Mostrando postagens com marcador Tecnologia. Mostrar todas as postagens
Mostrando postagens com marcador Tecnologia. Mostrar todas as postagens

quarta-feira, 3 de dezembro de 2025

Por que não existe avião nuclear? Entenda se é possível e desafios

Até hoje a tecnologia não conseguiu desenvolver um modelo viável de avião nuclear, apesar de dezenas de testes.

Sky Cruise, modelo futurista de avião movido à energia nuclear (Imagem: Divulgação)
Uma ideia que pareceu boa na teoria, mas, na prática, não funcionou. Esse é o resumo do histórico do avião nuclear. Não é impossível, mas o modelo de aeronave não foi implementado até hoje por conta de vários entraves. Entenda como projetos de aviões movidos à propulsão nuclear não viraram realidade.

Embora um reator de fissão nuclear possa ocupar um submarino, por exemplo, e ser transportado em um porta-aviões, poderíamos pensar, por que não em um avião?

Voar por longos períodos sem precisar parar seria um grande atrativo para concretizar a ideia, mas carregar um reator nuclear a bordo desagradaria a maioria das pessoas, que não se sentiriam seguras. E outra, seria grande e pesado demais para um avião.

Guerras impulsionaram testes


Durante a Guerra Fria, EUA e União Soviética desenvolveram programas que tentaram criar um avião nuclear. Vários modelos foram estudados para essa finalidade.

Um deles foi o modelo de teste NB-36H. Ele usava como base um bombardeiro Convair B-36 em que a cabine foi reforçada com chumbo para evitar que a radiação atingisse os pilotos. O avião realizou 47 voos de teste, mas sem acionar o reator nuclear, apenas para simular a viabilidade desse tipo de equipamento dentro de um avião.

Aeronave de teste nuclear NB-36H (Imagem: Wikimedia Commons)
Uma das alternativas seria o avião com um motor movido por meio de um reator nuclear portátil. O interesse nesse tipo de propulsão aumentou após o Projeto Manhattan, programa de pesquisa e desenvolvimento das bombas atômicas na Segunda Guerra Mundial.

A Marinha dos EUA, nos anos 1950, calculou que um reator compacto o suficiente para um avião liberaria 500% mais calor que o reator pioneiro do submarino USS Nautilus, de 1955, e acabaria derretendo.

Além do peso do próprio reator, ainda tem o peso da blindagem, para proteger os tripulantes da radiação. Se o avião caísse, então, imagine o risco de contaminação do solo.

Uma das vantagens mais atrativas para o desenvolvimento desse tipo de aeronave seria a autonomia. Em casos de guerras, permitiria sucessivos ataques sem precisar reabastecer, além da capacidade de se manter no ar 24 horas por dia, sem precisar pousar (uma estratégia em casos de espionagem e reconhecimento de território, por exemplo)

Após os períodos da Segunda Guerra e Guerra Fria, a crescente preocupação com o meio ambiente também esfriou a ideia de novos projetos para a criação de um modelo possível de avião nuclear.

Avião nuclear em voos comerciais?


Sim, na teoria o conceito já existe. A criação é do designer industrial Oscar Viñals e foi concebida em 2018. Segundo ele, o seu avião nuclear, de nome, Magnavem, poderia levar 500 pessoas em velocidade supersônica.

Magnavem, projeto de avião nuclear (Imagem: Divulgação/Oscar Viñals)
O modelo se assemelha a uma nave espacial, que poderia decolar e pousar verticalmente, produziria zero emissão de carbono e atingiria velocidade de Mach 1.5 (medida adimensional de velocidade), equivalente a a 1.852 km/h

A ideia seria usar um reator de fusão compacto (CFR) para impulsionar a aeronave e reduzir o tempo das viagens. Por exemplo, o avião iria de Nova York para Londres em apenas 3 horas. Hoje o voo entre as cidades dura, em média, 7 horas.

Hotel voador


Outra ideia que promete ser realidade no futuro, é o Sky Cruise, chamado de ‘hotel voador’ por seu criador, o cientista Hashem Al-Ghaili. O modelo teria capacidade para cinco mil pessoas e seria movido a energia nuclear. O conceito foi apresentado pelo cientista Hashem Al-Ghaili e pelo designer Tony Holmsten em 2022.

De acordo com o vídeo de apresentação no YouTube, o Sky Cruise conta com 20 motores elétricos alimentados por “um pequeno reator nuclear” e os tripulantes chegariam ao super avião por via de jatos particulares.

O Sky Cruise seria pilotado por via de Inteligência Artificial, com capacidade de traçar as rotas, prever turbulências e detectar problemas técnicos, que seriam resolvidos em pleno voo. De acordo com os criadores, é possível que seja possível concretizar o projeto entre 2030 e 2040.

Via Renata Mendes Gonçalves, editado por Bruno Ignacio de Lima (Olhar Digital)

quinta-feira, 27 de novembro de 2025

Os perigos da radiação na aviação comercial

Examinamos os efeitos da radiação na aviação comercial e as medidas tomadas para limitar seu efeito sobre passageiros, tripulações de voo e aeronaves.

Boeing 737-8 MAX (Foto: Michal Mendyk/Airways)
As radiações são ondas de energia que viajam através de um meio em várias frequências e energias. Pode ser classificado como ionizante ou não ionizante.

A radiação não ionizante é encontrada na extremidade inferior do espectro eletromagnético, incluindo ondas de rádio, micro-ondas, infravermelho, ondas visíveis e a parte inferior das ondas ultravioleta e possuem baixas frequências e energias, portanto não são prejudiciais.

A radiação ionizante, que inclui raios-x, raios gama e ondas ultravioleta, é caracterizada por altas frequências e energias fortes o suficiente para arrancar elétrons de seus átomos [1].

Uma vez interagindo com o corpo humano, a radiação ionizante pode alterar a arquitetura molecular das células e tecidos humanos, resultando em distúrbios com risco de vida. Além disso, os aviônicos da aeronave e os dispositivos de comunicação também podem ser afetados.

Efeito da radiação na altitude e latitude


A grande maioria das fontes de radiação na superfície da Terra não são ionizantes, e mesmo aquelas que são ionizantes emitem muito pouca radiação não perigosa.

No entanto, a tripulação e os passageiros que voam em altitudes de cruzeiro acima de 30.000 pés também estão expostos à radiação solar e galáctica ou cósmica, que são tipos adicionais de radiação ionizante. A 35.000 pés acima da superfície da Terra, o nível de radiação pode ser até 10 vezes maior do que ao nível do mar.

A blindagem magnetosférica da Terra, que protege contra a radiação solar, é mais forte no equador e enfraquece com o aumento da latitude antes de enfraquecer nos pólos; portanto, os efeitos da radiação também pioram com o aumento da latitude.

Por causa dessas implicações, as Nações Unidas estimaram em 2000 que trabalhar em uma companhia aérea produzia mais exposição à radiação do que trabalhar em uma usina nuclear.

Ao voar em grandes altitudes, não apenas passageiros e tripulantes, mas também sistemas de aeronaves e outros equipamentos correm risco de exposição à radiação. Vamos dar uma olhada em detalhes.

(Foto: KLM)

Riscos Humanos


De acordo com a Agência Internacional de Pesquisa sobre o Câncer (IARC) da Organização Mundial da Saúde (OMS), a exposição à radiação ionizante leva ao câncer e a problemas reprodutivos, incluindo abortos espontâneos. Também pode produzir distúrbios genéticos e defeitos oculares como catarata.

A chance de morrer de câncer é estimada em 200 por 1.000 pessoas apenas nos EUA, mas entre os tripulantes de companhias aéreas, a exposição à radiação de 20 anos de vôo em grandes altitudes aumenta o risco para 225 por 1.000.

Além disso, de acordo com pesquisas publicadas pelo US NLM e ARPANSA, pilotos de companhias aéreas e pessoal de cabine tinham quase o dobro do risco de melanoma e outros cânceres de pele do que a população em geral, com os pilotos tendo um risco maior de morrer de melanoma.

Aviônicos


A radiação cósmica pode induzir erros suaves em dispositivos semicondutores que compõem os sistemas aviônicos das aeronaves. Eles podem inverter bits digitais e criar sinais indesejáveis ​​para operar a aeronave.

Como exemplo, em 7 de outubro de 2008, o voo 72 da Qantas (QF) fez um pouso de emergência no aeroporto de Learmonth, perto da cidade de Exmouth, Austrália Ocidental, após um acidente a bordo que incluiu um par de manobras repentinas e não comandadas que causaram graves ferimentos - incluindo fraturas, lacerações e lesões na coluna - em vários passageiros e tripulantes.

Vários tipos de gatilhos potenciais foram investigados, incluindo bugs de software, falhas de hardware e interferência eletromagnética. Partículas secundárias de alta energia geradas por raios cósmicos, que podem causar um bit flip, também foram investigadas.

Posteriormente, foi dito que esses gatilhos provavelmente não estavam envolvidos, embora uma conclusão definitiva não pudesse ser alcançada. Um cenário muito mais provável era que uma fraqueza marginal de hardware de alguma forma tornasse as unidades suscetíveis aos efeitos de algum tipo de fator ambiental, que acionava o modo de falha.

O relatório final do ATSB, emitido em 19 de dezembro de 2011, concluiu que o incidente devido a limitações de projeto e “em uma situação muito rara e específica, vários picos nos dados do ângulo de ataque (AOA) de um dos ADIRUs podem resultar no FCPCs comandando a aeronave para cair.”

(Foto: Daniel Gorun/Airways)

Comunicações de alta frequência


As comunicações de rádio de alta frequência (HF) podem ser prejudicadas ou mesmo totalmente interrompidas pela radiação solar. A ionização da atmosfera superior (ionosfera), que absorve as comunicações de rádio de ondas curtas, aumenta quando os raios X das explosões solares entram na magnetosfera sem serem desviados e atingem a atmosfera da Terra no lado voltado para o sol.

A magnetosfera desvia as partículas solares incidentes e as direciona para os pólos do planeta, aumentando a taxa de ionização na atmosfera superior e causando absorção ionosférica, interrompendo assim as comunicações de rádio HF com efeitos comparáveis.

Durante as tempestades de Halloween de outubro-novembro de 2003, uma série de tempestades solares envolvendo erupções solares e ejeções de massa coronal que geraram a maior erupção solar já registrada pelo sistema GOES, as comunicações HF com aviões encontraram interrupções e, posteriormente, uma falha completa dos serviços HF que durou por horas.

(Foto: Quang Nguyen Vinh / Pexels.com)

Estratégias de Mitigação


Passageiros e tripulação de voo

A Comissão Internacional de Proteção Radiológica (ICRP) é o principal órgão encarregado de proteger contra a radiação ionizante e recomenda o limite de dose efetiva de um indivíduo de 20 mSv por ano, em média em períodos definidos de 5 anos (100 mSv em 5 anos), com o restrição adicional de que a dose efetiva não deve exceder 50 mSv em um único ano.

Além disso, a dose recomendada para tripulantes grávidas é de 1 mSv desde a descoberta da gravidez até o nascimento, com um máximo mensal de 0,5 mSv. O limite anual para o público em geral (passageiros) é de 1 mSv [6].

Recomenda-se que as passageiras grávidas e os membros da tripulação de voo pensem em trocar a viagem ou atrasar uma viagem para diminuir o risco de aborto espontâneo. De acordo com um estudo do Instituto Nacional de Segurança e Saúde Ocupacional (NIOSH), o risco de aborto espontâneo aumenta quando as mulheres são expostas à radiação cósmica de pelo menos 0,36 mSv durante o primeiro trimestre.

Além disso, o Regulamento de Licenciamento de Pessoal, Parte 138, determina que as pilotos grávidas e tripulantes de cabine sejam avaliadas e excluídas das funções de voo entre o momento da descoberta da gravidez e o final da 12ª semana de gestação, bem como entre o final da 26ª semana de gestação e entrega, a fim de protegê-los dos efeitos da exposição à radiação e outros efeitos {4}.

(Foto: Piedmont Airlines)
Companhias Aéreas

As companhias aéreas escolhem uma rota e altitude que reduzam a exposição à radiação depois de receber um alerta de radiação solar durante eventos moderados, fortes e severos de radiação solar transitória (20 uSv/hr e acima).

Um alerta de radiação solar é transmitido em todo o mundo e é acompanhado por uma mensagem com estimativas dos níveis de radiação em altitudes de 20.000 pés a 80.000 pés em latitudes específicas.

Além disso, um indivíduo pode descobrir a dose efetiva de radiação ionizante recebida em cada voo usando um programa de computador para download chamado CARI-6 ou CARI-6M, desenvolvido no Instituto Médico Aeroespacial Civil da FAA.

Aeronaves

Todas as aeronaves projetadas para operar acima de 15.000 m (49.000 pés) devem possuir tecnologia que possa monitorar e exibir continuamente a taxa de dose de toda a radiação cósmica recebida, bem como a dose cumulativa para cada voo, de acordo com o Anexo 6, Provisão 6.12 da ICAO .

De acordo com o regulamento 4.2.11.5 do Anexo 6 da ICAO, o operador deve acompanhar todos os voos superiores a 15.000 metros (49.000 pés) para calcular a dose cumulativa de radiação cósmica que cada tripulante recebeu durante um período de 12 meses. [5]

Edição de texto e imagens por Jorge Tadeu (Site Desastres Aéreos) com Airways Magazine

Referências: [1] International Civil Aviation Organization-ICAO, Manual of Civil Aviation Medicine-Doc 8984, page II-1-13. [2] Matthias M. Meier , Kyle Copeland, Klara E. J. Klöble, Daniel Matthiä,Mona C. Plettenberg,Kai Schennetten,Michael Wirtz, and Christine E. Hellweg, Radiation in the Atmosphere—A Hazard to Aviation Safety?, Page 14. [3] International Civil Aviation Organization-ICAO, Manual of Civil Aviation Medicine-Doc 8984, page II-1-14. [4] Tanzania Civil Aviation Authority-TCAA, The Civil Aviation Personnel Licencing Regulations, 2017 part 138, page 230. [5] International Civil Aviation Academy-ICAO, Annex 6 Operation of Aircraft, Part I – International Commercial Air Transport – Aeroplanes, Ninth edition, July 2010, pages 6-13. [6] International Civil Aviation Organization-ICAO, Manual of Civil Aviation Medicine-Doc 8984, page II-1-15.

quarta-feira, 26 de novembro de 2025

iPhone tem função secreta que todo mundo que voa de avião deveria conhecer

Técnica ainda desconhecida por muitos pode ajudar aqueles que tem um certo hábito de viajar por esse meio de transporte.


Uma função secreta disponível para quem tem celulares no modelo iPhone pode ser bastante benéfica principalmente para quem tem a prática de voar de avião.

Por meio dessa técnica contida no aparelho, é possível trafegar de forma mais tranquila durante o trajeto e, de quebra, ter mais tranquilidade caso um ente querido seu esteja viajando.

Leia até o final e descubra qual é a função secreta do iPhone que todo mundo que possui o costume de viajar de avião deveria conhecer.

Embora esteja difundido em todo mundo, alguns atalhos e funcionalidades presentes no iPhone ainda seguem sendo uma incógnita até mesmo para os portadores do aparelho.

Por exemplo, você sabia que existe uma função secreta contida na plataforma que pode ser uma espécie de ‘mão na roda’ para aqueles que têm o costume de viajar de avião? Pois saiba que sim.

A modalidade pode ser ativada de forma simples, rápida e não requer a instalação de nenhum outro aplicativo. Ao utilizá-la, você poderá acompanhar o trajeto da aeronave em que você está ou que alguma outra pessoa, seja ela um ente querido ou colega, esteja.

Para que a função seja ativada, é necessário, primeiramente, ir até o aplicativo de mensagens, clicar na opção “Nova Mensagem” e, logo em seguida, colocar o seu próprio número como destinatário do conteúdo.

Depois disso, no local onde a mensagem é escrita, no chat, basta você colocar o número do seu voo ou o número do voo da pessoa que você quer acompanhar.

Após escrever o conteúdo basta enviá-lo. Você pode notar que, alguns segundo depois desse processo, você receberá uma mensagem e é nesse momento que você deve selecionar a opção “Pré visualizar o voo”.

Dessa maneira, você conseguirá acompanhar o voo, ou qualquer voo, diretamente do seu telefone. Além disso, também é possível ver a hora de partida, hora de chegada e até mesmo se o voo está atrasado.

Veja o passo a passo:


Via Gabriella PinheiroGabriella Pinheiro (Portal 6) - Foto: Reprodução

segunda-feira, 24 de novembro de 2025

Por que o Boeing 787 não tem pontas de asa?

Você já se perguntou por que o Boeing 787 Dreamliner não tem pontas de asa como muitas outras aeronaves comerciais? Antes de entender por que a Boeing decidiu não usar as pontas das asas em sua aeronave carro-chefe, devemos primeiro olhar as pontas das asas e saber o que elas fazem.

As asas de um Boeing 787 são feitas com 50% de materiais compostos (Foto: Boeing)
As pontas das asas, ou 'sharklets' como a Airbus os chama, estão lá para reduzir a resistência do vórtice, o fluxo de ar em espiral que se forma sob a asa durante o voo. Essas espirais de ar podem ser vistas em dias chuvosos ou enevoados atrás das pontas das asas da aeronave e, embora possam parecer impressionantes, o arrasto que criam não é.

Winglets reduzem o arrasto

Esse arrasto oferece resistência adicional à aeronave, o que significa que os aviões precisam queimar mais combustível para neutralizá-lo. E, como todos sabemos, mais consumo de combustível significa mais dinheiro. Adicionar pontas de asas ao final da asa de uma aeronave reduz o redemoinho do ar, diminuindo assim o arrasto.

Os Winglets também ajudam a melhorar o desempenho de decolagem do avião e contribuem para um voo mais estável, o que torna a viagem mais suave.

O Boeing 737 MAX apresenta winglets especialmente projetados (Foto: Boeing)
Winglets tem sido uma característica dos jatos nas últimas décadas, e seu design foi inspirado nas penas levantadas nas asas dos pássaros enquanto voam pelo ar.

O 787 era um design de papel limpo

O que torna o Boeing 787 Dreamliner tão diferente é que ele não tem winglets porque era um projeto simples. Ao contrário de algumas aeronaves mais antigas com winglets adicionados a eles no início dos anos 1990, o Boeing 787 tinha um design revolucionário, construído com muitos materiais novos e tecnologias modernas.

Quando projetaram o Boeing 787 Dreamliner, a Boeing apresentou um design de ponta de asa inclinada. Isso age de forma semelhante a um winglet, aumentando a proporção da asa para interromper vórtices indesejados na ponta da asa. O projeto da ponta da asa inclinada também permite que o 787 use menos pista na decolagem e alcance uma taxa de subida mais íngreme.

Enquanto as pontas das asas padrão podem reduzir o arrasto em até 4,5%, o design da asa inclinada pode reduzi-lo em 5,5%. Apesar do aumento de um por cento, as pontas das asas inclinadas só funcionam em aeronaves maiores e são muito menos econômicas em aviões menores como o Boeing 737 ou o Airbus A320.

787 asas são incrivelmente flexíveis

Como as asas do Boeing 787 Dreamliner são construídas com até 50% de material composto por peso e 80% de material composto por volume, elas são incrivelmente flexíveis. Isso não apenas permite que o avião voe mais rápido e mais longe do que aeronaves menos avançadas; também torna o voo mais suave, pois a flexibilidade ajuda a amortecer o movimento de rajadas de vento e turbulência.

A Boeing pretende ainda usar o que conseguiu com o 787 Dreamliner na próxima geração de fuselagem larga de longo alcance, o 777X. Embora as asas do 777X apresentem um design retraído como o Dreamliner, elas também terão a vantagem de dobrar as pontas das asas.

As pontas das asas dobráveis ​​no 777X permitirão que ele use a maioria dos grandes aeroportos (Foto Boeing)
Isso permitirá que a aeronave reduza sua envergadura de 235 pés para 213 pés, o que significa que ela pode operar em aeroportos onde voam aeronaves Boeing triple seven existentes.

Edição de texto e imagens por Jorge Tadeu

sábado, 22 de novembro de 2025

Por que as asas do Boeing 787 são curvas?

As asas curvas do Boeing 787 são uma das características mais icônicas do tipo. Eles tornam o 'Dreamliner' facilmente reconhecível em comparação com as aeronaves widebody de deck único mais antigas da Boeing, como o 767 e o 777. Mas quais são as razões para esse design impressionante?

A transportadora de bandeira australiana Qantas opera 11 exemplares do Boeing 787-9. Esta foto de decolagem mostra claramente a natureza curva das asas do Dreamliner - Foto: Getty Images

Trabalhando para uma maior gama operacional


Um dos maiores pontos de venda do Boeing 787 para seus operadores é seu alcance operacional muito longo. De fato, no início desta semana, a companhia aérea de bandeira australiana usou uma de suas 11 aeronaves 787-9 para operar vários voos diretos de Londres Heathrow para Darwin, no Território do Norte do país. Os voos Londres-Austrália da companhia aérea geralmente precisam fazer escala em Cingapura.

O alcance do Dreamliner é ligeiramente diferente entre suas três variantes. De acordo com a Boeing, os números são os seguintes:

  • 787-8 - 7.305 NM (13.530 km)
  • 787-9 - 7.530 NM (13.950 km)
  • 787-10 - 6.345 NM (11.750 km)

Essas estatísticas são o culminar de extensa pesquisa e desenvolvimento pelo fabricante americano, que resultou em vários fatores de economia de combustível. Um deles é o impressionante design de asa curva da aeronave.

O projeto da asa do Boeing 787 desempenha um papel importante em facilitar seu impressionante alcance operacional. Isso permitiu que a Qantas operasse certos voos Londres-Austrália sem escalas - Foto: Getty Images

Projetado para eficiência de combustível otimizada


As asas curvas do Boeing 787 significam que a flexão das asas é um fenômeno claramente visível. Embora possa parecer incomum ou até mesmo desconcertante ver tanto movimento vertical da asa, há uma boa razão para permitir que isso ocorra. A Boeing afirma que a tecnologia fly-by-wire do Dreamliner:

“… Otimiza a forma (ou 'curvatura') da asa automaticamente para economizar o máximo de combustível. Durante o cruzeiro, a borda de fuga da asa se ajusta automaticamente para cima e para baixo para otimizar continuamente a curvatura para a máxima eficiência. ”

Essa tecnologia também minimiza o efeito da turbulência que pode, de outra forma, causar distúrbios aos passageiros. Não é apenas o formato da asa que otimiza o desempenho do 787, mas também os materiais com os quais são construídos. Para este fim, a Boeing afirma que:

“O uso de materiais compostos na estrutura da asa permite que a asa do 787 tenha uma relação de aspecto mais alta (o quadrado da envergadura dividido pela área da asa) do que a aeronave anterior.”

O resultado desses vários recursos é uma combinação perfeita para os operadores do Dreamliner. Devido à abundância de tecnologia, ele pode voar mais rápido do que seus antecessores, consumindo menos combustível.

O Boeing 787 Dreamliner supera seus antecessores em áreas como velocidade de cruzeiro e economia de combustível - Foto: Getty Images

Remoção da necessidade de winglets


A natureza curvada para trás das asas curvas do Boeing 787 faz com que a aeronave tenha o que é conhecido como 'pontas das asas inclinadas'. Isso também funciona como uma opção alternativa para winglets. Mais uma vez, esse recurso também contribui para o aumento da eficiência de combustível e, consequentemente, da faixa operacional. Isso se deve à redução subsequente do arrasto aerodinâmico causado por vórtices que se desenvolvem à medida que as pontas das asas cortam o ar.

O próximo projeto de corpo largo da Boeing, o 777X de próxima geração (que também terá pontas de asas dobráveis), também deve ter suas asas puxadas para trás dessa maneira, embora em um ângulo menor. O Airbus A350 é outro avião cujas asas apresentam um ângulo de varredura semelhante ao Dreamliner, com o qual foi projetado pelo fabricante europeu para competir.

As pontas das asas dobráveis ​​estão entre as novas inovações tecnológicas que serão apresentadas no próximo 777X da Boeing - Foto: Getty Images

O futuro do design das asas parece determinado a continuar a se desenvolver de uma maneira fascinante, à medida que os fabricantes continuam a se esforçar para otimizar a eficiência do combustível. A Boeing está até procurando reescrever o livro de regras com seu avião Transonic Truss-Braced Wing (TTBW). Certamente será interessante ver como a tecnologia de asas evoluirá nos próximos anos.

quinta-feira, 20 de novembro de 2025

Boeing F/A-18E/F Super Hornet: sua origem, propósito e desempenho

O Boeing F/A-18E/F Super Hornet é um caça supersônico e multifuncional altamente capaz, conhecido por seu desempenho excepcional, adaptabilidade e recursos avançados.


Neste artigo, nos aprofundaremos na origem, finalidade, desempenho e variantes do Super Hornet, bem como seu preço, operadores atuais e o futuro que temos pela frente para esta notável aeronave.

Origem do Super Hornet


O Super Hornet Block I foi introduzido pela primeira vez no final de 1999, apresentando várias atualizações significativas em relação ao seu antecessor F/A-18 Hornet. Essas melhorias incluíram maior capacidade de combustível, aviônicos aprimorados e um motor mais potente, tudo isso contribuiu para seu maior alcance e capacidade de carga útil. O F/A-18 E/F Block II está em serviço ativo desde 2001 e deverá se aposentar da Marinha dos Estados Unidos até 2023.

A Boeing apresentou recentemente o Block III Super Hornet, que teve sua primeira entrega em setembro de 2021 . Esta versão atualizada inclui um novo display na cabine, bem como um processador de computador mais rápido que permitirá atualizações da aeronave ao longo de sua vida útil.

(Foto: BlueBarronPhoto/Shutterstock)

Propósito


O Boeing F/A-18E/F Super Hornet serve como uma aeronave multifuncional baseada em porta-aviões. A sua principal missão é fornecer superioridade aérea e capacidades de ataque, tornando-o um recurso indispensável para a Marinha dos EUA e várias forças aéreas internacionais. Aqui está um resumo das funções do F/A-18E/F Super Hornet:
  • Superioridade aérea: o Super Hornet se destaca no combate ar-ar, garantindo o controle dos céus.
  • Guerra de ataque: é um caça de ataque versátil para ataques terrestres de precisão.
  • Guerra eletrônica: sua variante Growler está equipada para interferência e contramedidas para interromper sistemas inimigos.
  • Reconhecimento: o Super Hornet pode transportar um Shared Reconnaissance Pod (SHARP), um sistema de reconhecimento aéreo tático digital de alta resolução.

Desempenho do Super Hornet F/A-18E/F


A velocidade máxima do F/A-18E/F Super Hornet é Mach 1,8 e tem um raio de combate de mais de 400 milhas náuticas. Equipado com aviônicos avançados e sistemas de radar, ele pode detectar e atacar vários alvos simultaneamente.

Especificações Gerais


Especificações de performance


Variantes


O Super Hornet tem duas variantes principais, o F/A-18E de assento único e o F/A-18F de assento duplo. A principal diferença está nas configurações da cabine, com o F/A-18F acomodando um piloto e um oficial de sistemas de armas (WSO). Esta variante de assento duplo é particularmente vantajosa para treinamento, planejamento de missões e missões de ataque complexas.

(Foto: Peter R. Foster IDMA/Shutterstock)

Preço do Super Hornet


Seu custo em 2021 foi estimado em cerca de US$ 66 milhões. A variante mais cara é o EA-18G Growler, que pode custar até US$ 125 milhões.

Operadores e entregas atuais


O F/A-18E/F Super Hornet foi adotado por vários países, sendo a Marinha dos Estados Unidos sua maior operadora. Outros incluem a Real Força Aérea Australiana , que empregou o Super Hornet como seu caça primário provisório enquanto aguardava sua substituição pelo F-35 Lightning II, e a Força Aérea do Kuwait, que o utiliza como caça e interceptador.

Mais de 630 unidades deste tipo foram produzidas até 2020.

Futuro à frente do F/A-18E/F Super Hornet da Boeing


Em 23 de fevereiro de 2023, a Boeing anunciou sua intenção de cessar a produção do Super Hornet até o ano de 2025. Ela citou a diminuição da demanda pela aeronave, bem como o aumento da concorrência representada pelo caça a jato Lockheed Martin F-35 Lightning II.

Com Informações do Aerotime Hub

sexta-feira, 14 de novembro de 2025

Quais são os caças de quinta geração?

(Foto: Divulgação/United Aircraft Corporation)
Tecnologia de ponta, radares precisos, armamentos de última geração, capacidade de manobras de altíssimo grau de dificuldade, fusão de dados em redes de sensores, velocidade e resistência extremas. Esses são os principais atributos dos chamados caças de quinta geração, aviões que reúnem o que há de mais moderno em termos de combate aéreo.

A característica que pode ser considerada a mais importante entre os caças de quinta geração, no entanto, é a furtividade. Esses aviões foram projetados para desviar e absorver ondas eletromagnéticas. E o que isso significa, a grosso modo? Que estes aviões são muito difíceis de serem detectados por radares inimigos. Esta tecnologia recebeu o nome de Stealth.

Os sistemas de aviônica também evoluíram muito em relação aos caças de quarta geração e até mesmo no comparativo com os poucos modelos que se encaixam na “subgeração” 4.5, que já mostramos por aqui. Os caças de quinta geração, portanto, se modernizaram a ponto de deixar os pilotos 100% concentrados em suas tarefas.

F-22 Raptor: o 1º caça de quinta geração


F-22 Raptor foi o primeiro caça de quinta geração (Imagem: Força Aérea dos Estados Unidos)
Os caças de quinta geração começaram a entrar em serviço de forma oficial a partir de 2005, mas oito anos antes, em 1997, um avião F-22 Raptor, da Lockheed Martin, fez seu voo-teste inaugural. Depois do sucesso da estreia, mais 194 aeronaves da mesma família foram fabricadas, ao custo médio de US$ 150 milhões por unidade. Cinco destes aviões sofreram acidentes e não puderam ser recuperados.

O F-22 Raptor faz parte do chamado ATF da Força Aérea dos Estados Unidos (Advanced Tactical Fighter, ou Tática Avançada de Luta, na tradução para o português). Ele atinge 2.410 km/h e, segundo dados da Força Aérea dos Estados Unidos, mantém 1.963 km/h em velocidade de cruzeiro. Apenas para dar uma ideia do que estes números representam, a velocidade do som (Mach 1) é de “somente” 1.234,8 km/h.

O caça de quinta geração deu mais uma prova de eficiência recentemente. O 94º Esquadrão e o 94º Esquadrão de Caça dos EUA carregaram e dispararam com êxito um total de 28 mísseis em uma mesma atividade. Desta forma, o avião quebrou dois recordes de uma só vez durante testes na base aérea de Tyndall, na Flórida.

Esquadrão responsável por quebrar recordees com o F-22 (Imagem: Força Aérea dos Estados Unidos)

Outros caças de quinta geração


Agora que já contamos um pouquinho a história do F-22 Raptor e de seus recordes, vamos elencar outros bons exemplos de caças de quinta geração. O F-35, também da Força Aérea dos Estados Unidos, é um deles.

O F-35 custou cerca de US$ 1 trilhão desde que começou a ser projetado e teve quatro variações: A, B, C e Lightning II, este um modelo multifunção. O caça tem o que há de mais moderno em termos de software e hardware em seus equipamentos, com capacidade de fusão e compartilhamento de dados muito superior a qualquer outro em atividade.

Entre os principais destaques estão as câmeras instaladas na fuselagem. Elas compilam os dados e projetam imagens diretamente no capacete do piloto, dando ao combatente visão 360º e noção completa do que ocorre ao redor do jato. Ele também é o único caça do mundo que conta com canhão montado internamente: um GAU-22/A de 25 mm, com capacidade para 180 disparos em sequência.

F-35 Lightning II é um caça de quinta geração multi-tarefas
(Imagem: Divulgação/Força Aérea dos Estados Unidos)

Rússia tem “xeque-mate”


Se os Estados Unidos contam com dois caças de quinta geração da linhagem “F”, a Força Aérea Russa trabalha para dar um “xeque-mate” nos inimigos nas batalhas aéreas. Literalmente. O Sukhoi Su-75 Checkmate teve sua quinta geração apresentada na última edição do Dubai Airshow, em novembro de 2021. E monopolizou as atenções.

Ele herdou alguns componentes do Su-57, como o motor e a aviônica, mas, até a data oficial de “estreia”, prevista para 2023, deverá incorporar o que há de mais moderno na aviação do país. Assim, poderá se tornar um dos caças de quinta geração com maior capacidade para missões furtivas do mundo.

O Sukhoi Su-75 Checkmate apresentará capacidade para voar com velocidade duas vezes maior do que a do som. Terá ainda diversas inovações em relação aos modelos anteriores da fabricante, como novas entradas de ar e tecnologias de camuflagem inéditas, além do “nariz” levemente apontado para baixo.

Componentes do Su-57 fizeram parte da estrutura do Sukhoi Su-75 Checkmate
(Imagem: Anna Zvereva/Wikimedia/CC)
Fora do eixo Rússia e Estados Unidos há outros caças de quinta geração que deverão em breve entrar em ação. Eles estão em estágio de desenvolvimento, mas praticamente prontos para reforçar a aviação militar de seus países. São eles:
  • Chengdu J-20 e Shenyang J-31 (China);
  • Mitsubishi X-2 Shinshin (Japão);
  • TAI T-FX (Turquia);
  • HAL AMCA (Índia).

Via Paulo Amaral | Editado por Jones Oliveira (Caneltch)

quinta-feira, 13 de novembro de 2025

Quais são os caças de quarta geração?

(Foto: Divulgação/Ministério da Defesa do Japão)
Os caças, aviões de combate que surgiram na época da Primeira Guerra Mundial, evoluíram em armamentos, tecnologias e manobrabilidade com o passar do tempo, como mostramos por aqui em uma série de conteúdos. As aeronavas que abordaremos logo mais tiveram tanta representatividade que ganharam até mesmo uma "subgeração".

Estamos falando dos caças de quarta geração, que surgiram no início da década de 1980 e, até hoje, são utilizados por muitas Forças Aéreas ao redor do planeta. Os caças de quarta geração são baseados em conceitos retirados das aeronaves usadas nos anos 1970, de terceira geração, mas (muito) aprimorados.

A capacidade de manobras, os motores, os armamentos e a aviônica elevaram o padrão a um nível de excelência jamais visto. Nos Estados Unidos, a evolução foi além e o país viu nascer, após alguns anos da quarta geração de caças em ação, uma subgeração, chamada de 4.5.

Caças do tipo F-15 são considerados da "geração 4.5"
(Imagem: Divulgação/Mike Freer,Touchdown Aviation)
Neste seleto grupo estão inclusos os modelos F-15 e F-16, além dos russos MiG-35 e Su-30 e o Eurofighter Typhoon, de origem alemã. Estes caças da geração 4.5 tinham como principal característica a tecnologia furtiva, ou seja, recursos que ajudavam o avião a ficar mais escondido e, portanto, mais difícil de ser detectado por radares inimigos.

Computadores melhores, caças melhores


A evolução no universo dos computadores durante as décadas de 1980 e 1990 influenciou diretamente na aviação. A maior velocidade na transferência de dados permitiu que os sistemas dos caças de quarta geração, como os de busca e rastreamento por infravermelho (IRST), fossem cada vez mais ágeis.

Os caças de quarta geração também passaram a ter a manobrabilidade aprimorada pela estabilidade estática relaxada, graças à introdução do chamado sistema de controle de voo fly-by-wire. Tudo isso, claro, também combinado com a já citada evolução dos computadores digitais e das técnicas de integração de sistemas.

Foram os caças de quarta geração que também mostraram ao mundo pela primeira vez o supercruise, ou supercruzeiro, capacidade de voar em velocidades supersônicas sem o uso constante do pós-combustor. Isso reduziu o consumo de combustível, aumentou o alcance e não prejudicou o desempenho das aeronaves.

MiG-31 tinha capacidade de interceptar e eliminar inimigos a longas distâncias
(Imagem: Divulgação/Ministério da Defesa da Rússia)
A chamada tecnologia furtiva também evoluiu consideravelmente nos caças de quarta geração. Os Estados Unidos equiparam seus modelos com radares AESA APG-63, livres de partes móveis e que conseguem projetar feixes menores e executar varreduras mais rápidas. Aeronaves de outros países, como a Dassault Rafale e a Thales Spectra também utilizavam tecnologia furtiva para ficarem “invisíveis” aos radares.

Caças de quarta geração têm Rússia como expoente


Os caças de quarta geração têm modelos de destaque em Forças Aéreas de todo o mundo, mas a Rússia, derivada da extinta União Soviética, é quem domina o ranking dos 5 melhores aviões de combate deste segmento.

Segundo a revista especializada Military Watch, três dos cinco melhores caças pertencentes à quarta geração dos aviões de combate foram fabricados pelos russos. O top 5 conta ainda com um representante da China na terceira posição e um dos Estados Unidos, considerado o quarto melhor do mundo.

Su-35 foi primeiro caça do mundo produzido após o fim da União Soviética
(Imagem: Aleksandr Markin/Wikipedia/CC)
Os caças de quarta geração citados pela Military Watch como melhores representantes desta era são os seguintes:
  • MiG-31 BSM (Rússia): Tem como principal atributo a capacidade de interceptar e eliminar caças inimigos em longas distâncias e altitudes extremas. Era equipado com mísseis ar-ar R-37, que carregavam o triplo da carga considerada padrão;
  • Su-35 (Rússia): Primeiro caça do mundo produzido após o fim da União Soviética. Entre suas principais armas destaca-se o radar Irbis-E, capaz de detectar alvos furtivos a até 80 km de distância e os tradicionais a até 400 km;
  • J-16 (China): O J-16 não é russo, mas foi construído com base no Su-27. O avião faz parte de uma remodelada frota de aeronaves do país asiático e conta com alta capacidade furtiva e mísseis PL-15;
  • F-15SA (EUA): O F-15SA foi fabricado pelos Estados Unidos com base no F-15E Stryke Eagle, mas, na verdade, foi usado pelas forças da Arábia Saudita. O caça de quarta geração podia carregar até 12 mísseis de uma só vez, além de ter a bordo um radar de última geração e sistemas de busca por alvos inimigos altamente sensíveis;
  • Su-27SM3 (Rússia): Fechando o top 5 de caças de quarta geração temos o terceiro representante da Rússia. O Su-27SM3 utiliza também a tecnologia desenvolvida para o Su-35, como o radar Irbis-E e outros sistemas avançados. A capacidade de manobras, no entanto, era um pouco inferior a do “irmão” e, por isso, sua colocação no ranking também foi pior.

Via Paulo Amaral | Editado por Jones Oliveira (Canaltech)

terça-feira, 11 de novembro de 2025

Vídeo: Breve história do sistema GPS


Neste episódio Ricardo Beccari o vai contar uma breve história de como surgiu o GPS . Recebemos o apoio do Fernando Cobo Gerente de vendas regional na empresa fabricante de GPS's a Garmin.

Via Canal Porta de Hangar de Ricardo Beccari

sexta-feira, 7 de novembro de 2025

Aproximação da pista: como os pilotos encontram seu caminho com segurança para o solo?


Voar pela metade do caminho ao redor do mundo é ótimo, mas a menos que você possa encontrar com precisão o caminho para as últimas centenas de metros até a pista, é um pouco inútil. Quando o tempo está bom, os pilotos podem ver o aeroporto a vários quilômetros de distância. No entanto, o que fazemos quando há pouca nuvem ou neve reduzindo a visibilidade? Felizmente, a maioria dos aeródromos possui algum tipo de sistema de aproximação que nos permite descer com segurança a aeronave em direção à pista.

O que impede os pilotos de fazerem uma abordagem?

Para cada abordagem a uma pista, existem critérios meteorológicos mínimos que os pilotos devem obedecer legalmente. Isso é para garantir a segurança da aeronave e evitar que os pilotos “arrisquem” na esperança de que ainda possam pousar.

Este critério varia de abordagem para abordagem, de pista para pista e de aeronave para aeronave. Existem dois elementos para a abordagem: a visibilidade e a Altitude Mínima de Descida (MDA)/Altitude de Decisão (DA). Esses valores são publicados na parte inferior do gráfico de abordagem relevante que está disponível para os pilotos.

A precisão da abordagem determina o quão perto os pilotos podem chegar da pista

A visibilidade é o fator definidor, o limite legal ditando se podemos ou não iniciar a abordagem. Se a visibilidade informada pelo aeródromo estiver abaixo do mínimo na carta, não temos permissão para iniciar a abordagem. É preto e branco.

O MDA/DA é a altitude até a qual temos permissão para voar a aeronave antes de tomar uma decisão. Se nesse ponto pudermos ver a pista, podemos continuar pousando. Do contrário, devemos dar uma volta e voltar para o céu.

Se a visibilidade relatada for boa o suficiente, mas a base da nuvem for inferior ao MDA/DA, ainda podemos iniciar uma abordagem. Porém, faremos isso sabendo que há uma chance muito alta de não ver a pista no ponto de decisão e ter que fazer uma volta.

O que foi usado no passado - VOR / NDB

Um alcance omnidirecional de frequência muito alta (VOR) é um tipo de farol de navegação por rádio de curto alcance que emite um sinal. Aeronaves equipadas com o equipamento certo são capazes de captar este sinal e não apenas determinar onde o farol está, mas também a que distância estão dele. A distância é quantificada como Equipamento de Medição de Distância - DME.

Os VORs já existem há um bom tempo e foram desenvolvidos pela primeira vez na década de 1930, entrando em serviço em meados dos anos 1940. A melhor característica dos VORs em relação aos antigos beacons de navegação é que o sinal é verdadeiro e forte. Os tipos mais antigos estavam sujeitos à interferência da atmosfera e forneciam apenas direção, não distância.

Os VORs permitem que os pilotos determinem sua orientação e distância do farol

Como o sinal emitido pelos VORs é enviado em linha reta, eles são limitados pela linha de visão - eles continuam no espaço conforme a terra se curva abaixo deles. Como resultado, para uma aeronave no cruzeiro, eles só são úteis em cerca de 140 milhas. No entanto, esse alcance é suficiente para permitir que as aeronaves voem de um farol para outro enquanto ziguezagueavam ao redor do mundo.

Os VORs se tornaram muito úteis nos estágios finais de abordagem, quando há pouca nuvem.

Ao colocar um VOR em ou próximo a um campo de aviação, os pilotos são capazes de voar em direção ao farol a partir de uma determinada direção e ter bastante confiança em sua posição. Então, usando o DME para determinar a que distância estão do farol, os pilotos podem então começar a descer em direção ao campo de aviação.

Uma boa vantagem de um VOR é que a abordagem não precisa ser direta em direção à pista. Em campos de aviação onde há colinas na linha central estendida da pista, os pilotos podem voar em direção ao campo de aviação em um ângulo que os mantém longe do terreno. Uma vez fora da nuvem e com a pista à vista, eles podem virar a aeronave para alinhá-la com a pista.

As abordagens VOR tendem a ser encontradas em aeroportos menores, onde as instalações são limitadas. Eles são bastante comuns nos aeroportos ao redor das ilhas gregas.

Uma abordagem VOR em Heraklion, Grécia. O ângulo de aproximação é diferente do da pista, mantendo a aeronave afastada do terreno

Há, no entanto, uma desvantagem principal nas abordagens de VOR: a precisão.

Ao voar ao redor da Terra a 36.000 pés, estar uma ou duas milhas fora do caminho não é um grande problema. No entanto, quando você está tentando abrir caminho entre colinas ao se aproximar da terra, a precisão é tudo. Como resultado, os mínimos nas abordagens de VOR tendem a ser muito conservadores. Não é incomum exigir vários milhares de metros de visibilidade para iniciar a abordagem e ter um MDA de cerca de 600 pés, ou mais, acima do solo.

Isso é bom quando o tempo está decente, mas não é bom quando o clima de inverno está bom. O que você precisa é de algo mais robusto, que permitirá aos pilotos voar mais baixo com pior visibilidade.

O que é usado agora - ILS


Voe para qualquer grande aeroporto internacional e eu terei certeza de dizer que você voou em um ILS - Instrument Landing System - abordagem. Desenvolvido para dar maior precisão na aproximação da pista, as melhores aproximações ILS permitem que os pilotos voem com suas aeronaves até a pista, sem a necessidade de ver o solo externamente.

O ILS consiste em dois feixes de rádio que se projetam da área ao redor da pista até o caminho de abordagem. Esses sinais são então captados na aeronave pelo receptor ILS, que os exibe nas telas da cabine de comando.

O primeiro sinal é o localizador, irradiando das antenas que ficam no final da pista. Isso mostra aos pilotos onde a aeronave está em relação à linha central. O segundo sinal vem das antenas ao lado da pista, a cerca de 300 metros da cabeceira da zona de toque. Este é o glideslope e envia outro feixe para o céu, normalmente em um ângulo de três graus para guiar a aeronave verticalmente para o ponto correto de toque.

A maioria das abordagens ILS são feitas com o piloto automático fazendo o vôo e os pilotos monitorando os sistemas. Quando as referências visuais necessárias forem vistas, o piloto em voo desconectará o piloto automático e pousará a aeronave manualmente.

Cat I ILS

Em sua forma mais básica, um ILS de Categoria Um (CAT I) permite que a aeronave inicie uma aproximação com apenas 550 metros de visibilidade relatada e um DA de 200 pés acima do solo. Isso normalmente será suficiente em 99% das condições climáticas que um campo de aviação experimentará em um ano. Como resultado, as abordagens CAT I ILS são encontradas em todos os principais aeroportos internacionais e são o tipo padrão usado.

Dito isso, alguns aeroportos estão tão ocupados que se as condições forem piores do que 550 metros de visibilidade, toda a operação de vôo terá que ser encerrada. Para lidar com essas situações, existem outros tipos de abordagens ILS disponíveis.

Os vários mínimos para a abordagem ILS para a pista 30R em Dubai

CAT II ILS

Quando o tempo realmente fecha, o método padrão de relatar a visibilidade não é bom o suficiente. Para dar leituras mais precisas da visibilidade, um dispositivo especial denominado transmissômetro mede o Alcance Visual da Pista - RVR.

Em sua forma mais simples, o transmissômetro dispara uma fonte de luz entre um emissor e um sensor. Essa interação mede a “espessura” da umidade do ar e dá o RVR em metros.

Uma abordagem CAT II usa o mesmo sinal ILS do localizador e glideslope, mas existem proteções adicionais no local para preservar a integridade dos feixes ILS. Além disso, com uma abordagem CAT II, ​​em vez de usar o altímetro baseado em pressão (bastante preciso) para descer até o DA, os pilotos usam o rádio altímetro (muito preciso) para voar para uma altura de decisão (DH). O rádio-altímetro dispara um feixe de radar abaixo da aeronave para fornecer uma altura exata em que a aeronave está acima do solo.

Como resultado do aumento da precisão, as abordagens CAT II têm mínimos mais baixos, normalmente em torno de 300 metros RVR com um DA de 100 pés acima do solo. Esses mínimos reduzidos também significam que os pilotos normalmente deixam o piloto automático acionado até o toque e executam uma aterrissagem automática. Dito isso, caso haja uma falha no solo ou nos sistemas baseados em aeronaves, há referências visuais suficientes fora da janela para os pilotos ainda pousarem manualmente.

CAT IIIA e CAT IIIB ILS

Quando as coisas ficam realmente nebulosas, o máximo em precisão de navegação é necessário. Com uma abordagem CAT III, a aeronave pode pousar com um RVR de apenas 75 metros e sem DH - na verdade, não há necessidade de ver nada pela janela antes de pousar. Desnecessário dizer que as abordagens CAT III são sempre autolands.

Com uma abordagem CAT IIIB, existem redundâncias suficientes no sistema para ainda pousar com um RVR de 75 metros no caso de uma falha do sistema. Em uma abordagem CAT IIIB, certas falhas exigiriam que os pilotos voltassem a usar os mínimos CAT II. Se isso aconteceu mais tarde na abordagem, pode ser necessário dar uma volta. É exatamente por isso que pousos em mau tempo são realizados pelo piloto automático - ele dá aos pilotos a capacidade sobressalente para perceber falhas no sistema e tomar as medidas adequadas quando o tempo é apertado.

As abordagens do CAT III permitem que as aeronaves pousem com visibilidade de apenas 75 metros

O futuro - RNAV e GPS


Os sistemas ILS são ótimos porque oferecem uma precisão incomparável, mas sua principal falha é que a aproximação deve ser alinhada diretamente com a pista. Isso é bom para lugares como Dubai, onde a área ao redor do aeroporto é plana, mas não é ótimo para lugares cercados por colinas.

Para esses lugares, as abordagens VOR sempre costumavam ser o único método de fazer abordagens em nuvem, mas com o avanço da tecnologia GPS, um novo método de abordagem nasceu - abordagens RNAV.

Em sua forma básica, as abordagens RNAV permitem que as aeronaves usem a precisão de seus sistemas a bordo para fazer uma abordagem em um campo de aviação que não possui antenas físicas no solo. Isso significa que, em tese, uma aeronave pode se aproximar de qualquer aeroporto do mundo com a devida autorização.
Abordagens de RNAV

As abordagens RNAV usam uma série de waypoints GPS para guiar os pilotos lateralmente em direção à pista. Contanto que os sistemas a bordo da aeronave possam manter a precisão necessária (normalmente 0,3 milhas), os pilotos também podem descer de acordo com o perfil publicado nas cartas de aproximação.

Isso é ideal para aeroportos menores, pois eles não precisam pagar e continuar a manter os caros sistemas ILS no solo. Uma vez que a abordagem foi criada e autorizada pelas autoridades competentes, os pilotos podem simplesmente voar a abordagem publicada usando seu equipamento a bordo.

No entanto, quando as abordagens de RNAV realmente entram em ação é quando há terreno ao redor.


Abordagens AR (autorização necessária)


O crème de la crème das abordagens de aeródromo, as abordagens RNAV AR, permitem que os pilotos voem com suas aeronaves em terrenos mais acidentados e ainda se alinhem com a pista. Embora a abordagem seja publicada para que todos possam ver, o aspecto AR significa que cada companhia aérea deve receber a aprovação do regulador para voar aquela abordagem específica. Isso normalmente envolverá o treinamento no simulador para todos os pilotos antes que a aprovação seja concedida.

Embora os mínimos normalmente não sejam muito melhores do que uma abordagem VOR ou RNAV normal, a maior precisão de uma abordagem AR permite que as aeronaves pousem em lugares que normalmente seriam incapazes de fazê-lo. Um ótimo exemplo disso é em Innsbruck (INN), na Áustria, como pode ser visto no gráfico abaixo.

A abordagem RNAV AR em Innsbruck

Com a aproximação começando na extremidade oeste do vale, os pilotos instruem o piloto automático a fazer a aeronave voar através dos waypoints prescritos, virando o vale descendo, descendo conforme eles avançam. Embora a visibilidade necessária seja de 2.400 metros, a abordagem traz a aeronave com segurança a apenas 1.000 pés acima do campo de aviação.

Resultado


Colocar a aeronave com segurança na pista no destino é a principal tarefa de seus pilotos. Para fazer isso, há uma série de abordagens diferentes que poderíamos esperar voar, dependendo das instalações disponíveis no campo de aviação.

As abordagens de VOR foram inovadoras para a época, mas conforme a tecnologia avançava, sistemas mais precisos se tornaram disponíveis. As abordagens ILS são a norma para a maioria dos aeroportos principais agora, permitindo que aeronaves pousem com visibilidade de apenas 75 metros. No entanto, com o aumento da precisão e confiabilidade do GPS, as abordagens de RNAV estão se tornando mais comuns. Eles permitem que as aeronaves façam aproximações em campos de aviação onde antes eram incapazes, tudo sem o custo adicional dos sistemas de navegação terrestres. 

Fontes e imagens: Charlie Page (The Points Guy) / ej.edu.br