o avião parecia ter impactado as primeiras árvores em uma atitude quase nivelada, era aparente que o voo 404 havia voado para a montanha de maneira controlada enquanto devidamente alinhado com a passarela. 

O problema era que estava 1.250 pés baixo demais. Mas por que? Em quase todos os acidentes categorizados como “voo controlado para o terreno”, não há nada de errado com o avião antes do impacto, e toda a sequência de eventos está enraizada em fatores humanos. Portanto, quando os investigadores examinaram os dados da caixa preta, eles inicialmente esperavam encontrar evidências de algum erro instigante importante. 

Em vez de, eles descobriram que os instrumentos dos pilotos haviam indicado que eles estavam em curso durante a descida, apesar do fato de estarem bem abaixo da rampa de planeio o tempo todo. Algo os havia enganado, mas o quê? O histórico recente de manutenção envolvendo os receptores NAV forneceu uma pista tentadora, mas uma desmontagem dos dispositivos foi inconclusiva, porque eles foram seriamente danificados no acidente e não puderam ser testados adequadamente.


Então, em junho de 1991, outro avião da Alitalia equipado com o mesmo tipo de receptor NAV estava realizando uma abordagem ILS quando a tripulação observou que seus instrumentos os mostravam alinhados com o localizador, quando isso era manifestamente falso. Um exame dos receptores NAV mostrou que um deles tinha uma junta mal soldada que causou um curto-circuito que cortou os instrumentos da cabine dos dados de origem. 

Assim como no voo 404, nenhuma bandeira de falha apareceu porque o receptor NAV desatualizado não foi capaz de detectar uma falha que ocorreu após a fase de processamento de dados. Os investigadores determinaram que um trabalho de solda ruim semelhante na unidade de glide slope explicaria tudo o que deu errado a bordo do voo 404 da Alitalia. Na ausência de um sinal do receptor NAV nº 1, quaisquer instrumentos que dependessem dele seriam padronizados para a posição “em declive de planeio”, e nenhum sinalizador de falha apareceria porque os dados estavam sendo processados ​​corretamente. 

De maneira crítica, os investigadores descobriram que essa falha também afetaria o sistema de alerta de proximidade do solo (GPWS) do avião. Embora a taxa de fechamento do voo 404 com o solo não fosse rápida o suficiente para que este modelo inicial GPWS produzisse um alarme de terreno, ele também foi capaz de produzir um aviso “ABAIXO DE GLIDE”, que deveria ter soado nos últimos minutos do voo condenado. Mas o curto-circuito no receptor NAV nº 1 também impediu que as informações do glide slope chegassem ao GPWS, tornando-o incapaz de determinar a relação do avião com o glide slope. O resultado foi assustador:


No entanto, a investigação identificou dois momentos críticos em que as ações dos pilotos contribuíram para o acidente. Primeiro, quando Liberti e De Fraia perceberam inicialmente que suas indicações de glide slope não correspondiam, eles tiveram a oportunidade de descobrir o problema e mudar para o receptor NAV que estava funcionando corretamente. 

Em vez disso, o Capitão Liberti imediatamente mudou todos os instrumentos para o receptor NAV que produziu a leitura que mais se assemelha a seu preconceito da situação. Quando a inclinação de planeio e as indicações do localizador mudaram para "no curso" logo que alcançaram 4.000 pés, Liberti acreditou que isso significava que o controlador os havia vetorado deliberadamente diretamente para o início da abordagem, quando na realidade eles precisavam permanecer nivelados por mais 9 quilômetros antes de descer. 

Quando os instrumentos do primeiro oficial De Fraia os mostraram abaixo do glide slope, Liberti presumiu que essa era a leitura incorreta e mudou para o outro receptor sem pensar duas vezes. Se ele comparasse a altitude com a distância do aeroporto, ele teria percebido que a indicação de declive de De Fraia era a correta, mas ele nunca fez isso.


Outra oportunidade de evitar o acidente veio quando o primeiro oficial De Fraia pediu uma reviravolta pouco antes do impacto. Os investigadores determinaram que, se não tivessem abortado a volta, o avião provavelmente teria perdido a montanha. Infelizmente, o capitão Liberti interveio para impedir a volta, provavelmente porque ele interpretou mal o altímetro e acreditou que eles estavam apenas 250 pés abaixo da rampa de planagem - um desvio potencialmente recuperável que ele não achava que justificasse uma volta. 

Mas o fato de um piloto anular a tentativa de outro piloto de dar a volta por si já era preocupante. De Fraia, como o piloto voando, era quem deveria fazer a ligação. O fato de Liberti tentar impedi-lo revelou que ele não confiava na habilidade do primeiro oficial inexperiente de tomar decisões críticas - uma teoria que foi apoiada pelas interações entre eles durante o voo. 

Liberti falou com De Fraia como se fosse seu instrutor, e não seu colega de trabalho, dando ao primeiro oficial vários conselhos pesados ​​que muitas vezes pareciam paternalistas. Quando o controlador repetia seu conselho sobre como reduzir a velocidade, ele fazia questão de esfregar e freqüentemente notava os pequenos erros de De Fraia, como quando ele agarrou o gráfico de abordagem errado. Essa atitude acabou voltando para mordê-lo: quando De Fraia tentou apontar um perigo claro e presente, Liberti não acreditou nele. 


A sequência de eventos que levou ao acidente foi assim estabelecida. Mas os investigadores ficaram surpresos que um receptor NAV com um modo de falha tão perigoso pudesse ter sido instalado em um avião de passageiros sem que aparentemente ninguém soubesse disso. No entanto, eles acabaram descobrindo que várias partes sabiam do problema há pelo menos 15 anos. 

Em 1975, o fabricante de um dos dois tipos de receptores NAV usados ​​na frota DC-9 da Alitalia pediu aos operadores para atualizar os modelos mais antigos para uma versão mais recente que fosse capaz de detectar uma falha em qualquer ponto no processo de geração e transmissão de dados . Embora este não fosse o tipo de receptor NAV que falhou no voo 404, o problema com os dois receptores era exatamente o mesmo. 

Então, em 1984, o fabricante de aeronaves McDonnell Douglas emitiu um boletim alertando os operadores, incluindo a Alitalia, deste mesmo mau funcionamento potencial. E em 1985, McDonnell Douglas convocou um seminário no qual pilotos de várias companhias aéreas foram informados sobre o mau funcionamento e receberam estratégias para reconhecê-lo. Sabe-se que pelo menos dois pilotos da Alitalia participaram do seminário. 

Mas, apesar de todas essas tentativas de tornar o problema conhecido, não existia nenhum método eficaz para divulgar as informações aos indivíduos na Alitalia que precisavam conhecê-las, e a companhia aérea não substituiu os receptores de NAV afetados ou os pilotos de trem para reconhecer o mau funcionamento.


O receptor King KNR-6030 NAV não era o único equipamento desatualizado no DC-9. Os investigadores também ficaram chocados com o fato de um jato de passageiros em 1990 poder ser equipado com um altímetro de bateria. O risco de leitura incorreta desse tipo de altímetro era conhecido há décadas e, em 1959, um relatório da Força Aérea dos Estados Unidos concluiu que "não era um instrumento aceitável". 

Um estudo subsequente revelou que 81% dos pilotos de Boeing 727 em algum momento interpretaram mal um altímetro de bateria e, desses, 85% disseram que já o haviam feito mais de uma vez. Na maior parte do mundo, altímetros de ponteiro de bateria foram descontinuados no final da década de 1970, mas este Alitalia DC-9 ainda tinha um em 1990!


A falta de equipamento adequado no aeroporto de Zurique também contribuiu para o acidente. Em 1990, os Estados Unidos haviam instalado sistemas de Alerta de Altitude Segura Mínima (MSAW) em todos os principais aeroportos, mas a Suíça não. 

Um sistema MSAW detecta quando um avião que se aproxima desce muito abaixo da rampa de planagem e fornece alertas visuais e sonoros na torre de controle, permitindo que os controladores intervenham se um voo estiver em rota de colisão com o terreno. Se um sistema MSAW estivesse disponível no aeroporto de Kloten, o acidente poderia não ter acontecido. O mesmo teria acontecido com um sistema Precision Approach Path Indicator (PAPI), que poderia ter informado aos pilotos que eles estavam muito baixos durante o período em que a pista estava à vista. 

Novamente, esses sistemas eram comuns nos Estados Unidos, mas não na Suíça. Em terceiro lugar, nenhuma luz foi instalada no topo do Stadlerberg para ajudar a torná-lo visível aos pilotos, porque tais luzes não eram necessárias em obstruções localizadas a mais de 5,5 quilômetros do aeroporto. E, finalmente, a carta de aproximação fornecida aos pilotos não apresentava nenhum relevo topográfico.


No meio da investigação, o Conselho Federal de Investigação de Acidentes da Suíça divulgou um relatório provisório contendo várias recomendações urgentes. Como resultado dessas descobertas preliminares, a Alitalia começou a treinar seus pilotos para sempre verificar a distância e a altitude antes de mudar para um único receptor NAV, e instruiu os pilotos que se qualquer membro da tripulação pedir uma volta, essa decisão deve ser respeitada com sem exceções. 

Ao mesmo tempo, as autoridades suíças começaram a trabalhar para instalar uma luz no topo do Stadlerberg. Em seu relatório final, o Conselho foi muito além, recomendando que os receptores NAV não monitorados e altímetros de bateria fossem retirados de serviço imediatamente; que os sistemas de alerta de proximidade do solo devem ser reprojetados de modo a não depender do funcionamento correto dos receptores NAV; que todas as companhias aéreas instituam uma política exigindo a conclusão de uma volta depois de iniciada; que os gráficos de aproximação mostram um perfil do terreno abaixo do plano de planagem; que aeroportos sem MSAW considerem instalá-lo; e que as pistas equipadas com sistemas de pouso por instrumentos também devem ter luzes PAPI.


O tema geral por trás da queda do voo 404 da Alitalia foi o fracasso de várias partes em utilizar as inovações mais recentes em segurança de voo. A tecnologia que poderia ter evitado o acidente já existia - receptores NAV com monitoramento de saída, altímetros de exibição padrão, luzes PAPI e sistemas MSAW poderiam ter sido instalados, mas não foram. 

Esse travamento mostrou que demorar para atualizar não era apenas arriscado, mas também perigoso. Os especialistas sabiam dos perigos de receptores de NAV não monitorados e altímetros de bateria por anos, mas ainda assim a Alitalia - seja por disfunção interna, falta de fundos, ignorância ou alguma combinação dos três - nunca deu ouvidos a esses avisos. O voo 404 foi o último acidente fatal da Alitalia e, hoje, os sistemas antiquados que levaram à queda já se foram.

Edição de texto e imagens por Jorge Tadeu (Site Desastres Aéreos)

Com Admiral Cloudberg, Wikipedia, ASN - Imagens: Bureau of Aircraft Accidents Archives, Werner Fischdick, Encyclopedia Britannica, Google, Swiss Federal Accident Inquiry Board e do Watson.ch. - Clipes de vídeo cortesia de Mayday (Cineflix).

Vídeo Documentário: Marshall University - Das cinzas à Glória - A tragédia e o triunfo do time de futebol

Ative a legenda em português nas configurações do vídeo.

Aconteceu em 14 de novembro de 1970: Acidente de avião que vitimou o time de futebol da Universidade Marshall (EUA)

Em 14 de novembro de 1970, um jato fretado transportando a maior parte do time de futebol americano da Marshall University corta um arvoredo e cai em uma encosta a apenas 3 km do Aeroporto Tri-State em Kenova, West Virginia, matando todos a bordo. O time estava voltando do jogo daquele dia, uma derrota por 17-14 para a East Carolina University. 

A equipe da Universidade Marshal em 1970 (marshall.edu)

Trinta e sete jogadores de futebol americano Marshall estavam a bordo do avião, junto com o treinador do time, seus médicos, o diretor atlético da universidade e 25 promotores de equipe - alguns de Huntington, os cidadãos mais proeminentes da Virgínia Ocidental - que viajaram para a Carolina do Norte para torcer pelo Thundering. “Toda a unidade”, escreveu um cidadão de Huntington mais tarde, “todo o coração da cidade estava a bordo”.


O bimotor McDonnell Douglas DC-9-31, prefixo N97S, da Southern Airways (foto acima) transportava 37 membros do time de futebol americano Marshall University Thundering Herd, oito membros da comissão técnica, 25 torcedoras e dois pilotos, dois comissários de bordo e um coordenador de fretamento. No total, estavam a bordo 70 passageiros e cinco tripulantes.

A equipe estava voltando para casa após uma derrota por 17-14 para o East Carolina Pirates no Ficklen Stadium em Greenville, Carolina do Norte. 

Na época, as equipes atléticas de Marshall raramente viajavam de avião, uma vez que a maioria dos jogos fora de casa ficava a uma curta distância de carro do campus. A equipe planejou originalmente cancelar o voo, mas mudou os planos e fretou o Southern Airways DC-9. 

A aeronave de 95 assentos tinha em sua tripulação o capitão Frank Abbot (47), o primeiro oficial Jerry Smith (28) e os comissários de bordo Pat Vaught e Charlene Poat. 

Todos estavam qualificados para o voo. Outro funcionário da Southern Airways, Danny Deese, estava a bordo do voo para coordenar as atividades de fretamento. Este foi o único voo naquele ano para o time de futebol americano da Marshall University.

A princípio, a proposta original de fretar o voo foi recusada porque excederia "as limitações de decolagem de suas aeronaves". As negociações subsequentes resultaram em uma redução do peso dos passageiros e da bagagem e o voo charter foi agendado. 

O voo e o acidente

Às 18h38, o avião deixou Stallings Field, em Kinston, Carolina do Norte, e o voo 932 prosseguiu para Huntington sem incidentes. A tripulação estabeleceu contato de rádio com controladores de tráfego aéreo às 19h23 com instruções para descer a 5.000 pés (1.500 m).

Os controladores informaram à tripulação que "chuva, nevoeiro, fumaça e um teto irregular" estavam presentes no aeroporto, tornando pouso mais difícil, mas possível. 

Às 19h34, a tripulação do avião relatou ter passado pelo aeroporto Tri-State. O controlador deu permissão para pousar. A aeronave começou sua descida normal após passar pelo marcador externo, mas não interrompeu sua descida e manteve a altitude em 1.240 pés (380 m), conforme exigido pelo procedimento de aproximação por instrumentos designado. 

Em vez disso, a descida continuou por mais 300 pés (91 m) por razões desconhecidas, aparentemente sem que nenhum dos tripulantes visse as luzes do aeroporto ou a pista. Na transcrição de suas comunicações na cabine nos minutos finais, os pilotos debateram brevemente se seu piloto automático havia "capturado" para uma descida de glide slope, embora o aeroporto estivesse equipado apenas com um localizador. 

O relatório também observou que a aeronave se aproximou da Refinaria Catlettsburgnos 30 segundos finais antes do impacto, que "poderia ter afetado uma ilusão visual produzida pela diferença na elevação da refinaria e do aeroporto", que era quase 300 pés (91 m) mais alto que a refinaria , com colinas entre eles. O copiloto, monitorando o altímetro, gritou: "Está começando a ficar um pouco mais leve aqui a duzentos metros. Estamos duzentos acima [do vetor de descida]", e o coordenador da fretamento respondeu: "Aposto que será uma aproximação perdida". 

O gravador de voo correspondente mostra que a aeronave desceu outros 220 pés (67 m) em elevação dentro desses 12 segundos, e o copiloto relatou "quatrocentos" e concordou com o piloto que eles estavam na "aproximação" correta. 

No segundo seguinte, porém, o copiloto rapidamente relatou novas leituras, "cem e vinte e seis"... "CEM!".

O avião continuou a aproximação final para o Aeroporto Tri-State quando colidiu com o topo das árvores em uma encosta de 5.543 pés (1.690 m) a oeste da pista 11 (agora pista 12). Os os sons do impacto se seguiram imediatamente.

O avião explodiu em chamas e criou uma faixa de solo carbonizado de 95 pés (29 m) de largura e 279 pés (85 m) de comprimento.

Todos os 75 ocupantes do avião morreram na hora. Os restos mortais de seis passageiros nunca foram identificados.


Jack Hardin do 'The Herald-Advertiser,' o primeiro repórter na cena a cerca de 250 metros a leste de W. Va. 75 ao sul de Kenova, disse: "Não há nada aqui além de corpos carbonizados. É terrível."

Uma moradora próxima, a Sra. Larry Bailey, da Coal Branch Road de 1926, disse que viu o jato caindo. Ela disse que ouviu uma explosão e "o avião parecia ter caído na horizontal".


David A. Peyton, do 'The Herald-Advertiser', relatou por rádio-telefone que havia contornado a cena completamente e "tudo está carbonizado além da conta".

Peyton disse que parecia que uma área de cerca de 60 metros de diâmetro havia sido nivelada e que pequenos incêndios ainda estavam queimando. Ele disse que apenas os dois motores a jato do avião e uma seção da asa eram reconhecíveis. 

"Os destroços estão espalhados por todo o lugar. As pessoas que estavam aqui quando tudo aconteceu disseram que ouviram um grande 'baque' e foi só."


O calor dos destroços estava atrapalhando os esforços de recuperação. A cena foi descrita como caótica. Um grande número de pessoas corria através da vegetação rasteira para chegar ao local durante as primeiras duas horas.

Um funcionário do Tri-State Airport retornando da cena disse: "Os corpos estão empilhados em uma grande pilha, todos eles carbonizados. Não pode haver ninguém vivo."

A polícia disse que todas as ambulâncias em um raio de 16 quilômetros foram alertadas. O Hospital Cabell-Huntington pediu aos visitantes que saíssem e fechou as entradas para se preparar para a emergência, mas logo ficou claro que não haveria sobreviventes.

Hardin e Peyton descreveram a cena como horrível. “Há pedaços de corpos carbonizados por todo lado”, disse Hardin. Peyton disse que contou 12 formas que eram reconhecíveis como corpos, mas que viu pedaços de corpos, ossos e membros espalhados pela área.

Muitos dos corpos foram cobertos com plástico branco pelos bombeiros e outras autoridades de emergência no local.

Às 12h10, os primeiros corpos foram colocados em caminhões da Guarda Nacional. Eles estavam sendo levados para o Arsenal da Guarda Nacional no aeroporto, onde um necrotério temporário foi instalado. Hardin disse que as equipes de resgate estão ficando sem bolsas para conter os corpos.


John Young, que morava a cerca de meia milha do local do acidente, disse que "ouviu um barulho alto. Corri para ver o que era e tudo que vi foi uma grande bola de fogo. Ninguém poderia ter sobrevivido a isso."

Albert Rich, cuja casa também ficava a cerca de 800 metros do local, disse que primeiro pensou que o barulho era um raio. Ele saiu para ver. "Eu ouvi um estrondo e um minuto depois houve um estrondo terrível que sacudiu toda a casa. Corri para fora para ver se havia uma tempestade e vi um clarão sobre a colina", disse Rich. Ele disse que o avião roçou o topo de uma casa abandonada pouco antes de cair.

Uma chuva fraca atrapalhou os esforços de resgate, onde o local era acessível apenas por uma estrada estreita e de terra que havia se transformado em lama.


De acordo com o relatório oficial do National Transportation Safety Board (NTSB), o acidente era "insustentável". A aeronave "mergulhou para a direita, quase inverteu, e colidiu com uma cavidade de nariz primeiro'". 

Quando o avião parou, estava a 4.219 pés (1.286 m) da pista e a 275 pés (84 m) ao sul do marcador do meio. Embora a pista do aeroporto tenha sido alongada além de seu limite original, tornando as medições históricas mais difíceis, o relatório oficial do NTSB fornece, "o acidente ocorreu durante as horas de escuridão a 38 ° 22 '27" latitude Norte e 82 ° 34' 42 " W. longitude". 

O relatório adicionalmente observa, "a maior parte da fuselagem foi derretida ou reduzida a uma substância semelhante a pó; no entanto, vários pedaços grandes foram espalhados por toda a área queimada." 

Investigação


O NTSB investigou o acidente e seu relatório final foi emitido em 14 de abril de 1972. No relatório, o NTSB concluiu, "[...] o acidente foi o resultado de uma descida abaixo da Altitude Mínima de Descida durante uma abordagem de não-precisão sob operação adversa condições, sem contato visual com o ambiente da pista [...]”. 

Investigadores no local do acidente ao lado de um dos motores carbonizados preparando a  remoção para um hangar do aeroporto local (Jack Burnett/AP)

Eles ainda declararam: "O Conselho não foi capaz de determinar o motivo da (maior) descida, embora as duas explicações mais prováveis ​​sejam um uso impróprio de dados de instrumentação da cabine de comando, ou (b) um erro do sistema de altimetria." 

Gráfico da NTSB mostra a informações da queda (ASN)

Pelo menos uma fonte diz que a água que vazou para o altímetro do avião pode ter prejudicado suas leituras de altura, levando os pilotos a acreditarem que o avião estava mais alto do que realmente era.

O outro motor do DC-9 (baaa-acro.com)

O conselho fez três recomendações como resultado deste acidente, incluindo recomendações para heads-up displays, dispositivos de alerta de proximidade do solo e vigilância e inspeção de operações de voo.

O corredor de aproximação ao aeroporto e o local da queda do avião

Eventos subsequentes ao acidente


Em 15 de novembro de 1970, um serviço fúnebre foi realizado no Veterans Memorial Fieldhouse, com 8.500 lugares, e momentos de silêncio, lembranças e orações. 

No sábado seguinte, outro serviço memorial foi realizado no Fairfield Stadium, ao ar livre, com 18.000 lugares. Em todo o país, muitos expressaram suas condolências. As aulas no Marshall, junto com vários eventos e shows da Marshall Artists Series (e o jogo do time de futebol americano contra o Ohio Bobcats), foram cancelados e os escritórios do governo foram fechados. 

Um funeral em massa foi realizado no Field House e muitos dos mortos foram enterrados no cemitério de Spring Hill, alguns juntos porque os corpos não eram identificáveis.

Os efeitos do acidente em Huntington foram muito além do campus Marshall. Por ser o único voo fretado do time na temporada, 'boosters' e cidadãos importantes estavam no avião, incluindo um vereador, um legislador estadual e quatro médicos. Setenta crianças perderam pelo menos um dos pais no acidente, 18 deles ficaram órfãos.

A queda do voo 932 devastou tanto a comunidade local que quase levou à interrupção do programa de futebol americano de Marshall. O novo técnico Jack Lengyel , os estudantes da Marshall University e os fãs de futebol do Thundering Herd convenceram o presidente em exercício do Marshall, Donald N. Dedmon, a reconsiderar o cancelamento do programa no final de 1970. 

Nas semanas seguintes, Lengyel foi auxiliado em suas tentativas pelo treinador Red Dawson . Dawson era um técnico da equipe anterior que voltou do jogo da Carolina do Leste junto com Gail Parker, uma treinadora caloura. 

Parker voou para o jogo, mas não voltou, trocando de lugar com Deke Brackett, outro treinador. Dawson e Parker estavam comprando amendoim cozido em uma loja de campo na zona rural da Virgínia quando ouviram a notícia pelo rádio. 

Antes da viagem, eles deveriam ir em uma missão de recrutamento para o Ferrum College após o jogo ECU - Marshall (em um esforço para recrutar o linebacker júnior da faculdade Billy Joe Mantooth , que se transferiu para a West Virginia University). 

Após a queda, Red Dawson ajudou a reunir um grupo de jogadores que estavam no time de futebol juvenil do time principal durante a temporada de 1970, bem como estudantes e atletas de outros esportes, para formar um time de futebol de 1971.

Huntington, West Virginia: Os quatro participantes restantes da equipe de 1970 da Marshall University reservam um tempo para fazer uma pausa no treino  para colocar um arranjo de flores em Marshall Field, após a devastadora queda de avião que matou todos os 75 a bordo (Arquivo Bettmann/Bettmann)

O técnico Rick Tolley estava entre as vítimas do acidente. Jack Lengyel foi nomeado para ocupar o lugar de Tolley em 12 de março de 1971, depois que Dick Bestwick, a primeira escolha para o trabalho, desistiu após apenas uma semana e voltou para Georgia Tech. Lengyel, que veio de um trabalho de treinador no College of Wooster, foi contratado pelo diretor atlético recém-contratado Joe McMullen, com quem ele havia trabalhado na Universidade de Akron nos anos 1950.

O time de futebol da Marshall University venceu apenas dois jogos durante a temporada de 1971, contra Xavier e Bowling Green. Lengyel liderou o Thundering Herd para um recorde de 9-33 durante sua gestão, que terminou após a temporada de 1974.

Memoriais 


O presidente da Marshall University, John G. Barker, e o vice-presidente Donald Dedmon nomearam um Comitê Memorial logo após o acidente. O comitê decidiu sobre um grande memorial dentro do campus, uma placa e jardim memorial no Fairfield Stadium, e um cenotáfio de granito no cemitério de Spring Hill; o Memorial Student Center também foi designado como memorial.

Memorial no cemitério de Spring Hill em Huntington, West Virginia, em homenagem às vítimas da queda de avião em 1970 (Wikimedia Commons)

Em 12 de novembro de 1972, o Memorial Fountain foi dedicado na entrada do Memorial Student Center. O designer da escultura, Harry Bertoia, criou o memorial de US$ 25.000 que incorporava bronze, tubos de cobre e hastes de soldagem. A escultura de 6.500 lb e 13 pés de altura (2.900 kg, 4 m de altura) foi concluída em um ano e meio. Uma placa foi colocada na base em 10 de agosto de 1973, onde se lê: "Eles viverão no coração de suas famílias e amigos para sempre e este memorial registra sua perda para a universidade e a comunidade". 

Memorial Fountain

Todos os anos, no aniversário da queda, a fonte é fechada durante uma cerimônia comemorativa e não ativada novamente até a primavera seguinte.

Todos os anos, no aniversário do acidente, aqueles que morreram são pranteados em uma cerimônia no campus da Marshall University em Huntington, West Virginia. Várias das vítimas estão enterradas em um túmulo no cemitério de Spring Hill em Huntington; A 20th Street entre o Joan C. Edwards Stadium, o atual estádio de futebol no campus de Marshall, e o Spring Hill Cemetery foi renomeado para Marshall Memorial Boulevard em homenagem às vítimas do acidente.


Em 11 de novembro de 2000, foi inaugurado o Memorial Bronze do We Are Marshall. A estátua de bronze de 5 × 7 m (17 × 23 pés) foi criada pelo artista Burl Jones de Sissonville, West Virginia , e custou US$ 150.000. 

É baseado nas ideias de John e Ann Krieger, de Huntington. Foi doado à universidade pelos fãs do Marshall e está anexo ao Estádio Joan C. Edwards na fachada oeste. Foi revelado a milhares de pessoas 90 minutos antes do jogo com o RedHawks da Universidade de Miami.

Em 11 de dezembro de 2006, uma placa memorial foi dedicada no local da queda do avião. A cerimônia contou com os palestrantes convidados William "Red" Dawson e Jack Hardin. Os bombeiros Ceredo e Kenova foram homenageados no evento.


A placa memorial diz: "Em 14 de novembro de 1970, 75 pessoas morreram na pior tragédia aérea relacionada ao esporte na história dos Estados Unidos, quando um DC-9 da Southern Airways se chocou contra uma encosta próxima. As vítimas incluíam 36 jogadores de futebol da Marshall University, 9 treinadores e administradores, 25 fãs e tripulantes de 5 pessoas.
Ninguém sobreviveu a este desastre terrível".

Outra placa em homenagem ao time de futebol americano Marshall de 1970 foi inaugurada na East Carolina University no mesmo dia e pode ser vista na entrada do time visitante do Dowdy – Ficklen Stadium. Os oradores em destaque foram o chanceler Steve Ballard, o diretor atlético Terry Holland, o locutor do Pirates, Jeff Charles, e o presidente do Marshall, Stephen Kopp.

14 de novembro de 2013 marcou a primeira vez que Marshall jogou um jogo de estrada em um aniversário do desastre. Como um memorial às 75 vítimas, os jogadores do Marshall usaram o número 75 em seus capacetes. O tributo foi repetido pelo resto da temporada, incluindo quando Marshall conheceu Rice no jogo do Conference USA Football Championship de 2013. 

Marshall estava programado para comemorar o 50º aniversário do desastre aéreo na abertura da temporada de futebol em 29 de agosto de 2020. O adversário estava programado para ser a Carolina do Leste - o mesmo time que derrotou Marshall antes do desastre acontecer. Esse jogo não ocorreu devido à pandemia COVID-19.

Filmes



"Marshall University: Ashes to Glory", um documentário de Deborah Novak e John Witek, foi lançado em 18 de novembro de 2000, sobre a queda e a subsequente recuperação do programa de futebol Marshall nas décadas seguintes.


"We Are Marshall" ("Somos Marshall"), filme que dramatiza a queda do voo 932 e suas repercussões, estreou em 12 de dezembro de 2006, em Huntington. Estrelou Matthew McConaughey como Jack Lengyel e Matthew Fox como Red Dawson. O DVD do filme foi lançado em 18 de setembro de 2007.

Conclusão


O acidente foi a tragédia mais mortal que afetou qualquer time esportivo na história dos Estados Unidos. Foi o segundo acidente de avião de um time de futebol universitário em pouco mais de um mês, após o acidente de 2 de outubro que matou 14 jogadores do Wichita State e 17 outros.

Por Jorge Tadeu (com ASN, Wikipedia, baaa-acro e wvculture.org)