quarta-feira, 11 de outubro de 2023

História: A batalha de Creta foi a razão pela qual Hitler abandonou os ataques de paraquedas para sempre

Soldados alemães param diante dos túmulos de seus camaradas mortos
Creta pode ser agora uma ilha turística idílica, mas durante um período de 12 dias em Maio de 1941, uma força mista de tropas britânicas, australianas, neozelandesas e gregas lutaram como demónios para tentar repelir uma invasão alemã.

Quando a Grécia continental caiu nas mãos das forças nazis em Abril de 1941, as atenções rapidamente se voltaram para a segurança do território – que é a maior ilha do Mediterrâneo oriental.

A sua posição central no mar Egeu e o seu porto na Baía de Suda fizeram de Creta o local ideal para operações navais. Os aeródromos de Creta também eram importantes, pois os aviões ali baseados podiam atingir alvos no Norte de África, interromper a produção petrolífera nazi na Romênia ou atacar navios britânicos no Canal de Suez.

A captura de Creta também impediria as forças aliadas de lançarem contra-ataques na região recentemente ocupada dos Balcãs, que a máquina de guerra alemã tinha pisoteado em 1941.

Um mapa da Operação Merkur, a invasão aérea alemã de Creta em maio de 1941
Apesar das preocupações de que a abertura de uma nova área de conflito desviaria a atenção do plano de Hitler de tomar a Europa Oriental, ele foi conquistado pelo plano da Luftwaffe de usar paraquedistas para realizar o ataque.

O Führer deu o seu consentimento para que a invasão prosseguisse, mas com a estrita ressalva de que não deveria de forma alguma desviar a atenção da invasão da União Soviética. As forças aéreas alemãs realizaram então uma campanha de bombardeamento na ilha, o que forçou a Força Aérea Real (RAF) a evacuar os seus aviões para o Egito.

Graças ao sucesso da operação de inteligência Aliada ULTRA, o comandante de Creta, Tenente-General Bernard Freyberg, estava ciente da ameaça que se aproximava – e, como resultado, pôde planear a defesa da ilha com antecedência.

A geografia tornou a defesa da ilha uma tarefa difícil, assim como o fraco equipamento de comunicação entre as forças combatentes. As posições-chave estavam todas na face norte de Creta, que ficava a apenas 100 quilómetros do continente ocupado pelo Eixo.

Os aeródromos de Maleme, Retimo e Heraklion eram locais de vital importância, assim como o porto da Baía de Suda. Estes tinham de ser defendidos, pois o alto comando aliado não estava disposto a destruí-los devido à sua importância estratégica.

O tenente-general Bernard Freyberg VC, comandante das forças britânicas em Creta,
olha por cima do parapeito do seu abrigo na direção do avanço alemão
Freyberg tinha uma grande força sob seu comando, cerca de 40.000 homens, mas eles estavam mal equipados e não tinham a capacidade de se comunicarem eficazmente entre si através do terreno montanhoso e acidentado da ilha. Isto seria uma ruína fatal, apesar da coragem dos homens no terreno.

Dentro dos 40.000 estavam 30.000 soldados britânicos, neozelandeses e australianos e 10.000 gregos. A maioria deles foi evacuada do continente depois que este caiu nas mãos das forças do Eixo – muitos tinham as suas próprias armas, mas não tinham armamento pesado que teria feito a diferença nos combates.

Junto com as tropas terrestres, o general Archibald Wavell, comandante-chefe da região, forneceu a Freyberg 22 tanques e 100 peças de artilharia. Essas armas estavam em tão mau estado que foram desmontadas e transformadas em 49 peças de melhor qualidade.

Embora os tanques e as armas mais pesadas fossem um acréscimo positivo às forças de defesa, estavam demasiado dispersos pela ilha para poderem ter uma influência significativa no resultado da defesa fracassada.

A batalha começou em 20 de maio de 1941, depois que os paraquedistas alemães saltaram de seus aviões Junkers JU 52 e a maioria pousou perto do campo de aviação Kiwi, defendido por Maleme. A força invasora sofreu muito durante o primeiro dia, com uma companhia do III Batalhão, 1º Regimento de Assalto, perdendo 112 dos 126 homens.

Dos 600 homens que iniciaram a batalha no III Batalhão, 400 perderiam a vida durante o primeiro dia da invasão de Creta. Os tripulantes do transporte do planador tiveram pior desempenho, pois foram abatidos ou as tripulações foram mortas pelas forças defensivas após o pouso.

Na noite de 20 de maio, as forças alemãs empurraram os defensores para trás da Colina 107, que dava para o campo de aviação de Maleme. Uma segunda onda de assalto também foi lançada e mais tropas do Eixo foram retiradas.

Um grupo de forças inimigas atacou Rethymno, enquanto um segundo iniciou operações perto de Heraklion. Unidades defensivas aguardavam os alemães, que sofreram pesadas baixas. Apesar disso, foi feita uma brecha nas defesas montadas pela 14ª Brigada de Infantaria, pelo 2/4 do Batalhão de Infantaria Australiano e pelos 3º, 7º e Batalhões da Guarnição gregos.

Mais paraquedistas alemães pousando em Creta vindos dos transportes Junkers 52, 20 de maio de 1941
No entanto, as unidades nativas contra-atacaram e conseguiram recapturar os quartéis nos limites da cidade, bem como as docas – dois locais importantes em torno de Heraklion.

À medida que a noite caía no primeiro dia de batalha, os alemães não conseguiram garantir nenhum dos seus objetivos e os Aliados estavam confiantes em repelir a invasão. Apesar dessa confiança, as coisas logo mudariam para os defensores.

No dia 21 de maio, o 22º Batalhão de Infantaria da Nova Zelândia retirou-se da Colina 107, o que deixou o campo de aviação de Maleme indefeso. As comunicações foram cortadas entre o comandante e suas duas companhias mais ocidentais, e o tenente-coronel Leslie Andrew VC presumiu que essa falta de contato se devia à invasão desses dois batalhões.

Por conta disso, Andrew pediu reforços do 23º Batalhão, o que o Brigadeiro James Hargest negou por pensar que aqueles homens estavam lutando contra tropas paraquedistas. André então montou um contra-ataque, que falhou, e então ele foi forçado a recuar sob o manto da escuridão com o consentimento de Hargest.

Uma nuvem de fumaça pairando sobre o porto da Baía de Suda,
 onde dois navios, atingidos por bombardeiros alemães, queimam
Quando o capitão Campbell, que comandava a companhia ocidental do 22º Batalhão, soube da retirada, também conduziu uma – deixando assim o campo de aviação para os alemães porque um lado da ilha não conseguia falar com o outro.

Este terrível mal-entendido permitiu aos alemães tomar o campo de aviação sem oposição, o que lhes permitiu reforçar a sua força invasora com facilidade. É provavelmente a parte mais importante de toda a batalha e é uma grande razão pela qual as forças aliadas perderam a ilha.

Comandando as forças do Eixo a partir de Atenas estava Kurt Student, que rapidamente se moveu para concentrar suas forças e tomar o campo de aviação de Maleme e desembarcar mais tropas via mar. Em resposta, os Aliados bombardearam a área – mas não foi suficiente para impedir que a 5ª Divisão de Montanha chegasse à noite.

Um contra-ataque foi planeado para 23 de Maio, mas falhou porque longos atrasos no processo de planeamento fizeram com que o ataque ocorresse durante o dia, em vez de à noite.

Os dois batalhões da Nova Zelândia enviados para retomar o campo de aviação enfrentaram bombardeiros de mergulho Stuka, paraquedistas e tropas de montanha. Com o passar das horas, os Aliados retiraram-se para o lado oriental da ilha.

Depois de mais quatro dias de duros combates em terreno inóspito, Freyberg recebeu ordem de evacuar suas tropas da ilha. Partes da força aliada recuaram para a costa sul e 10.500 foram evacuadas em quatro noites. Mais 6.000 foram evacuados em Heraklion, enquanto cerca de 6.500 foram feitos prisioneiros após se renderem aos alemães no dia 1 de Junho.

À medida que a fumaça se dissipou, ficou claro que mais de 1.700 soldados aliados haviam perdido a vida na batalha – enquanto mais de 6.000 alemães foram enviados para o túmulo pelos defensores. Hitler não ficou impressionado com essas perdas e concluiu que os paraquedistas deveriam ser usados ​​apenas para apoiar as tropas terrestres e não como armas de surpresa.

Edição de texto e imagens por Jorge Tadeu - Com informações de warhistoryonline.com

Como funciona o leme em um avião?


Os controles de voo do avião são as superfícies de controle móveis que o piloto pode usar para controlar o avião enquanto ele voa pelo ar. Dos três controles de voo principais, o leme é geralmente o mais mal compreendido.

O que o leme faz?


Como todos os controles de voo, o leme é uma mini asa que cria uma força de elevação em uma direção específica. Montado verticalmente na cauda do avião, o leme faz uma força para a esquerda ou direita, puxando o nariz na direção oposta.

O leme é montado no estabilizador vertical, parte da empenagem na parte traseira do avião. É equivalente ao leme encontrado em barcos ou navios - ajuda o navio a virar para um lado ou para outro. Um avião, entretanto, se move em três dimensões. Isso significa que seus três controles de voo funcionam em uníssono. Para virar a aeronave, o piloto usa todos os três controles de voo.

Cauda curta SC.7 Skyvan
O leme é controlado na cabine por pedais. Quando o piloto pressiona o pedal esquerdo, o leme desvia para a esquerda. Essa deflexão cria mais força de levantamento no lado direito do leme, o que move o nariz do avião para a esquerda.

Controles de voo e suas finalidades


Existem três controles de voo primários encontrados de uma forma ou de outra em cada avião. Eles são o elevador, ailerons e o leme.

O elevador move o avião em torno do eixo lateral (ponta da asa para ponta da asa), que é chamado de inclinação. Pitch move o nariz para cima e para baixo.

Os ailerons movem o avião em torno do eixo longitudinal (nariz à cauda), um movimento denominado roll.

E, finalmente, o leme controla o plano em torno do eixo vertical (para cima e para baixo), que é chamado de guinada. Yaw move o nariz da aeronave para a esquerda ou direita.

Eixo de voo e controles de voo
Além desses controles, existem vários outros tipos de controles de voo. Os controles de voo secundários incluem flaps, flaperons, slats, slots, spoilers e compensadores. Nenhum deles é necessário para o voo; eles são usados ​​para fazer mais sustentação ou para ajustar os controles primários de voo.

O objetivo e a importância do leme


O leme pode ser o controle de voo mais incompreendido. Ao aprender a voar, torna-se evidente que os ailerons fazem o avião fazer uma curva. A maioria dos aviões então vira, talvez não tão eficaz quanto deveria, independentemente de os comandos do leme serem aplicados ou não.

Então, o que o leme faz, se seus efeitos são difíceis de notar? Para entender isso, você precisa entender o que faz um avião virar.

A força que faz um avião virar vem da sustentação das asas. Quando as asas são giradas em uma curva, a força de levantamento total permanece perpendicular à envergadura do avião. Em vez de toda a sustentação ser oposta à gravidade, já que está em vôo reto, parte dela está puxando o avião para a curva. Essa parte do elevador é conhecida como o componente horizontal do elevador. É o componente horizontal da sustentação que faz o avião virar.

Os ailerons, montados na borda de fuga externa das asas, giram o avião criando mais e menos sustentação nas pontas das asas. No lado onde mais é criado, a asa sobe; do outro lado, menos sustentação é criada e a asa desce. Quando mais sustentação é criada, mais arrasto induzido também é, o que é um subproduto da sustentação.

O arrasto induzido está sempre presente quando você faz sustentação com uma asa ou superfície de controle. Mas com os ailerons, isso representa um problema. A asa que sobe quando você faz uma curva causa o arrasto mais induzido. Isso significa que a asa do lado de fora da curva afastará o nariz da curva. Este fenômeno é denominado guinada adversa.

O leme é fundamental em um avião para neutralizar a guinada adversa. Ao aplicar um pouco de pressão no leme na curva, o nariz continua girando conforme desejado.

Houve alguns projetos de aeronaves que combinaram as entradas do leme e do aileron em um controle piloto. Os pedais do leme são removidos e os controles acoplados entre si para que o leme seja acionado com os ailerons. É apenas uma ideia com a qual os designers brincaram para tornar o voo mais simples e acessível, mas não pegou. O exemplo mais famoso desse design é o ERCO Ercoupe.

ERCO Ercoupe mostrando seu leme duplo

Não se trata apenas de virar


Embora o leme seja essencial para ajudar a controlar o avião nas curvas, ele faz muito mais do que isso.

Corrigindo Yaw

Os aviões movidos a hélice estão sujeitos a quatro tendências de viragem à esquerda. Durante o voo de cruzeiro, a aeronave é projetada para torná-los imperceptíveis. Mas às vezes, como durante as subidas, essas forças se combinam e vão virar o nariz do avião para a esquerda. Nestes casos, o piloto deve aplicar o leme correto para manter a aeronave voando em linha reta.

Recuperação de parada ou rotação

O leme também é um controle de voo crítico para emergências como estol ou giros. Ailerons, montados nas asas, podem se tornar ineficazes se as asas estiverem estoladas. O que é ainda mais perigoso, os ailerons podem exacerbar um estol, pois eles causam um desequilíbrio na quantidade de sustentação que cada asa produz.

O leme é usado para controlar a guinada do avião nessas situações. O processo de recuperação adequado para um cenário de giro é neutralizar os ailerons e aplicar o leme na direção oposta da curva.

Falha de motor

Em aviões bimotores, o leme é a maneira correta de corrigir se um motor falhar. Com um motor inoperante, o empuxo assimétrico puxará a aeronave em uma curva em direção ao motor morto. O leme pode neutralizar esse efeito e manter o avião voando em linha reta.

Rudder Trim (Guarnição do leme)


O leme pode ser compensado para reduzir a carga de trabalho do piloto. Os aviões multimotores quase sempre têm um controle de compensação do leme. No caso de falha do motor, o piloto pode ajustar o compensador para manter a direção. Dependendo do avião, alguns aviões exigem muita pressão no pedal. Pode desgastar os músculos das pernas de um piloto muito rapidamente!

Os aviões monomotores às vezes também têm trims de leme. Eles são úteis para fazer o ajuste fino da aeronave para um voo direto e nivelado, especialmente se o avião tiver uma ampla gama de velocidades e configurações.

Muitos aviões pequenos possuem compensadores ajustáveis ​​no solo. São simplesmente pequenos pedaços de metal montados na borda de fuga do leme. Eles podem ser ligeiramente dobrados no solo para garantir que o avião voe em linha reta durante o vôo de cruzeiro.

Controle de solo


Como o leme move o nariz do avião para a esquerda e para a direita, só faz sentido que seja usado para controlar a aeronave no solo durante o taxiamento. Lembre-se, quando não há ar fluindo sobre eles, os controles de vôo não funcionam.

Para realizar a direção no solo, a roda do nariz se move no trem de pouso do tipo triciclo e a roda traseira se move no trem de pouso convencional (taildraggers). Na maioria dos aviões com engrenagem triciclo, a direção da roda do nariz está ligada aos pedais do leme. Portanto, para orientar o caminho ao redor da pista, os pilotos movem os pés. A roda de controle permanece parada.

TWA DC-3, um avião com roda traseira (marcha convencional).
O leme e a compensação do leme são muito óbvios nesta foto
Aviões grandes normalmente têm um controle totalmente separado para dirigir a roda do nariz, chamado de leme.

Os aviões também podem usar seus freios para ajudá-los a dirigir no solo. Os pedais do freio são montados acima dos pedais do leme e cada pedal controla cada freio independentemente. É conhecido como freio diferencial e significa que o piloto pode fazer uma curva muito fechada no solo girando a roda do nariz e, em seguida, batendo no freio na parte interna da curva.

Edição de texto e imagens por Jorge Tadeu - Com informações do Aerocorner

Aconteceu em 11 de outubro de 2018: Voo Air India Express 611 - Voando com a fuselagem inferior rasgada


Em 11 de outubro de 2018, a aeronave Boeing 737-8HG (WL), prefixo VT-AYD, da  Air India Express (foto abaixo), estava programada para operar o voo 611, um voo internacional de passageiros entre o Aeroporto Tiruchirappalli (TRZ/VOTR), em Trichy, na Índia, e o Aeroporto de Dubai (DXB/OMDB), nos Emirados Árabes Unidos, levando a bordo 130 passageiros e seis tripulantes.


A aeronave foi liberada para decolagem da pista 27 às 01h18, horário local. À medida que o Boeing 737 acelerava a uma velocidade de 117 nós, o mecanismo reclinável do assento do capitão falhou. 

Conforme o capitão se movimentou inquieto, as alavancas do acelerador e a coluna de controle foram movidas para trás inadvertidamente. Ele então entregou o controle ao copiloto por cinco segundos.

Depois de ajustar o assento, o capitão retomou o controle do copiloto e a decolagem continuou.

Ambos os tripulantes não notaram queda no empuxo do motor de 98% para 77%. E como o Auto Throttle estava no modo Throttle Hold acima de 84 nós, o empuxo permaneceu em 77%.

A 144 nós, cerca de 2.000 pés antes do final da pista, o capitão levantou o nariz da aeronave para rotação. Ele notou uma taxa de rotação mais lenta e que era necessária uma força de coluna de controle maior do que o normal. 

Ele aumentou a força da coluna de controle à ré para decolar. Isso causou uma taxa de rotação mais alta e um ângulo de inclinação de 10,7 graus, o que levou ao impacto da cauda na superfície macia ondulada além do final da pista por 17 metros, seguido pela fuselagem traseira em contato com a antena do localizador e a parede limite.

Ambos os trens de pouso principais também impactaram a parede de tijolos, causando dois buracos. Oficiais da torre de Controle de Tráfego Aéreo (ATC) perceberam isso e imediatamente deram o alarme. Os controladores ATC entraram em contato com os dois pilotos do voo IX 611 da Air India e disseram-lhes que sua aeronave pode ter entrado em contato com o muro perimetral do aeroporto de Trichy.

A aeronave subiu para o FL360 e seguiu em direção a Dubai porque os pilotos – que tinham uma experiência de voo combinada de 6.600 horas em um Boeing 737 (cerca de nove meses de voo sem escalas no jato) – relataram que os sistemas de sua aeronave estavam operando normalmente. 

O caminho percorrido pelo voo IX 611 da Air India Express após decolar de Trichy
(Imagem cortesia: Flightradar24.com)
Porém, durante o voo o departamento de operações insistiu no desvio para Mumbai, na Índia. Naquela momento, o voo estava bem sobre o Mar da Arábia. A aeronave pousou com segurança em Mumbai às 05h38, horário local. O voo taxiou até o estacionamento enquanto o pessoal de emergência estava por perto.


Somente depois que o Boeing 737 parou em seu estacionamento é que se soube a extensão dos danos sofridos pela aeronave.

Durante quatro horas o avião voou com a 'barriga' rasgada. Os pilotos daquele jato de passageiros Boeing 737 pareciam não ter conhecimento dos danos que seu avião havia sofrido.

O voo da Air India Express sofreu um rompimento na barriga depois de bater na parede
do aeroporto durante a decolagem
Fotos da aeronave estacionada mostram grandes danos na parte inferior da aeronave. Um longo rasgo é visto descendo lateralmente pelo centro da barriga da aeronave. Além de estar rasgado, a barriga da aeronave também sofreu pequenas rachaduras.

O avião colidiu contra o muro do aeroporto em Trichy
Nenhum dos 136 passageiros ou tripulantes do voo IX 611 da Air India Express ficou ferido no incidente.

Os afortunados passageiros do voo IX 611 da Air India foram transferidos para uma aeronave diferente, que seguiu para Dubai com uma nova tripulação.


Na época, os dois pilotos do voo IX 611 da Air India – o comandante D Ganesh Babu, que tem uma experiência de voo de 3.600 horas no Boeing 737, e o primeiro oficial capitão Anurag, que tem uma experiência de cerca de 3.000 horas no Boeing 737 – foram retirados das funções de voo enquanto se aguardava uma investigação da Direção-Geral da Aviação Civil, regulador da aviação.

O Relatório Final foi publicado 2 anos e 4 meses após o incidente. 


A causa provável do incidente:

Atraso na decolagem devido à redução do empuxo de decolagem N1 de 98% para 77% antes de atingir V1, incapacidade de ambos os tripulantes de monitorar os parâmetros de empuxo e de tomar medidas corretivas em tempo hábil. Isso resultou em um golpe de cauda e subsequente impacto na antena do localizador e na parede limite do aeroporto.

Fatores contribuintes:
  • Falha do mecanismo reclinável do encosto do banco PIC durante a rolagem de decolagem;
  • Quebra de coordenação da tripulação durante a troca entre PF, PM e vice-versa;
  • Perda de consciência situacional.
Por Jorge Tadeu (Site Desastres Aéreos) com ASN, India Today

Aconteceu em 11 de outubro de 1984: Tragédia no voo Aeroflot 3352 - Dormindo em serviço

O voo 3352 da Aeroflot era um voo regular de passageiros de Krasnodar, no sudoeste da Rússia, para a cidade de Omsk, no oeste da Sibéria, operado pelo Tupolev Tu-154B-1, prefixo CCCP-85243, da Aeroflot.

Bem cedo na manhã do dia 11 de outubro de 1984, este voo decolou de Krasnodar com 170 passageiros e 9 tripulantes a bordo, incluindo quatro pilotos na cabine. 

A aeronave era um Tupolev Tu-154B-1, um jato com três motores de curta e média distância da frota da Aeroflot. Durante grande parte das décadas de 1960, 1970 e 1980, o Tu-154 e suas várias versões transportavam metade de todos os passageiros da Aeroflot. Muitos caíram. 

Os acidentes mais mortais na Rússia, União Soviética, Cazaquistão e China envolveram Tu-154s. A maioria não era causada pela fuselagem, que não era excepcionalmente insegura; em vez disso, era um avião popular em países onde a segurança geralmente era ruim.

A tripulação estava bem qualificada para voá-lo e seu papel no acidente iminente foi insignificante. O verdadeiro interesse reside nos controladores de tráfego aéreo do aeroporto de Omsk. 

Entre os controladores que deveriam estar de serviço naquele dia estavam um controlador de solo, Boris Ishalov; um controlador de abordagem, Vasiliy Ogorodnikov; um controlador de torre, Sergei Vanteyev; e um controlador de partidas, Andrei Borodayenko. 

No entanto, devido a um congestionamento, o ônibus que Ishalov costumava usar para chegar ao trabalho nunca chegou. Depois de esperar mais de uma hora pelo ônibus, ele ligou para o aeroporto e informou que chegaria tarde. Ele pediu que seus subordinados, a equipe de solo, comparecessem ao briefing matinal sem ele. Essa ordem não foi repassada e nenhum trabalhador da equipe de terra compareceu ao briefing.

Borodayenko também não estava tendo os melhores dias. Ele tinha 23 anos e era pai de duas crianças muito novas, que pouco lhe davam para dormir. Apresentar-se ao trabalho no aeroporto antes das 5h da manhã foi um desafio, mas ele o fez mesmo assim, apesar da falta de descanso.

O tempo naquele dia estava péssimo. A temperatura estava quase congelando e chovia sem parar. A visibilidade era ruim, mas não o suficiente para restringir as operações do aeroporto. Ainda assim, os únicos controladores que poderiam realmente ter visto a pista foram Ishalov e Borodayenko, e Ishalov não estava lá.

Diante da possibilidade de a água congelar e criar gelo na pista, um dos chefes das operações terrestres, I. Prokhorov, queria sair e secar a pista. 

O único avião que se aproximava de Omsk naquela hora da manhã era o voo 3352 de Krasnodar, que ainda estava a alguma distância do aeroporto, então ele teria tempo. 

Mas Ishalov, o controlador de solo que deveria dar ordens à equipe de solo, não estava lá. Em vez disso, Prokhorov pediu permissão a Borodayenko para secar a pista. Mesmo sendo o controlador de decolagem e não tendo autoridade para enviar a tripulação de solo para a pista, ele atendeu ao pedido. 

Cinco operários de terra saíram para a pista com uma procissão de veículos, composta por um jipe ​​UAZ-469 com reboque, e dois caminhões montados com compressores de ar que secariam a pista, cada um pesando 16 a 20 toneladas. 

Os veículos eram todos equipados com luzes de alta potência montadas no teto e, de acordo com os regulamentos, deveriam estar acesos durante os trabalhos na pista. No entanto, a equipe de solo descobriu que as luzes eram desconfortavelmente fortes e só as acendiam ao dirigir para a pista e novamente ao dirigir de volta. Assim, quando eles estavam realmente na pista trabalhando, as luzes estavam apagadas. 

Eles também não tinham como entrar em contato direto com a torre durante o trabalho; em vez disso, eles usaram um tipo rudimentar de comunicação: se uma luz específica estava desligada, tudo estava bem; se o controlador o ligasse, era hora de voltar.

Às 5h36, o voo 3352 estava em sua aproximação final em Omsk e a equipe de solo ainda estava secando a pista. 

Dentro da torre de controle, Andrei Borodayenko, que não conseguiu marcar a pista como ocupada em seu painel de controle, dormia profundamente. 

Incapaz de ficar acordado depois de uma noite relativamente insone e sem nenhum avião partindo para mantê-lo ocupado, ele perdeu uma batalha monumental com seu próprio cansaço e ficou roncando na torre de controle. 

Com Ishalov ainda a caminho do trabalho e Borodayenko desmaiado em sua cadeira, nenhum controlador podia ver a pista e ninguém estava dando ordens para a equipe de solo. 

Conforme o voo 3352 se aproximava cada vez mais, Borodayenko não acendeu a luz que sinalizaria à equipe de terra que um avião estava se aproximando.

O controlador de aproximação Ogorodnikov, que não podia ver a pista e não tinha motivos para acreditar que ela estava ocupada, autorizou o voo 3352 para pousar. 

Ele não deveria tê-los liberado sem a confirmação do controlador de solo de que a pista estava livre, mas Ishalov ainda estava ausente e ele não tentou perguntar a Borodayenko. 

Aproximando-se através da névoa, seus pilotos pensaram ter visto algumas formas vagas na pista que pareciam fora do lugar. 

Se as luzes dos veículos estivessem acesas, seria óbvio que a pista estava ocupada, mas não estavam. 

O operador de rádio perguntou duas vezes a Ogorodnikov se eles realmente tinham permissão para pousar. 

Suspeitando de que poderia haver algo ali, ele ligou para Borodayenko para confirmar que a pista estava vazia. 

Tudo o que ele recebeu de Borodayenko foi uma mensagem murmurada e ininteligível, possivelmente terminando em “… bodno, "Que Ogorodnikov interpretou como um fragmento da palavra" svobodno ", que significa" livre "ou, neste caso," claro ". 

Para ele, isso aparentemente foi uma confirmação suficiente, e ele reafirmou que o voo 3352 foi liberado para pousar. 

O Tupolev desceu além do ponto em que um pouso poderia ser abortado. O desastre agora era inevitável.

O voo 3352 pousou na pista algumas centenas de metros atrás dos veículos da equipe de solo. De repente, o capitão avistou os dois grandes caminhões compressores de ar. 

Atingido pelo terror, ele gritou: “O que é isso? O que é isso!?"

"Um carro!" o segundo oficial gritou. "Para a direita! Para a direita!"

O capitão torceu a coluna de controle para a direita em uma manobra evasiva de última vala, mas era tarde demais. 

O Tu-154 bateu de frente no primeiro dos dois enormes caminhões com compressor de ar, matando instantaneamente seu motorista e outro trabalhador da equipe de solo. 

A aeronave fora de controle girou noventa graus, deslizou pela pista e colidiu com o outro caminhão de lado, acendendo os tanques de combustível e incinerando seu motorista. 

Uma tremenda explosão abalou o avião, que rolou sobre a pista e se partiu em vários pedaços. 

Os destroços, consumidos pelas chamas, atingiram o jipe ​​UAZ, decapitando o motorista e queimando gravemente outro passageiro. 

A cabine se livrou do inferno, mas outra explosão atingiu o que restava da cabine de passageiros, espalhando destroços em chamas e combustível de jato em chamas pela pista.

Todos os quatro membros da tripulação de voo ficaram praticamente ilesos. “Fique calmo”, disse o capitão. "Abra a porta!"

O engenheiro de voo se esforçou para abrir a porta da cabine de passageiros, mas descobriu que ela estava emperrada. “A porta não abre”, disse ele.

"O quê?"

“A porta não abre!” ele repetiu. “Não vai abrir!”

Outra explosão abalou o avião. “Saia, Petrovich! Sair!" o capitão ordenou, apontando para a janela. “Com o que você está se preocupando? Abra!"

Os pilotos se desvencilharam do parabrisa da cabine e correram para tentar salvar os passageiros. Eles foram confrontados com uma cena de caos completo. 

A cabine foi consumida pelas chamas e os passageiros queimavam vivos diante de seus olhos. 

Uma testemunha supostamente viu o capitão, em grande angústia emocional e furioso por ter sido informado de que a pista estava vazia, passando correndo com uma pistola. Seu propósito não era claro.

Enquanto isso, Ogorodnikov ligou para Borodayenko, que agora estava bem acordado. 

"Andrei", disse ele, "já se desfez, certo?"

“Há fogo e fumaça”, disse Borodayenko. "Não consigo ver nada daqui."

“A cauda é ... Isso significa ... todos. Todos os passageiros foram queimados. ”

"Isso é horrível. É só que ... ”Borodayenko parou de falar.

Os bombeiros chegaram em minutos, mas lutaram para salvar os passageiros e logo se encontraram alinhando um corpo queimado após o outro na pista ao lado do avião destruído. 

Dezesseis pessoas, todas gravemente queimadas, foram retiradas com vida da cabine. Mas 15 deles logo sucumbiram aos terríveis ferimentos e morreram no hospital ou no local, deixando apenas cinco sobreviventes - os quatro pilotos e um único passageiro.

Todos os outros 169 passageiros morreram, junto com todos os cinco comissários de bordo e quatro dos cinco trabalhadores de solo, totalizando 178 vítimas. Foi - naquele momento - o acidente mais mortal da história da antiga União Soviética.

Como consequência, os gerentes foram demitidos em vários outros aeroportos, onde muitos dos mesmos procedimentos foram rotineiramente violados. 

Em Omsk, Borodayenko, Ogorodnikov, Ishalov e o chefe da equipe de solo Mikhail Tokarev foram julgados por negligência. Todos foram condenados e sentenciados a longas penas de prisão. 

Durante o julgamento, Borodayenko testemunhou que não se lembrava da chamada de rádio em que Ogorodnikov ouviu a palavra “… bodno”, mas que se estava nas gravações, deve ter acontecido. 

Ele não fez nenhuma tentativa de negar qualquer responsabilidade. O acidente deixou um homem quebrado, e ele teria cometido suicídio em sua cela de prisão, deixando para trás sua esposa e dois filhos pequenos.

Descobriu-se que a tripulação de voo não desempenhou nenhum papel no acidente, mas sofreu em particular. Sobreviver a um acidente que mata todos os passageiros está entre os piores pesadelos de um piloto, mesmo que ele não seja o culpado. 

Embora a investigação tenha concluído que não havia nada que eles pudessem ter feito para evitar o acidente, a pergunta incômoda - o que poderíamos ter feito de diferente? - indubitavelmente os persegue até hoje. 

O único passageiro sobrevivente, que perdeu as duas pernas no acidente, se recusa a falar sobre o acidente. A queda do voo 3352 da Aeroflot permaneceu como o acidente mais mortal na União Soviética por apenas nove meses. 

Em julho de 1985, o voo 7425 da Aeroflot, outro Tu-154, caiu no Uzbequistão, matando todas as 200 pessoas a bordo. Os pilotos confundiram com falha do motor uma vibração não relacionada e manobraram os motores de volta à marcha lenta durante o voo de cruzeiro, provocando um estol do qual eles não conseguiram se recuperar. Mas o voo 3352 ainda é o acidente mais mortal no território da Rússia.

Embora a aviação russa tenha se tornado muito mais segura nos últimos anos, seu pior acidente serve como um lembrete do que acontece quando uma cultura de negligência se desenvolve e as pessoas costumam exibir regulamentos. 

Se pelo menos um dos regulamentos que foram ignorados tivesse sido seguido - se a equipe de terra tivesse se abstido de pedir permissão à pessoa errada, se eles tivessem acendido as luzes de seus veículos, se Borodayenko tivesse marcado a pista como ocupada, se Ogorodnikov tivesse verificado devidamente se a pista estava ocupada antes de liberar o avião para pousar - então o acidente não teria acontecido. 

A lição que deve ser aprendida com essa tragédia é que, embora possa ser tentador ignorar um regulamento aqui e ali por conveniência, essas pequenas violações podem se acumular muito rapidamente. 

Se ao menos os controladores e a equipe de solo do aeroporto de Omsk naquela manhã tivessem levado essa lição a sério, talvez 178 pessoas ainda estivessem vivas. embora possa ser tentador ignorar um regulamento aqui e ali por conveniência, essas pequenas violações podem se acumular muito rapidamente. 

Por Jorge Tadeu (Site Desastres Aéreos) com ASN e reddit.com

Vídeo: Mayday Desastres Aéreos - Voo Air Illinois 710 - Decisão Fatal

Via Cavok Vídeos

Aconteceu em 11 de outubro de 1983: Voo Air Illinois 710 - Erro fatal do piloto


Na terça-feira, 11 de outubro de 1983, o avião
Hawker Siddeley HS-748-FAA, prefixo N748LL, da Air Illinois (foto abaixo), iria realizar o voo 710, de Springfield para Carbondale, ambas localidades de Illinois, nos EUA, após ter chegado de Chicago numa viagem sem intercorrências.


O capitão Lester Smith apresentou-se para o serviço às 10h50 do dia 11 de outubro de 1983, no Aeroporto Southern Illinois em Carbondale, pegando carona em voos para St. Louis, Iowa e Springfield antes de finalmente entrar em uma cabine no Aeroporto Capital em breve depois das 18h para correr para o Campo de Meigs. Ele então se viraria e pilotaria o voo 710 de volta para Springfield e, finalmente, para Carbondale, onde morava.

Smith, 32, era um piloto mediano, diriam mais tarde outros pilotos da Air Illinois. Ele não gostava de chegar atrasado. “Não é que a gerência o estivesse pressionando a fazer isso, é só que foi ideia dele”, disse um piloto aos investigadores.

Sete passageiros estavam na cabine principal do avião, na foto, na noite do voo final
Para se manter a tempo, Smith voaria por baixo ou à beira de tempestades que deveriam ter ficado mais longe, e ele excedeu as velocidades permitidas durante as descidas, ordenando que os primeiros oficiais puxassem os disjuntores para que as buzinas de alerta não soassem. 

O capitão pelo menos uma vez permitiu que um copiloto pousasse em Meigs, embora o copiloto não tivesse experiência suficiente para pousar na faixa que se estendia até o Lago Michigan, semelhante a um porta-aviões atracado.

Ele era conhecido por se irritar facilmente, ficando chateado se os funcionários da companhia aérea não estivessem vestidos de acordo com os padrões da empresa.

As deficiências de Smith não eram segredos. Alarmado com seus hábitos, um piloto certa vez perguntou a um primeiro oficial como “ele poderia simplesmente ficar sentado lá e deixá-lo fazer essas coisas”, relatou o NTSB por fim. 

“Eu só tento ficar de olho nas coisas”, respondeu Frank Tudor, o primeiro oficial. “Eu apenas tento monitorar a situação e nunca o deixo entrar em uma situação que eu não acho que poderia controlar e corrigir.”

Tudor estava ao lado de Smith na cabine do piloto quando o voo 710 partiu de Springfield às 20h20, 45 minutos atrasado.

O tempo estava bom em Springfield, mas estava piorando ao sul da capital, com chuva, neblina e três quilômetros de visibilidade em Carbondale. 

Havia uma chance de tempestades. Além de Tudor, Smith e um comissário de bordo, sete passageiros estavam a bordo do turboélice bimotor Hawker Siddeley 748 2-A de 44 lugares.

A Air Illinois naquele dia havia feito o pagamento final do avião britânico de 10 anos fabricado pela mesma empresa que construiu os lendários Hawker Hurricanes que ajudaram a vencer a Batalha da Grã-Bretanha durante a Segunda Guerra Mundial. Foi considerado robusto - enquanto decolava em Springfield no ano anterior, não havia sofrido nada mais sério do que uma hélice dobrada depois de atingir um cervo na pista. 

Longos períodos de tempo se passariam sem nenhum problema observado nos registros de vôo, onde algo errado deveria ser relatado. Mas isso estava no papel. Descobriu-se que os pilotos mecânicos e da Air Illinois nem sempre escreviam as coisas em registros, em vez disso, contavam com conversas ou anotações escritas em pedaços de papel.

O avião estava tendo problemas com o gerador certo, um dos dois que fornecia eletricidade que alimentava tudo, desde as luzes do banheiro até os instrumentos da cabine. Os problemas incluíam níveis excessivos de tensão e desligamentos intermitentes do gerador. 

Os pilotos não registraram esses incidentes conforme necessário, mas alertaram os mecânicos, que se corresponderam com o fabricante oito vezes durante a semana anterior, tentando resolver os problemas.

Menos de dois minutos após a decolagem, o capitão Smith comunicou por rádio aos controladores em Springfield, dizendo que tinha "um pequeno problema elétrico". 

Na cabine, ele se voltou para Tudor, um primeiro oficial considerado um dos melhores da companhia aérea. “Ele conhecia os regulamentos, tinha um vasto conhecimento do avião e estava sempre 'à frente do avião'”, relatariam posteriormente os investigadores de acidentes.

O problema elétrico foi o desligamento do gerador, que Tudor resolveu enquanto Smith pilotava o avião. Desde o início da produção em 1962, 39 falhas de gerador foram relatadas em 370 Siddeleys, incluindo 17 ocorrências de ambos os geradores desligando. Nenhum dos aviões caiu.

As instruções estavam a bordo do avião, dizendo à tripulação o que fazer se os geradores parassem de funcionar. Um dos primeiros passos foi isolar o gerador defeituoso do sistema elétrico do avião, e assim Tudor desligou o gerador certo que estava com defeito. 

Mas o gerador certo estava funcionando bem - o gerador esquerdo estava quebrado. Quase imediatamente, Tudor determinou que o gerador esquerdo estava morto e o direito estava funcionando, mas, por algum motivo, ele não conseguiu reconectar o gerador certo ao sistema elétrico do avião.

"O que nós vamos fazer?" Tudor perguntou ao capitão.

Nesse ponto, o avião estava a seis minutos do aeroporto de Springfield. Smith continuou voando para o sul.

Sem geradores, o avião dependia de baterias. Quanto mais pesada a carga elétrica, menor a duração da bateria, então Smith e Tudor desligaram os instrumentos, as luzes de navegação externas que tornavam o avião visível para outras aeronaves e as luzes da cabine principal. “Ela (a comissária de bordo) só pode usar as luzes de leitura lá atrás”, disse Smith a seu copiloto.

As baterias deveriam durar pelo menos 30 minutos. O vôo de Carbondale para Springfield estava programado para durar 40 minutos.

“Ah, estamos tendo um pedido incomum aqui, ah, gostaríamos de ir a 2.000 pés”, disse o capitão a um controlador de tráfego aéreo. “(I) f tivermos de usar VFR (sem instrumentos), tudo bem, mas, ah, gostaria de, ah, gostaria que você ficasse de olho em nós, se possível.”

A altitude normal de cruzeiro era de 10.000 pés, mas se o avião voasse abaixo das nuvens, não precisaria de instrumentos movidos a eletricidade. O controlador disse que não. A 2.000 pés, o vôo 710 desapareceria do radar, então ele autorizou 3.000 pés.

Tudor continuou tentando restaurar geradores enquanto desligava dispositivos não essenciais. “O radar está desligado, só tem um ventilador ligado”, informou ao capitão. “OK”, respondeu Smith. Um aquecedor para um tubo pitot, um dispositivo que mede a velocidade no ar, deve permanecer ligado, decidiu o capitão.

Doze minutos de viagem, a comissária de bordo Barbara Huffman entrou na cabine, perguntando por que a cabine principal estava escura. “As pessoas querem saber”, disse ela.

“Temos um pequeno problema elétrico aqui, mas vamos continuar para Carbondale”, explicou Smith. “Tivemos que desligar todas as luzes excedentes.”

“Que horas chegamos lá?” Huffman perguntou. "Isso é chuva?"

Tudor disse a ela que pousariam às 21h. Com Huffman aparentemente de volta com os passageiros, Smith e Tudor discutiram o manual de instruções que provou não ajudar. Diz para ligar esses interruptores, Tudor disse ao capitão, "o que já fiz".

"OK", disse Smith.

“Este não foi o nosso dia, Les”, respondeu o primeiro oficial.

Desde o primeiro sinal de problema, Tudor verificou continuamente os níveis de tensão das baterias. Eles estavam se mantendo estáveis, com potência acima de 20 amperes. “Ainda muito bom - 20, 21 e meio”, informou o capitão após 16 minutos no ar. "Deve durar até Carbondale."

Mas Tudor, o homem que estava sempre à frente do avião, aparentemente não sabia que as baterias manteriam a tensão normal até quase morrer. Os níveis de energia despencariam drasticamente ao primeiro sinal de esgotamento.

Incentivado pelas leituras da bateria, Tudor relatou seus esforços para restaurar a energia do gerador. “Bem ... quando você estava fazendo isso, você vê, eu estava perdendo minha iluminação aqui”, disse o capitão. "Eu estava perdendo a iluminação na cabana e estava ficando escuro como breu lá - não quero assustar as pessoas."

A conversa voltou à questão elétrica. Smith disse a seu primeiro oficial que achava que um disjuntor havia desarmado. “Sim, eu estava pensando a mesma coisa - algo estourou”, disse Tudor. “Faça o que fizer ... não, se quiser, não diga nada para despachar”, disse o capitão. 

Cinco segundos de silêncio se seguiram. “Não diga porra nenhuma para eles”, repetiu Smith. "Entendido", respondeu Tudor. "Não é nada", disse Smith. "Você pode planejar isso, com certeza", Tudor tranquilizou o capitão. "Quanto menos você contar a eles sobre qualquer coisa, melhor para você." “Isso mesmo,” Smith repetiu.

"Sim, isso é certo", Tudor concordou. Então, um instrumento de navegação mostrou algo abaixo. “Aquilo parece Carlyle”, disse ele a Smith. “Sim, é isso - estamos no caminho certo”, disse o capitão. "Inacreditável."

Tudor ligou brevemente um auxílio à navegação para obter uma orientação. "Esse raio está do seu lado direito?" Smith perguntou. - Diga de novo - respondeu Tudor. "A maior parte desse raio está do seu lado direito, não é?" o capitão repetiu. “Sim,” o primeiro oficial confirmou.

Vinte e nove minutos após a decolagem, o controle de tráfego aéreo instruiu Tudor e Smith a mudar as frequências de rádio. Tudor respondeu por rádio em confirmação. “Boa noite”, respondeu um controlador, sinalizando que as comunicações futuras seriam em uma frequência diferente. Foi a última conversa entre o solo e o avião condenado.

“Não sei se temos energia suficiente para sair dessa”, disse Tudor a Smith, um minuto depois. Quase simultaneamente, o avião desapareceu do controle de tráfego aéreo. “Illinois sete-dez, perdi o contato de radar”, disse um controlador pelo rádio na primeira de várias tentativas infrutíferas de alcançar o avião.

O Siddeley estava em apuros. Tudor e Smith falaram sobre uma falha de rádio. O capitão disse a seu primeiro oficial para observar o altímetro enquanto ele descia a 2.400 pés. A cabine aparentemente estava escura. "Você tem uma lanterna?" perguntou o capitão. “Lá vamos nós - você quer iluminar aqui?”

“Estamos perdendo tudo - até cerca de 13 volts”, disse Tudor ao capitão enquanto um controlador de tráfego aéreo transmitia um rádio a outro avião da Air Illinois. “Eu fiz sua empresa entrar sete por dez do norte em, ah, 3.000, também, nós o perdemos no radar”, relatou o controlador. “Ele tem problemas elétricos. Não sei até que ponto, mas, ah, não posso falar com ele agora. ”

Menos de um minuto depois, Tudor disse a Smith que o avião estava a 2.400 pés. "Você tem algum instrumento?" perguntou o capitão. “Diga de novo”, respondeu Tudor. “Você tem algum instrumento, você tem um horizonte?” Smith perguntou.

Essas foram as últimas palavras captadas pelo gravador de voz da cabine, que funcionava com as mesmas baterias de todo o resto. O avião estava no ar há 34 minutos.

O homem que era dono do pasto a seis milhas a nordeste de Pinckneyville e a 40 milhas do aeroporto de Carbondale ouviu o avião girar sobre sua propriedade duas vezes antes de cair, deixando um rastro de destroços de 800 metros de comprimento. O maior pedaço acabou em um lago. Ele estava indo para noroeste quando atingiu o solo.

Todas as 10 pessoas a bordo do avião morreram na queda.

Entre os mortos estavam uma mãe de Springfield e seu filho de dois anos, que estavam saindo para uma visita com seus pais enquanto seu marido, um chef, ficava em casa. 

Também foram mortos um consultor de informática de Chicago, o diretor do Southern Illinois University Rehabilitation Institute, um professor do instituto, um supervisor do Departamento de Trabalho do estado e um oficial de caminhoneiro. A companhia aérea estava segurada por US $ 134 milhões. De acordo com relatos da imprensa, os veredictos do júri e acordos variaram de US$ 400.000 a US$ 1,5 milhão.

“Eu sinto que ela morreu no cumprimento do dever”, disse Tom Heagy, marido da agente comercial Regina Polk, da Teamster, observando que ela estava voando para uma reunião que visava encontrar dinheiro para financiar programas de treinamento profissional para trabalhadores deslocados.

Regina Polk, uma estrela em ascensão no sindicato dos caminhoneiros,
estava a caminho de uma reunião
Polk, 33, nasceu no Dia dos Namorados, assim como Jimmy Hoffa, e estava, dizem alguns, destinado a se tornar presidente do Teamsters Local 743 em Chicago. Ela tinha o dom de organizar mulheres que ocupavam cargos de escritório. 

Ela chamou os executivos que estouram os sindicatos de "bastardos com pastas". Heagy doou dinheiro de um prêmio do júri para estabelecer uma fundação que distribuiu mais de US $ 780.000 em doações para centenas de mulheres.

Acidentes anteriores de pequenos aviões de transporte tinham ganhado pouca atenção nacional - o acidente do CSA em 1971 que matou 16 pessoas em Peoria mal apareceu no New York Times, que publicou uma reportagem na página 65. A Air Illinois foi diferente.

O presidente Ronald Reagan estava ganhando elogios por sua abordagem dura para com o sindicato dos controladores de tráfego aéreo, que falhou depois que o presidente contratou substitutos para os grevistas que haviam deixado seus empregos em violação à lei federal. 

Com menos alarde, Reagan também reduziu o número de inspetores da FAA designados para manter as companhias aéreas seguras, embora o número de companhias aéreas estivesse aumentando devido à desregulamentação. Os críticos atacaram depois que o vôo 710 caiu.

O avião condenado, à direita, menos de um mês antes da tragédia
Descobriu-se que a Air Illinois era um scofflaw. As peças foram inspecionadas por mecânicos antes do necessário para suavizar as cargas de trabalho e garantir que os aviões não ficassem fora de serviço, com a papelada pós-datada para mostrar que as inspeções estavam em conformidade com os regulamentos de segurança. A mecânica escondeu registros dos inspetores da FAA. 

As tripulações de voo não foram devidamente treinadas sobre como lidar com as falhas do gerador. Questionados sobre quanto tempo as baterias durariam em caso de falha total do gerador, os cinco pilotos da Air Illinois qualificados para voar em Siddeleys deram três respostas diferentes.

A FAA também falhou. Depois de passar por uma cirurgia no joelho, um inspetor designado para verificar o equipamento elétrico não visitava a companhia aérea há cinco meses. O inspetor designado para substituí-lo também não fez o trabalho, dizendo aos investigadores de acidentes que não era treinado nem qualificado. 

Os inspetores da FAA, esticados, não revisaram adequadamente a papelada, relatou o NTSB, e muitas inspeções “não foram realizadas de maneira agressiva”.


Mesmo antes de o relatório chegar, o deputado estadunidense Paul Simon, D-Carbondale, que seria eleito para o Senado naquele ano, exigiu que as FAA contratassem mais inspetores. Citando a Air Illinois, a secretária de Transporte Elizabeth Dole anunciou uma revisão nacional dos procedimentos de segurança e prometeu que as companhias aéreas que não conseguissem fechariam o terreno. 

Dole fez seu anúncio no Meet The Press, dois meses após o acidente e quatro dias depois que a Air Illinois rendeu sua licença operacional em vez de retirá-la.

A Air Illinois parou de voar depois que a FAA designou 10 inspetores para cuidar de mecânicos e pilotos. Quatro meses após o acidente, o Departamento de Transporte anunciou que o programa de inspeção da FAA seria restaurado aos níveis de 1981 e 166 inspetores foram contratados em seis meses. 


Embora encontrasse falhas nos procedimentos de manutenção da FAA e da companhia aérea, o NTSB culpou Smith pelo acidente, que deveria ter retornado a Springfield minutos após a decolagem. Clique AQUI para ler o Relatório Oficial do acidente.

A Air Illinois retomou o serviço um mês após renunciar à licença de operação, mas não por muito tempo. A companhia aérea fechou seis meses após a tragédia e acabou em falência.

“Este acidente atraiu mais atenção do que qualquer outro no histórico de companhias aéreas”, disse Alice Mitchell, vice-presidente de marketing, ao State Journal-Register. “Éramos vítimas de sacrifícios.”

Por Jorge Tadeu (Site Desastres Aéreos) com ASN, Wikipedia, illinoistimes.com

Hoje na História: 11 de outubro de 1968 - Lançamento da Apollo 7, a primeira espaçonave Apollo tripulada

A Apollo 7 Saturn 1B (AS-205) decola do Complexo de Lançamento 34, Estação da
Força Aérea de Cape Kennedy, 15:02:45 UTC, 11 de outubro de 1968 (NASA)
Em 11 de outubro de 1968, às 15h02m45s UTC, a Apollo 7, a primeira espaçonave Apollo tripulada, foi lançada a bordo de um foguete Saturn IB do Complexo de Lançamento 34, Estação da Força Aérea Cape Kennedy, Cape Kennedy, Flórida.

A tripulação de voo era o Capitão Walter M. (“Wally”) Schirra, da Marinha dos Estados Unidos, o comandante da missão, em seu terceiro voo espacial; Major Donn F. Eisele, da Força Aérea dos EUA, o Piloto do Módulo de Comando, em seu primeiro voo espacial; e Major R. Walter Cunningham, US Marine Corps, Lunar Module Pilot, também em seu primeiro vôo espacial.

A tripulação de voo da Apollo 7, da esquerda para a direita: Donn Eisele, USAF,
Capain Walter M. ("Wally") Schirra, USN, e Major R. Walter Cunningham, USMC (NASA)
A missão foi projetada para testar a espaçonave Apollo e seus sistemas. Um objetivo principal era o teste do Sistema de Propulsão de Serviço (SPS), que incluía um motor de foguete Aerojet AJ10-137 reiniciável que colocaria um Módulo de Comando e Serviço Apollo dentro e fora da órbita lunar em missões futuras.

O motor SPS foi construído pela Aerojet General Corporation, Azusa, Califórnia. Queimou uma combinação de combustível hipergólico de Aerozine 50 (uma variante da hidrazina) e tetraóxido de nitrogênio, produzindo 20.500 libras de empuxo. Ele foi projetado para uma duração de 750 segundos, ou 50 reinicializações durante um voo. Este motor foi acionado oito vezes e funcionou perfeitamente.

A duração do voo da Apollo 7 foi de 10 dias, 20 horas, 9 minutos e 3 segundos, durante os quais orbitou a Terra 163 vezes. A espaçonave caiu em 22 de outubro de 1968, a aproximadamente 230 milhas (370 quilômetros) a sudoeste de Bermuda, no Oceano Atlântico, a 8 milhas (13 quilômetros) do navio de resgate, o porta-aviões USS Essex (CVS-9).

O módulo de comando Apollo era uma cápsula espacial cônica projetada e construída pela North American Aviation para transportar uma tripulação de três pessoas em missões espaciais de duas semanas ou mais. 

A Apollo 7 (CSM-101) foi a primeira cápsula do Bloco II, que foi amplamente redesenhada após o incêndio da Apollo 1, que resultou na morte de três astronautas. A cápsula do Bloco II tinha 10 pés e 7 polegadas (3.226 metros) de altura e 12 pés e 10 polegadas (3.912 metros) de diâmetro. Ele pesava 12.250 libras (5.557 kg). Havia 218 pés cúbicos (6,17 metros cúbicos) de espaço habitável no interior.

Apollo 7/Saturn IB AS-205.at Launch Complex 34 (NASA)
O Saturn IB consistia em um primeiro estágio S-IB e um segundo estágio S-IVB. O S-IB foi construído pela Chrysler. Ele era movido por oito motores Rocketdyne H-1, queimando RP-1 e oxigênio líquido. 

Oito tanques de combustível de foguete Redstone contendo o combustível RP-1 cercaram um tanque de foguete de Júpiter contendo o oxigênio líquido. O empuxo total do estágio S-IB era de 1.600.000 libras e carregava propelente suficiente para 150 segundos de queima. Isso elevaria o veículo a uma altitude de 37 milhas náuticas (69 quilômetros).

O estágio S-IVB construído por Douglas era movido por um motor Rocketdyne J-2, alimentado por hidrogênio líquido e oxigênio líquido. O único motor produzia 200.000 libras de empuxo e tinha combustível suficiente para 480 segundos de queima.

O foguete Saturn IB mediu 141 pés e 6 polegadas (43,13 metros) sem carga útil. Era capaz de lançar uma carga útil de 46.000 libras (20.865 quilogramas) para a órbita da Terra.

Apollo 7 Saturn 1B AS-205 em voo acima da Estação da Força Aérea Cape Kennedy,
em 11 de outubro de 1968 (NASA)
Apollo 7 a 35.000 pés (10.668 metros) (NASA)
Separação do primeiro estágio da Apollo 7 Saturn IB (NASA)
Fonte: thisdayinaviation.com