As principais notícias sobre aviação e espaço você acompanha aqui. Acidentes, incidentes, negócios, tecnologia, novidades, curiosidades, fotos, vídeos e assuntos relacionados.
Visite o site Desastres Aéreos, o maior banco de dados de acidentes e incidentes aéreos do Brasil.
No dia 16 de janeiro de 2002, um Boeing 737 da Garuda Indonesia voou em uma forte tempestade sobre a ilha de Java. Enquanto os pilotos lutavam contra o vento uivante, a chuva torrencial e o granizo forte, os dois motores voltaram a funcionar simultaneamente.
Quando a tripulação tentou reiniciá-los, o avião perdeu toda a energia elétrica. Quase sem instrumentos, sem rádios, sem luzes e quase nenhum controle de voo, o avião emergiu das nuvens a apenas alguns milhares de metros acima do solo - e o aeroporto estava longe de ser visto.
Com apenas alguns segundos para decidir onde pousar, o capitão conseguiu derrubar o avião em um trecho estreito do rio Bengawan Solo, enfiando a agulha entre duas pontes que ficavam a apenas 1.500 metros uma da outra.
A cauda atingiu o fundo rochoso do rio e foi arrancada, matando um comissário de bordo, mas o resto do avião parou intacto contra a margem, salvando as vidas dos outros 59 passageiros e da tripulação. Contra todas as probabilidades, os pilotos salvaram o dia - mas por direito, eles não deveriam ter precisado.
Os motores do avião foram avaliados para resistir a quase qualquer tempestade concebível e, mesmo se eles desligassem, os pilotos deveriam ser capazes de reiniciá-los mais tarde. Caberia aos investigadores descobrir o que deu errado.
O voo 421 da Garuda Indonesia era um voo doméstico regular da cidade de Mataram, na ilha de Lombok, para a principal cidade de Javan de Yogyakarta (pronuncia-se Jog-yakarta).
Como muitos outros voos da companhia aérea de bandeira da Indonésia, o avião de escolha para esta rota foi o Boeing 737-3Q8, prefixo PK-GWA, da Garuda Indonesia Airways (foto abaixo), o jato de passageiros mais popular nos céus. A Indonésia depende muito das viagens aéreas para conectar suas centenas de ilhas espalhadas, mas o arquipélago tropical pode apresentar todos os tipos de perigos para os aviões, especialmente o clima severo.
PK-GWA, o Boeing 737 envolvido no acidente
Janeiro cai durante a estação chuvosa da Indonésia, que é conhecida por produzir algumas das tempestades mais intensas do mundo. A navegação em torno dessas tempestades era uma tarefa diária para os pilotos que estavam programados para realizar o voo 421 em 16 de janeiro de 2002.
Se houvesse alguém em quem pudesse confiar para fazê-lo, pode ter sido o capitão Abdul Rozaq. Ele trabalhou seu caminho desde a venda de frutas nas ruas de Jacarta a voar para a companhia aérea nacional da Indonésia, provando seu valor por meio de trabalho duro: de milhares de candidatos, apenas um punhado recebeu bolsas de estudo de prestígio para ir para a escola de voo de Garuda, e ele estava entre eles.
Agora, décadas depois, ele acumulava 14.000 horas de voo e era um dos pilotos mais experientes da empresa. Seu primeiro oficial, Harry Gunawan, tinha respeitáveis 7.000 horas próprias.
O voo 421 estava com pouca carga naquele dia, com 54 passageiros e seis tripulantes, enchendo o 737 com pouco menos da metade da capacidade. Às 8h20 UTC (16h20 hora local), o voo partiu do Aeroporto Internacional de Lombok, no subúrbio de Mataram, em Ampenan, com destino ao Aeroporto Internacional Adisucipto em Yogyakarta.
O voo 421 prosseguiu normalmente até por volta das 9h10 UTC, logo após deixar sua altitude de cruzeiro de 28.000 pés. Foi neste ponto que os pilotos observaram uma linha de fortes tempestades entre sua posição e o aeroporto.
Essas enormes nuvens cúmulos-nimbos se estendiam por até 62.000 pés, alto na estratosfera, e a única maneira de evitá-las era tentando encontrar um ponto fraco para passar entre as células.
Tendo já entrado na cobertura de nuvens, eles precisariam confiar em seu radar meteorológico de bordo para determinar o caminho de menor resistência. O radar mostrou várias áreas de intensa precipitação indicadas em vermelho, com três lacunas exibidas em verde: uma à direita, uma à esquerda e outra ainda mais à esquerda.
O capitão Rozaq conhecia a área e acreditava que a primeira lacuna à esquerda seria a mais conveniente. A lacuna mais à esquerda passava por um espaço aéreo militar restrito e ele precisaria de permissão especial do controle de tráfego aéreo para entrar.
A lacuna à direita era menos direta, mas também tinha um problema muito mais material: um vulcão de 9.500 pés chamado Monte Merapi, que ficaria perto de seu caminho de abordagem se tentassem ir por ali - um grande risco, considerando que eles já foram liberados para descer a 9.000 pés.
A melhor escolha era, portanto, ir para a lacuna do meio. Após informar ao controlador que estavam fazendo um desvio para evitar o tempo, os pilotos estimaram que chegariam em um waypoint chamado PURWO às 9h22. Mal sabiam eles que esta seria sua última comunicação com o ATC.
O capitão Rozaq e o primeiro oficial Gunawan pensaram que estavam voando para um vão entre as células da tempestade, mas na verdade foram vítimas de um truque tão antigo quanto o próprio radar.
O sistema de radar do 737 detecta a intensidade da precipitação enviando um pulso eletromagnético e medindo quanta energia é devolvida. Um sinal de retorno mais intenso significa que uma precipitação mais intensa está desviando as ondas de rádio.
Mas se a precipitação dentro de uma tempestade for suficientemente forte, as ondas de rádio podem ser completamente desviadas sem penetrar totalmente na tempestade. Isso deixa uma sombra de radar: uma zona atrás do ponto de deflexão que é exibida como clara, porque não há nenhum sinal retornando dessa área.
Ao contrário de uma área livre real, onde o sinal falha em retornar porque não há nada para saltar, esta área parece limpa porque nenhum sinal pode entrar nela em primeiro lugar.
A “lacuna” que o capitão Rozaq selecionou era na verdade uma sombra de radar, uma área onde a precipitação era tão intensa que seu radar não conseguia penetrá-la.
Assim que o voo 421 entrou nesta lacuna fantasma, a lacuna desapareceu e foi substituída por um mar vermelho no radar meteorológico. Aparentemente do nada, uma poderosa turbulência balançou o avião e uma chuva torrencial bateu contra o para-brisa.
Pequenas pedras de granizo batiam na fuselagem aos milhares a cada segundo. Os pilotos lutaram para manter o controle do avião enquanto ventos violentos o jogavam para cima e para baixo e de um lado para o outro, e eles mal conseguiam ouvir um ao outro por causa do barulho profano do granizo.
Esta foi de longe a tempestade mais intensa que eles ou seus passageiros já viram. A concentração de granizo era tão densa que disparou o sistema de alerta de proximidade do solo, que começou a soar: “TERRENO! TERRENO!" enquanto o avião descia a 18.000 pés.
Quase um minuto depois de entrar na tempestade, os motores já estavam se esforçando para permanecer acesos em meio ao violento ataque atmosférico. Quando um motor ingere água e gelo junto com o ar, a densidade efetiva do ar aumenta e o motor tem que trabalhar mais para produzir a mesma quantidade de empuxo.
À medida que mais e mais chuva e granizo caíam nos motores do voo 421, o volume de água dentro dos motores tornou-se tão grande que eles foram incapazes de sustentar a combustão. Os motores começaram a perder potência e, 90 segundos depois de entrar na tempestade, os dois queimaram simultaneamente.
Observe as flutuações violentas em vários parâmetros da aeronave, começando assim que o avião entra na tempestade. O limite direito do gráfico é o momento em que a chama do motor é apagada. O tempo entre cada linha vertical é de um minuto
A perda de potência do motor também causou uma perda de potência elétrica, pois os geradores dos motores pararam de funcionar. As luzes piscaram e se apagaram, enquanto sistemas essenciais como os instrumentos do capitão Rozaq foram redirecionados por meio do ônibus de emergência para a bateria do avião.
Com a cabine banhada pelo brilho fraco do painel de instrumentos, Rozaq pediu o procedimento de religamento do motor, um item que os dois pilotos haviam memorizado durante o treinamento.
O primeiro oficial Gunawan ligou o motor e ligou a chave de ignição, mas nada aconteceu. Ainda havia muita água dentro dos motores para iniciar a combustão e, embora nenhum dos pilotos soubesse, religar os motores seria impossível enquanto eles permanecessem no meio da tempestade.
Após a primeira tentativa, Rozaq pediu a sequência de reacender novamente. Mas depois de um minuto e o motor não acendeu, parecia-lhe que o processo não estava funcionando. (Embora ele devesse ter esperado três minutos de acordo com o manual, isso não teria feito diferença no resultado real).
Além disso, se eles continuassem tentando, sem sucesso, religar os motores sem a energia da bateria, eles drenariam a bateria, e então eles iriam estar com problemas reais. Rozaq, portanto, instruiu Gunawan a iniciar a Unidade de Energia Auxiliar, ou APU, um gerador que forneceria energia elétrica a todos os sistemas da aeronave e permitiria mais tentativas de reinicialização.
Rozaq e Gunawan não sabiam que já estavam com problemas reais. A bateria deste 737 estava se degradando há algum tempo. Muito antes do voo 421, a corrosão fez com que o sensor de temperatura da bateria se separasse da bateria.
Sem um sensor de temperatura, as proteções da bateria contra superaquecimento não funcionavam e, nos meses ou anos que se seguiram, a bateria superaqueceu repetidamente devido à sobrecarga.
A bateria é composta por mais de uma dúzia de células individuais que, juntas, podem produzir uma carga de corrente de 24 volts, mas devido ao superaquecimento repetido, célula # 12 - localizado na parte mais quente da bateria - aberto pouco antes do voo 421, fazendo com que seu suprimento de eletrólito escape. Isso reduziu a capacidade geral da bateria de 24 volts para 22 volts.
Os pilotos notaram que a bateria estava mostrando uma voltagem mais baixa do que o normal antes do voo, mas 22 volts não era suficientemente baixo para que a bateria fosse considerada defeituosa, então eles não se importaram com isso.
O que eles não sabiam era que a 22 volts, a bateria não seria capaz de fornecer energia suficiente para duas tentativas de reacender o motor e ainda iniciar o APU. A tensão é uma medida do nível de corrente que a bateria pode fornecer a qualquer momento. Quando a carga da bateria diminui devido ao consumo de corrente, a tensão que ela pode fornecer também diminui.
As duas tentativas consecutivas de reinicialização do motor caíram a tensão abaixo de 18 volts, mas a ignição da APU exigia uma carga de corrente contínua superior a 18 volts. Quando o primeiro oficial Gunawan apertou o botão para ligar o APU, a tensão caiu para 12 volts, muito baixa para alimentar o barramento de emergência; como resultado, todo o sistema elétrico do avião falhou.
Tudo que dependia de energia elétrica parou de funcionar, incluindo os conjuntos de instrumentos e as bombas hidráulicas que movem os controles de voo. Todos os controles foram para reversão manual, conectando as superfícies de controle diretamente ao garfo sem assistência hidráulica.
Todo o painel de instrumentos do capitão Rozaq escureceu, deixando-o com três instrumentos analógicos de reserva logo acima do console central: um minúsculo indicador de atitude, um indicador de velocidade no ar e uma bússola magnética. Ambos os rádios falharam junto com o transponder do avião.
No centro de controle de tráfego aéreo em Yogyakarta, o voo 421 caiu das telas de radar secundárias; o controlador começou a ligar para o voo para perguntar sua posição, mas não houve resposta. A bordo do avião, os passageiros podiam ouvir o primeiro oficial Gunawan gritando "Mayday, mayday!" pelo rádio, mas ele poderia muito bem estar gritando diretamente para o vazio uivante.
Sem bateria, não havia como dar partida nos motores ou no APU - eles seriam forçados a fazer uma aterrissagem mortal em algum lugar no centro de Java. Mas sem rádios e sem equipamento de navegação além de uma bússola simples, os pilotos não tinham como determinar sua posição enquanto não conseguiam ver o solo.
Rozaq e Gunawan se viram desamparados, capazes de fazer pouco mais do que manter o nível do avião enquanto ele descia por meio da tempestade a uma velocidade de 4.000 pés por minuto.
Na ausência de quaisquer outras medidas que ajudassem em sua situação, eles oraram a Deus pela salvação. Depois do que pareceu uma eternidade, o avião emergiu repentinamente da tempestade a uma altitude de 8.000 pés, e a chuva e o granizo desapareceram tão rapidamente quanto haviam surgido.
Desta altura, os pilotos teriam menos de dois minutos para escolher um local de pouso e alinhar para uma abordagem. Com base em pontos de referência visíveis, eles determinaram que estavam em algum lugar ao sul da cidade de Surakarta, mas o aeroporto de Surakarta estava atrás deles e fora do alcance.
À frente deles havia uma vasta planície coberta com milhares de arrozais, o que não poderia ser uma superfície de aterrissagem segura. Mas cortando a planície ao meio estava o estreito rio Bengawan Solo, que nesta área estava apenas começando sua jornada para o mar.
A água tinha alguns metros de profundidade no máximo, e apenas cerca de duas vezes mais largura que a envergadura do 737 com árvores pendentes, mas os pilotos não viram opção melhor.
Lutando com os pesados e lentos controles manuais, o capitão Rozaq abriu caminho em uma curva de quase 360 graus para se alinhar com o único trecho reto de rio que conseguiu encontrar. mas o aeroporto de Surakarta estava atrás deles e fora de alcance.
Seu alvo era uma seção de rio perto da vila de Bulakan, com cerca de 1.500 metros de água arborizada imprensada entre duas pontes e um trecho de corredeiras rochosas.
Vindo baixo sobre a primeira ponte, o capitão Rozaq puxou para trás e diminuiu a velocidade, e o avião caiu na água com um baque pesado.
Viajando a 300 quilômetros por hora, o 737 ricocheteou no fundo rochoso do rio, rasgando o chão na seção da cauda.
Em um piscar de olhos, a cozinha traseira, um dos banheiros, o APU, os gravadores de voo e os assentos dos comissários viraram sob a cauda e se desintegraram, matando instantaneamente um dos comissários de bordo e ferindo gravemente seu companheiro de assento ao serem esmagados contra o leito do rio.
O avião continuou sem eles, estremecendo e sacudindo enquanto passava, arrancando assentos do chão e despejando bagagens de compartimentos superiores quebrados.
Então, depois de apenas alguns segundos angustiantes, o avião parou na margem direita do rio, com alguns buracos no chão e um motor separado, mas intacto.
Embora houvesse vários ferimentos graves e um comissário de bordo estivesse morto, o capitão Abdul Rozaq e o primeiro oficial Harry Gunawan derrubaram o avião danificado em uma peça, salvando a vida de 59 dos 60 passageiros e tripulantes.
O resgate dos passageiros foi delicado. Embora a maioria dos passageiros tenha conseguido sair do avião pelo lado direito e caminhar até a costa, várias pessoas sofreram ferimentos graves que os impediram de escapar e foi preciso encontrar um método para retirá-los do avião.
Sob a direção do capitão Rozaq, um pescador conseguiu levar um passageiro ferido usando a porta de saída suspensa como uma maca improvisada.
Os residentes locais levaram passageiros feridos e comissários de bordo aos hospitais em Surakarta usando seus veículos pessoais.
Depois de se certificar de que todos haviam sido evacuados, o capitão Rozaq ligou para o centro de operações Garuda em seu telefone celular para informá-los o que havia acontecido - naquele ponto, tudo o que sabiam era que o avião havia sumido do radar e teria pousado em um rio em algum lugar de Java Central.
Só agora, duas horas após o acidente, os serviços de emergência finalmente chegaram ao local.
Os investigadores do Comitê Nacional de Segurança nos Transportes da Indonésia (KNKT) estavam ansiosos para entender por que um 737 havia perdido os dois motores em voo - e o mesmo aconteceu com o NTSB americano.
A primeira pergunta era por que os motores pifaram. Já se sabia que a precipitação forte poderia causar o incêndio de um motor, porque já havia acontecido antes. Três desses incidentes ocorreram no 737 no final dos anos 1980, incluindo a infame emergência de 1988 a bordo do voo 110 da TACA.
Nesse caso, um 737 com 45 passageiros e tripulação a bordo estava chegando a Nova Orleans em um voo de Belize quando passou por um tempestade sobre o Golfo do México. Ambos os motores ingeriram granizo e queimaram; as pedras de granizo danificaram os motores além da esperança de reiniciar, e os pilotos acabaram fazendo uma aterrissagem espetacular em um dique no delta do Mississippi.
Uma falha semelhante de motor duplo ocorreu em um voo da Air Europe em 1987, e um voo da Continental em 1989 também perdeu um motor em circunstâncias semelhantes. Após esses incidentes, o CFM International reprojetou vários aspectos do motor CFM-56 para torná-lo menos suscetível a fortes precipitações, incluindo a alteração dos formatos do spinner e do fan disk para que desviem o granizo do núcleo.
A Federal Aviation Administration também exigiu que os motores a jato continuassem a operar sob uma proporção de precipitação atmosférica para o ar de 10 gramas por metro cúbico, um volume que poderia ser considerado torrencial com segurança.
Então, por que essas modificações não impediram a queda do voo 421 da Garuda Indonesia?
Os investigadores usaram vários dados para tentar estimar o volume de precipitação encontrado pelo voo 421 no momento em que os motores falharam. Ao correlacionar a taxa de fluxo excessivo de combustível para os motores com as flutuações no som do granizo no gravador de voz da cabine, em combinação com o fato de que a densidade do granizo acionou o sistema de alerta de proximidade do solo, eles foram capazes de derivar um valor de aproximadamente 18 gramas de precipitação por metro cúbico de ar (a maior parte da qual era granizo) - quase o dobro do que os motores foram certificados para suportar.
Na verdade, o Departamento Britânico de Investigação de Acidentes Aéreos, que analisou o CVR, disse que a precipitação no voo 421 foi a mais intensa já registrada a bordo de um avião, tanto quanto eles sabiam.
Finalmente, testes conduzidos pelo fabricante de motores CFM International mostraram que, na prática, um motor CFM-56 irá queimar com um volume de precipitação de 17,8 gramas por metro cúbico – exatamente onde os motores deram o fantasma no voo 421.
Não havia nada de errado com isso. os motores ou o método pelo qual foram certificados: em vez disso, o malfadado voo resultou numa tempestade de granizo absolutamente bíblica que sobrecarregou todos os sistemas de proteção.
Uma desmontagem dos motores revelou que nenhum dano ocorreu antes do impacto e que ambos os motores poderiam teoricamente ter sido reiniciados. Só depois de examinar a bateria da aeronave os investigadores entenderam por que os pilotos não conseguiram fazer isso.
O dano ao # 12A célula fez com que a voltagem da bateria caísse para perto da parte inferior da faixa aceitável, onde foi incapaz de fornecer energia suficiente para conduzir duas tentativas de religamento do motor e ainda iniciar o APU.
Os pilotos não poderiam ter previsto que suas ações esgotariam a bateria, porque eles não sabiam que as duas tentativas de religamento falhariam, nem sabiam exatamente quantos volts cada tentativa exigiria.
Quando o primeiro oficial Gunawan apertou o botão para ligar o APU, ele certamente não teria olhado para a tensão da bateria antes de fazer isso - nem teria importado, porque àquela altura a bateria não tinha mais energia suficiente para fazer qualquer coisa útil de qualquer maneira.
Depois que a bateria falhou, o avião se tornou um caroço de metal com boa aerodinâmica, mas não muito mais. Apenas devido ao raciocínio rápido do capitão Rozaq foi evitado um acidente catastrófico em um campo de arroz ou uma aldeia.
No entanto, também deve ser observado que os procedimentos adequados aconselharam a tripulação a não hesitar antes de iniciar o APU durante um cenário de falha de motor duplo. Se eles tivessem iniciado o APU primeiro, outras tentativas de reinicialização não teriam sido realizadas com a bateria e eles provavelmente poderiam ter reacendido os motores e pousado com segurança após sair da tempestade.
A última área de investigação restante foi a decisão dos pilotos de voar para a tempestade em primeiro lugar. A lacuna que eles pensaram ter visto acabou sendo uma sombra de radar, e as duas lacunas reais em cada lado continham vários obstáculos que as faziam parecer menos atraentes.
Mas o sombreamento de radar era um fenômeno bem conhecido, e os pilotos realmente poderiam ter sido capazes de detectá-lo se tivessem recebido um treinamento melhor sobre como usar seu sistema de radar.
O sistema tinha uma função que permitia ao piloto incliná-lo para cima e para baixo, esquadrinhando as nuvens em diferentes elevações para ter uma noção melhor da localização da precipitação mais pesada.
A varredura da nuvem através de toda a gama de ângulos de emissão do radar poderia ter mostrado que a lacuna era provavelmente uma ilusão, revelando uma precipitação ligeiramente mais leve (mas ainda muito pesada) acima ou abaixo dela.
No entanto, se os pilotos não entendem o sistema de radar ou subestimam a ameaça de sombreamento do radar, essa funcionalidade extra pode se revelar inútil - que foi o que aconteceu no voo 421.
Com todos os seus anos de experiência, Rozaq e Gunawan só podiam funcionar com o que eles receberam do sistema de treinamento de pilotos um tanto sem brilho da Indonésia, e mesmo um piloto incrivelmente habilidoso como Rozaq não pode ter agido com base em informações que ele não sabia que existiam.
Além disso, tempestades semelhantes são extremamente comuns durante a estação chuvosa, e nenhum SIGMET avisando sobre mau tempo foi emitido, então ele não tinha motivos para esperar nada fora do normal, muito menos a precipitação mais intensa já conhecida que foi encontrada por um avião de passageiros.
Em seu relatório final, o KNKT recomendou que o CFM International criasse um procedimento especial para reacender os motores durante fortes chuvas para evitar tentativas repetidas em condições onde o motor não pode ser reacendido, e que o CFM forneça orientação para ajudar os pilotos a otimizar a água/granizo de um motor capacidade de ingestão, caso outra tripulação se encontre em uma situação semelhante.
O NTSB notou que todos os incidentes conhecidos de apagamento de chamas do motor devido à precipitação ocorreram durante a descida de uma tempestade com alta velocidade no ar e baixa configuração de aceleração; na verdade, a configuração de baixa potência permite mais granizo no motor porque o disco do ventilador não está girando tão rápido e o granizo pode escapar mais facilmente pelas brechas. Acelerar os motores antes de entrar em uma área de precipitação pode evitar que as chamas se apaguem, mesmo com granizo muito intenso.
Os investigadores também recomendaram que o serviço meteorológico da Indonésia emita avisos SIGMET sempre que for detectado mau tempo, e que as companhias aéreas indonésias forneçam treinamento mais abrangente aos pilotos sobre as capacidades de seu radar meteorológico.
Separadamente, o NTSB instou a FAA a publicar orientações claras para os pilotos sobre as consequências de realizar as tarefas de religamento do motor - especialmente iniciar o APU - fora de serviço. Clique aqui para ler o Relatório Oficial sobre o acidente.
A queda do voo 421 da Garuda Indonésia é um lembrete gritante de que é possível para um avião encontrar condições climáticas que excedem as que foi certificado para sobreviver. A melhor maneira de prevenir tal ocorrência é evitar voar em tempestades severas em primeiro lugar. Arriscar uma lacuna sem avaliá-la adequadamente é uma receita para o desastre.
Pelo restante de sua carreira, o capitão Rozaq sem dúvida foi mais cuidadoso ao navegar em tempo tempestuoso - e pode-se esperar que o mesmo possa ser dito de milhares de outros pilotos em toda a Indonésia.
As publicações da FAA recomendam que os pilotos mantenham uma distância mínima de 20 milhas náuticas de qualquer tempestade severa, uma regra que os pilotos do voo 421 não seguiram.
A lacuna que Rozaq escolheu voar, mesmo que realmente existisse, era simplesmente estreito demais para manter o avião longe do mau tempo com segurança. Seu excelente voo sob pressão salvou 59 vidas - mas, no futuro, a melhor solução não é confiar na capacidade de cada piloto de abandonar um avião, mas evitar ter que abandonar aviões.
Com admiralcloudberg e ASN - As imagens são provenientes de AirlinesTravel.ro, Werner Fischdick, Google, KNKT, Mayday, Tempo, Kompas e Jakarta Post. Clipes de vídeo cortesia de Mayday (Cineflix).
Um Yak-40 da Aeroflot semelhante ao envolvido no acidente
O voo U-505 da Aeroflot caiu logo após a decolagem em Tashkent em 16 de janeiro de 1987. O voo 505 era um voo matinal de Tashkent para Shahrisabz, ambos na República Socialista Soviética do Uzbeque, agora República do Uzbequistão. O voo decolou apenas um minuto e 28 segundos depois de um Ilyushin Il-76, encontrando assim seu vórtice de esteira. O Yakovlev Yak-40 então se inclinou bruscamente para a direita, atingiu o solo e pegou fogo. Todas as 9 pessoas a bordo morreram.
A aeronave envolvida, um Yakovlev Yak-40, foi registrada na Aeroflot como CCCP-87618. No momento do acidente, a aeronave tinha sustentado 17.132 horas de voo e 20.927 ciclos (um ciclo equivale a uma decolagem e pouso).
A tripulação consistia nas seguintes pessoas: Capitão T. Yunusbek, Copiloto Valery Strunin e Engenheiro de voo RF Davydov. Além deles, estavam a bordo a comissário de bordo Kulikova T. A. e cinco passageiros.
O avião estava programado para transportar carga de Tashkent para Shakhrisabz na antiga União Soviética. A bordo estavam 1.200 quilos de correspondência e 35 quilos de bagagem pessoal, além de cinco passageiros sentados na cabine. O peso de decolagem foi de 14,4 toneladas, dentro da faixa aceitável.
A tripulação estava com pressa para partir porque a carga só foi carregada às 6h, horário local, e eles estavam programados para partir de Tashkent às 5h55. Portanto, a tripulação levou menos de um minuto para concluir a lista de verificação pré-voo, em vez dos habituais cinco minutos.
O Il-76 CCCP-76482, a aeronave que causou a esteira de turbulência
Eles começaram a taxiar na pista três para a pista 8L. Às 6h09m40s, o Ilyushin Il-76, prefixo CCCP-76482 (foto acima), decolou da pista. Imediatamente eles contataram a torre de controle e solicitaram autorização para decolagem.
Após receberem permissão para taxiar na pista, às 6h10m58s decolaram sem permissão explícita para decolar, em violação de procedimento. O Yak-40 decolou 1 minuto e 28 segundos após um Ilyushin Il-76.
A tripulação colocou os motores em potência máxima acelerando a 124,2 nós; mas às 6h11min04s, quando a aeronave não estava a mais de 20 metros do solo, ela começou a inclinar bruscamente para a direita e, às 6h11min15s, caiu no solo.
Os destroços do avião ficaram espalhados por uma área de 244 por 67 metros. Todas as 9 pessoas (5 tripulantes e 4 passageiros) a bordo morreram.
Ao investigar as causas do desastre, a comissão descobriu que, apesar da posição do IL-76, ele ainda teria deixado turbulência. O vento era de apenas 1 mph, levando à conclusão de que o comportamento da aeronave Yak-40 só pode ser explicado ao atingir a esteira de turbulência de um Il-76 muito mais pesado decolando da mesma pista em apenas 1 minuto e 15 segundos antes do Yak-40.
O Aeroporto de Tashkent tinha um intervalo mínimo de decolagem de apenas um minuto, independentemente do tipo de aeronave, levando o relativamente pequeno Yak-40 a perder o controle rapidamente e a cair ao encontrar o vórtice de esteira.
O ATC foi responsabilizado por liberar a tripulação do Yak-40 muito cedo e não observar a separação mínima entre as duas decolagens. Também foi relatado que o carregamento da carga demorou mais do que o esperado e que a tripulação do Yak-40 apressou a partida, negligenciando vários procedimentos.
O voo 158 da Turkish Airlines era um voo doméstico regular de passageiros do Aeroporto Yeşilköy de Istambul, para o Aeroporto Esenboğa de Ancara, ambos na Turquia, levando a bordo sete tripulantes e 60 passageiros.
Em 16 de janeiro de 1983, a aeronave que operava o voo era o Boeing 727-2F2, prefixo TC-JBR, da Turkish Airlines (foto acima), com três motores a jato turbofan Pratt & Whitney JT8D-15, que foi construída pela Boeing com o número de série do fabricante 21603/1389, e fez seu primeiro voo em 1978.
O voo era um voo regular entre Paris e o Aeroporto Esenboğa de Ancara, na Turquia, com uma escala programada no Aeroporto Yeşilköy de Istambul.
O voo transcorreu dentro da normalidade. Na aproximação final ao aeroporto de Ankara-Esenboğa à noite, a tripulação encontrou condições climáticas ruins com queda de neve.
Durante a aterrissagem, o Boeing 727-200 pousou cerca de 50 metros (160 pés) antes da pista do aeroporto de destino em meio à neve, se acidentou e pegou fogo.
Dos 67 ocupantes a bordo, 47 morreram. Todos os membros da tripulação e 13 passageiros sobreviveram ao acidente com ferimentos.
As condições meteorológicas dificultaram as tentativas de resgate, pois as estradas eram perigosas. Quatro táxis que se dirigiam ao aeroporto para auxiliar nos esforços de resgate colidiram, matando quatro pessoas.
Muitos dos mortos e feridos foram queimados no incêndio. Os hospitais da região tiveram dificuldade em identificar os corpos gravemente queimados.
Alguns dos sobreviventes estavam sentados na seção traseira da aeronave e foram arremessados para fora quando ela se partiu. A maioria dos ferimentos fatais ocorreu em passageiros da seção central que pegou fogo.
Após o acidente, o Aeroporto de Esenboğa foi fechado até a tarde seguinte para dar aos investigadores a oportunidade de localizar os gravadores de voo e inspecionar os destroços.
Acredita-se que o avião perdeu altura durante o último segmento após ser pego por correntes descendentes e cisalhamento do vento.
A Austral inaugurou um voo na noite de 16 de janeiro, ligando o Aeroparque, Mar del Plata e Bahía Blanca
O voo da Austral Líneas Aéreas 205 foi um voo doméstico regular da Austral Líneas Aéreas operando uma rota entre Buenos Aires e Mar del Plata, na Argentina, que caiu após encontrar condições climáticas adversas durante o pouso em 16 de janeiro de 1959, matando 51 dos 52 passageiros e tripulantes a bordo. Na época, o acidente foi o segundo pior acidente da história da aviação argentina e atualmente é o sexto pior envolvendo um Comando Curtiss C-46.
O Curtiss C-46A-50-CU Commando, matrícula LV-GED, da Austral Líneas Aéreas, decolou de Buenos Aires às 19h50, horário local, com cinco tripulantes e 47 passageiros a bordo, para um voo de aproximadamente 250 milhas até Mar del Plata.
A aeronave já estava com 35 minutos de atraso devido às más condições climáticas em seu destino. O voo transcorreu sem intercorrências e, no final da viagem, foi autorizado para pouso pelos controladores na pista 12, quando se aproximava do aeroporto de Mar Del Plata.
Na época, a baliza não direcional (NDB) do aeroporto não funcionava, o que contribuiu para problemas de navegação. Quando a aeronave passou pela pista a uma altitude de 85 metros (279 pés), ela ultrapassou a pista. Perdendo a abordagem, o capitão decidiu iniciar uma nova volta.
No entanto, com pouca visibilidade e pouca iluminação do aeroporto, o C-46 estagnou e caiu no mar a cerca de 1,2 km (0,75 mi) de distância do aeroporto às 21h40, horário local.
Todos os membros da tripulação morreram e o único sobrevivente dos 47 passageiros a bordo do acidente ficou gravemente ferido.
Roberto Servente, o único sobrevivente do voo Austral 205
Roberto Servente é um dos poucos argentinos que podem relatar o que significa voar e sofrer um acidente. Mas o título de sobrevivente não é o único que este engenheiro e construtor possui. Ele foi o único de 52 pessoas a sobreviver, suportou quatro horas nadando no mar com vários ossos quebrados e, como se seu feito precisasse de algo ainda mais extraordinário, anos depois se tornou um dos principais executivos de uma empresa de aviação: a própria Austral.
"Comecei como náufrago e terminei como diretor de empresa", gaba-se. "Por causa do acidente, conheci um executivo e entrei para a empresa pouco depois. Tornei-me presidente da Ala, uma subsidiária, e durante toda a década de 1970 fiz parte do conselho de administração da Austral."
"A aeronave pousou na pista, mas imediatamente acelerou ao máximo e decolou novamente. Nunca ficou claro o motivo, mas depois de cinco quilômetros caímos no mar. A primeira coisa que senti foi a asa sendo arrancada ao atingir a água. O avião girou e bateu de nariz, e esse impacto violento causou a morte de quase todos. Com exceção de quatro pessoas, que ainda sofreram ferimentos fatais, todos os outros quebraram o pescoço com o impacto."
Em 16 de janeiro de 1959, o avião Douglas que transportava Servente, então com 39 anos, fazia o voo inaugural da rota Buenos Aires-Mar del Plata-Bahía Blanca e tentava pousar na cidade litorânea em meio a uma forte tempestade.
Ainda hoje, Servente atribui sua sobrevivência a uma série de coincidências milagrosas. Ele se lembra de uma cachoeira inundando a cabana e das luzes ainda acesas atrás dele, o que dava à água uma cor verde brilhante, como se fosse uma fonte iluminada.
Guiado pelo instinto, ele tentou escapar da armadilha mortal em que a fuselagem estava se transformando. Em segundos, ele estava fora da máquina, que afundava sem escapatória. Ele só conseguiu ouvir um grito abafado.
Durante quatro horas ele nadou, guiando-se apenas pela direção das ondas. Ao chegar à costa, conseguiu se agarrar a uma rocha e depois refugiar-se em um penhasco. Uma equipe de resgate, formada a pedido de um capelão da polícia que estava acampado na área, finalmente o encontrou.
Ele acredita que a água fria exacerbou uma dor que nunca sentira, apesar das fraturas na tíbia, fíbula, clavícula e costelas. Quando o encontraram, ele quase não tinha pulso e o padre lhe administrou a extrema-unção. Mesmo assim, ele se sentiu feliz. E definitivamente seguro. A cidade havia sido alertada sobre o desastre e, ao chegar ao hospital, encontrou uma legião de médicos à espera de pacientes que jamais chegariam.
Parte do avião caiu na costa da estância balnear
Uma investigação do acidente colocou a maior parte da culpa pelo acidente na tripulação. O piloto não estava familiarizado com o espaço aéreo e calculou mal a abordagem por instrumentos, resultando em uma abordagem perdida.
Além disso, o estado mental da tripulação contribuiu para o estol subsequente e perda de controle que causou a queda da aeronave. Os fatores que contribuíram foram o não funcionamento do radiofarol e a pouca visibilidade, que dificultou discernir as luzes do aeroporto e a pista.
O voo 3 da TWA foi realizado pelo bimotor Douglas DC-3-382, prefixo NC1946, operado pela Transcontinental and Western Air como um voo doméstico regular de passageiros da cidade de Nova York para Burbank, na Califórnia, via Indianapolis, Indiana; St. Louis, Missouri; Albuquerque, Novo México; e Las Vegas, Nevada.
Um DC-3 da TWA similar ao avião acidentado
Em 16 de janeiro de 1942, às 19h20, 15 minutos após a decolagem do Aeroporto de Las Vegas (agora Base da Força Aérea de Nellis) com destino a Burbank, a aeronave caiu em um penhasco íngreme na montanha Potosi, 32 milhas (51 km) a sudoeste do aeroporto, a uma altitude de 7.770 pés (2.370 m) acima do nível do mar, e foi destruída.
Todas as 22 pessoas a bordo - incluindo a estrela de cinema Carole Lombard, sua mãe e três membros da tripulação - morreram no acidente. O Conselho de Aeronáutica Civil (CAB) investigou o acidente e determinou que foi causado por um erro de navegação do comandante.
Um DC-3 da TWA sendo reparado para um voo
O voo 3 da TWA estava voando em uma rota transcontinental de Nova York à grande Los Angeles com várias paradas intermediárias, incluindo Indianápolis, St. Louis e Albuquerque, com destino final em Burbank, Califórnia. A aeronave levava 19 passageiros e três tripulantes.
Às 4h00 (hora local) na manhã de 16 de janeiro de 1942 em Indianápolis, Indiana, a atriz Carole Lombard, sua mãe e seu agente de imprensa da MGM embarcaram no voo 3 para retornar à Califórnia. Lombard, ansiosa para conhecer seu marido Clark Gable em Los Angeles, estava voltando de uma bem-sucedida turnê de promoção dos War Bonds no Meio - Oeste, onde ajudou a arrecadar mais de US$ 2.000.000.
A estrela de cinema Carole Lombard (Paramout Studios)
Após a chegada em Albuquerque, Lombard e seus companheiros foram convidados a ceder seus assentos para o segmento de voo contínuo para dar lugar a 15 membros do Corpo de Aviação do Exército dos EUA que voassem para a Califórnia.
Lombard insistiu que, por causa de seu esforço com os títulos de guerra, ela também era essencial e convenceu o agente da estação a deixar seu grupo embarcar novamente no voo. Outros passageiros foram removidos, incluindo o violinista Joseph Szigeti.
A tripulação de voo original foi substituída por uma nova tripulação em Albuquerque. Uma parada para reabastecimento foi planejada em Winslow, Arizona , devido à maior carga de passageiros e à previsão de ventos contrários. No entanto, o capitão decidiu, durante o trajeto, pular a parada de Winslow e seguir diretamente para Las Vegas.
Após uma breve parada para reabastecimento no que hoje é a Base Aérea de Nellis em Las Vegas, o avião decolou em uma noite clara e sem lua para sua última etapa para Burbank.
Quinze minutos depois, voando quase sete milhas fora do curso, ele bateu em um penhasco quase vertical na montanha Potosi na cordilheira Spring a 7.770 pés, cerca de 80 pés (24 m) abaixo do topo do penhasco e 730 pés (220 m) abaixo do cume, matando todas as 22 pessoas a bordo instantaneamente.
Este esboço a lápis descreve o impacto inicial da asa esquerda do voo 3 da TWA com uma saliência da montanha Potosi (M. McComb 11/92)
Investigação
O acidente foi investigado pela Diretoria de Aeronáutica Civil. Testemunha ocular e outras evidências sugeriram que o voo 3 procedeu de sua partida em Las Vegas ao longo de uma linha reta, 10° à direita da via aérea designada , em terreno elevado que se elevou acima de sua altitude de voo de 2.400 m.
Isso indicou aos investigadores que a tripulação não estava usando navegação por rádio para seguir as vias aéreas (definido pela faixa de baixa frequência), o que teria fornecido a eles uma liberação segura de obstáculos, mas estava usando uma bússola.
A visibilidade era geralmente boa, mas como a maioria dos faróis de luz das vias aéreas tinha sido desligada por causa da guerra, eles não podiam ser usados, embora um farol importante estivesse de fato funcionando normalmente.
Trajeto de voo real (vermelho) da TWA 3 desde a partida até o ponto de colisão: a linha azul mostra o curso nominal de Las Vegas, enquanto o verde é um curso típico de Boulder City. "Arden beacon 24", que estava operando normalmente, foi ignorado ou mal utilizado pelo capitão
Uma prova fundamental foi o formulário do plano de voo, preenchido pelo primeiro oficial em Albuquerque (mas não assinado pelo capitão, apesar de uma exigência da empresa para o fazer).
No formulário, o curso magnético de saída planejado de Las Vegas foi preenchido como 218°, que é próximo à trajetória de voo realmente percorrida pela tripulação até o ponto de colisão.Como este curso, voado a 8.000 pés, é mais baixo do que o terreno nessa direção (que sobe para cerca de 8.500 pés (2.600 m)), a placa concluiu que era claramente um erro.
Formulário do plano de voo mostrando o curso magnético do aeroporto de Las Vegas (LQ) de 218 ° a 8.000 pés, o que leva a terreno alto: falta a assinatura do capitão no fundo
O conselho especulou que, uma vez que ambos os pilotos voaram para Burbank com muito mais frequência do Aeroporto de Boulder City (BLD) do que de Las Vegas, e que, do aeroporto de Boulder City, um curso magnético de saída de 218° teria sido uma escolha razoável para unir a via aérea a Burbank, a tripulação provavelmente usou inadvertidamente o curso de saída de Boulder City em vez do curso apropriado de Las Vegas.
O aeroporto de Boulder City não foi usado como ponto de reabastecimento nesta viagem, pois não tinha iluminação na pista. Para testar sua hipótese, o CAB pediu para revisar alguns outros formulários de plano de voo da TWA preenchidos para voos entre Albuquerque e Las Vegas.
Surpreendentemente, eles descobriram outra forma, de um voo real, que também especificava o mesmo curso incorreto de 218° de ida de Las Vegas como o voo do acidente. O piloto-chefe da TWA testemunhou que o curso preenchido nesse formulário foi "obviamente um erro".
O CAB emitiu um relatório final com a seguinte declaração de causa provável: "Com base nas constatações anteriores e em todo o registro disponível até o momento, descobrimos que a causa provável do acidente com a aeronave NC 1946 em 16 de janeiro de 1942 foi a falha do capitão após a partida de Las Vegas em seguir o curso adequado, fazendo uso das facilidades de navegação disponíveis para ele."
O CAB acrescentou os seguintes fatores contribuintes:
O uso de um curso de bússola errado;
Blecaute da maioria das balizas nas proximidades do acidente tornado necessário pela emergência de guerra;
Falha do piloto em cumprir a diretiva da TWA de 17 de julho de 1941, emitida de acordo com uma sugestão do Administrador da Aeronáutica Civil solicitando aos pilotos que confinem seus movimentos de voo aos sinais reais em curso.
Conspiração
No livro "My Lunch with Orson", Orson Welles afirma ter sido informado por um agente de segurança que a aeronave foi abatida por agentes nazistas que sabiam da rota com antecedência.
Ele também afirmou que o tiroteio foi abafado para evitar uma ação de vigilantes contra americanos com ascendência alemã. Esta teoria foi questionada por Robert Matzen em seu livro "Fireball: Carole Lombard and the Mystery of Flight 3".
O Columbia (OV-102) foi o primeiro ônibus espacial da América. Este seria seu voo final.
O ônibus espacial Columbia (STS-107) decola do Complexo de Lançamento 39A no Centro Espacial Kennedy, 15:39:00 UTC, 16 de janeiro de 2003 (NASA)
Em 16 de janeiro de 2003, às 15h39:00 (UTC), T menos Zero, o ônibus espacial Columbia, decolou do Complexo de Lançamento 39A no Centro Espacial Kennedy, Cabo Canaveral, Flórida, para realizar a missão STS-107.
81,7 segundos após o lançamento, o Columbia estava a aproximadamente 66.000 pés (20.100 metros) de altitude e 12,5 milhas (20,1 quilômetros) de alcance, acelerando através de Mach 2,46 (1.623 milhas por hora, ou 2.612 quilômetros por hora).
Vários pedaços de espuma isolante se soltaram do tanque de combustível externo (o que a NASA chamou de “derramamento de espuma”) e atingiram a borda de ataque e a parte inferior da asa esquerda do Columbia .
Acredita-se que pelo menos um desses pedaços de espuma perfurou um orifício na superfície da asa, estimado em 15 × 25 centímetros (6 polegadas x 10 polegadas).
A tripulação de voo do Columbia (STS-107): Frente, da esquerda para a direita, COL Richard D. Husband, USAF; Kalpana Chawla; CDR William C. McCool, USN. Atrás, da esquerda para a direita, CAPT David M. Brown, MD, USN; CAPT Laurel Clark, MD, USN; LCOL Michael P. Anderson, USAF; COL Ilan Ramon, IAF (NASA)
Quando o Columbia voltou a entrar em 1 de fevereiro de 2003, o dano faria com que o ônibus espacial se desintegrasse. Toda a tripulação estaria perdida.
A Airbus anunciou, em 2019, o fim da produção do A380, maior avião de passageiros do mundo. Fruto de um investimento estimado em cerca de US$ 20 bilhões, o modelo fez seu primeiro voo comercial em outubro de 2007 pela companhia aérea Singapore Airlines. Segundo a empresa, o modelo teve sua produção encerrada por falta de novos clientes, e as entregas foram concluídas em 2021.
Desde o lançamento, foram apenas 313 pedidos, sendo que 234 aviões já foram produzidos e entregues. Na semana passada, a companhia aérea australiana Qantas cancelou o pedido de oito unidades do A380 de uma encomenda total de 20 aviões. Maior cliente do modelo, a Emirates também substituiu um pedido de 39 exemplares do A380 por 40 exemplares do A330neo e 30 unidades do A350.
"A consequência desta decisão é que nosso livro de pedidos não é mais suficiente para permitir que prossigamos com a produção do A380", declarou o presidente do grupo, Tom Enders, em um comunicado.
O drama do A380 é tão grande que dois aviões do modelo, com pouco mais de dez anos de uso, já foram completamente desmontados. Eles foram as primeiras unidades entregues à Singapore Airlines. Após o fim do contrato de aluguel, a aérea decidiu devolver os aviões. Sem encontrar um novo cliente, a empresa de leasing Dr. Peters, proprietária dos aviões, decidiu desmontá-los. A Singapore recebeu 24 aviões A380, mas atualmente tem apenas 19 em sua frota.
O engenheiro aeronáutico e CEO da Vinci Aeronautica, Shailon Ian, listou cinco razões para o fracasso comercial do modelo.
1. Atraso no desenvolvimento
A Airbus começou a pensar no desenvolvimento do A380 ainda na década de 1990. A empresa apostava em um forte crescimento da aviação mundial e em uma saturação dos principais aeroportos. A solução seria um avião de grande capacidade, que permitiria o aumento no número de passageiros sem elevar a quantidade de voos.
O projeto, no entanto, demorou bem mais que o esperado. A empresa gastou mais de cinco anos somente para chegar a um acordo de como deveria ser o novo avião. Depois, foram mais sete anos entre o início do desenvolvimento e a entrega a uma companhia aérea.
"Quando o primeiro avião saiu da linha de montagem, ele já saiu para morrer, porque já não tinha mais negócio para ele. O mercado já tinha mudado", afirmou Shailon.
2. Demanda menor que a esperada
Logo depois que o A380 finalmente começou a voar comercialmente, o mundo entrou em uma das mais graves crises econômicas da história, após a crise financeira dos Estados Unidos, em 2008. "As rotas maiores, que seriam da Ásia e da Europa, não absorveram a aeronave. Os custos operacionais ficaram muito acima do esperado e não há mercado que os sustente. Agora, o caminho é a aposentadoria mesmo", declarou Shailon.
3. Custos operacionais elevados
O modelo é o mais caro entre todos os aviões comerciais em produção: US$ 445,6 milhões por unidade. Mas o maior problema está no gasto a cada voo e nas manutenções.
"Um avião de quatro motores tem custos muito altos. São quatro motores que precisam de manutenção", afirmou Shailon.
A Airbus afirma que o A380 tem um custo por assento 15% menor que o Boeing 777. Para que isso seja viável, no entanto, é necessário que o avião esteja sempre lotado. Na Emirates, a capacidade do A380 varia entre 489 e 615 passageiros. O Boeing 777-300 da empresa leva até 364 passageiros. Em épocas de baixa demanda, o 777 tem mais chance de decolar cheio, tornando o avião mais lucrativo.
4. Aviões mais eficientes
As companhias aéreas têm preferido aviões menores e mais eficientes. Além do Boeing 777, outras aeronaves preferidas são o Boeing 787 e o Airbus A350. "São aviões mais eficientes e com capacidade para voos de longo alcance, tanto quanto o A380", afirmou Shailon.
Além disso, a operação desses modelos permite que as companhias aéreas atendam o mesmo número de passageiros, mas com mais flexibilidade de horários. "O passageiro quer ter essa opção", disse o engenheiro.
5. Problemas de infraestrutura
O Airbus A380 também enfrentou problemas com a infraestrutura dos aeroportos. Muitos terminais não podiam recebê-lo. No Brasil, apenas os aeroportos de Guarulhos (SP), Viracopos, em Campinas(SP), e Galeão, no Rio de Janeiro, estão homologados para o A380.
A chegada de um A380 também altera a rotina do aeroporto. Devido ao seu tamanho, o fluxo de tráfego aéreo precisa ser mudado, com aumento do tempo de espera dos pousos e decolagens na sequência.
"Apesar dos problemas, o A380 trouxe vários aprendizados no desenvolvimento. A Airbus desenvolveu várias tecnologias que, com certeza, utilizou em outros projetos. Então [o projeto] não foi de todo perdido. O problema é que o avião, em si, não tem mercado agora", disse Shailon.
Saiba ler as informações detectadas pela antena do Stormscope, ou detector de trovoadas, e evite riscos em voo no início do ano.
(Imagem: L3 Harris)
Quando se junta um grande número de elétrons na atmosfera, há a ocorrência de um fenômeno da Física chamado diferença de potencial (d.d.p.). Uma legião de elétrons se afasta dos demais prótons e nêutrons, que compõe a estrutura dos átomos das moléculas de ar.
Logo, esses elétrons em excesso escapam da região de forma explosiva, distribuindo-se nas demais áreas. A corrida dessas cargas negativas pode ser observada sob duas métricas. A “corrente elétrica” medida em Ampères (A), que define a quantidade de elétrons que viajam. E a “tensão elétrica”, medida em Volts, definindo a velocidade com que viajam.
Pois bem, quando os elétrons estão “parados” em uma região ainda equilibrada, não há corrente nem tensão. À medida que começam a se deslocar, começa a se elevar a corrente até um valor máximo, além do qual a corrente volta a cair. É como a chuva que começa fraca, chega a um volume de pico e volta a ser fina ao término.
Atrito entre massas de ar, como o que ocorre numa grande nuvem, podem provocar a concentração de elétrons. Logo, esses elétrons irão se descarregar em outras áreas. O avião pode captar as ondas provocadas por essas descargas e identificar a origem do fenômeno
Onde existe corrente elétrica, existe magnetismo. O crescimento ou redução da corrente cria campos magnéticos, cuja variação faz emitir ondas eletromagnéticas. Essas ondas partem de forma radial (para todos os lados) em dois momentos principais. O primeiro é quando a corrente se eleva ao seu máximo. E a segunda onda eletromagnética se produz quando a corrente vai caindo de volta até o zero. Essas duas ondas são criadas em momento quase instantâneos e viajam à velocidade da luz.
Quando elas colidem com a antena do Stormscope, o equipamento analisa o intervalo de tempo entre as duas ondas para verificar a distância em que o fenômeno foi produzido. E, para analisar de qual setor elas vieram, a antena do Stormscope possui vários módulos internos, como uma antena loop de um ADF atual. O módulo no qual as ondas incidiram com mais intensidade aponta o azimute de onde vieram.
Mas as descargas elétricas têm várias origens. Então, o desafio do Stormscope é identificar quais ondas eletromagnéticas foram produzidas a partir de descargas na atmosfera e quais não. Então, ao longo dos anos, vários algoritmos matemáticos foram inseridos na programação dos novos Stormscopes para triar o que vale, e não entregar ao piloto strikes falsos.
Mas o piloto pode ajudar. Strikes que surgem quando o avião taxia num aeroporto com cabos elétricos subterrâneos ou transformadores de energia de grande potência podem ser falsos.
Ou, quando ele observa strikes em dias de céu azul, podem se originar no espaço aéreo superior, quando correntes de jato se atritam com massas de ar adjacentes, provocando d.d.p.
Esquema mostra funcionamento de uma trovoada e como o stormscope detecta sua presença (Imagem: L3 Harris)
O bom é sempre confrontar o que se vê com os olhos com aquilo que o Stormscope indica. Se confirmar que a descarga atmosférica é real e está no seu nível de voo, evite a área em pelo menos 10 milhas. E lembre-se de que chuva forte pode não aparecer no Stormscope, mas representar risco à aeronave.
Por Jorge Filipe Almeida Barros, in Memorian, para Aero Magazine
A aviação comercial serve como um termômetro da mobilidade humana: onde há demanda, há voos. Em 2025, os dados apontam um cenário marcado pela predominância de rotas domésticas asiáticas no topo do ranking global.
Isso é reflexo de mercados maduros, alta densidade populacional e infraestrutura aeroportuária eficiente. Já nas rotas internacionais, a interconexão dentro do próprio continente asiático continua dominante, com apenas uma exceção ocidental: a icônica ligação entre Nova York e Londres.
Veja a seguir os rankings elaborados a partir da quantidade de assentos ofertados (não necessariamente a quantidade de passageiros voados) compilados pela consultoria britânica OAG, especializada em inteligência do setor aéreo.
Rotas mais voadas no mundo
O topo da lista das rotas mais voadas no mundo é formado apenas por voos domésticos.
Jeju Internacional a Seul Gimpo (Coreia do Sul): 14.384.766 assentos ofertados
Novo aeroporto de Chitose/Sapporo a Tóquio Haneda (Japão): 12.099.499 assentos ofertados
Fukuoka a Tóquio Haneda (Japão): 11.496.706 assentos ofertados
Hanói a Ho Chi Minh (Vietnã): 11.078.775 assentos ofertados
Jidá a Riad (Arábia Saudita): 9.819.558 assentos ofertados
Melbourne a Sydney (Austrália): 8.951.497 assentos ofertados
Tóquio Haneda a Okinawa/Naha (Japão): 8.052.864 assentos ofertados
Mumbai a Delhi (Índia): 7.642.016 assentos ofertados
Pequim a Xangai Hongqiao (China): 7.454.950 assentos ofertados
Xangai Hongqiao a Shenzhen (China): 7.138.673 assentos ofertados
Rotas internacionais mais voadas
Entre as rotas internacionais com mais assentos disponibilizados, apenas a conexão entre Nova York (EUA) e Londres (Reino Unido) fica fora da Ásia.
Hong Kong (China) a Taipé (Taiwan): 6.832.683 assentos ofertados
Cairo (Egito) a Jidá (Arábia Saudita): 5.753.491 assentos ofertados
Kuala Lumpur (Malásia) a Singapura Changi (Singapura): 5.574.409 assentos ofertados
Seul Incheon (Coreia do Sul) a Tóquio Narita (Japão): 5.069.779 assentos ofertados
Seul Incheon (Coreia do Sul) a Osaka Kansai (Japão): 4.959.596 assentos ofertados
Jacarta (Indonésia) a Singapura Changi (Singapura): 4.619.323 assentos ofertados
Bangkok (Tailândia) a Hong Kong (China): 4.169.125 assentos ofertados
Tóquio Narita (Japão) a Taipé (Taiwan): 4.021.181 assentos ofertados
Nova York JFK (EUA) a Londres Heathrow (Reino Unido): 3.971.000 assentos ofertados
Divisão regional
O Brasil não desponta em nenhum ranking. Apenas como comparação, a principal rota do país, a ponte aérea Rio de Janeiro - São Paulo (entre os aeroportos Santos Dumont e de Congonhas) ofereceu 4.742.886 assentos entre janeiro e novembro de 2025. Essas são as rotas mais oferecidas em cada região do planeta:
América Latina: Bogotá a Medelín (Colômbia): 6.219.202 assentos ofertados
América do Norte: Vancouver a Toronto (Canadá): 3.655.423 assentos ofertados
África: Cidade do Cabo a Johanesburgo (África do Sul): 5.475.986 assentos ofertados
Ásia e Pacífico: Jeju a Seul Gimpo (Coreia do Sul): 14.384.766 assentos ofertados
Europa: Barcelona a Palma (Espanha): 2.955.696 assentos ofertados
Oriente Médio: Jidá a Riad (Arábia Saudita): 9.819.558 assentos ofertados