Mostrando postagens com marcador Tecnologia. Mostrar todas as postagens
Mostrando postagens com marcador Tecnologia. Mostrar todas as postagens

sábado, 4 de janeiro de 2025

Por que nunca existiu avião movido a energia nuclear?


Em uma sala da Universidade de Berlim, nos idos anos de 1938, os cientistas Otto Hahn, Fritz Strassman e Lise Meitner fizeram a descoberta que mudaria a história: como gerar energia nuclear. Os químicos bombardearam átomos de urânio grandes e instáveis com nêutrons minúsculos e descobriram que o processo poderia produzir bário, um elemento muito mais leve do que o urânio. Sendo assim, eles concluíram que era possível dividir os núcleos de urânio em componentes quimicamente distintos e menos massivos.

O descobrimento da energia nuclear não só otimizou seu uso para armas e causou mudanças drásticas no pensamento sociopolítico mundial, quanto significou o início do progresso para a modernidade e a evolução da indústria global de exportação. Além disso, o armamento bélico foi aprimorado quando a Marinha dos EUA lançou o USS Nautilus, em meados de 1954, o primeiro submarino a propulsão nuclear. Depois dele, vieram os navios e, de repente, a energia se tornou o centro das atenções.

Mas por que nunca existiram aviões movidos a energia nuclear?

Uma ideia revolucionária


(Foto: GettyImages/Reprodução)
Não foi por falta de tentativa. A União Soviética e os EUA lideraram a corrida para desbloquear o poder do átomo e inaugurar um capítulo de realizações na história humana moderna – o que, de fato, aconteceu.

Antes do míssil balístico intercontinental (ICBM) ou dos submarinos a propulsão nuclear, as aeronaves eram responsáveis por carregar armas nucleares o tempo todo nos primeiros dias da Guerra Fria, na esperança de entregar suas cargas úteis nos pontos focais de cada país. Porém, manter esses bombardeiros constantemente no ar exigia muita infraestrutura de apoio e planejamento, sobretudo, no que diz respeito ao reabastecimento, que limitava o alcance e resistência das aeronaves.

Esse problema, no entanto, poderia ser resolvido se os bombardeiros fossem a propulsão nuclear, porque, em teoria, teriam a capacidade de voar por longos períodos sem a necessidade de fazer paradas. Apenas comida, água e resistência a bordo seriam as únicas limitações. A princípio, substituir a alimentação convencional das aeronaves parecia uma tarefa fácil, porém, tanto não foi quanto foi amplamente rejeitada.

(Foto: GettyImages/Reprodução)
Em uma aeronave normal, o ar entra em um motor a jato, onde é comprimido, injetado com combustível e inflamado. Dessa forma, é criado uma explosão controlada forçada para trás, gerando empuxo e empurrando o aparelho para frente.

No caso de um avião movido a energia nuclear, o ar seria absorvido e comprimido, empurrado para fora da parte traseira do motor, criando empuxo e empurrando a aeronave para frente. A diferença é que, no que o ar fosse absorvido, ele atuaria como um refrigerador do reator, fluindo ao redor do próprio ou de um elemento de aquecimento dele. Esse ar superquente e comprimido esguicharia da parte traseira do motor, criando empuxo e empurrando o avião para frente. O ar não fluiria através do núcleo do reator em si, pois isso contaminaria o escapamento com radiação que seria ejetada para o ar.

Os problemas


(Foto: GettyImages/Reprodução)
Nada era prático sobre um avião movido a energia nuclear. A começar pelo peso, para evitar que os pilotos e a tripulação fossem contaminados pela Síndrome Aguda de Radiação, foi necessário várias toneladas de chumbo no meio da fuselagem dos aviões testes para reduzir a exposição à radiação. Somado ao peso dos reatores, isso tornava os aparelhos mais lentos e, consequentemente, alvos mais fáceis para os inimigos.

Além disso, havia um perigo enorme em caso dos bombardeiros serem atingidos, podendo liberar material radioativo, ou até mesmo vazá-lo ainda no ar, prejudicando a todos. Com isso, havia a aceitação popular de ter nos ares uma ameaça como essa, que mais representava uma arma para a própria nação do que um benefício. Apesar de todo o projeto ter corrido em sigilo, havia o receio de que o público pudesse questioná-lo.

Se aeronaves movidas a propulsão nuclear saíssem da área militar e chegassem no mercado da aviação civil, havia a possibilidade de os passageiros não embarcarem em aviões comerciais equipados com reatores nucleares ativos, dada a preocupação com a segurança.

Isso e a criação dos ICBMs lançaram a ideia ao esquecimento conforme os anos foram se passando.

Via Julio Cezar de Araujo (Mega Curioso)

quinta-feira, 2 de janeiro de 2025

Qual a diferença entre quadricóptero, drone e carro voador?

(Imagem: Divulgação/ Embraer)
Com a chegada dos eVTOLs (veículos elétricos com decolagem vertical) ao mercado, muitos questionamentos surgem sobre semelhanças desse tipo de veículo com drones e quadricópteros. Em nossas publicações aqui no Canaltech, é muito comum os leitores perguntarem porque utilizamos o termo "carros voadores", citando, até mesmo, a descrição do que é um carro em dicionários.

Por mais complicado que possa parecer, as diferenças entre drones, quadricópteros e os carros voadores é bem simples e de fácil entendimento, mesmo que, para isso, tenhamos que esbarrar um pouco em questões de regulações e certificações das autoridades.

Basicamente, um eVTOL, o que costumeiramente chamamos de um carro voador, é um veículo elétrico que decola e pousa verticalmente e é capaz de levar passageiros. Os modelos atualmente em testes, como o Eve, da Embraer, podem se controlados tanto por um piloto quanto remotamente e serão, com certeza, utilizados para transporte de carga e, claro, para táxis-aéreos urbanos.

O carro voador da Embraer, ou eVTOL, está em testes (Imagem: Embraer)
Não chamá-los de drones nem de quadricópteros acontece porque, simplesmente, existem muitas diferenças — e algumas semelhanças. Os drones são o que chamamos de VANTs (veículos aéreos não-tripulados), que receberam tal certificação da ANAC (Agência Nacional de Aviação Civil) para operarem em certas circunstâncias, em sua grande maioria para recreação, como já acontecia com os aeromodelos.

Com a evolução da tecnologia desses produtos, hoje eles são capazes até de levar carga, são utilizados em missões de segurança urbana, guerra e outras atividades. Justamente por não necessitarem de uma pessoa a bordo, já que seu comando é totalmente automatizado, podendo ser feito a quilômetros de distância e com uma conexão simples. O formato dos drones pode variar muito, com eles sendo equipados por dois, três, quatro, seis e até 10 rotores, que serão responsáveis por seus comandos e movimentos.

Drone com formato de avião (Imagem: Envato)
Obviamente, todo e qualquer objeto voador com quatro rotores será chamado de quadricóptero, não necessariamente sendo um drone ou helicóptero. Existem modelos de aeronaves com quatro rotores e, em alguns protótipos de eVTOLs, há aqueles que optam por apenas quatro asas rotativas — e não hélices.

Já quando falamos dos eVTOLs, ou carros voadores, tudo ainda está bem no começo. O termo "carro voador" é muito utilizado na imprensa especializada e até por técnicos e fabricantes porque não há, de fato, uma certificação única para este veículo, que, é bom repetir, está em período de testes em várias partes do mundo. E por mais que esses modelos não possuam, necessariamente, a função de um automóvel enquanto no chão, a possibilidade de levar passageiros com o conforto de um carro de passeio torna a comparação e a nomenclatura plausíveis.

Além disso, o setor automotivo caminha para a eletrificação total, com diversas montadoras avisando que não farão mais motores a combustão. Essas empresas também estão diretamente ligadas a projetos de eVTOLs, como a Hyundai, que já anunciou parceria com a Uber para a criação de um táxi voador. É bom dizer, também, que todos os eVTOLs serão elétricos ou, ao menos, movidos com fontes renováveis de energia, sempre sem emissão de CO².

Drone com formato mais "padrão" (Imagem: S. Hermann & F. Richter)
Quando os eVTOLs forem popularizados e receberem as devidas certificações de operação, saberemos se continuaremos chamando-os de carros voadores ou se será criado outro termo para eles. Até lá, é importante notar a semelhança que esses veículos possuem com os carros e como eles nos ajudarão na mobilidade urbana do futuro.

Para quem viveu nos anos 1990 e lembra dos comentários de como seria o futuro dos carros, vai se recordar de que, quase sempre, a expressão "carro voador" era usada com frequência. Agora que eles chegaram, vamos parar de falar assim? O futuro chegou e os carros voadores também.

Por Felipe Ribeiro e Jones Oliveira (Canaltech)

segunda-feira, 30 de dezembro de 2024

Qual é a velocidade máxima de um avião comercial?


É fato que os aviões facilitam muito a nossa vida no deslocamento para lugares longínquos. Partindo de São Paulo, é possível chegar a locais como Roma, Paris e Lisboa em pouco mais de 10 horas, algo inimaginável e incomparável quando pensamos em meios de transporte como carros, trens e até navios. Isso tudo é possível, claro, graças às altíssimas velocidades alcançadas por esses gigantes de aço.

Atualmente, o avião comercial mais rápido em atividade é o Airbus A330Neo, uma versão mais moderna de um dos modelos de maior sucesso da fabricante europeia. O A330Neo tem maior envergadura em relação ao seu modelo base, com pouco mais de 3 metros de diferença. Além disso, suas winglets, aquelas pequenas curvaturas nas pontas das asas, são personalizáveis e podem aferir um comprimento um pouco maior.


Seu principal diferencial em comparação com o modelo base, porém, está no consumo de combustível (14% menor) e na velocidade, superior graças aos modernos motores Rolls-Royce Trent 7000. Segundo dados da Airbus, a velocidade máxima dessa aeronave é de 1.061 km/h, apenas 10 km/h a mais do que o Boeing 787 Dreamliner, considerado por muitos especialistas a aeronave mais eficiente do planeta. Esse valor é o maior já registrado de modo oficial, embora seja muito difícil de determinar se outras aeronaves conseguiram superar.

Saudades do Concorde?


Entretanto, se é para falarmos de velocidade na aviação comercial, o icônico supersônico Concorde não pode faltar nesta matéria. Graças aos seus motores de pós-combustão, ele é capaz de voar a duas vezes a velocidade do som, atingindo 2.179 km/h.

Com isso, o Concorde fazia a rota Paris-Rio de Janeiro, com uma pequena escala em Dakar, no Senegal, em apenas seis horas, metade do tempo que jato comercial comum leva atualmente. Além disso, graças à sua fuselagem e motorização ultrapotente, o modelo anglo-francês era capaz de voar a uma altitude de 18.300 metros, ou 60 mil pés, o suficiente para ver a curvatura da Terra.

O icônico Concorde impressionava pelo visual diferenciado e pela velocidade que atingia:
2.179 km/h (Imagem: Adrian Meredith, concordephotos.com)
Entretanto, devido ao alto custo operacional e passagens que cobravam justamente o proporcional para mantê-lo funcionando, o Concorde foi aposentado em 7 de novembro de 2001.

O que está por vir?


Algumas empresas estão trabalhando para o retorno triunfal dos aviões supersônicos e hipersônicos. O modelo mais famoso em produção é o Overture, desenvolvido pela Boom Supersonics, que já teve algumas encomendas pela United Airlines. Para exemplificar a capacidade dessa aeronave, a promessa é que voos entre Nova York e Londres sejam feitos em apenas 3 horas e meia graças à velocidade máxima de 2.100 km/h.

Overture é uma das apostas do mercado para a retomada dos aviões comerciais
supersônicos (Imagem: Divulgação/Boom Supersonics)
Além de rápido, o Overture também será eficiente e bem menos poluente do que o Concorde. A Boom projetou o Overture para ser 100% neutro em carbono desde seu primeiro voo, que ainda vai acontecer — em caráter experimental — até 2026. Além disso, a cabine e o serviço prometem ser mais confortáveis e menos custosos, acessíveis a mais pessoas pelo mundo, já que o Concorde, justamente por seus elevados gastos operacionais, tinha a presença majoritária de passageiros mais abonados.

Além da Boom Supersonics, outras empresas trabalham em aviões supersônicos, como a Lockheed Martin, que, em parceria com a NASA, está desenvolvendo o supersônico silencioso X-59.

Por Felipe Ribeiro e Jones Oliveira (Canaltech)

domingo, 29 de dezembro de 2024

Vídeo: Aviões que são à prova de radar

A camuflagem é uma das técnicas mais eficientes quando se quer surpreender um oponente. Atacar sem ser detectado, aumenta as chances de sucesso já que não há tempo para as forças adversárias reagirem.

Nada melhor do que ter ao seu lado um avião “invisível” para poder espionar o espaço aéreo inimigo. Mas, na verdade, essas aeronaves não são transparentes como o jato da Mulher Maravilha ou algo do gênero, elas apenas conseguem se tornar indetectáveis pelos radares.

Neste vídeo, você vai conhecer alguns aviões impressionantes que, apesar de poderem ser vistos a olho nu, são capazes de se esconder dos sistemas de radar mais avançados do mundo.


sexta-feira, 27 de dezembro de 2024

Sistemas de pouso por instrumentos: tudo o que você precisa saber sobre o ILS

O Instrument Landing System (ILS) foi introduzido pela primeira vez no final dos anos 1930, mesmo antes da eclosão da Segunda Guerra Mundial.

(Foto: Getty Images)
O Instrument Landing System (ILS) foi introduzido pela primeira vez no final dos anos 1930, mesmo antes da eclosão da Segunda Guerra Mundial. E até hoje continua sendo a forma mais precisa de auxílio à navegação de aproximação para pilotos.

O ILS pode fornecer orientação horizontal e vertical para uma pista. Ele pode ser tão preciso que os pilotos podem usar o sistema para pousar em um aeroporto sem sequer ver a pista . Como o ILS pode fornecer orientação lateral e vertical, uma abordagem ILS é considerada uma abordagem de precisão.

Uma breve introdução ao ILS


O ILS, até hoje, fornece a orientação de aproximação e pouso mais precisa (Foto: Getty Images)
O ILS consiste em dois componentes principais. O Localizer (LLZ) e o Glide Path (GP), que é mais comumente chamado de Glide Slope. O localizador orienta o piloto e a aeronave no plano lateral, enquanto o glide slope fornece orientação de trajetória vertical.

Nos ILS mais antigos, os beacons - ou mais especificamente, os sinalizadores - são usados ​​para que os pilotos possam verificar se estão na altura correta no momento. Esses sinalizadores acendem no cockpit ao passar por um determinado ponto da aproximação.

Os ILS mais recentes possuem Equipamentos de Medição de Distância (DME) que podem calcular a distância com precisão. Assim, os beacons de marcação têm sido amplamente obsoletos.

As frequências operacionais do ILS


(Imagem: flymag.com)
O ILS é sintonizado pelos pilotos usando uma frequência definida. O localizador do sistema opera na faixa VHF (Very High Frequency), entre 108 e 111,975 MHz. Mais de 40 canais são alocados para o localizador das operações ILS.

O Glide Slope opera na banda UHF (Ultra High Frequency). As frequências alocadas estão entre 329,15 e 335 MHz. Assim como o localizador, 40 canais são fornecidos para a transmissão do glide slope.

Para facilitar a vida dos pilotos e evitar a chance de sintonizar a frequência errada, o localizador e as frequências do glide slope são emparelhados.

O pareamento é feito pela ICAO. Por exemplo, a frequência do localizador de 109,1 MHz é emparelhada com a frequência do glide slope de 331,4 MHz.

Portanto, se a frequência do ILS for 108,1 MHz, o piloto precisará apenas sintonizar 108,1 MHz e obterá o localizador e o sinal do glide slope, pois a frequência do glide slope é emparelhada com 108,1 MHz.

(Foto: Airbus)
O DME também está emparelhado com a frequência ILS. Assim, com um interruptor, os pilotos podem obter o localizador, glide slope e o sinal DME.

O princípio de operação ILS


O localizador

A antena localizadora é colocada na extremidade de aproximação da pista. O localizador do ILS é composto por dois lóbulos. Um lóbulo à direita da linha central da pista e um lóbulo à esquerda da linha central. Os lóbulos se sobrepõem bem na linha central e são transmitidos na direção da aeronave que se aproxima da pista para pouso.

Antena localizadora (Foto: goldcoastairport.com)
Para diferenciar os dois lóbulos, o lóbulo direito é modulado para uma frequência de 150 Hz, enquanto o lóbulo esquerdo é modulado para 90 Hz. Dessa forma, o receptor ILS a bordo (aeronave) pode identificar o lóbulo no qual está voando.

Quando uma aeronave se move ou se afasta da linha central, a profundidade da modulação (DOM) ou a amplitude do sinal aumenta. O que isso significa é que, por exemplo, se uma aeronave estiver à esquerda da linha central da pista, ela receberá mais do sinal de 90 Hz em comparação com o sinal de 150 Hz da direita. Essa diferença é conhecida como diferença de profundidade de modulação (DDM). Este DDM é convertido em deslocamento angular pelo receptor da aeronave, que é mostrado ao piloto em seus instrumentos e o comanda para ir para a direita.

Existe uma maneira mais fácil de imaginar isso. Se você receber 20% do sinal de 90 Hz e 5% do sinal de 150 Hz, haverá uma diferença de frequência de 15%. Como a aeronave recebe uma porcentagem maior do sinal de 90 Hz, verifica-se que ela está à esquerda do centro e o indicador no cockpit deve direcionar o piloto para a direita.

O localizador tem dois feixes (Foto: rohde-schwarz.com)
Quando o piloto voa o indicador centrado, o DDM é zero e a aeronave está no eixo da pista.

A rampa de deslizamento


O transmissor ou antena do glide slope é colocado em um lado da pista a cerca de 300 m ou cerca de 1000 pés da soleira da pista. A distância lateral entre o transmissor e a borda da pista é de cerca de 120 m.

Antena Glide Slope (Foto: Herr-K por Wikimedia)
Também consiste em dois lóbulos. E assim como o localizador, um feixe (feixe superior) é modulado para uma frequência de 90 Hz e o outro feixe (feixe inferior) é modulado em 150 Hz. Isso é semelhante ao localizador, onde os lóbulos se encontram é o ponto onde a aeronave está no planeio correto. A maioria das rampas de deslizamento são calibradas para um ângulo de descida de 3 graus.

O princípio de funcionamento também é o mesmo do localizador. O receptor da aeronave usa o DDM detectado para encontrar sua localização em relação ao planeio calibrado. Se o piloto estiver alto, ele comanda o piloto para descer, e se o piloto estiver baixo no planeio, o indicador comanda o piloto para voar para cima.

Os dois lóbulos do sinal de glideslope (Foto: Fred the Oyster por Wikimedia)
Uma falácia do glideslope é a presença de falsos glideslopes. Como o sinal de glide slope está em contato com o solo, ele causa reflexões de sinal, o que gera falsos glideslopes. Essas inclinações estão sempre acima do glideslope real e estão em múltiplos de três, com a primeira ocorrendo a 6 graus.

Pode ser muito perigoso entrar em um falso glide slope, especialmente em condições de baixa visibilidade. Por esse motivo, os pilotos devem sempre conferir a distância até a pista e a altura da aeronave. Para um glide slope de 3 graus, há um aumento de altitude de 300 pés por milha náutica. Assim, por exemplo, se a aeronave está a 5 NM, a altitude da aeronave deve ser (300 x 5) = 1.500 pés. Este cálculo simples pode ser usado para determinar se a aeronave está no glide slope correto.

Falsas rampas de deslizamento (Foto: Airbus)

O localizador e a cobertura do glide slope


Para o localizador, a cobertura é de 25 NM dentro de mais ou menos 10 graus da linha central da pista. Quando a 17 NM, deve ocorrer entre 10 graus e 35 graus.

A cobertura do glide slope se estende da linha central da pista até 10 NM com setores de 8 graus a partir da linha central.

(Imagem: Oxford ATPL)
A cobertura vertical é tal que, no nível mais baixo, é de 0,3 x o planeio definido e até 1,75 x o planeio definido. Para um glide slope de 3 graus, isso significa que uma aeronave pode receber o sinal quando estiver entre -5,25 graus e -0,90 graus do glideslope.

(Imagem: Airbus)

Como voar uma aproximação ILS


O instrumento ILS dentro do cockpit consiste em duas agulhas - uma para indicar o glideslope e outra para indicar o localizador. Quando o ponteiro do glide slope se move para cima, o piloto deve se inclinar para cima, pois está abaixo do planeio. E quando a agulha do localizador se move para a esquerda, o piloto deve manobrar a aeronave para a esquerda, pois isso indica que a aeronave está à direita do eixo da pista.

Fica mais complexo em condições de vento, principalmente em ventos cruzados, que podem desviar a aeronave do localizador. Assim, os pilotos devem corrigir os ventos durante tais aproximações.

Voando para o localizador (Imagem: Oxford ATPL)



Voando para o Glide Slope (Foto: Oxford ATPL)

Os tipos de abordagens ILS


Abordagem ILS do curso de volta

A antena do localizador pode gerar uma imagem espelhada atrás dela. Isso significa que ele cria um sinal localizador para a pista oposta. Este sinal pode ser usado para voar um ILS de volta. A principal diferença entre um ILS de curso reverso e um ILS normal é que a agulha indicadora do localizador está invertida. O que isso implica é que, se o ponteiro apontar para a esquerda, o piloto deve ir para a direita e, se o ponteiro apontar para a direita, o piloto deve voar para a esquerda.

O glideslope não pode ser usado em tal abordagem e, portanto, é considerado uma abordagem de não precisão. Este tipo de abordagem é proibido na maioria dos países.

A abordagem do localizador

As abordagens do localizador usam apenas o componente localizador do ILS. Aqui, a trajetória vertical da aproximação ou glideslope não está disponível, e os pilotos devem descer cruzando distâncias e altitudes.

Este tipo de abordagem é usado em muitos aeroportos quando o glide slope de uma determinada pista está fora de serviço. Esta também é uma abordagem de não precisão.

Localizador de deslocamento ou abordagem de auxílio direcional (LDA) do tipo localizador

Em tal abordagem, a aeronave é guiada no localizador não diretamente para a pista, mas para longe dela. Às vezes, isso é feito para reduzir o ruído, pois colocar um feixe localizador no caminho de aproximação da pista pode colocar os aviões que chegam bem acima dos bairros próximos. As aproximações LDA são executadas no localizador até uma certa altitude de descida, ponto em que o piloto deve identificar visualmente a pista e fazer uma curva e pilotar a aeronave visualmente até o pouso.

O aeroporto de Haneda, no Japão, possui dois procedimentos de aproximação LDA muito famosos para as pistas 23 e 22. Isso evita que aeronaves sobrevoem a área da cidade durante a aproximação para pouso.

Abordagem LDA, Haneda, Tóquio (Imagem: Jeppesen)

Os mínimos de ILS


O mínimo para um ILS é chamado de Altitude de Decisão (DA) para aproximações ILS CAT I. Esta altitude é a altitude barométrica dada pelo altímetro da aeronave. Os mínimos para aproximações CAT II e CAT III são conhecidos como Altura de Decisão (DH), que é a altura acima da pista medida pelo rádio-altímetro.

O DA/DH é a altitude na qual o piloto deve ter pistas visuais suficientes para continuar o pouso. Se visuais suficientes não estiverem disponíveis em DA/DH, uma aproximação perdida deve ser iniciada. O DA é calculado com base nos obstáculos e na aeronave. Em alguns aeroportos, os DA para aeronaves mais pesadas são maiores quando comparados aos mais leves, pois é esperado que eles fiquem abaixo do DA durante a arremetida devido à inércia.

Aeronaves mais pesadas têm mínimos de ILS mais altos (Foto: Qantas)

As categorias ILS


ILS tem muitas categorias. O mais básico é o ILS categoria I ou ILS CAT I. É usado em operações normais. Os mínimos CAT I são baseados na altitude barométrica. As aproximações CAT II e CAT III são usadas em condições de baixa visibilidade. Isso requer equipamentos ILS mais refinados e tem um mínimo baseado em rádio-altímetros de aeronaves. As operações ILS CAT II e III podem suportar pousos automáticos e podem fornecer orientação de lançamento automático para automação de aeronaves após o pouso.

CAT I
  • DA não inferior a 200 pés
  • Alcance visual da pista (RVR) não inferior a 550 m.
CATII
  • DH inferior a 200 pés, mas não inferior a 100 pés
  • RVR não inferior a 300 m.
CATIIIA
  • DH inferior a 100 pés ou sem DH
  • RVR não inferior a 200 m.
CAT IIIB
  • DH inferior a 50 pés ou sem DH
  • O RVR é inferior a 200 m, mas não inferior a 75 m.
O RVR é uma medida da visibilidade da pista.

As abordagens CAT II/III são usadas em condições de baixa visibilidade
(Foto: Mathieu Neuforge via Wikimedia Commons)
Edição de texto e imagens por Jorge Tadeu (com Simple Flying)

quinta-feira, 26 de dezembro de 2024

O B-2 e como os aviões invisíveis enganam os radares?

O segredo é uma combinação complexa de revestimento especial com design inteligente. O objetivo de um avião invisível é entrar em território hostil, realizar sua missão e retornar em segurança sem ser detectado pelo inimigo. 

Para conseguir isso, não basta apenas escapar das ondas de rádio dos radares. Ainda é preciso ser silencioso, difícil de enxergar a olho nu e capaz de driblar sensores de calor. O mais famoso avião avião é o bombardeiro americano B-2 Spirit. 


Eles custaram aos Estados Unidos a fábula de 2,2 bilhões de dólares cada um. Se suas 150 toneladas foram transformadas em ouro puro, não dariam um quarto desse valor! Quando o B-2 foi projetado, na década de 70,


A partir dos anos 90, com a convivência mais pacífica entre os dois países, o bombardeiro foi adaptado para carregar bombas convencionais, podendo participar de menor porte. 

Além da invisibilidade, o que mais impressiona no B-2 é sua grande autonomia para um avião de guerra, conseguindo voar 11 mil milhas sem reabastecer. 

A estreia dele em combate aconteceu em 1999, durante os conflitos separatistas em Kosovo, província da antiga Iugoslávia. Enquanto outros aviões decolavam de porta-aviões e bases aéreas próximas da região, os B-2 vinham direto dos Estados Unidos, onde fica uma única base aérea capaz de cuidar de sua delicada manutenção. 

Numa nova guerra é provável que os B-2 sejam os primeiros aviões na linha de ataque, destruindo como defesas antiaéreas e abrindo caminho para outras aeronaves.

Efeito asa

Em vez de ter asas e cauda, como os aviões comuns, o B-2 inteiro é uma espécie de asa voadora. Isso melhora muito sua sustentação no ar, economizando combustível e permitindo ao B-2 alcançar distâncias intercontinentais em curto tempo, mesmo com seu peso imenso de 150 toneladas

Sem ar quente

Antes de sair pelos exaustores, o jato de gerado ar gerado pelos motores e que impulsiona o avião à frente passa por dutos de refrigeração. Assim, o ar deixa a nave com temperatura quase igual à ambiente, despistando mísseis e radares que seguem os rastros de calor

Motor discreto

As partes metálicas do B-2, como os trens de pouso e os quatro motores a jato, ficam enterrados no meio do avião, onde não refletem as ondas do radar. Esse esconderijo também serve para abafar o barulho do motor

Menor que um pássaro

O formato esquisito do B-2 foi planejado para desviar as ondas de rádio para longe do radar que adicionou, evitando que elas retornem ao equipamento e indiquem a posição do avião. 

Além disso, um aeronave é recoberta por materiais não-metálicos e uma camada de tinta especial (de composição secreta) capaz de absorver uma parte dessas ondas de rádio, do mesmo modo que um objeto negro consegue absorver uma luz. 

Graças à tintura misteriosa (que precisa ser renovada a cada voo) e ao seu formato, o B-2 é identificado pelos radares como um objeto menor que um pequeno pardal e por isso nem aparece na tela

Pego pelo radar

As ondas de rádio emitidas por um radar batem em objetos sólidos e são refletidas de volta. Cada objeto aparece de um jeito na tela do equipamento. Como grandes chapas de metal (como da fuselagem dos aviões) são excelentes refletores de ondas, estas retornam em alta frequência ao radar e as imagens comuns aparecem na tela.

Fonte: Superinteressante - Imagens: Reprodução

quinta-feira, 19 de dezembro de 2024

Por que as tampas dos motores Boeing 737 MAX são serrilhadas?

Uma maneira de diferenciar o Boeing 737 MAX de seus irmãos não MAX é pelos "dentes" na parte traseira de seus motores. Eles também são encontrados em outros jatos de última geração da Boeing, como o 787 Dreamliner e o 747-8. Mas por que eles estão lá?

O Boeing 737 MAX tem uma borda serrilhada na parte traseira de seus motores (Getty Images)

O Boeing 737 MAX deve retomar os voos de passageiros acima dos Estados Unidos no final deste mês, após 20 meses de encalhe. No ano que vem, as tampas serrilhadas do motor do 737 MAX se tornarão muito mais comuns em aeroportos de todo o país. Vamos descobrir mais sobre esses 'dentes'.

Desenvolvido com NASA e outros

O nome verdadeiro desses dentes na nacela do motor, ou tampa do motor, é divisas. No entanto, para saber por que eles são usados, vamos primeiro descobrir de onde vieram. A Boeing testou pela primeira vez o projeto da Chevron em seu segundo Demonstrador de Tecnologia Quiet.

A tecnologia foi desenvolvida pela Boeing, General Electric e NASA e, inicialmente, também viu divisas colocadas no bocal de escapamento do motor, além da nacela. Enquanto o 747-8 tem os dois conjuntos de divisas, o 787 e o 737 MAX têm apenas as divisas da nacele.

Os Chevrons foram testados pela primeira vez no segundo demonstrador de tecnologia silenciosa da Boeing (Boeing via NASA)

Reduzindo as emissões de ruído

O objetivo dos 'chevrons' nos motores das aeronaves Boeing mais novas, como o 737 MAX, é reduzir o ruído feito pelos motores da aeronave. Nas palavras da Boeing ,

“As divisas reduzem o ruído do jato controlando a forma como o ar se mistura depois de passar pelo motor e ao redor dele.”

Na verdade, os 'dentes' são tão eficazes na redução do ruído que, em 2005, a Boeing estimou que permitiriam a remoção de várias centenas de libras de isolamento acústico da aeronave. Uma aeronave mais leve é ​​uma aeronave mais econômica em termos de combustível. Enquanto isso, a redução do ruído gerado pela aeronave certamente será muito bem-vinda pelos residentes que moram perto dos aeroportos mais movimentados do mundo.

O futuro…

Curiosamente, o projeto da nacele do motor em forma de dentes encontrado no 737 MAX, 747-8 e 787 não é encontrado na aeronave mais recente do fabricante americano. O 777X não tem as divisas nos enormes motores GE9X que o movem. Como a tecnologia continuou a evoluir, parece que a Boeing conseguiu o mesmo resultado com a nova tecnologia.

A Boeing continuou testando como tornar as aeronaves mais silenciosas com seu 787-10 ecoDemonstrator (Paul Weatherman via Boeing)

No entanto, a Boeing está continuando seu trabalho para tornar suas aeronaves mais silenciosas e eficientes. Recentemente, ela usou um Boeing 787-10 com destino à Etihad em seu programa ecoDemonstrator. Como parte dos testes, a Boeing buscava tecnologias para reduzir ainda mais o ruído gerado por suas aeronaves.

Uma dessas ideias viu coberturas aerodinâmicas colocadas no trem de pouso da aeronave. O trem de pouso de uma aeronave é responsável por 30% do ruído gerado quando uma aeronave pousa. Enquanto a Boeing ainda analisa os números, testemunhas disseram que a aeronave com o trem de pouso modificado estava visivelmente mais silenciosa.

Com informações de Simple Flying

segunda-feira, 16 de dezembro de 2024

A NASA também tem o seu: avião do vômito da Nasa foi usado para treinar astronautas e gravar filmes

'Cometa vômito', avião da Nasa para experiências e treinamentos com gravidade zero (Foto: Alan Wilson)
Sentir enjoos em um avião não é uma das melhores sensações que se pode ter em um voo. Isso é tão comum que as companhias aéreas até disponibilizam os famosos saquinhos de vômito para seus clientes.

Isso é um efeito colateral, ou seja, não é o que se deseja que aconteça em um voo. Entretanto, um avião da Nasa, a agência espacial americana, é famoso justamente por causar enjoos nos seus passageiros devido à maneira como ele voa.

Apelidada de "cometa vômito", essa aeronave foi utilizada para simular ambientes com gravidade zero, como no espaço. Durante décadas ela serviu para o treino de astronautas dos programas espaciais dos EUA.

Apollo 11: Buzz Aldrin, segundo homem a pisar na lua, treina a bordo do avião do vômito,
um KC-135 adaptado (Imagem: Nasa)

Funcionamento


O avião do vômito não é um único avião em particular, mas um conjunto de aeronaves que tinham finalidade de simular a gravidade zero ou microgravidade. Para isso, era preciso voar em parábolas, subindo o avião em um ângulo de 45° e, depois, fazendo um mergulho com o nariz (ponta dianteira) inclinado também 45° em direção ao solo.

Imagem mostra como funcionam as parábolas de gravidade zero do avião do vômito
(Imagem: Tradução/Alexandre Saconi)
Durante a subida, a força da gravidade pode ser até duas vezes maior do que a que alguém sente na superfície da Terra. Quando chega ao ápice da parábola, a sensação é de gravidade zero, e é possível "flutuar" dentro desses aviões.

Cada um desses ciclos de voo dura cerca de 65 segundos, mas a gravidade zero só ocorre durante 25 segundos, sendo necessário recomeçar a operação. Em um único voo, são feitas dezenas de parábolas como parte do treinamento de missões espaciais.

"Cometa vômito" no cinema


O avião da Nasa também já foi usado em gravação para o cinema. O longa "Apollo 13 - Do Desastre ao Triunfo" (Universal Pictures, 1995), estrelado por Tom Hanks, Kevin Bacon e Bill Paxton, teve suas cenas gravadas a bordo do "cometa vômito".

Os atores Bill Paxton, Kevin Bacon e Tom Hanks em cena de 'Apollo 13', que foi gravado no
 'cometa vômito' (Imagem: Reprodução)
A Nasa colaborou emprestando o avião para a produção gravar as cenas. Foram centenas de tomadas feitas, já que a duração da gravidade zero era muito curta.

Modelos

Detalhe no nariz do Boeing KC-135 N931NA, o 'cometa vômito', explica manobra de
zero gravidade (Imagem: Clemens Vasters)
Embora a Nasa já tenha usado outros aviões, como o C-9 e o C-131, o "cometa vômito" mais conhecido foi o KC-135 Stratotanker, da Boeing. O modelo passou a ser usado na década de 1960, e foi aposentado nos anos 2000.

Originalmente fabricado para realizar reabastecimento aéreo, ele também é capaz de fazer operações aeromédicas. Ao todo, cinco exemplares do Stratotanker foram adaptados para voos de simulação de gravidade zero.

Ele é um quadrimotor que pode pesar até cerca de 140 toneladas e voar a até 15 quilômetros de altitude. Esse modelo adaptado do KC-135 também pode voar a uma distância de até 4.800 km e atingir uma velocidade de 940 km/h.

Hoje esses dois exemplares estão expostos no Museu Pima do Ar e Espaço e, outro, na base aérea Ellington Field, em Houston (EUA). Atualmente, a Nasa usa o serviço de empresas particulares para fazer treinamentos e experiências com gravidade zero.

Ed Mitchell e Al Shepard, astronautas da Apollo 14, treinam a bordo do
'cometa vômito' da Nasa (Imagem: 4.nov.1970/Nasa)
Por Alexandre Saconi (UOL)

Falando em Zero G: Voo Parabólico - Como Zero G é alcançado em aeronaves

A Novespace, uma agência espacial francesa subsidiária, possui e opera um A310
dedicado para voos Zero G (Foto: Getty Images)
Os voos parabólicos são uma forma de os cientistas estudarem fenômenos de gravidade zero fora do espaço. A aeronave pode atingir a gravidade zero usando uma trajetória de vôo específica, que a vê em forma de parábola. Os voos Zero G também são abertos ao público, permitindo que todos se sintam temporariamente como se estivessem no espaço. Vamos descobrir como isso funciona.

Como funciona


Alcançar a gravidade zero ainda na atmosfera terrestre exige que os aviões voem de maneira precisa. Um vôo parabólico começa como qualquer outro, com o avião decolando de uma pista, mas é aí que as coisas mudam. Logo após a decolagem, os pilotos mudam o ângulo de ataque para 50° até 6.000 pés, dando aos passageiros uma sensação de hipergravidade (1.8G). Isso dura cerca de 20 segundos antes de os pilotos entrarem na manobra parabólica.

A parábola começa com uma chamada “injeção”, onde os pilotos reduzem a velocidade da aeronave enquanto se movem para cima. A redução da velocidade faz com que a gravidade caia para zero (0G), criando uma sensação de leveza entre os passageiros. Essa parábola dura cerca de 22 segundos, após os quais os pilotos aumentam a velocidade mais uma vez.

Os passageiros ficam sem gravidade por 22 segundos durante a fase parabólica do voo (Foto: Air Zero G)
Para sair da parábola e nivelar, os pilotos inclinam o nariz do avião 42° para baixo. Essa inclinação mais uma vez faz com que os passageiros sintam hipergravidade (1.8G) e, 20 segundos depois, o avião está mais uma vez no nível da terra. Os passageiros geralmente veem várias parábolas durante um único voo.

Controles especiais


Os voos parabólicos são realizados em aeronaves especializadas devido à complexidade de suas manobras. Conforme mencionado, a agência espacial francesa, CNES, atualmente possui um Airbus A310 dedicado para voos de gravidade zero. Embora fisicamente igual a outros A310s, possui controles de vôo ligeiramente diferentes.

A aeronave é pilotada por três pilotos, todos com funções distintas durante o voo. Um piloto controla a inclinação da aeronave, o segundo controla o rolamento e o terceiro controla a velocidade do motor e verifica os avisos. Os controles separados garantem que a gravidade quase zero possa ser alcançada durante o vôo.

Os voos são realizados em um A310 especializado com controles de voo separados (Foto: Air Zero G)
Esta configuração é diferente de um A310 comercial, pois os comandos de rotação e inclinação são dissociados um do outro, de acordo com o Air Zero G. Isso permite que diferentes pilotos controlem as duas funções durante o vôo.

Aberto ao público


Embora os voos parabólicos sejam geralmente reservados para experimentos e testes de equipamentos espaciais, o público também pode experimentar. A agência espacial francesa CNES oferece voos de experiência com sua aeronave A310 Zero G especialmente modificada. Operados pela Air Zero G, esses voos acontecem algumas vezes por ano e em cidades de toda a Europa. No entanto, eles não são baratos.

O voo custa aos passageiros enormes € 6.000 (Foto: Air Zero G)
Um voo normal no Zero G Airbus A310 inclui 15 ciclos parabólicos (dando cerca de cinco minutos sem gravidade). Este vôo custaria aos passageiros de € 6.000 a € 8.000, definitivamente não uma experiência barata. Embora possa custar o mesmo que uma passagem de primeira classe em todo o mundo, esta experiência é verdadeiramente única.