quarta-feira, 31 de dezembro de 2025

Aconteceu em 31 de dezembro de 1961: Queda de avião da Aeroflot com 119 ocupantes deixa 32 vítimas fatais

Um Il-18V da Aeroflot similar ao avião acidentado
Em 31 de dezembro de 1961, o avião 
Ilyushin Il-18V, prefixo CCCP-75757, da Aeroflot / Armenia, operava um voo de passageiros de Moscou (Vnukovo) para Yerevan, na antiga União Soviética. 

No entanto, de 29 a 31 de dezembro, condições climáticas adversas prevaleceram na região do Cáucaso, levando ao fechamento de muitos aeroportos. O aeroporto de Yerevan também foi fechado, então o voo CCCP-75757 pousou em um aeroporto alternativo em Tbilisi . Devido ao prolongado fechamento dos aeroportos, muitos passageiros optaram por cancelar suas passagens e viajar por transporte terrestre. Em 31 de dezembro, cerca de 500 passageiros estavam reunidos no aeroporto de Tbilisi.

O Il-18V, com número de cauda CCCP-75757 (número de fábrica 181003202, número de série 032-02), foi fabricado pela MMZ "Znamya Truda" em 1961 e entregue à Diretoria Principal da Frota Aérea Civil. Foi então designado ao Grupo Aéreo Independente Armênio GVG. A cabine da aeronave tinha capacidade para 84 passageiros. No momento do acidente, o avião comercial tinha acumulado 593 horas de voo e era impulsionado por quatro motores Ivchenko AI-20.

Na noite de 31 de dezembro, o Aeroporto de Mineralnye Vody havia reaberto, levando a Direção Georgiana da CAF a contatar o Grupo Aéreo Independente da Armênia para solicitar o uso de duas aeronaves Il-18 armênias ociosas em Tbilisi para voos adicionais para Mineralnye Vody. Isso visava ajudar a aliviar o congestionamento no aeroporto de Tbilisi. A liderança armênia inicialmente recusou, mas acabou concordando quando percebeu que o aeroporto de Yerevan não reabriria em breve.

Uma das aeronaves selecionadas foi a CCCP-75757. Embora nenhum anúncio tenha sido feito sobre o embarque para o voo adicional, os passageiros se aglomeraram apressadamente na aeronave. No ambiente caótico, não havia controle de bilhetes e a rampa de embarque teve que ser removida enquanto ainda havia pessoas nela. Após a remoção da rampa, descobriu-se que dois membros da tripulação — um engenheiro de voo e uma das comissárias de bordo — ainda não haviam embarcado. Uma escada auxiliar foi então baixada, permitindo que mais alguns passageiros embarcassem.

Às 16h55, o Il-18 decolou do aeroporto de Tbilisi. O voo foi pilotado por uma tripulação composta pelo Capitão Akhdrin Bardzilivosovich Oganesyan, o Primeiro Oficial Asatur Nikolaevich Shabonyan, o Navegador Gurgen Vantshevik Shakhbazyan, o Engenheiro de Voo Grant Grigorievich Budurov, o Operador de Rádio Roland Agavartovich Mkhitaryan e o operador de rádio em treinamento GK Nikoghosyan. A tripulação de cabine incluía as Comissárias de Bordo AO Shahatuni, Aleksandra Mikhailovna Proskurina e Marieta Khasraevna Astatryan. 

A bordo da aeronave de 84 lugares estavam 110 passageiros, 26 dos quais em pé ou sentados nos corredores, alguns inclusive ocupando o guarda-roupas e a cozinha. A aeronave estava com o centro de gravidade para trás de 24,5% da MAC, excedendo o limite em 1%, enquanto a carta indicava uma MAC de 19%.

O Il-18 chegou a Mineralnye Vody sem incidentes. Naquele momento, o céu sobre o aeroporto estava completamente coberto por nuvens, com o limite inferior a 120 metros. A visibilidade era de 2.000 metros e caía neve fraca. 

Após completar a quarta curva (na aproximação final), a aeronave estava a 20 quilômetros do aeroporto e desviou-se 800-900 metros para a direita da linha central. Quando a distância até a pista diminuiu para 8 quilômetros, o controlador de radar de aproximação guiou a aeronave de volta para a trajetória de pouso, resultando na passagem da aeronave sobre o marcador externo (3.850 metros da pista) na trajetória de planeio, com um curso de 117° a uma altitude de 250 metros. O controlador então perguntou aos pilotos se eles conseguiam ver as luzes da pista. A resposta foi negativa, levando a tripulação a decidir arremeter.

Durante a arremetida, o Il-18 desviou-se significativamente para a direita. Às 17h58, enquanto voava no escuro a uma proa de 188° e a uma altitude de 90 metros em relação ao aeroporto, a aeronave colidiu com uma encosta arborizada a 3 quilômetros a sudoeste do aeroporto. 

O avião atravessou a floresta por cerca de 280 metros antes de girar para a esquerda e pegar fogo. O acidente resultou na morte do operador de rádio estagiário (Nikoghosyan), de uma comissária de bordo (Shahatuni) e de 30 passageiros.

A localização de Mineralnye Vody, o local da queda 
A causa do acidente foi a violação, por parte da tripulação, das instruções relativas à coordenação da tripulação durante aterragens noturnas em condições meteorológicas difíceis. Os pilotos desviaram significativamente para a direita, mantendo uma altitude de 90 metros, o que levou a aeronave a colidir com a encosta pouco depois. Isto foi agravado pela deterioração significativa das condições meteorológicas, cujo último relatório tinha sido transmitido meia hora antes, e pela distração causada pela consulta do controlador sobre a visibilidade da pista, que desviou a atenção da tripulação da monitorização dos instrumentos.

É também importante destacar a má organização do embarque de passageiros no aeroporto de Tbilisi, onde os passageiros embarcaram na aeronave de forma desorganizada, resultando numa sobrecarga de 26 pessoas. Dado o longo atraso antes da partida, isto contribuiu para um nervosismo significativo entre a tripulação.

Por Jorge Tadeu da Silva (Site Desastres Aéreos) com Wikipédia, ASN

Hoje na História: 31 de dezembro de 1938 - Primeiro voo do Boeing 307 Stratoliner

Boeing Model 307 Stratoliner com todos os motores funcionando, Boeing Field, Seattle, Washington, por volta de 1939 (Arquivos do Museu Aéreo e Espacial de San Diego)
Em 31 de dezembro de 1938, o Boeing modelo 307 Stratoliner, registro NX19901, fez seu primeiro voo em Boeing Field, Seattle, Washington. O piloto de teste foi Eddie Allen, com o copiloto Julius A. Barr.

Boeing 307 Stratoliner NX19901 com ambas as hélices na asa direita paradas (Boeing)
O Modelo 307 era um avião comercial de quatro motores que usava as asas, superfícies da cauda, ​​motores e trem de pouso do bombardeiro pesado B-17B Flying Fortress de produção. A fuselagem era circular em seção transversal para permitir a pressurização. Foi o primeiro avião comercial pressurizado e, devido à sua complexidade, também foi o primeiro avião a incluir um engenheiro de voo como membro da tripulação.

A agência de notícias Associated Press informou: "O primeiro avião do mundo, projetado para voar na subestratosfera, o novo Boeing “Stratoliner”, teve um desempenho “admiravelmente” em um primeiro voo de teste de 42 minutos na chuva hoje. O grande avião, com uma largura de asa de 107 pés, três polegadas, subiu para 4.000 pés, o teto, e cruzou entre aqui, Tacoma e Everett. A velocidade foi mantida em 175 milhas por hora. “O controle, a estabilidade e a maneira como ele conduziu foram muito bons”, disse Edmund T. Allen, piloto. "Ela teve um desempenho admirável." O avião de 33 passageiros foi construído para voar a altitudes de 20.000 pés. Não há mais testes planejados até a próxima semana. O equipamento de superalimentação para voos de alta altitude será instalado posteriormente.

Boeing Modelo 307 Stratoliner NX19901 decolando em Boeing Field, Seattle, Washington
(Arquivos do Museu Aéreo e Espacial de San Diego)
Em 18 de março de 1939, durante seu 19º voo de teste, o Stratoliner deu uma volta e depois mergulhou. Ele sofreu falha estrutural das asas e do estabilizador horizontal quando a tripulação tentou se recuperar. O NX19901 foi destruído e todas as dez pessoas a bordo foram mortas.

Boeing Modelo 307 Stratoliner NX19901 (Arquivo do Museu Aéreo e Espacial de San Diego)
O Boeing Modelo 307 era operado por uma tripulação de cinco pessoas e podia transportar 33 passageiros. Tinha 74 pés e 4 polegadas (22,657 metros) de comprimento, com envergadura de 107 pés e 3 polegadas (32,690 metros) e altura total de 20 pés e 9½ polegadas (6,337 metros). As asas tinham 4½° diédrico e 3½° de ângulo de incidência. O peso vazio era de 29.900 libras (13.562,4 quilogramas) e o peso carregado era de 45.000 libras (20.411,7 quilogramas).

Ilustração em corte de um Boeing modelo 307 Stratoliner (Boeing)
O avião era movido por quatro motores radiais de 9 cilindros Wright Cyclone 9 GR-1820-G102 refrigerados a ar, com engrenagens e sobrealimentados, 1.823,129 polegadas cúbicas (29,875 litros) com uma taxa de compressão de 6,7:1, avaliada em 900 potência a 2.200 rpm e 1.100 cavalos a 2.200 rpm para decolagem. 

Boeing Modelo 307 Stratoliner NX19901. As capotas do motor foram removidas. O motor interno direito está funcionando. A disposição das janelas do passageiro difere no lado direito e esquerdo da fuselagem
(Arquivos do Museu Aéreo e Espacial de San Diego)
Esses impulsionaram hélices Hydromatic padrão Hamilton de três pás por meio de uma redução de marcha de 0,6875: 1 para combinar a faixa de potência efetiva do motor com as hélices. O GR-1820-G102 tinha 4 pés, 0,12 polegadas (1.222 metros) de comprimento, 4 pés e 7,10 polegadas (1.400 metros) de diâmetro e pesava 1.275 libras (578 quilogramas).

 Boeing's Modelo 307 Stratoliner em fabricação (Boeing)
A velocidade máxima do Modelo 307 foi de 241 milhas por hora (388 quilômetros por hora) a 6.000 pés (1.828,8 metros). A velocidade do cruzeiro era de 215 milhas por hora (346 quilômetros por hora) a 10.000 pés (3.048 metros). O teto de serviço era de 23.300 pés (7.101,8 metros).

Boeing Modelo 307 Stratoliner NX19901 com todos os motores funcionando
(Arquivo do Museu Aéreo e Espacial de San Diego)
Durante a Segunda Guerra Mundial, a TWA vendeu seus Stratoliners ao governo dos Estados Unidos, que os designou C-75 e os colocou em serviço de passageiros transatlânticos.

Um Boeing 307 Stratoliner da Transcontinental and Western Airlines (TWA)
com atendentes de cabine (TWA)
Em 1944, os 307 foram devolvidos à TWA e foram enviados de volta à Boeing para modificação e revisão. 

Boeing Modelo 307 Stratoliner NX19903 após atualização, por volta de 1945 (Boeing)
As asas, motores e superfícies da cauda foram substituídos por aqueles do mais avançado B-17G Flying Fortress. O último em serviço foi aposentado em 1951.

Duas aeromoças da TWA com um Boeing 307 Stratoliner, por volta de 1944–1951

Boeing C-75 Stratoliner “Comanche”, número de série 42-88624 do US Army Air Corps, anteriormente TWA's NC19905 (Arquivos do Museu Aéreo e Espacial de San Diego)
Dos dez Stratoliners construídos para Pan Am e TWA, apenas um permanece. Totalmente restaurado pela Boeing, o NC19903 fica no Stephen F. Udvar-Hazy Center da Smithsonian Institution.

O único Boeing Model 307 Stratoliner existente, NC19903, Clipper Flying Cloud, no
Museu Nacional do Ar e Espaço da Instituição Smithsonian, Steven F. Udvar-Hazy Center
(Foto de Dane Penland, National Air and Space Museum, Smithsonian Institution)
Edição de texto e imagens por Jorge Tadeu

Porca de Jesus: peça de nome curioso derruba helicópteros se der problema

Helicóptero Bell 206B: Modelo conta com a porca de Jesus para prender o rotor principal
ao eixo do motor da aeronave (Imagem: Lance Andrewes)
Na aviação, nenhuma falha é desejável. Entretanto, algumas são mais ou menos graves do que outras.

Se um trem de pouso não baixar, por exemplo, é possível fazer um pouso de barriga em algumas situações. Se um instrumento no painel não está operante, é corriqueiro que haja outro redundante que possa ser utilizado em seu lugar.

Em alguns helicópteros, entretanto, uma peça em particular tem um apelido inusitado devido à sua importância: A porca de Jesus. Ela é de fundamental importância, pois é ela quem segura o rotor principal do helicóptero (a espécie de hélice que fica na parte de cima da aeronave).

Localização da porca de Jesus no helicóptero Bell 206
(Imagem: Intervenção sobre foto do Exército dos EUA)
Sem essa porca de retenção, ele se solta, e a aeronave perde sua sustentação e termina caindo, consequentemente. Nem todos os helicópteros possuem o mesmo tipo de fixação, e essa peça pode variar entre os vários modelos existentes. Devido à sua importância, antes de decolar, sempre é preciso checar se ela está no lugar.

Apelido


Porca de Jesus, que prende o rotor principal ao eixo vertical do helicóptero
(Imagem: Alan Radecki Akradecki/CC BY-SA 4.0)
Esse nome é uma brincadeira, com várias versões para sua origem: se houver alguma falha com ela, só rezando para Jesus para ser salvo. Também há quem diga que, quando essa porca se solta durante o voo, o piloto diz imediatamente: "Jesus".

Outro comentário comum entre mecânicos do setor é que, caso ela quebre, obrigatoriamente, a próxima figura que você irá encontrar será ele, Jesus.

Esse apelido também é dado a peças estruturais importantes em outras aeronaves. Geralmente, são itens que, quando falham, causam acidentes graves, com quedas.

Acidentes são fatais


A chance de sobrevivência em um acidente quando o rotor principal escapa é muito baixa. Caso ocorra em voo, o helicóptero irá cair.

Se estiver no solo, ainda é necessário levar em consideração se as pás não irão colidir com a cabine onde estão os tripulantes e passageiros.

Em abril de 2000, um helicóptero Bell 206 sofreu um acidente no Canadá pela ausência da porca de Jesus. Ele havia decolado e voado por alguns minutos com o piloto e um engenheiro de manutenção para fazer testes na aeronave. Após anunciarem que retornariam ao hangar onde estava sendo feito um procedimento de manutenção, o rotor principal do helicóptero se soltou, e as pás acertaram a cabine, matando os dois a bordo. Após a queda, ainda houve um incêndio, que destruiu a aeronave.

O relatório de investigação do acidente identificou que o helicóptero decolou sem a porca de Jesus. Ela foi encontrada no hangar junto com seus componentes de fixação, já que havia sido removida para ser pintada. Também se concluiu que o piloto não checou se a porca de fixação estava no lugar antes de decolar, assim como não havia nenhum recado na cabine para avisá-lo sobre isso. Nenhum documento da aeronave indicava a remoção da peça, e três funcionários que auxiliaram na retirada da porca de Jesus estavam presentes no momento da decolagem. Nenhum deles havia se lembrado de que a peça não estava no lugar, segundo o relatório.

Por Alexandre Saconi (UOL) - Fontes: Misak Reis, inspetor de manutenção da Helimarte, e Conselho de Segurança de Transporte do Canadá

Vídeo: Como as bagagens chegam até o avião?


Você comprou sua passagem, vai viajar e aí começa a arrumar a sua mala. Já se perguntou "qual será o caminho que essa mala faz até chegar no avião?". No vídeo de hoje Lito Sousa nos mostra como é o caminho que a sua mala percorre desde o momento em que você deixa ali na balança, até chegar na esteira lá do seu aeroporto de destino.

Por que as descargas dos banheiros das aeronaves são tão barulhentas?

Nem é preciso dizer que o som da descarga de uma descarga de um avião é ensurdecedor. Considerando que o sistema de ventilação da aeronave e os motores combinados já estão fornecendo ruído ambiente suficiente para abafar uma conversa normal de fala, o fato de que a descarga de um banheiro atravessa esses sons e pode ser ouvido no meio da cabine, é um eufemismo chamar isso ruído 'alto'. 

Mas por que a descarga do banheiro de um avião é muito mais alta do que a descarga de um banheiro doméstico comum?

O volume da descarga do vaso sanitário de uma aeronave é aproximadamente equivalente a estar a um ou dois metros de uma serra elétrica ou a ficar em uma plataforma e ser ultrapassado por um trem em movimento.

Foto: Getty Images

De acordo com o Wall Street Journal, o banheiro é essencialmente a parte mais barulhenta da experiência de voo, relatando que os anúncios da tripulação normalmente variam entre 92 e 95 decibéis. Em comparação, as descargas do vaso sanitário atingem 100 decibéis - junto com fortes batidas na porta do compartimento superior. Certamente há uma boa explicação para isso.

Então, por que a descarga do banheiro dos aviões faz um barulho tão alto?

Simplificando, o volume da descarga é devido a um vácuo parcial que suga o conteúdo do vaso sanitário para o tanque de dejetos da aeronave. Considerando que seu 'banheiro subterrâneo' padrão é drenado com a liberação de cinco a dez litros de água, não é tão viável dedicar tanto espaço e combustível para transportar tanta água para banheiros no céu. E então, é claro, haveria a complicada questão de derramamento durante a decolagem, pouso e turbulência!

Provavelmente não é necessário incluir um exemplo. Mesmo assim, caso você não saiba o som da descarga do vaso sanitário de uma aeronave (ou, mais provavelmente, tenha esquecido depois de ter passado tanto tempo no solo), aqui está um videoclipe para sua conveniência:

De acordo com o site The Points Guy, o banheiro moderno da aeronave foi inventado por James Kemper, que patenteou o banheiro a vácuo em 1975. Esta invenção foi então instalada nos aviões da Boeing em 1982. Em vez de usar a combinação convencional de água e gravidade, um vácuo é usado para mover água e resíduos em alta velocidade para o tanque de resíduos. De acordo com o CBC, o conteúdo liberado pode se mover a altas velocidades de até 150 metros por segundo - ou 300 milhas por hora!

Os banheiros da aeronave também são cobertos com um revestimento antiaderente para garantir que a bacia seja completamente esvaziada (Foto: Tiowiafuk)

Descendo para os tanques de resíduos

Como você deve saber, a cabine de passageiros de uma aeronave é pressurizada a uma altitude superior. O sistema sanitário da aeronave inclui uma válvula que mantém essa diferença de pressão. Na descarga, a válvula se abre e, em seguida, esse resíduo é sugado pelos tubos que enchem o tanque.

Dependendo do tamanho da aeronave, há um ou mais tanques localizados na parte traseira do avião, embaixo do piso. Os banheiros se conectam a esses tanques por meio de tubulações instaladas em toda a extensão da aeronave. Portanto, sempre que alguém da primeira classe ou classe executiva descarrega, esses conteúdos estão sendo movidos em alta velocidade para a parte traseira da aeronave.

Remoção de dejeto sanitário de aeronaves

Parte do tempo que uma aeronave passa no portão do aeroporto geralmente inclui o esvaziamento de seus tanques de resíduos (Foto: mnts)

Provavelmente também não ajuda o fato de você normalmente ter a porta do banheiro fechada quando você aperta o botão para dar descarga. Como as ondas sonoras têm poucos lugares para ir, isso inevitavelmente intensificaria o fluxo ao ricochetear no espaço confinado.

terça-feira, 30 de dezembro de 2025

O dia em que a Airbus destruiu um avião novo prestes a ser entregue ao cliente

curiosa e incomum ocorrência em que um avião recém-saído da fabricação, em vias a ser entregue ao cliente, foi severamente danificado pela própria fabricante, felizmente sem perdas de vidas, apesar de alguns feridos em estado grave.

Ocorrido na sede da Airbus, em Toulouse, França, e, portanto, investigado pelo Gabinete de Investigação e Análise para Segurança da Aviação Civil (BEA), o caso foi legalmente considerado pelo BEA como um evento que não constitui um acidente de aviação, pois nenhuma das pessoas a bordo tinha a intenção de realizar um voo.

O termo acidente é, entretanto, usado no relatório em seu sentido usual, tendo sido classificado como “incidente grave” na “classe de ocorrência” para manter a consistência estatística.

Como tudo aconteceu


Era 15 de novembro de 2007 quando o Airbus A340-600 registrado sob a matrícula provisória F-WWCJ estava passando por testes de potência dos motores no aeroporto Toulouse Blagnac. O jato de número de fabricação 856 seria destinado à companhia aérea Etihad Airways, dos Emirados Árabes Unidos.

O teste consistia em avaliar diferentes sistemas com técnicos da companhia aérea que encomendou a aeronave. Foi feito o funcionamento dos motores sem calços nas rodas na área específica para este fim e, após esses testes, houve uma parada para inspeção dos propulsores.

A posição do A340 na área de teste de motor, em edição feita pelo BEA
Na sequência, os técnicos religaram os motores para uma nova aceleração de alta potência, em busca da origem de um vazamento de óleo encontrado. Cerca de três minutos após o início do teste, a aeronave começou a se mover para a frente.

O técnico do assento esquerdo percebeu o movimento e informou o técnico de testes do assento direito. Este último atuou nos freios localizados nos pedais do leme e, em seguida, soltou o freio de estacionamento.

Como a aeronave continuou a se mover para a frente, ele tentou desviar de seu curso usando o controle de direção do trem de nariz, porém, não houve tempo suficiente.

O avião atingiu o plano inclinado da barreira de bloqueio de jato de ar de motor e subiu até seu topo. A seção dianteira da fuselagem se quebrou e caiu para o outro lado. Treze segundos se passaram entre o início do movimento do avião e a colisão com a barreira.


Das nove pessoas a bordo, quatro tiveram ferimentos graves e cinco ficaram levemente feridos. A aeronave foi descartada devido à extensão dos danos.

Informações sobre o pessoal a bordo


Os testes de solo durante a fase de aceitação do cliente foram realizados sob a responsabilidade de um único técnico de teste de solo, um funcionário da Airbus. Geralmente, este era acompanhado por uma ou mais pessoas que representavam o cliente e, às vezes, outros funcionários da Airbus.

A Airbus não tinha nenhum requisito de qualificação específico para representantes de clientes que participassem dos testes. Os representantes do cliente sentados na cabine normalmente teriam funções de observador, mas o técnico de teste de solo pode envolver um representante do cliente, por exemplo, permitindo que ele faça o taxiamento.


Durante a ocorrência, o técnico de teste de solo responsável estava sentado no assento direito, um técnico de aviação representando o cliente estava no assento esquerdo e um experimentador de teste de voo no assento de serviço.

O representante do cliente e o experimentador de voo de teste não tinham funções definidas para lidar com a aeronave. A função do representante do cliente era observar os parâmetros durante o teste para garantir que atendessem às expectativas do cliente.

Registro em vídeo


Havia uma câmera de vídeo que gravava continuamente a área de teste de motor. Ela permitiu ver o avião durante a ocorrência. Os investigadores descrevem que observaram uma lenta translação do avião para a frente, depois um movimento que repentinamente acelera.

Quando a trajetória começa a se curvar para a direita, a roda dianteira vira de lado e perde sua efetividade, e o avião continua seu caminho até a barreira. A parte frontal sobe até o trem dianteiro ultrapassar o topo e a fuselagem cair sobre a barreira.

Houve chamas nos motores um e dois (externo e interno da asa esquerda) e na parte traseira do avião.

Observando os vídeos gravados vários dias antes do acidente, os investigadores constataram que alguns testes foram realizados com a colocação de calços nas rodas e outros não.

Sistema de frenagem da aeronave


Quando os pedais do leme são pressionados para frenagem, os sistemas hidráulicos dos dois conjuntos de trem de pouso principais (rodas dos trens centrais e rodas dos externos) são pressurizados.

No entanto, a frenagem nas rodas do trem central é reduzida automaticamente assim que as rodas do trem dianteiro são giradas. A partir de uma ordem de direção de 20°, a frenagem do trem central é completamente inibida. Assim, a ação do técnico em tentar desviar a aeronave reduziu a capacidade de frenagem.

Análises da investigação


1 – Realizando testes

Embora os documentos de referência exijam a instalação de calços durante os testes de motor, a investigação mostrou que eles não foram usados ​​de forma sistemática.

Da mesma forma, ao testar se há vazamentos de óleo, muitas vezes parece que o procedimento de aplicar potência a apenas dois dos quatro motores do A340 não é seguido.

As questões industriais e comerciais associadas às atividades de entrega podem colocar pressão sobre os operadores responsáveis ​​pelos testes durante esta fase. A presença de representantes do cliente a bordo durante as fases de entrega pode criar pressão que incentiva as operadoras a irem além de seus procedimentos de referência.

2 – Reações na cabine de comando

As ações do técnico de teste de solo foram mobilizados por cerca de dez segundos no sistema de freios. Ele não pensou em fazer a redução dos controles de aceleração dos motores.

Isto pode ser explicado pelo enfoque no problema de frenagem, pela dinâmica da situação e pela falta de treino neste tipo de situação. O técnico aeronáutico e o experimentador do teste de voo estavam presentes apenas como observadores.

O técnico da aeronave sentado no assento esquerdo não interveio nos controles até o impacto. O experimentador de voo de teste interveio para reduzir os aceleradores, mas tardiamente. Isso pode ser explicado pelo seu status a bordo, com receio de interferir nas ações do técnico e também pela dinâmica da situação.

3 – Controle da atividade

Os regulamentos relativos aos testes e aceitação não preveem a necessidade de supervisão da autoridade regulatória nas atividades de teste e aceitação. Assim, o controle dessas atividades é implicitamente delegado ao fabricante.

Resumo dos fatos estabelecidos pela investigação

  • A aeronave e, em particular, seu sistema de frenagem estavam funcionando de acordo com as especificações;
  • O acidente ocorreu durante a fase de entrega durante um teste não programado;
  • O procedimento não estava de acordo com a tarefa “Teste de vazamento de combustível e óleo” listada no AMM (sigla em inglês para Manual de Manutenção da Aeronave). Em particular, foi executado com alto empuxo e todos os motores em operação sem o uso de calços;
  • Testemunhos e gravações de vídeo indicam que testes de motor sem calço são realizados regularmente;
  • O empuxo aplicado aos motores era da mesma ordem que a capacidade nominal de frenagem do freio de estacionamento;
  • Quando a aeronave começou a se mover para frente, o técnico de teste de solo pressionou os pedais do freio e soltou o freio de estacionamento;
  • O técnico de teste de solo girou o volante de controle do trem dianteiro para a direita. Essa direção, ao inibir a frenagem no trem central, limitava a eficácia da frenagem;
  • As ações do pedal de freio não foram contínuas no nível máximo;
  • O experimentador do teste de voo reduziu os controles de aceleração no momento em que a aeronave atingiu a barreira de proteção.

Causas do acidente


O relatório do BEA descreve que o acidente deveu-se à realização de um teste sem calços nas rodas e com os quatro motores acelerados ao mesmo tempo, durante o qual o empuxo ficou próximo da capacidade limite do freio de estacionamento do avião.

A inexistência de um sistema de detecção e correção de desvios na realização dos procedimentos de testes de solo, num contexto de permanente pressão industrial e comercial, incentivou a realização de um ensaio fora dos procedimentos estabelecidos.

A surpresa com a situação levou o técnico de teste de solo a se concentrar no sistema de freios, portanto, ele não pensou em reduzir o empuxo dos motores.

Medidas tomadas após o acidente

O Manual de Aceitação do Cliente (CAM na sigla em inglês) foi revisado (maio de 2008) para reforçar as instruções a serem seguidas na operação de um teste de aceleração de motor. O procedimento pergunta em particular se existe:
  • A instalação de calços na frente de todas as rodas dos trens de pouso principais (bem como as do trem de pouso central se aplicável); e
  • A presença de duas pessoas qualificadas nos comandos durante o teste estático e durante as fases de taxiamento.
Nesta mesma revisão do CAM, foram modificadas as condições para a realização de testes de alta potência de motores em aviões quadrijatos. Eles passaram a determinar que se faça a aceleração de apenas dois motores simétricos ao mesmo tempo.

Uma nota interna foi distribuída a todos os operadores de aeronaves em janeiro de 2008. Ela alerta que não deve haver mais nenhum reteste durante o teste estático do cliente (por exemplo, para procurar vazamentos de óleo, como era o caso no dia do acidente). Esses testes adicionais devem ser objeto de um novo teste estático posterior, somente após o problema ter sido resolvido no centro de entrega, e não no próprio local de teste.

A fraseologia de rádio com a Torre foi melhorada para garantir que os testes de motor não comecem até que os calços das rodas estejam no lugar: o operador da aeronave deve agora anunciar ao controlador de tráfego aéreo o início dos testes de motor após confirmado que os calços estão no lugar.

A Airbus indicou que criaria um novo documento dedicado aos testes de solo. Este documento seria intitulado “Manual de Operações em Solo”.


No que diz respeito à formação dos profissionais envolvidos, a sessão de “atualização” sobre os testes de motor realizados em simulador (uma vez a cada dois anos) foi complementada por uma auditoria realizada durante um teste estático por um técnico sênior, a fim de promover feedback. Além disso, a sessão de simulador foi enriquecida pelo processamento e análise de casos de falha que podem ocorrer durante os testes do tipo “teste estático do cliente”.

Por Murilo Basseto (Aeroin) - Com informações do BEA

Vídeo: TRISTAR - Um Fracasso Brilhante


Às vezes, uma máquina nasce perfeita — tão avançada que parece destinada a mudar a aviação para sempre. O Lockheed L-1011 TriStar foi exatamente isso: um avião silencioso, tecnológico e admirado por pilotos, mas que acabou se tornando um dos maiores fracassos comerciais da indústria. Neste vídeo, você vai conhecer a história do TriStar, o impacto do motor Rolls-Royce RB.211, a disputa com o DC-10 e como um acidente aparentemente banal acabou dando origem ao CRM, um dos pilares da segurança da aviação moderna.

Por que a Boeing construiu o 767 com trem de pouso basculante para frente?

(Crédito: Shutterstock)
O Boeing 767 é uma das aeronaves widebody mais reconhecidas da era moderna da aviação a jato. Entrou em serviço no início da década de 1980 e rapidamente se tornou a preferida das companhias aéreas para voos de médio e longo alcance. Sua combinação de eficiência de combustível, alcance e layout de cabine confortável ajudou a consolidá-lo como um pilar confiável das frotas globais. Mesmo com a entrada de aeronaves mais modernas no mercado, o 767 manteve uma forte presença tanto no transporte de passageiros quanto de carga.

O 767 tornou-se uma plataforma para a Boeing refinar sua abordagem às operações de longo curso com bimotores. Desempenhou um papel fundamental no desenvolvimento inicial das regras ETOPS, que posteriormente transformaram as viagens internacionais ao permitir que bimotores operassem rotas antes restritas a aeronaves quadrimotoras. A aeronave demonstrou que dois motores podiam suportar com confiabilidade voos transoceânicos de longa distância em uma época em que esse conceito ainda era novo para reguladores e companhias aéreas. Seu desempenho ajudou a pavimentar o caminho para os bimotores de fuselagem larga posteriores, que agora dominam os mercados de longo curso.

O primeiro protótipo do Boeing 767 voou no outono de 1981, e o primeiro 767-200 entrou em serviço com a United Airlines no ano seguinte. A Boeing expandiu a família ao longo do tempo com o 767-200ER, o 767-300 e o 767-300ER, versões alongadas, e eventualmente o 767-400ER. O 767-300F também se tornou um cargueiro dedicado popular e permanece em produção ativa para operadores de carga. Essas variantes permitiram que o programa atendesse a uma ampla gama de missões, tanto no mercado de passageiros quanto no de carga.

Por que o trem de pouso está inclinado para a frente?


Pouso de um 767 (Crédito: Shutterstock)
A principal razão pela qual o 767 utiliza trem de pouso basculante para a frente é para economizar espaço na fuselagem. Esse design que economiza espaço acomodou sistemas e características estruturais exclusivas do 767 e tornou o trem de pouso basculante para a frente necessário. Aeronaves de fuselagem larga posteriores, como o 777 e o 787, utilizam mecanismos de mudança de inclinação, que permitem que o trem de pouso mude de posição durante a extensão e a retração.

Outro fator também influenciou o projeto. Durante os testes iniciais, os engenheiros perceberam que o 767 tendia a inclinar-se bruscamente para baixo durante o pouso. A inclinação para a frente do trem de pouso ajudou a contrabalançar esse comportamento, permitindo que a roda dianteira tocasse o solo primeiro. Esse ajuste suavizou a mudança de inclinação no momento do pouso e contribuiu para uma aterrissagem mais estável.

O 767 não é o único avião de fuselagem larga com trem de pouso basculante para a frente. Aeronaves como o Airbus A350-900 e o Airbus A380 também utilizam trens de pouso principais com inclinação para a frente. O MD-11 também apresentava uma leve inclinação para a frente, entre outros aviões comerciais. Esses exemplos mostram que a inclinação para a frente não é incomum. Algumas aeronaves chegam a utilizar ambas as orientações na mesma fuselagem, como o Airbus A340-600 , em que o trem de pouso da asa inclina-se para trás enquanto o trem de pouso central inclina-se para a frente.

Outro aspecto único do 767


Porta 1L do 767 (Crédito: Shutterstock)
Outro aspecto singular do 767 são suas portas de passageiros , que abrem para dentro em vez de para fora. A maioria das aeronaves comerciais utiliza portas com abertura externa, mas a porta do 767 primeiro se move para dentro e depois se eleva em direção ao teto. Esse movimento é semelhante ao dos sistemas de portas utilizados no L-1011 e no DC-10, e posteriormente no MD-11.

O raciocínio exato por trás dessa característica não está totalmente documentado, mas o projeto provavelmente reflete a experiência de engenheiros da Boeing que trabalharam anteriormente na McDonnell Douglas. O DC-10 e o MD-11 utilizavam portas com abertura para dentro, e o 767 herdou aspectos desse sistema comprovado. Com base nessa experiência, a equipe de projeto adaptou mecanismos já conhecidos para a nova estrutura da aeronave. Isso também simplificou a integração de elementos estruturais e de vedação de pressão.


A porta do 767 funciona como uma porta de encaixe, o que significa que ela veda com mais firmeza à medida que a pressão na cabine aumenta durante o voo. Esse design reduz significativamente o risco de abertura da porta em voo, pois a diferença de pressão a força com mais firmeza contra sua estrutura. As portas de encaixe também oferecem uma barreira forte e confiável sem a necessidade de sistemas de travamento excessivamente complexos.

Com informações do Simple Flying

Aconteceu em 30 de dezembro de 2007: Voo Tarom 3107 Colisão em veículo de manutenção durante a decolagem


Em 30 de dezembro de 2007, o voo ROT3107, operado pelo Boeing 737-38J, prefixo YR-BGC, da Tarom (foto abaixo), estava programado para o voo entre Bucareste, na Romênia, e o Aeroporto Sharm el Sheik, no Egito. O voo 3107 era um voo fretado e levava a bordo 117 passageiros e seis tripulantes.

A aeronave envolvida do acidente
Pouco antes das 11h00 da manhã, uma equipe de manutenção entrou na pista 08R da OTP para fazer trabalhos de manutenção nas luzes centrais da pista. A equipe de manutenção era composta por quatro trabalhadores e duas viaturas. Dois dos trabalhadores trabalhavam a cerca de 600 metros da soleira e os outros dois trabalhavam a cerca de 1500 metros da soleira. A visibilidade na época era ruim devido ao nevoeiro espesso.

Às 10h49, a equipe de manutenção entrou em contato com a torre de controle para obter a aprovação para iniciar as operações de limpeza das luzes centrais. Pouco menos de dez minutos depois, a torre aprovou o início da obra. A certa altura, os trabalhadores foram obrigados a deixar a pista para permitir a decolagem de uma aeronave, mas foram liberados para retomar o trabalho logo em seguida.

Então, às 11h25m13s, o voo 3107 foi liberado para entrar na pista 08R para decolagem, e pouco mais de um minuto depois eles foram liberados para decolagem. 

Entre 11h26m40s e 11h26m50s a torre de controle perguntou aos funcionários da manutenção se a pista estava livre, mas não obteve resposta. 

Às 11h27min04s, acelerando para a decolagem, a uma velocidade de cerca de 90 nós, o Boeing 737 atingiu um carro a 600 metros da cabeceira da pista com o motor número 1 e com o trem de pouso esquerdo. 


A aeronave saiu do lado esquerdo da pista e parou 137 metros à esquerda da linha central e 950 metros da cabeceira. Os passageiros foram evacuados pelas rampas de emergência.

Nicolae Ghinescu, o piloto no comando do voo 3107, que tinha mais de vinte e dois anos de experiência de voo, disse aos jornalistas que "durante o procedimento de decolagem, após 400 ou 500 metros, encontramos um carro-obstáculo e não pudemos evitá-lo. Ele disse. “O carro estava sem sinalização nem com os faróis acesos, e duas pessoas tentaram mover o carro para desobstruir a pista, mas já era tarde”.


O Boeing 737 usado para o voo 3107 foi cancelado, sendo danificado além do reparo após colisão com o carro de manutenção e saindo da pista. O acidente foi a 17ª perda de um Boeing 737-300.

O erro para liberar a decolagem do voo ROT 3107, foi possível no contexto de uma longa interrupção da atividade do CTA EXE TWR, percepção incorreta do estado de liberação da pista juntamente com a falta de coordenação entre o CTA EXE TWR e o CTA GND/TAXI para liberar a pista. 


Os requisitos dos procedimentos RCASTA e LVO não foram totalmente aplicados pelos controladores de tráfego envolvidos. O responsável pela equipa, que tinha o dever de observar diretamente a aplicação deste procedimento, não reconheceu este facto e não tomou medidas corretivas.


As tiras de registro progressivo não estavam de acordo com os procedimentos e regulamentos válidos. As conclusões anteriores sublinham lacunas no processo de formação do pessoal ATC, ou seja, conhecimento e seguimento completo e correto dos procedimentos aplicáveis.


Gestão deficiente de recursos humanos na TWR OTP, que resultou em número insuficiente de ATCs na equipe de turno, bem como a ausência do supervisor da equipe da sala de operações na hora da ocorrência do acidente nas condições em que ele aceitou uma equipe com 4 ATCs.

O “Regulamento de Circulação de Veículos e Pessoas”, R – SIG 001, e do “Regulamento de Organização e Realização de Radiocomunicações em Sistemas Rádio de Acesso Múltiplo”, R – SIG – 007, e os “Procedimentos de Operações Locais de Baixa Visibilidade (LVO)” não foram rigorosamente observadas. Esses regulamentos incluem disposições não correlacionadas ou pouco claras que podem ser mal compreendidas e dificultar sua aplicação rigorosa.


Por Jorge Tadeu da Silva (Site Desastres Aéreos) com Wikipédia, ASN, baaa-acro e aviation-accidents.net

Aconteceu em 30 de dezembro de 1967: Voo Aeroflot L-51 O Desastre de Liepaja - O pior acidente aéreo da Letônia


Em 30 de dezembro de 1967, a aeronave Antonov An-24B, prefixo CCCP-46215, da Aeroflot, operava o voo voo doméstico L-51 na rota Riga - Liepaja, na Letônia, na então União Soviética. 

An-24 da companhia aérea Aeroflot, idêntico ao que caiu
A aeronave era pilotada por uma tripulação do 106º Destacamento de Voo, composta pelo comandante Alexander Kostyrin, o copiloto Eduard Smirnov, o navegador Anatoly Nautsevich e o mecânico de voo Nikolai Antipov. A comissária de bordo Valentina Barnolitskaya trabalhou na cabine. No total, estavam a bordo os cinco tripulantes e 46 passageiros, incluindo 42 adultos e quatro crianças.

O An-24B com número de fábrica 67302909, data de produção em 30 de novembro de 1966 e tempo de voo de 1934 horas, decolou de Riga às 07h50 da manhã e, após subir, ocupou um nível de voo de 3300 metros. 

O céu estava totalmente coberto por nuvens cúmulos de 540 metros de altura e a visibilidade era de 10 quilômetros. Aproximando-se de Liepaja no escuro, a tripulação contatou o despachante e informou o horário estimado de chegada, para o qual recebeu instruções para aproximação magnética a 248°. Em seguida, a tripulação informou sobre o voo do DPRM, mas quando o despachante perguntou se conseguiam ver a pista, não houve resposta e as repetidas chamadas do avião não foram atendidas.

Quando o An-24 passou pelo DPRM, o navegador informou que estavam a uma altitude de 300 metros, enquanto a altitude de voo estabelecida era de 200 metros. Nesse sentido, o comandante decidiu dar uma volta, para o que acelerou para aumentar a potência do motor. 

De repente o avião começou a rolar para a esquerda e depois descer rapidamente a uma velocidade vertical de até 18 m/s. 1.800 metros após o DPRM e 250 metros à esquerda das luzes de aproximação, o avião atingiu um campo coberto de neve, após o que voou e voou por 140 metros, após o que bateu com a asa direita em um poste telefônico.

Como resultado do qual um pedaço de 3 metros de comprimento foi arrancado da asa, o An-24 começou a rolar rapidamente para a direita. Depois de voar mais 1.270 metros, às 08h36 o avião colidiu com o solo com margem direita profunda (48°) e ficou totalmente destruído. Não houve fogo.

O acidente matou três tripulantes (copiloto, mecânico de voo e comissário) e 40 passageiros, ou seja, um total de 43 pessoas (segundo outras fontes - 44). Dois tripulantes (comandante e navegador) e quatro passageiros ficaram gravemente feridos e dois passageiros ficaram levemente feridos. 


De acordo com as conclusões da comissão de investigação, a causa do desastre foi a falha da unidade de potência esquerda, que operava em modo de impulso reverso, e a tripulação começou a corrigir a situação tarde demais. 

Segundo a comissão, o avião entrou na trajetória de pouso a uma velocidade de 300 km/h, em vez dos 220 km/h recomendados, então a tripulação utilizou o empuxo reverso para reduzir a velocidade. 

Porém, após tomar a decisão de dar a volta, o comandante começou a aumentar o empuxo do motor, e também retirou o trem de pouso e os flaps. Mas o acelerador do motor esquerdo já havia ultrapassado a trava, então quando a hélice direita começou a puxar o avião para frente, a hélice esquerda ainda estava empurrando para trás, o que levou a um giro brusco para a esquerda.

Infelizmente, o sistema automático de embandeiramento da hélice da aeronave não estava totalmente operacional. Ele não ligou quando os motores estavam funcionando em velocidade reduzida. 

Segundo o depoimento de outro piloto que na altura pilotava aeronaves deste tipo na Administração da Aviação Civil da Letónia: “A máquina automática já estava instalada na aeronave. Para que o sistema funcionasse, era necessário conectar apenas dois fios, mas antes do desastre perto de Liepaja, de acordo com as instruções existentes para o An-24, isso não era permitido na primeira fase de operação”.

Além do não funcionamento do sistema automático de embandeiramento da hélice, a retração prematura do trem de pouso e dos flaps só piorou a situação. Este é o pior desastre aéreo na Letónia.

Por Jorge Tadeu da Silva (Site Desastres Aéreos) com Wikipédia e ASN

Aconteceu em 30 de dezembro de 1958: Queda do Saab Scandia da VASP na Baia da Guanabara (RJ)

Após o final da Segunda Guerra Mundial, a demanda por aeronaves para recompor o transporte aéreo comercial era imensa. Com isso, dezenas de fabricantes resolveram criar novos projetos para suprir esse mercado e a SAAB era um deles. 

Ao final de 1945, lançaria o Saab 90 Scandia, aeronave projetada para o transporte de até 30 passageiros a uma distância máxima de 1000km. Apesar do sucesso do protótipo, seria lançado tardiamente em 1950, e perderia a concorrência para o DC-3, aeronave de manutenção simples e oferecida em abundância pelo governo americano após o final da guerra. Assim seriam construídos apenas 18 aeronaves que seriam adquiridas pelas empresas Scandinavian Airlines System e Aerotransport. 

Em 1950, a empresa brasileira VASP adquiria seus primeiros Scandia. Ao final de 1957, a empresa operava todos os 18 aviões construídos, tendo adquirido os exemplares restantes da SAS. 

O Scandia seria utilizado pela Vasp em larga escala na Ponte Aérea Rio- São Paulo. Após alguns acidentes fatais ocorridos entre o final dos anos 1950 e início dos anos 1960, as aeronaves remanescentes seriam utilizadas em rotas menos procuradas até serem aposentadas em 1969.

O Scandia PP-SQE no início da década de 1950
Em 30 de dezembro de 1958, uma terça-feira, Rose Rondeli, atriz de teatro e televisão, chegou tarde ao Aeroporto Santos Dumont, no Rio de Janeiro, e quase perdeu a ponte aérea das 12 horas, que a levaria a São Paulo para compromissos profissionais, tendo ocupando um dos últimos lugares ainda vagos no SAAB Scandia 90A-2, prefixo PP-SQE, da VASP (Viação Aérea São Paulo).

Pouco depois, os motores foram acionados e o avião taxiou para a cabeceira da pista 20. A bordo - incluindo Rose - estavam 33 passageiros e quatro tripulantes.

Em seguida, o avião decolou e, logo depois, o motor esquerdo perdeu potência e parou, materializando o pesadelo de todo o aviador: uma falha de motor no primeiro segmento da decolagem, quando o trem de pouso ainda estava sendo recolhido.

O Scandia guinou bruscamente à esquerda devido a súbita assimetria de potência. A grande hélice Hartzell girava por ação do vento reativo, adicionando elevada carga de arrasto e drenando energia do avião.

A situação era dramática. O Pão de Açúcar aproximava-se rapidamente, obrigando o Comandante Bortoletto a efetuar curva à esquerda, para cima do motor em pane, o que aumentava o fator de carga e, consequentemente, a velocidade de estol. 

Bortoletto tinha que embandeirar logo a hélice que girava em cata-vento, inviabilizando o voo monomotor, sem descuidar da pilotagem do Scandia capenga. Não conseguiu.

O PP-SQE tremeu ao perder sustentação, arrancando um "Oh!" uníssono dos passageiros enquanto se precipitava na Baia da Guanabara de uma altura aproximada de 50 metros (150 pés).

Ao se ver dentro d'água, Rose, decidida, nadou para terra firme. Só mais tarde, a salvo, tomou conhecimento da extensão do desastre.

Os quatro tripulantes do avião

Das 37 pessoas a bordo, 21 haviam morrido, inclusive os quatro membros da tripulação: o comandante Geraldo Bortoletto, o copiloto Carlos Machado Campoy, o radiotelegrafista Marino Quinado de Brito e a comissária de bordo Ida Novak.

O Scandia PP-SQC, similar ao que se acidentou na Baia da Guanabara

Este foi o primeiro acidente fatal com um Scandia da Vasp, mas infelizmente não seria o último.

Por Jorge Tadeu (Site Desastres Aéreos) com ASN e Livro 'O Rastro da Bruxa'