segunda-feira, 1 de março de 2021

Aconteceu em 1 de março de 1978: Fogo após decolagem abortada do voo 603 da Continental Airlines


No dia 1º de março de 1978, o Continental Airlines DC-10 com 200 pessoas a bordo estourou um pneu na decolagem do Aeroporto Internacional de Los Angeles. Ao longo de um período de meros segundos, essa falha aparentemente menor aumentou rapidamente, desencadeando uma sequência de eventos que fez o avião deslizar para fora da pista em chamas. 

Enquanto os passageiros corriam para escapar do avião em chamas, os escorregadores de saída falharam, deixando dezenas de pessoas presas lá dentro. Os que ainda estavam a bordo foram forçados a pular das portas e da asa, resultando em ferimentos graves, enquanto quatro pessoas morreram na fumaça e nas chamas. 

Ao investigar o acidente, o National Transportation Safety Board não apenas descobriu a cadeia de eventos que transformou um pneu estourado em um acidente fatal, mas descobriu que várias lacunas na rede de segurança regulatória permitiram que o incidente saísse do controle. 

Cenários de falha em potencial não foram considerados, requisitos que pareciam lógicos em retrospectiva não existiam e suposições feitas não refletiam com precisão as condições reais. Fechar essas lacunas acabou sendo uma tarefa monumental - que continuou por mais de 20 anos após o acidente.

O voo 603 da Continental Airlines era um voo regular de Los Angeles, Califórnia, para Honolulu, Havaí. Como era típico dos voos fora de temporada para o Havaí, a maioria dos passageiros fazia parte de um grupo de aposentados com destino às ilhas tropicais nas férias de primavera; entre os 186 passageiros com reserva no voo, a idade média era 60. 


A bordo do wide body McDonnell Douglas DC-10-10, prefixo N68045, da Continental Airlines (foto acima), estavam 14 tripulantes, incluindo o capitão Charles Hershe, o primeiro oficial Michael Provan e o engenheiro de voo John Olsen, todos eles teve milhares de horas de experiência. Hershe, aos 59 anos, era de fato um dos pilotos mais experientes da Continental Airlines; ele voava pela Continental desde 1946 e tinha quase 30.000 horas de voo.

Antes de cada voo sair do portão, os pilotos usam tabelas de referência padronizadas e uma calculadora para determinar a velocidade de decisão, ou V1, para a pista em que planejam decolar. V1 é definida como a velocidade acima da qual o avião não pode ser parado com segurança no comprimento restante da pista usando a força máxima de frenagem e sem empuxo reverso. V1 também é chamada de “velocidade de decisão” porque é o último ponto em que os pilotos podem tomar a decisão de abortar a decolagem em caso de um problema, como uma falha do motor; acima dessa velocidade, é considerado mais seguro continuar a decolagem. 

Em 1978, o valor exato de V1 dependia do peso da aeronave, comprimento da pista, direção e velocidade do vento, inclinação da pista, altitude do campo de aviação e algumas outras variáveis. No portão, Hershe e Provan determinaram que o peso do voo 603 era 194, 909 kg (429.700 libras), apenas 136 kg (300 libras) abaixo do peso máximo de decolagem. Contra-intuitivamente, isso impediu o voo de decolar em qualquer uma das pistas mais longas do LAX, porque essas pistas incluíam um viaduto que não foi classificado para suportar o peso de um jato de corpo inteiro totalmente carregado. 


Embora reformas estivessem em andamento para resolver esse problema, elas ainda não haviam sido concluídas e o voo 603 foi forçado a usar a pista 6R, mais curta. Levando em consideração esses fatores, e um vento contrário de cinco nós, os pilotos calcularam que V1 para essa decolagem seria de 156 nós (289km/h). Nenhum ajuste foi feito para compensar o fato de que uma garoa leve caiu durante toda a manhã e a pista estava molhada, nem foi necessário tal ajuste.

Por volta das 9h20, o voo 603 saiu do portão e começou a taxiar para a pista. Para os pneus de uma aeronave, o taxiamento é um dos períodos mais estressantes do voo. Os pneus - em um DC-10, são 10 - devem suportar todo o peso do avião, ao mesmo tempo em que suportam forças de atrito significativas à medida que rolam pela superfície do aeroporto. 

Como resultado, os pneus se desgastam rapidamente. O pneu médio de uma aeronave tinha uma vida útil de apenas cerca de 150 voos; no entanto, isso pode ser estendido recauchutando o pneu. Durante o processo de reforma, os pneus são inspecionados quanto a danos, então a banda de rodagem velha é removida e a nova é afixada na carcaça do pneu, permitindo que o pneu volte ao serviço.
A Continental Airlines permitiu que os pneus de suas aeronaves fossem reformados até três vezes, aumentando significativamente sua vida útil. No voo operacional 603 do DC-10, vários pneus já haviam sido reformados. Os pneus dos dois truques principais do trem de pouso são atribuídos aos números de 1 a 8, começando com os quatro na frente, seguidos pelos quatro na parte traseira; esses oito pneus devem suportar a maior parte do peso do avião. Destes, os pneus um e dois foram reformados três vezes e ambos sofreram mais de 900 pousos. Vários outros pneus foram reformados uma ou duas vezes, e alguns eram novos.
De grande interesse foram os pneus 1 e 2, ocupando as duas posições dianteiras no trem de pouso principal esquerdo. O pneu 2 era de uma marca diferente do pneu 1 e sua parede lateral não era tão rígida, fazendo com que se comprimisse mais quando o peso era colocado na marcha. Isso teve o efeito de transferir uma parcela maior da carga para o pneu 1 e, com o tempo, a borracha desse pneu começou a sofrer rachaduras por fadiga. Ao mesmo tempo, o pneu 2 tinha vários remendos que poderiam estar no fim de suas vidas úteis. 
Às 9h25, o voo 603 alinhou-se com a pista 6R e iniciou sua rolagem de decolagem. Conforme o avião acelerou na pista, acredita-se que os remendos de reparo no pneu 2 começaram a vazar, permitindo que o ar escapasse entre a banda de rodagem e o corpo principal do pneu. Esse vazamento fez com que a banda de rodagem fosse progressivamente descascando o resto do pneu até que se separasse completamente, jogando pedaços de borracha na pista. 

Em segundos, a “carcaça” do pneu estourou devido a danos causados ​​pelo contato direto com a superfície da pista, sem a proteção proporcionada pela banda de rodagem. O peso originalmente suportado pelos pneus 1 e 2 foi totalmente transferido para o pneu 1, que em seu estado deteriorado também falhou quase imediatamente. 

Quando os dois pneus estouraram, o voo 603 acelerou a uma velocidade de 152 nós, apenas quatro nós abaixo de V1. Na cabine, o capitão Hershe ouviu um forte estrondo metálico e a aeronave começou a tremer. Sabendo apenas que algum tipo de falha mecânica havia ocorrido, ele imediatamente decidiu abortar a decolagem; entretanto, no momento em que ele realmente processou o que estava acontecendo e começou a agir para parar a aeronave, ela havia acelerado para 159 nós, ligeiramente acima de V1. 

Como os cálculos de V1 não incluíam a potência de parada fornecida pelo empuxo reverso, eles deveriam, em teoria, ser capazes de parar apesar disso. Por seu treinamento, Hershe pisou fundo nos freios e ativou os reversores de empuxo o mais rápido possível.

Desconhecido para ambos os pilotos, a eficácia dos freios no trem de pouso principal esquerdo foi severamente reduzida devido a danos causados ​​por falhas de pneus, um problema que só foi agravado pelo molhado superfície da pista, que poderia ter reduzido a potência de frenagem em até 30%. Este problema foi ainda mais amplificado vários segundos depois, quando os destroços dos pneus em desintegração 1 e 2 atingiram e danificaram o pneu 5, fazendo-o também esvaziar. 

Nem Hershe nem Provan sabiam que, como resultado do solo molhado e da perda de eficácia do freio, seria impossível parar o DC-10 na pista. Com faíscas voando de seus aros nus, o DC-10 começou a desacelerar, mas logo ficou claro para o Capitão Hershe que eles não seriam capazes de parar a tempo. 


Em uma tentativa de evitar uma linha de luzes de aproximação diretamente além do final da pista, ele virou para a direita para contorná-las, colocando o avião em uma derrapagem. Ainda viajando a 68 nós (126km/h), o voo 603 saiu do final da pista 6R e entrou em uma área sem carga, pavimentada com asfalto antiquado. Embora asfalto geralmente seja um nome impróprio, esta área foi realmente pavimentada com macadame de alcatrão honesto.

A maior parte do peso no bogie do trem de pouso principal esquerdo estava concentrado no pneu 6 ainda cheio, e a superfície do asfalto se mostrou incapaz de suportar tanto peso distribuído em uma área tão pequena. Quando o avião derrapou na pista, a engrenagem principal esquerda rompeu a superfície e se enterrou, arrancando-a da asa. 

A engrenagem separada levou consigo uma grande seção da pele da asa inferior e parte de um anteparo, rompendo os tanques de combustível totalmente carregados e imediatamente provocando um grande incêndio. Quando o avião finalmente parou, deitado torto com a asa esquerda no chão, um fogo violento já estava em andamento. 


Aterrorizados com a visão da parede de chamas do lado de fora de suas janelas, os passageiros imediatamente pularam de seus assentos e começaram a se mover em direção às saídas em uma corrida louca para escapar. 

Os comissários de bordo passaram pela multidão de pessoas e começaram a abrir as saídas de emergência, mas três das quatro saídas do lado esquerdo foram bloqueadas pelo fogo e não puderam ser usadas. 

A porta L1 foi aberta, mas seu slide não abriu, então todos os passageiros tiveram que evacuar pelas quatro saídas utilizáveis ​​no lado direito do avião. Um caminhão de bombeiros, cuja tripulação presenciou o acidente, chegou ao local e começou a atacar o fogo assim que os primeiros passageiros escorregaram e fugiram do avião.


Mais da metade dos passageiros havia evacuado, mas um número significativo ainda estava a bordo quando o desastre aconteceu: o escorregador 4R quebrou após ficar sobrecarregado e, devido ao calor radiante do grande incêndio, todos os outros três escorregadores de saída começaram a derreter e também esvaziaram rapidamente.


Para as dezenas de passageiros e tripulantes presos no avião em chamas, restavam apenas duas opções: ou eles podiam pular mais de 2,5 metros (8,2 pés) para baixo das portas ou da asa direita, ou podiam deslizar por uma corda para fora do primeiro janela do oficial. 

Quando os passageiros - muitos deles aposentados - começaram a pular na pista, os acontecimentos tomaram um rumo sombrio. Pessoas sofreram ossos quebrados e ferimentos graves na cabeça com o impacto; outros, vagando atordoados após a queda, caminharam direto para as chamas e pegaram fogo. Duas pessoas que ficaram feridas durante o salto morreram rapidamente por inalação de fumaça e queimaduras enquanto estavam debaixo da saída 4R. 

Os bombeiros correram para extinguir várias outras pessoas que andavam com roupas em chamas. Depois de quatro minutos, vários outros caminhões de bombeiros chegaram e, seis minutos após o acidente, todos os passageiros haviam saído e o fogo havia sido extinto. 


Quando tudo acabou, duas pessoas estavam mortas e dezenas de outras sofreram ferimentos graves, desde queimaduras por cordas a costelas quebradas e vértebras fraturadas. Três meses depois, dois passageiros gravemente feridos morreram no hospital, segundo levantamentos não oficiais, que elevaram o número de mortos para quatro. 

Ao serem notificados do acidente, os investigadores do National Transportation Safety Board montaram uma equipe para descobrir a causa, chegando ao LAX várias horas depois. Quando chegaram, as equipes de limpeza já haviam retirado os pedaços dos pneus da pista, complicando os esforços para determinar a sequência dos eventos. 

Outra decepção chegou em pouco tempo: embora o gravador de dados de voo estivesse funcionando normalmente, o gravador de voz da cabine não funcionava porque a fita estava quebrada. O capitão Hershe havia observado isso ao verificar o CVR antes do voo e alertou a manutenção para a discrepância, pois o CVR precisa estar funcional para decolar. No entanto, ninguém verificou se estava funcionando após o suposto reparo.


Apesar desses contratempos, os investigadores foram capazes de determinar a cadeia básica de eventos. Primeiro, o pneu 2 se soltou e estourou; o peso extra no pneu 1, que havia sido degradado pela fadiga, também fez com que ele falhasse; e destroços voando destruíram o pneu 5. A partir daí, a potência de frenagem reduzida das rodas danificadas e da pista molhada combinaram-se para evitar que a aeronave parasse a tempo, apesar da tripulação aplicar freios totalmente manuais e reversão. 

A primeira pergunta que os investigadores tiveram que fazer foi por que os pneus falharam em primeiro lugar. Vários cenários foram desenvolvidos que poderiam explicar como a banda de rodagem se separou do pneu 2, mas subjacente a todos eles havia um fator causal: não existiam regras para a reforma de pneus de aeronaves. As companhias aéreas eram totalmente livres para usar os procedimentos de reforma que desejassem. 

Algumas companhias aéreas inspecionaram seus pneus antes de reformatá-los, mas a Continental não; na verdade, nenhum dos pneus com defeito no voo 603 foi inspecionado quanto a danos ocultos antes de ser reformado, nem era obrigatório. A falta de quaisquer requisitos mínimos permitia a possibilidade de danos nos pneus passarem despercebidos até que eles falhassem.


Também contribuíram para o problema os requisitos sob os quais os pneus foram projetados. Os pneus usados ​​neste DC-10 foram avaliados para suportar até 24.400 quilogramas (53.800 libras) de carga estática e não deveriam suportar mais de 23.405 quilogramas (51.600 libras) de carga estática em qualquer ponto durante sua vida útil normal. No entanto, isso assumia uma distribuição igual de peso nos pneus e deixava pouca margem de erro se um pneu tivesse que suportar consideravelmente mais peso do que seu companheiro no mesmo eixo. 


No caso do voo 603, a falha do pneu 2 colocou uma grande carga no pneu 1 e fez com que ele também falhasse. O fato de cada pneu não ser capaz de suportar individualmente o peso normalmente suportado por ambos os pneus eliminou qualquer redundância fornecida por ter dois pneus em cada eixo em primeiro lugar.


Olhando para o segundo maior componente do acidente - a falha em parar na pista - o NTSB encontrou brechas de segurança mais flagrantes. Na verdade, toda a premissa da “velocidade de decisão” parecia ser falha. Os cálculos de V1 não foram necessários para levar em conta uma pista molhada ou escorregadia, embora isso pudesse aumentar significativamente a distância de parada. 

Em 1977, a FAA encomendou um estudo de acidentes de pista que identificou 5 perdas de aeronaves e 98 mortes entre 1964 e 1975 que poderiam ter sido evitadas se as velocidades de decisão tivessem explicado o estado de fricção da pista. A implicação era que os pilotos estavam abortando as decolagens devido a falhas que ocorreram antes do V1 calculado, mas depois do V1 real, resultando em ultrapassagens de pista, apesar dos pilotos seguirem todos os procedimentos de decolagem rejeitados corretamente. 

No caso do voo 603, as fórmulas para calcular a distância de parada - que eram baseadas em uma falha de motor em V1 em uma pista seca - sugeriam que o avião pararia com 800 pés (244 m) de pista de sobra; no entanto, a contabilização da superfície molhada trouxe isso para zero, mesmo sem incluir o efeito adicional dos freios danificados. Ficou, portanto, aparente que as medidas que estavam sendo usadas para evitar ultrapassagens de pista na decolagem não refletiam as condições do mundo real.


Na verdade, todos os regulamentos e treinamento de pilotos relacionados a decolagens rejeitadas assumiram uma pista seca e uma falha de motor como a causa da rejeição. Isso apesar do fato de que as falhas de pneus representaram 74% de todas as decolagens rejeitadas. A mentalidade de “falha de motor em pista seca” era tão difundida que os simuladores nem mesmo eram capazes de simular uma decolagem rejeitada com pneus estourados ou em pista molhada, e os pilotos eram treinados apenas em cenários de falha de motor em pista seca. 

Além disso, os requisitos de certificação para novas aeronaves especificavam uma distância máxima de parada permitida baseada em uma falha de motor em V1 em uma pista seca, com a suposição de que esta era a situação mais crítica em que os pilotos abortariam a decolagem. Isso apesar do fato de que a falha de vários pneus em uma pista molhada era claramente um cenário mais crítico, pelo menos em termos de capacidade de parada da aeronave. (A FAA estava de fato ciente desse problema há algum tempo, e sua contraparte britânica incorporou uma pista molhada em seus requisitos de distância de parada em 1962, mas os Estados Unidos ficaram para trás devido ao conflito sobre se os novos requisitos colocariam uma carga indevida para os operadores, banindo efetivamente certos aviões de certos aeroportos).


Para piorar as coisas, os pilotos usaram V1 como ponto de corte para qualquer ocorrência durante a decolagem, incluindo falhas de pneus, embora os cálculos de V1 assumissem potência máxima de frenagem, algo que muitas vezes não estava disponível se as rodas estivessem danificadas. Os pilotos também não receberam nenhum treinamento que os preparasse para as exigências de uma decolagem rejeitada em V1 em uma pista escorregadia. 

Tomados em conjunto, essas descobertas ilustraram um ponto cego óbvio para a indústria que havia morrido antes e custado vidas mais uma vez no voo 603 da Continental Airlines. Se os pilotos soubessem a velocidade de decisão real, eles teriam continuado a decolagem; na verdade, o NTSB mostrou que a falha do pneu no voo 603 não teria interferido de forma alguma na capacidade do avião de decolar.

Os problemas de segurança não acabaram depois que o avião saiu da pista. O acidente teria sido uma nota de rodapé se o trem de pouso não tivesse caído, provocando o incêndio fatal. Mas todos os aviões comerciais, incluindo o DC-10, foram supostamente construídos de forma que o trem de pouso se soltasse sem causar danos em um pouso forçado sem romper os tanques de combustível. 


Este não era um requisito menor - a regra havia sido implementada após a queda de um Boeing 727 da United em Salt Lake City, em 1965, na qual 43 pessoas morreram no incêndio após um acidente que poderia sobreviver. Mas, neste caso, como se viu, circunstâncias únicas impediram o trem de pouso de quebrar como esperado. Em vez de uma força limpa de frente para trás ou de lado a lado cortando-o, o trem de pouso foi arrancado em um movimento de torção quando cavou na pista enquanto o avião derrapou. Isso contornou o mecanismo de falha embutido e arrancou a parede do tanque de combustível, iniciando o fogo. 

Na época, McDonnell Douglas já estava trabalhando em um projeto de trem de pouso atualizado que quebraria perfeitamente quando submetido a cargas acima do limite do projeto, independentemente de como fossem aplicadas.

O segundo problema que resultou em quatro mortos e dezenas de feridos foi o fracasso das rampas de emergência, que derreteram sob o intenso calor radiante do fogo. O NTSB estava preocupado em descobrir que os requisitos de design para tais slides não faziam menção a qualquer capacidade de resistir ao fogo ou ao calor. 


Quando a FAA escreveu as regras que os escorregadores devem seguir, eles se esqueceram de considerar a possibilidade de que o fogo pudesse comprometê-los antes que todos estivessem fora do avião, em vez disso, presumindo que qualquer falha relacionada ao calor ocorreria somente após o término da evacuação. O NTSB dedicou algum tempo em seu relatório final para elogiar os comissários de bordo e os pilotos por sua iniciativa em encontrar rotas de fuga alternativas após a falha dos slides,

Seis meses após o acidente, o NTSB emitiu uma série de recomendações destinadas a fechar as lacunas na rede de segurança, incluindo que os pneus têm “margens adequadas” para operações normais; que sejam elaboradas normas para pneus reformados; que seja proibido o uso de pneus diferentes de marcas diferentes no mesmo eixo; que sejam exigidas inspeções em pneus novos e reformados; que seja estabelecido um limite para o número de vezes que um pneu pode ser reformado; que os requisitos da FAA para distâncias de parada de aeronaves levem em consideração pistas molhadas e eventos que não sejam falhas de motor; que os simuladores sejam reprogramados para incluir os efeitos de pistas molhadas na distância de parada; e que os pilotos sejam treinados nos cenários de decolagem rejeitados mais críticos. 

Como resultado dessas recomendações, a FAA elaborou regras novas e mais rígidas para as cargas que os pneus devem ser capazes de suportar, como devem ser inspecionados e como devem ser recauchutados. Os novos requisitos entraram em vigor em 1984 e foram posteriormente reforçados em 2006. 


Fazer com que a FAA tomasse medidas sobre as distâncias de parada demorou muito mais. Uma emenda inicial acrescentou um aumento plano aos requisitos de distância de parada para todos os novos aviões certificados depois de 1978, mas não incluiu explicitamente qualquer ajuste para pistas molhadas ou freios ruins. 

Após 10 anos de atraso da FAA, o NTSB acabou fechando a recomendação e a classificou como uma “resposta inaceitável”, indicando que não considerou a intenção da recomendação como cumprida. Não foi até 1998, 20 anos após a queda do voo 603 da Continental, que a FAA emitiu uma nova alteração abrangente exigindo que os cálculos da distância de parada tanto para a certificação da aeronave quanto para a determinação de V1 assumissem freios desgastados em pista molhada. 

Aviões cujo certificado de tipo original foi emitido antes de 1978 - como o Boeing 737 - ainda são submetidos aos requisitos de distância de parada menos restritivos que existiam antes da queda do voo 603. Mas nas operações do dia-a-dia, os pilotos desses aviões calculam V1 usando os mesmos critérios que todos os outros.

A FAA também fez alterações para melhorar a resistência ao choque de todos os aviões. A partir de 1983, as lâminas de escape foram obrigadas a passar por testes de calor radiante para provar que não começariam a esvaziar até pelo menos 90 segundos após a abertura. (90 segundos é o tempo limite em que uma evacuação deve ser concluída). 


Nas rampas também eram necessárias para suportar a força de um grande número de adultos aglomerados no topo do escorregador e pulando em cada pista a uma taxa de um por segundo sem o colapso do slide. O número de passageiros por minuto que os slides precisavam acomodar foi aumentado de 30 para 60, e o tempo máximo permitido para o slide inflar foi reduzido de 25 segundos para 10. Nas décadas subsequentes, esses requisitos foram novamente reforçados para 70 passageiros por minuto e tempo de inflação de 6 segundos, respectivamente.

Embora algumas das mudanças tenham demorado a ser implementadas, a amplitude da melhoria da segurança desse acidente relativamente obscuro é notável. Em muitos aspectos, era um microcosmo dos problemas de segurança da década de 1970: para vários dos fatores que levaram ao acidente, as regulamentações simplesmente não existiam. 

A falta de uma rede de segurança em tantas áreas transformou o que poderia ter sido um incidente muito pequeno em um acidente que matou quatro pessoas, o que infelizmente era uma ocorrência comum na época. Hoje, no entanto, um acidente como esse seria inimaginável, e as regras em 1978 parecem desleixadas em comparação. Um avião moderno sofrendo uma falha de pneu perto de V1 teria uma margem muito maior para parar, graças à lista aprimorada de fatores que devem ser incluídos na determinação de V1. 


E mesmo se fosse para fugir da pista de qualquer maneira - porque, digamos, os pilotos falham em aplicar a potência máxima de frenagem - o avião provavelmente nem seria danificado, devido aos ambientes de pista que são projetados para fazer um avião parar intacto o mais rápido possível. 

E se o trem de pouso de alguma forma colapsasse, provavelmente não iniciaria um incêndio, porque designs de trem de pouso amplamente aprimorados garantem que os tanques de combustível quase nunca sejam rompidos em um acidente universalmente passível de sobrevivência. 

Por isso, podemos agradecer os persistentes esforços do NTSB e o eventual cumprimento do FAA. Devido às lições aprendidas com o voo 603 da Continental Airlines, podemos dizer com confiança que, nos Estados Unidos, um acidente semelhante provavelmente nunca mais acontecerá.

Edição de texto e imagens por Jorge Tadeu

Com Admiral Cloudberg, ASN, Wikipedia e baaa-acro.com - Imagens: Continental Airlines Memories, Jon Proctor, Google e NTSB

Nenhum comentário: