segunda-feira, 2 de junho de 2025

Por que o daltonismo não precisa ser um obstáculo para aspirantes a piloto

Hoje em dia existem mais testes para ajudar a avaliar o nível de daltonismo.

(Foto: Olena Yakobchuk/Shutterstock)
Não é surpresa que existam requisitos rigorosos de visão e outros requisitos de saúde para os pilotos. Vários defeitos ou fraquezas da visão o impedirão de treinar ou trabalhar como piloto comercial. No passado, o daltonismo era uma das condições que impediriam um certificado médico de Classe 1. Com os avanços na compreensão, agora existem mais opções. A situação agora depende da natureza exata do problema.

Requisitos médicos e oftalmológicos para pilotos


Todos os pilotos comerciais devem atender aos rígidos requisitos de saúde especificados pelo regulador nacional apropriado. Por exemplo, no Reino Unido, é a Autoridade de Aviação Civil (CAA); nos EUA, é a Federal Aviation Administration (FAA); e na UE, é a European Union Aviation Safety Agency (EASA). Existem muitas semelhanças nos requisitos de diferentes reguladores – mas pode haver diferenças. O detalhe aqui é baseado principalmente nos requisitos da US FAA.

Um piloto de linha aérea comercial precisa de um certificado médico de Classe 1 (também há Classe 2 para outros pilotos comerciais e Classe 3 para pilotos recreativos ou privados). Isso precisa ser renovado periodicamente (com validade dependendo da idade).

(Foto: Yakobchuk Viacheslav/Shutterstock)
Existem requisitos muito detalhados e rigorosos para todos os aspectos da saúde, incluindo cardiologia, pressão arterial, saúde mental, bem como muitas condições específicas. Existem muitas isenções possíveis para certos tratamentos e medicamentos. Em relação à visão, os requisitos de visão geral são que a visão de longe deve ser 20/20, enquanto a visão intermediária e de perto deve ser 20/40. É permitido o uso de óculos e lentes de contato para isso.

Teste para daltonismo


Os requisitos específicos para a visão de cores mudaram nos últimos dez anos. No passado, o daltonismo impediria a emissão de uma licença de Classe 1, mas isso mudou à medida que a capacidade de teste de defeitos melhorou.

O teste padrão para daltonismo é o teste de Ishihara, que está em uso desde a década de 1960. Observe que (pelo menos para a FAA) o uso de qualquer forma de lentes de correção de cores não é permitido.

O teste de Ishihara envolve a leitura de números de uma série de placas ou cartões de teste coloridos. Cada um deles compreende um círculo composto por duas cores contrastantes em tons diferentes. Escondido dentro deles está um padrão numérico identificável. Qualquer pessoa capaz de diferenciar corretamente essas cores verá o número.

Um exemplo de um teste de ishihara (Foto: JU.STOCKER/Shutterstock)
Mais comumente, há um teste de 24 ou 28 placas. Obter o primeiro conjunto (geralmente as primeiras 15 ou 21 cartas) correto é um passe simples. A falha neste teste padrão, no entanto, não significa mais que um piloto será reprovado no exame médico geral. A pesquisa e a compreensão do daltonismo avançaram, principalmente no reconhecimento das complexidades dos diferentes tons de cores. Desde o início de 2010, as regras de teste foram alteradas. Agora há discrição para testar os limites reais do daltonismo.

Flexibilidade nos testes


As diretrizes de teste da FAA mostram como o daltonismo pode ser permitido. Em vez de simplesmente exigir visão colorida, as diretrizes afirmam que os pilotos devem ter: “Capacidade de perceber as cores necessárias para o desempenho seguro das funções do aviador.”

A maioria dos reguladores agora permite testes adicionais no caso de falha no teste de Ishihara. Dependendo da natureza e extensão do daltonismo, os pilotos podem ter sucesso com outros métodos. Os reguladores diferem em quais testes aceitarão. Esses testes alternativos visam determinar se um piloto tem tricromacia suficiente/normal.

Passar em qualquer teste aprovado pelo regulador é suficiente. Testes alternativos comumente usados ​​incluem:

O Farnsworth Lantern Test (ou FALANT). Isso mostra luzes vermelhas, brancas ou verdes verticais por dois segundos de cada vez. Este é um teste comum usado pela CAA do Reino Unido, FAA dos EUA e CASA australiana.

O teste da placa de Dvorine. Este é um teste de placa alternativo que pode dar resultados diferentes para alguns.

Teste de avaliação e diagnóstico de cores (CAD). Este é um teste alternativo de cor baseado em computador. A CAA e a EASA aceitarão este teste - com os requisitos declarados pela CAA de "6 SU para deficiência de deutan ou menos de 12 SU para deficiência de protan".

Teste de anomaloscópio. Esta é uma técnica de teste médica e baseada em pesquisa muito específica. Envolve o uso de um anomaloscópio onde o visualizador combina a cor e o brilho de uma cor apresentada.

Mais flexibilidade para licenças de pilotos privados


O mesmo teste adicional pode ser usado para licenças de Classe 2 e 3. Para uma licença médica de terceira classe (exigida para uma licença privada ou PPL), há ainda mais flexibilidade.

(Foto: Dizfoto / Shutterstock)
Um piloto pode ser testado usando um teste operacional de visão de cores. Isso requer testar a capacidade de ler uma carta aeronáutica e diferenciar as luzes estroboscópicas da torre de controle. E mesmo se os testes daltônicos falharem, uma licença de classe 3 pode ser emitida para voar apenas durante o dia.

Com informações de Simple Flying

Um breve guia para os deveres não voadores de um piloto

Voar costuma ser a parte mais fácil de ser um piloto.

Um piloto realizando uma inspeção geral (Foto: Purd 77/Shutterstock)
A maior parte da carga de trabalho de um piloto consiste em tarefas não voadoras. Dado que um piloto voa cerca de 50% dos voos em que trabalha e a maior parte do voo direto e nivelado é feito pelo piloto automático, os pilotos gastam a maior parte da energia em comunicações, monitorando o status técnico do avião e garantindo o voo é realizada legalmente. Aqui estão algumas responsabilidades dos pilotos enquanto não estão voando ativamente.

Monitoramento do Piloto


O papel mais óbvio de um piloto em serviço que não está voando é servir como monitor de piloto (PM). O PM é responsável por responder a chamadas de rádio, realizar cálculos de distância de pouso, determinar informações dentro do alcance, como a posição de estacionamento do voo na chegada e muitas outras tarefas. É importante ressaltar que o PM quase sempre é responsável por executar listas de verificação . No formato de "desafio e resposta" que as companhias aéreas usam, o piloto não voador é a pessoa que lê o "desafio" da lista de verificação e garante que uma resposta apropriada seja dada pelo PF. Por exemplo, o PM indicará "trem de pouso" ou "flaps" como parte da lista de verificação de pouso.

Fazendo os passeios


Habitualmente realizada pelo primeiro oficial das companhias aéreas dos Estados Unidos, a inspeção é uma inspeção visual pré e pós-voo da aeronave . Durante o treinamento, uma companhia aérea destaca o que os pilotos devem procurar durante as caminhadas. Os itens incluem uma verificação dos tubos de Pitot (usados ​​para medir velocidade e altitude), condição do freio e dos pneus e se os pinos da engrenagem foram removidos. Embora as caminhadas possam se tornar tediosas em um dia de voo com várias etapas (especialmente quando está frio lá fora), elas são essenciais para detectar problemas de manutenção. A realização de uma inspeção minuciosa é obrigatória antes e depois de cada voo para manter a operação em andamento com eficiência e segurança.

Verificando o status da manutenção


Um mecânico trabalhando em uma porta lateral (Foto: Skycolors/Shutterstock)
É responsabilidade de ambos os pilotos garantir a aeronavegabilidade de um avião antes de "aceitá-lo" para o voo. A inspeção acima mencionada é um componente que determina a aeronavegabilidade de um avião, e outro componente significativo nessa determinação é uma verificação do registro de manutenção da aeronave, ou AML. Os pilotos estão sempre curiosos para saber quais ações de manutenção foram realizadas em seu avião nos dias anteriores, porque é um indicador de possíveis problemas que podem surgir. Um exemplo pode ser uma vedação de porta que foi substituída recentemente. Se um comissário de bordo ligar para os pilotos durante o voo sobre um barulho próximo à porta que acabou de ser consertada,.

O comandante é responsável por assinar o AML como condição de aceitação do avião. Se alguma discrepância for observada durante a inspeção, ou se algum registro de manutenção não resolvido for encontrado no registro, os pilotos imediatamente ligam para a equipe de manutenção da companhia aérea para resolver o problema. Isso é tanto no interesse da segurança quanto na operação legal do voo, que sempre andam de mãos dadas.

Coordenação de serviços pré-voo


As necessidades pré-voo são quase sempre atendidas por pessoal de terra atencioso. Nas raras ocasiões em que algo está faltando nos preparativos de partida de uma luta, os pilotos têm a melhor chance de fazer a bola rolar em uma solução. Itens comuns que os comissários de bordo chamarão a atenção dos pilotos alguns minutos antes da partida são malas que foram deixadas no jetbridge, tanques de água potável vazios, banheiros sem serviço ou serviço de bufê que nunca apareceu. Os pilotos têm acesso rápido e direto às pessoas que podem enviar esses serviços para o avião. Os pilotos referem-se a essas necessidades operacionais, não relacionadas ao voo, como "o panorama geral". Geralmente é responsabilidade do capitão delegar soluções para essas questões.

Pronto para decolagem


Um primeiro oficial transmite usando o rádio portátil (Foto: Olena Yakobchuk/Shutterstock)
Para pilotos de avião, voar não consome tanta energia mental quanto coordenar o voo inteiro. Garantir uma operação legal, segura e eficiente tem mais a ver com saber identificar os problemas antes que eles apareçam ou a quem pedir ajuda quando os problemas já existem. Para a maioria dos pilotos, voar é a parte relaxante e divertida do trabalho. Levar o avião do portão até a soleira da pista para a decolagem é o verdadeiro desafio.

Com informações do Simple Flying

Voar em pé nos aviões? Assento viraliza, mas será que vai ser realidade?

Modelo de assento de aviões batizado de Skyrider 2.0, da empresa italiana Aviointeriors:
protótipo não saiu do papel (Imagem: Aviointeriors)
Nos últimos dias, viralizou a notícia de que uma empresa aérea estaria para começar a usar assentos em seus aviões para que os passageiros viajem em pé. Uma página do Instagram com milhões de seguidores apontou que o modelo Skyrider 2.0 cumpriu os requisitos regulamentares e passou em avaliações de segurança.

Com isso, empresas aéreas estariam prestes a usar o assento já a partir de 2026. Mas a verdade não parece ser bem essa. O assento que viralizou é um protótipo de 2012, mas que nunca saiu do papel.

O que foi dito?


Na postagem feita nas redes sociais, o perfil diz que "em uma iniciativa ousada para reduzir os gastos com passagens aéreas, diversas companhias aéreas de baixo custo introduzirão opções de assentos em pé a partir de 2026".

O texto continua: "Após extensas discussões, esse arranjo de assentos não convencional finalmente atendeu aos requisitos regulatórios e passou nas avaliações de segurança. O novo design inclui assentos acolchoados, estilo bicicleta, que permitem que os passageiros se inclinem em vez de sentar, aumentando potencialmente a capacidade da aeronave em até 20%".

Ainda foi afirmado que o assento seria mais viável em viagens curtas, de até duas horas, e que "as companhias aéreas afirmam que os novos assentos atendem às normas globais de segurança e serão restritos a voos específicos".

Revolta


(Imagem: Aviointeriors)
A ideia de ter um assento como esse gerou revolta nas redes sociais. Entre as principais manifestações estão aquelas que falam da desumanização e do desconforto que o modelo representa.

"Isso é patético. Tratem humanos como humanos. Meu Deus!"

"Por favor, nunca comprem essas passagens quando elas existirem! Não ajudem/apoiem isso!"

"Essas corporações não se importam com vocês!"

"Uma ideia melhor: coloquem os passageiros em caixas e empilhe-as."

"Em breve, eles vão amarrá-los na asa com uma máscara de oxigênio."

"A capacidade aumentará. As tarifas não diminuirão."

"Deviam ter vergonha de si mesmos, isso é uma piada triste e gananciosa."

"Vocês estão criando problemas, não soluções."

"Isso é uma vergonha! Uma falta de respeito pelos seres humanos!"

Todas as frases foram ditas em comentários nas redes sociais onde as imagens do assento foram divulgadas.

Viajar em pé? Ainda não


Assento de avião Skyrider 3.0, da empresa italiana Aviointeriors: Modelo não saiu do papel
 (Imagem: Aviointeriors)
O Skyrider não passa de um protótipo antigo, que retornou às manchetes após a especulação feita pelo perfil do Instagram e que foi reverberado por veículos de imprensa, como o Daily Mail. O modelo se assemelha a uma sela de cavalo ou um assento de bicicleta.

Ele consiste em um encosto seguido por um pequeno assento, onde a pessoa apoiaria parte das nádegas e da virilha em uma estrutura elevada, mantendo as pernas parcialmente flexionadas, levando os passageiros, praticamente, em pé.

A fabricante do modelo que tomou as redes sociais recentemente é a italiana Aviointeriors, que disse que o modelo é "confundido com um assento de companhia aérea finalizado pronto para decolagem", mas ele não passa de um protótipo conceitual datado de 2012. A imagem usada é a da versão 2.0, e ainda há a versão 3.0, exibida em 2019 (quem divulgou não usou essa imagem, mas uma antiga, que já era obsoleta).

Ele foi projetado para buscar maximizar o espaço e a ergonomia nos aviões, mas não saiu do papel. Um protótipo real foi apresentado na Aviation Interiors Expo de 2018, a principal feira de interiores de aeronaves, na Alemanha.


Após a repercussão, a Aviointeriors disse em postagem nas redes sociais que o Skyrider não foi feito para acreditarem na sua existência de olhos fechados. Em vez disso, ele foi um "exercício provocador em inovação de design, desafiando os limites de como as viagens aéreas podem parecer um dia", diz a empresa em seus perfis nas redes.


Quais os problemas?


Além do fato de não ser verdadeiro que o assento seja algo iminente, questões envolvendo segurança são preocupantes. Entre as questões que uma eventual certificação terá de responder, estão:
  • Qual será o comportamento diante de uma turbulência?
  • Como seria uma evacuação de emergência?
  • Quanto tempo um passageiro poderia ficar confortável na posição?
Outra questão é sobre as bagagens: Esse tipo de assento, provavelmente, terá de remover os bagageiros que fica acima da cabeça dos passageiros, reduzindo espaço para bagagem. Isso é agravado pela ausência de espaço embaixo das poltronas à frente para colocar as mochilas e itens pessoais.

Outra questão está ligada ao peso da aeronave: Elas seriam capazes de carregar mais pessoas sem perder capacidade total e autonomia?

Até o momento, são muitas especulações e pouca praticidade. Você aceitaria voar, praticamente, em pé?

Via Alexandre Saconi (Todos a Bordo/UOL)

domingo, 1 de junho de 2025

Air France AF447: O pânico na cabine nos minutos finais, comentado por especialistas em aviação


Por anos, o desaparecimento do Air France AF447 no meio do Oceano Atlântico, em 01 de Junho de 2009, permaneceu como um dos maiores mistérios da aviação moderna.

Como poderia o Airbus A330, na época a aeronave mais avançada tecnologicamente do mercado, simplesmente desaparecer?

O mistério durou até Abril de 2011, quando foi recuperada a caixa preta do avião.

Os áudios extraídos do equipamento, em conjunto com análise de especialistas, mostram um cenário de sucessão de erros humanos, que tirou a vida de 228 pessoas.

O retrato completo dos últimos minutos deste voo foram narrados no livro “ Erreurs de Pilotage ( vol. 5 )” do piloto e escritor Jean – Pierre Otelli.

A seguir o relato aterrorizante minuto a minuto, sobre o fatídico voo, analisado por especialistas.

————


As 1h e 36m, o avião se aproxima das extremidades de um sistema de tempestade tropical.

Diferentemente de TODOS os demais voos que passavam pela região na mesma hora, a tripulação do AF447 não alterou a rota para evitar o pior da tempestade.

A temperatura externa é muito mais quente do que a previsão inicial, impedindo a aeronave, ainda cheia de combustível, de voar mais alto evitando os efeitos da tempestade.

O Airbus entra então, em uma camada de nuvens.

As 1h51m, o cockpit da aeronave fica iluminado por um fenômeno elétrico estranho e incomum, que imediatamente chama a atenção do inexperiente co- piloto Pierre-Cédric Bonin, de 32 anos.

O que é isso? Pergunta.

O capitão, Marc Dubois, um veterano com mais de 11 mil horas de voo, explica a Bonin que se trata do fenômeno “Fogo de São Telmo“, descargas eletroluminescentes que acompanham tempestades e relâmpagos nestas latitudes do planeta.

Aproximadamente ás 2h da manhã, o outro copiloto, David Robert, volta ao cockpit depois de um descanso.

Aos 37 anos, Robert possui mais que dobro de horas de voo que Bonin.

O comandante levanta e cede a Robert o assento de comando do lado esquerdo.

Apesar do gap de experiência entre Robert e Bonin, o capitão Dubois deixa Bonin responsável pelos controles da aeronave.

Ás 2:02 am, o capitão deixa a cabine para tirar um cochilo. 15 minutos depois todos a bordo do Airbus estariam mortos.

02:03:44 (Bonin) La convergence inter tropicale… voilà, là on est dedans, entre ‘Salpu’ et ‘Tasil.’ Et puis, voilà, on est en plein dedans…

A convergência inter-tropical, veja, estamos nela, entre Salpu e Tasil , estamos no centro dela…

A convergência inter-tropical, ou ITC, é uma área próxima do Equador famosa por tempos consistentemente ruins.

Ela é responsável por trovoadas e tempestades enormes e agressivas, algumas chegando até a estratosfera.

Diferente das demais tripulações que faziam a mesma rota naquela noite, a do AF447 não estudou o padrão das tempestades projetadas pela ITC e solicitou um desvio da área de turbulência mais intensa.

(Salpu e Tasil são dois pontos geográficos de controle e identificação de tráfego aéreo )

02:05:55 (Robert) Oui, on va les appeler derrière… pour leur dire quand même parce que…

Sim, vamos chamá-los de volta para informá-los...

Robert aciona o botão de comunicação.

02:05:59 (comissária de voo, via intercom) Oui? Marilyn.

Sim? Marilyn.

02:06:04 (Bonin) Oui, Marilyn, c’est Pierre devant… Dis-moi, dans deux minutes, on devrait attaquer une zone où ça devrait bouger un peu plus que maintenant. Il faudrait vous méfier là.

Sim, Marilyn, aqui é o Pierre, veja, em 2 minutos, entraremos em uma área de turbulência e as coisas podem se movimentar mais que o normal no avião. Pode cuidar disso.

02:06:13 (comissária de voo) D’accord, on s’assoit alors?

Ok, devemos sentar então?

02:06:15 (Bonin) Bon, je pense que ce serait pas mal… tu préviens les copains!

Bem, não é má idéia, avise o restante da tripulação.

02:06:18 (comissária de voo) Ouais, OK, j’appelle les autres derrière. Merci beaucoup.

Sim. Ok. Avisarei a todos aqui atrás. Obrigado.

02:06:19 (Bonin) Mais je te rappelle dès qu’on est sorti de là.

Te ligo assim que sairmos de lá (da zona de turbulência).

02:06:20 (comissária de voo) OK.

Okay.

Os dois pilotos conversam sobre a temperatura externa mais quente que o normal, que impossibilitou a subida da aeronave para a altitude prevista, e mostram felicidade por estarem pilotando um Airbus 330, que tem uma performance na altitude melhor que o Airbus 340.

02:06:50 (Bonin) Va pour les anti-ice. C’est toujours ça de pris.

Vamos com o Sistema anti icing. Melhor que nada.

Como estão voando no meio das nuvens, os pilotos ligam o sistema anti icing do Airbus, que previne a formação de gelo nas superfícies da aeronave.

O gelo, quando formado, diminui a eficiência aerodinâmica da aeronave, aumenta o seu peso e em situações extremas, pode gerar até a queda do avião.

02:07:00 (Bonin) On est apparemment à la limite de la couche, ça devrait aller.

Parece que estamos no final desta camada de nuvens. Acho que estamos bem.

Neste momento, Robert, que estava analisando o sistema de radar do Airbus, descobre que o mesmo não havia sido configurado corretamente. Ele altera para o modo correto e descobre que, na verdade, estão em direção ao centro da tempestade, em sua região de atividade mais intensa

02:08:03 (Robert) Tu peux éventuellement le tirer un peu à gauche.

Você pode ir um pouco mais á esquerda.

02:08:05 (Bonin) Excuse-moi?

Desculpe, o quê ?

02:08:07 (Robert) Tu peux éventuellement prendre un peu à gauche. On est d’accord qu’on est en manuel, hein?

Você pode ir um pouco mais á direita. Parece que estamos no manual correto?

Bonin, sem dizer uma palavra, angula o avião para a esquerda. De repente, um aroma estranho invade o cockpit, como de algo queimado, e a temperatura começa a subir.

Os jovens pilotos pensam que há algo de errado com o sistema de ar condicionado, mas Robert afirma que o problema é devido ás condições climáticas ao redor da aeronave. Bonin se tranquiliza.

Entretanto, um som característico de acúmulo de gelo na fuselagem da aeronave invade a cabine e começa a ficar mais forte.

Bonin avisa que irá diminuir a velocidade do Airbus e pergunta a Robert se deve acionar um recurso que evitaria que o motor pegasse fogo em caso de congelamento extremo dos mesmos.

Logo em seguida, um alarme soa por 2,2 segundos, indicando que o modo piloto automático, o padrão de voo do Airbus, está sendo desativado.

Isso ocorreu pelo fato dos tubos “ Pitot”, sensores que medem a velocidade do avião, estarem congelados. Sem as corretas métricas de velocidade medidas pelos tubos, o desempenho do piloto automático fica comprometido.

A partir de agora os pilotos precisariam voar o Airbus em modo manual.

Até este momento, o avião não sofreu nenhum tipo de pane. Com exceção do medidor de velocidade, tudo está funcionando perfeitamente.

Bonin e Robert, entretanto, nunca receberam treinamento de como operar um avião Airbus com tecnologia de ponta, em velocidade de cruzeiro, sem o medidor de velocidade funcionando.

02:10:06 (Bonin) J’ai les commandes.

Eu tenho os controles.

02:10:07 (Robert) D’accord.

Okay.

Talvez assustado com tudo o que ocorreu em tão poucos minutos, a turbulência, o cheiro de queimado, o problema no radar que fez com que o avião estivesse direcionado para o centro da tempestade, Bonin reage pela primeira vez de maneira irracional.

Ele puxa o seu side stick – joystick de controle do Airbus, substituto do antigo manche nos aviões mais modernos – e posiciona o avião em uma subida íngreme, apesar de terem discutido no cockpit há pouco sobre como a temperatura externa mais quente que o normal tinha prejudicado os planos iniciais de altitude de voo.

O comportamento e ações estranhas de Bonin é um enigma para os profissionais da aviação até hoje, anos após a tragédia.

“Se ele está com a aeronave estabilizada em linha reta, e não possui um medidor de velocidade confiável, não sei porque ele puxaria o stick e tentaria ganhar altitude neste momento”, diz Chris Nutter, um piloto de avião e instrutor de voo.

“O procedimento lógico seria fazer uma verificação cruzada entre o indicador de velocidade no ar atual, supostamente com problema e os demais instrumentos da aeronave, como velocidade no solo, altitude e taxa de subida, antes de começar a operar manualmente os controles”, continua Nutter.

Imediatamente após Bonin posicionar o avião para subida, o computador do Airbus reage. Um alarme avisa a tripulação de que eles estão deixando a sua altitude de voo programada.

E o alarme de stall é ativado.

Junto com o alarme de aproximação ao solo, o aviso de stall está entre os alertas de cockpit mais importantes, sinalizando que o avião se encontra em perigo.

O alarme é caracterizado por uma voz robotizada que repete “ Stall, Stall, Stall” junto com um som de alerta.

Aqui um exemplo de um alarme de stall ativado.

O stall pode ocorrer em situações de voo com baixa velocidade, quando o potencial aerodinâmico do avião começa a ser perdido, a sustentação de suas asas diminui e a aeronave pode cair em um mergulho fatal.

Em situações de stall, todos os pilotos são treinados para empurrarem os seus manches para frente, ou no caso do Airbus,, o seu stick, de modo que o nariz do avião mova-se para baixo, perdendo altitude e ganhando velocidade, devolvendo para a aeronave a sua sustentação aerodinâmica e controle pelo piloto.

O alarme de stall do Airbus é impossível de ser ignorado, e por toda a duração do fatídico voo do AF447, nenhum dos pilotos comentaria sobre o alarme, ou discutiriam a possibilidade do avião, estar de fato, “estolando”.

Até o impacto final, Bonin continuaria puxando o seu stick, o exato oposto do que deveria fazer para recuperar a aeronave.

Pierre-Cedric Bonin - Principal responsável pela queda do Airbus
02:10:07 (Robert) Qu’est-ce que c’est que ça?

O que é isso?

02:10:15 (Bonin) On n’a pas une bonne… On n’a pas une bonne annonce de vitesse.

Não há indicação, indicação de velocidade.

02:10:16 (Robert) On a perdu les, les, les vitesses alors?

Perdemos os indicadores, de velocidade então?

O avião, a esta altura, estava subindo á uma taxa de 7 mil pés por minuto. A medida que ganhava altitude, perdia velocidade, até chegar a perigosos 93 nós, uma velocidade que seria atribuída mais á um Cessna pequeno do que um Airbus A330, um dos maiores aviões do mercado de passageiros naquela época.

Robert nota os erros de Bonin e tenta corrigí-los.

02:10:27 (Robert) Faites attention à ta vitesse. Faites attention à ta vitesse.

Preste atenção na sua velocidade. Preste atenção na sua velocidade.

Ele provavelmente se referia á velocidade/ taxa de subida da aeronave. E continuaram subindo.

02:10:28 (Bonin) OK, OK, je redescends.

Okay, okay, Estou descendo.

02:10:30 (Robert) Tu stabilises…

Estabilize..

02:10:31 (Bonin) Ouais.

Sim.

02:10:31 (Robert) Tu redescends… On est en train de monter selon lui… Selon lui, tu montes, donc tu redescends.

Desça, Está dizendo que estamos subindo, subindo.. então desça.

02:10:35 (Bonin) D’accord.

Okay.

Graças ao efeito do Sistema de anti congelamento, um dos tubos Pitot começam a funcionar novamente. Os dados corretos de velocidade voltam a estar válidos no cockpit da aeronave.

02:10:36 (Robert) Redescends!

Desça!

02:10:37 (Bonin) C’est parti, on redescend.

Sim, estamos descendo.

02:10:38 (Robert) Doucement!

Gentilmente!

Bonin Alivia a pressão de puxada no stick e o avião ganha velocidade á medida que o ângulo de subida diminui, chegando a acelerar a 223 nós.

O alarme de stall silencia. Por um breve momento, os pilotos estão, novamente, em controle da aeronave.

02:10:41(Bonin) On est en… ouais, on est en “climb.”

Estamos, sim, estamos em uma subida.

Ainda assim, Bonin não baixa o nariz do avião. Robert, reconhecendo a gravidade da situação, aperta o botão para chamar o Capitão Dubois á cabine.

02:10:49 (Robert) Putain, il est où… euh?

Droga, onde ele está?

O avião subiu 2.512 pés acima de sua altitude inicial, e apesar de estar agora descendo á uma taxa perigosa, ainda está voando dentro de padrões aceitáveis pelas normas da aviação.

Mas por motivos ainda desconhecidos, Bonin, novamente, aumenta a pressão na puxada de seu stick, levantando o nariz do avião mais uma vez, perdendo velocidade.

O alarme de stall dispara mais uma vez.

E novamente, os pilotos decidem por ignorá-lo. Um dos possíveis motivos para isso, ventilado entre os especialistas, é que os pilotos acreditam ser impossível estolar um Airbus A330.

Não é uma teoria maluca, pois o Airbus voa através de uma tecnologia chamada “ Fly by Wire”, os controles do avião não são mecânicos, como um cabo de aço ligado ao manche do cockpit que quando puxado, aciona fisicamente o cabo, movimentando a asa do avião.

No “Fly by Wire”, todos os sinais de controles do cockpit, como o apertar de um botão, ou uma movimentação do stick, são elétricos. Este sinal é enviado ao computador central do Airbus, que por sua vez aciona os componentes físicos da aeronave, realizando a ação desejada na fuselagem em si.

Na maior parte do tempo o computador de bordo opera sob um parâmetro chamado de “Normal Law“ ou “Lei Normal“, que significa que o computador do avião não realizará nenhum comando que levará a aeronave para fora do seu “envelope de voo“.

O envelope de voo são os parâmetros máximos e mínimos de sua altitude em relação á sua velocidade, em que o avião é capaz de operar, ser controlado, ou seja voar em segurança.

Segundo especialistas, o computador de voo do Airbus , se operado no “ Normal Law” não permitirá que o avião estole.

Porém, crucial para entendermos o contexto do acidente, é que a partir do momento que o computador de voo do Airbus perdeu as informações de velocidade (devido ao congelamento dos tubos Pitot), ele automaticamente desconectou o piloto automático e mudou o parâmetro de voo para “Alternate Law“ ou “Lei Alternativa“, um regime de voo com quase nenhuma trava de segurança contra erros humanos.

No modo “Alternate Law“, os pilotos podem estolar e até derrubar a aeronave com seus comandos manuais.

É provável que Bonin nunca tivesse voado sob os parâmetros de Alternate Law, ou mesmo entendesse as suas restrições e características. Talvez por isso o fato bizzaro de nenhum comentário na cabine sobre o alarme de stall.

Bonin não imaginou que o Airbus, automaticamente, pudesse mudar de parâmetro e retirar as salvaguardas do Normal Law contra a estolagem da aeronave.

02:10:55 (Robert) Putain!

Merda!

Outro dos tubos Pitot volta a funcionar novamente. Todos os instrumentos de voo estão, neste momento, em perfeito estado e mostrando dados corretos para a a cabine.

A tripulação possui todas as condições de pilotar o avião com segurança e os problemas que irão ocorrer deste ponto em diante são todos atribuídos a erro humano.

02:11:03 (Bonin) Je suis en TOGA, hein?

Estou em TOGA hein??

Esta frase de Bonin traz informações reveladoras sobre a sequência de erros que levaram ao desastre. TOGA é uma sigla que significa “Take off, Go Around“.

Quando um avião está decolando ou abortando um pouso (going around) , precisa ganhar tanto altitude como velocidade da maneira mais eficiente possível.

Neste momento crítico de um voo, os pilotos são treinados para aumentar a velocidade do motor ao nível “TOGA” e levantar o nariz da aeronave á uma angulação específica.

Aqui, Bonin tentava o mesmo. Ele queria aumentar a velocidade ao mesmo tempo que ganhava altitude, saindo do perigo.

Mas ele não estava no nível do mar, e sim no ar rarefeito de 37 mil pés de altura.

Nestas condições, o motor gera menor potência, as asas dão menor sustentação ao Airbus e o mais grave, posicionar o nariz do avião na angulação prevista em TOGA, neste caso não geraria um ganho de altitude. E sim uma perda.

Apesar de irracional, o comportamento de Bonin pode ser explicado. O stress psicológico tende e bloquear a parte do cérebro responsável por idéias inovadoras e criativas. Nesta situação, o ser humano tende a voltar-se para o familiar, conhecido, e no caso de Bonin, situações que ele já havia treinado.

Pilotos em geral são obrigados a pilotar aeronaves manualmente em todas as fases de voo como parte de seus treinamentos, normalmente em baixa altitude, como nas decolagens, aterrisagens e aproximações.

Não surpreende que Bonin, no meio de uma tempestade, com o Airbus fora de controle, com medo e desesperado, tenha tentado pilotar o avião como em seus treinamentos em baixa altitude.

Mesmo que sua resposta tenha sido totalmente inadequada para a situação.

02:11:06 (Robert) Putain, il vient ou il vient pas?

Merda, ele está vindo ou não ?

O avião atinge a sua altitude máxima. Com os motores em potência total, e seu nariz angulado para cima a 18 graus, ele permanece em linha reta por alguns instantes, antes de voltar a cair em direção ao oceano.

02:11:21 (Robert) On a pourtant les moteurs! Qu’est-ce qui se passe bordel? Je ne comprends pas ce que se passe.

Ainda temos motor! O que está acontecendo? Eu não entendo o que está acontecendo!

Diferente dos manches do Boeing, os side sticks do Airbus são “assíncronos” ou seja , se movem de maneira independente.

Se o piloto do assento da direita estiver puxando para trás o stick, o piloto do assento esquerdo não sentirá nada” diz Dr David Esser, professor de Ciências Aeronáuticas da Universidade Aeronáutica de Embry-Riddle

“O stick de um lado não se move porque o outro se moveu, assim como ocorre nos aviões mais antigos, com sistemas mecânicos” diz Esser.

Robert não tem idéia de que, apesar da conversa recente na cabine, Bonin ainda continua com seu stick puxado.

Os pilotos, neste momento, perderam totalmente o controle da cabine. Não se sabe mais quem é responsável por o quê, e o que cada um está fazendo.

É um resultado previsível quando se tem dois co-pilotos voando na mesma cabine.

“Quando se tem um capitão e um primeiro oficial, é claro quem está no comando, quem é o responsável pela aeronave“ diz Nutter

A queda do avião em direção ao oceano se acelera. Se Bonin tivesse tirado as mãos do stick, o nariz do Airbus teria caído e recuperado sua velocidade horizontal e sustentação. Mas como ele continua com o stick puxado ao máximo, o nariz continua alto e o avião continua com sua velocidade horizontal mínima, onde os efeitos dos controles e manobras realizadas pelos pilotos possuem pouco efeito. Sem sustentação não há como controlar o avião. Com a forte turbulência da tempestade, era quase impossível nesta altura dos acontecimentos, manter o simples alinhamento das asas.

02:11:32 (Bonin) Putain, j’ai plus le contrôle de l’avion, là! J’ai plus le contrôle de l’avion!

Merda, eu não tenho o controle do avião, não tenho! Nada!

02:11:37 (Robert) Commandes à gauche!

Controles à esquerda.

Finalmente, o mais experiente dos presentes na cabine, que parece ter uma melhor noção da gravidade da situação, assume o controle do avião.

Infelizmente, Robert também não conseguia entender que o avião estava estolando, e puxa também seu stick!

Apesar do nariz do Airbus estar angulado para cima, o avião continua perdendo altitude á um ângulo de 40 graus. O alarme de stall continua na cabine

Bonin reassume os controles !

Um minuto e meio após o início da crise, o Capitão retorna a cabine. O sinal de stall contina.

02:11:43 (Captain) Eh… Qu’est-ce que vous foutez?

Que merda que vocês estão fazendo?

02:11:45 (Bonin) On perd le contrôle de l’avion, là!

Nós perdemos o controle da aeronave!

02:11:47 (Robert) On a totalement perdu le contrôle de l’avion… On comprend rien… On a tout tenté…

Perdemos totalmente o controle do avião. Nós não entendemos. Já tentamos de tudo!

Neste momento o avião já havia retornado a sua altitude inicial anterior á crise, mas agora estava caindo rapidamente. Com o nariz levantado a 15 graus, e uma velocidade horizontal de100 nós, o Airbus estava perdendo 10 mil pés de altitude por minuto, angulado a 41,5 graus.

Iria manter este padrão por todo o tempo, até o impacto fatal.

Apesar dos tubos Pitot estarem funcionando perfeitamente, a velocidade do avião era tão baixa, cerca de 60 nós, que seus comandos para “ângulo de ataque” não são mais aceitos como válidos pela aeronave, e o alarme de stall silencia temporariamente.

Isso pode ter dado a impressão para os pilotos de que a situação estava melhorando, quando na verdade, piorava rapidamente

Outro fato bizarro extraído da análise da caixa preta do avião: O Capitão Dubois, em nenhum momento, tentou assumir o controle da aeronave.

Se o tivesse feito, um Capitão do seu calibre, com milhares de horas de voo, certamente teria entendido imediatamente a loucura de manter puxado o stick em um avião estolado.

Dubois, preferiu sentar-se atrás dos pilotos na cabine, de forma a repassar suas ordens á quem já estava em controle do avião.

Porém, de onde estava, e apenas analisando o painel de instrumentos, o Capitão não conseguiu descobrir o real motivo do errático comportamento da aeronave. A informação chave de toda a tragédia: Que um dos pilotos estava, o tempo todo, com seu stick puxado.

Ninguém comentou o fato a Dubois, e ele não pensou em perguntar.

02:12:14 (Robert) Qu’est-ce que tu en penses? Qu’est-ce que tu en penses? Qu’est-ce qu’il faut faire?

O que você acha? O que você acha? O que devemos fazer?

02:12:15 (Captain) Alors, là, je ne sais pas!

Não sei!

Mesmo com o alarme de stall ativado, os três pilotos discutiam a situação sem qualquer sinal de compreensão da natureza do problema.

No meio do pânico,nenhum comentário sobre o alarme de stall e o avião continuava a ser bombardeado pela turbulência, o capitão pede a Bonin para nivelar as asas

Eles discutem brevemente sobre se a aeronave está ganhando ou perdendo altitude.

Mais uma mostra de que, até segundos antes do impacto fatal, ninguém da tripulação tinha qualquer idéia do que estava acontecendo.

Enquanto o avião se aproximava a 10.000 pés de altura, Robert tenta retomar os controles e empurra o stick ao máximo, mas como o Airbus está em modo “ dual imput “, o seu sistema fly by wire faz uma média entre os dois sinais de entrada conflitantes que partiam dos sticks dos pilotos, um empurrando na tentativa de baixar o nariz do avião e ganhar velocidade, e o outro, de Bonin, puxando para não perder altitude.

O nariz do avião permanece apontado para cima.

02:13:40 (Robert) Remonte… remonte… remonte… remonte…

Suba… Suba… Suba… Suba…

02:13:40 (Bonin) Mais je suis à fond à cabrer depuis tout à l’heure!

Mas eu estava com o stick puxado o tempo todo!

Enfim, Bonin divide a informação crucial que estava com ele o tempo todo, e que todos na cabine falharam miseravelmente em entender.

02:13:42 (Captain) Non, non, non… Ne remonte pas… non, non.

Não, não, não…. Não suba.. não, não..

02:13:43 (Robert) Alors descends… Alors, donne-moi les commandes… À moi les commandes!

Desça então, me dê os controles, me dê os controles!

Robert finalmente assume o controle manual do avião e posiciona o nariz do avião para baixo.

O avião começa a ganhar velocidade, mas ainda está perdendo altitude á um ângulo de inclinação irreparável.

Ao se aproximarem de 2 mil pés de altura, os sensores do Airbus detectam o solo marítimo se aproximando e disparam um novo alarme.

Não há tempo suficiente para ganhar velocidade empurrando o nariz da aeronave para um mergulho.

Novamente , sem avisar seus colegas, Bonin reassume os controles de seu assento e puxa ao máximo seu stick.

02:14:23 (Robert) Putain, on va taper… C’est pas vrai!

Que merda, nós vamos colidir. Isso não pode estar acontecendo!

02:14:25 (Bonin) Mais qu’est-ce que se passe?

Mas o que está acontecendo?

02:14:27 (Captain) 10 degrès d’assiette…

10 graus de pitch…

Exatamente 1,4 segundos depois, o gravador da cabine para, provavelmente devido ao impacto fatal da aeronave no oceano Atlântico.

Com informações do site Banda B

Milagre no voo 841 da TWA – Mergulho aterrorizante com dois rolamentos de 360 graus


Em 4 de abril de 1979, um voo da TWA com destino a Minneapolis experimentou uma queda repentina e assustadora no ar, perdendo mais de 30.000 pés em questão de segundos. Como a aeronave mergulhou enquanto cruzava a 39.000 pés, ela completou dois giros completos de 360 ​​graus e ultrapassou a velocidade máxima permitida para a aeronave Boeing 727.

Felizmente, a tripulação assumiu o controle da aeronave a cerca de 8.000 pés e pousou com segurança no Aeroporto Metropolitano de Detroit.

Detalhes do voo


O Boeing 727-31 da Trans World Airlines com registro N840TW estava realizando o voo TW841 do Aeroporto JFK de Nova York para o Aeroporto Internacional de Minneapolis-Saint Paul em Minneapolis. O voo estava sob o comando do capitão Harvey G. “Hoot” Gibson, que tinha mais de 15.700 horas de voo em seu registro. O capitão Gibson estava acompanhado pelo primeiro oficial Jess Scott Kennedy, que havia completado mais de 10.300 horas de voo, e pelo engenheiro de voo (segundo oficial) Gary N. Banks, que tinha 4.186 horas de voo.

O Boeing 727, N840TW, da Trans World Airlines (Imagem: Jon Proctor via Wikimedia Commons)
Após um atraso de cerca de 45 minutos devido ao congestionamento do tráfego, o voo 841 partiu de JFK com 82 passageiros e 7 tripulantes a bordo às 20h25 EST. Com cerca de trinta minutos de voo, atingiu o FL350, para o qual havia sido liberado. Às 21h24, o voo ligou para o Toronto Centre e pediu qualquer relatório sobre ventos no FL310 ou FL390. O controlador do Toronto Center respondeu que não tinha relatórios de outros voos.

O voo 841 afirmou que estava enfrentando um vento contrário de 100 nós ou mais e, logo depois, os pilotos solicitaram autorização para o FL390.

Posteriormente, o voo foi liberado para FL390 e o comandante iniciou uma subida a 0,80 mach, nivelou a aeronave a 39.000 pés nessa velocidade e engatou o piloto automático no modo Altitude Hold. As partes de decolagem, subida e rota do voo transcorreram sem intercorrências e nenhum problema foi encontrado até cerca de 9 minutos após a aeronave atingir o FL390.

O voo TWA 841 estava navegando em condições de voo visual no FL390 com todos os sistemas indicando operação normal. O capitão colocou a aeronave no piloto automático no modo Altitude-Hold enquanto classificava mapas e gráficos de sua bolsa de voo no piso esquerdo da cabine. Enquanto classificava mapas ou gráficos, sentiu uma sensação de zumbido. Em 2 ou 3 segundos, o zumbido tornou-se um leve bufê e ele olhou para os instrumentos de voo.

O comandante notou que o piloto automático estava comandando uma curva para a esquerda com o manche deslocado de acordo, embora o indicador do diretor de atitude (ADI) mostrasse a aeronave em uma inclinação de 20° a 30° para a direita. O ADI mostrou que a aeronave continuava a inclinar para a direita em uma taxa de rolagem ligeiramente mais rápida que o normal, então ele desconectou o piloto automático e aplicou mais controle do aileron esquerdo para interromper a rolagem.

Rolo de 360°


No entanto, a aeronave continuou a rolar para a direita, apesar do controle quase total do aileron esquerdo, então ele também aplicou o controle do leme esquerdo. Apesar dessas entradas, a rolagem continuou e o comandante percebeu que a aeronave iria rolar invertida. Ele então retardou os aceleradores para a posição de voo inativo e declarou: "Estamos indo". Ainda em cruzeiro no FL390, a aeronave iniciou repentinamente uma rolagem acentuada e descontrolada para a direita, o que levou a aeronave a entrar em um mergulho em espiral. A aeronave rolou completamente e entrou em um segundo rolo com o nariz para baixo.

Reprodução do voo 841 entrando em um mergulho íngreme (Animação: TheFlightChannel)
Depois que a aeronave entrou em um mergulho descontrolado, o capitão pediu ao primeiro oficial para estender os freios de velocidade. No entanto, o F/O estava ocupado calculando a velocidade de solo da aeronave e não sabia do golpe ou da atitude da aeronave, então ele não entendeu o comando do capitão. O capitão Gibson então estendeu ele mesmo os freios de velocidade, mas a aeronave continuou a descer rapidamente.

No entanto, depois de não receber resposta da extensão do freio de velocidade, o capitão moveu a alavanca de controle para a posição retraída e de volta para a posição estendida. O capitão notou que a agulha de velocidade estava se aproximando rapidamente de seu limite, e ele só conseguia ver “preto” no ADI e áreas claras no para-brisa, que ele pensou serem luzes de cidades brilhando no céu nublado.

O altímetro indicava uma descida rápida e de difícil leitura, mas a aeronave estava a aproximadamente 15.000 pés, descendo rapidamente quando o comandante ordenou a extensão do trem de pouso. O copiloto moveu rapidamente a alavanca de câmbio para a posição “estender” e ouviu-se um som alto semelhante a uma explosão.

Ao longo da descida, o capitão aplicou um aileron totalmente esquerdo e um leme totalmente esquerdo, mas a aeronave continuou a rolar para a direita. Quando o trem de pouso foi estendido, o capitão relaxou um pouco da contrapressão na coluna de controle e a pressão nos controles do aileron e do leme. Como resultado, a velocidade no ar também começou a diminuir. Ele foi capaz de rolar a aeronave para uma atitude quase nivelada com as asas e interromper a descida, e a aeronave subiu em uma subida de 30° a 50°.

O capitão usou a lua no para-brisa como referência visual para manobrar a aeronave e, com a orientação do primeiro e segundo oficiais, nivelou a aeronave a cerca de 13.000 pés.

O voo 841 subiu em uma subida de 30° a 50° (Animação: Mini Air Crash Investigation)
Durante o incidente, o voo 841 desceu rapidamente aproximadamente 34.000 pés (10.000 m) em apenas 63 segundos. O incidente ocorreu à noite, por volta das 21h48.

Falha Hidráulica e Abordagem para Detroit


Após retomar o controle da aeronave, os pilotos perceberam uma luz de advertência indicando falha no sistema hidráulico 'A' e uma bandeira de advertência indicando que o amortecedor de guinada inferior estava inoperante. Depois de analisar a situação, o capitão decidiu pousar a aeronave no Aeroporto Metropolitano de Detroit e instruiu o F/O e o engenheiro de voo a realizar os procedimentos da lista de verificação de emergência e notificar os comissários de bordo para preparar os passageiros para um pouso de emergência.

O comandante tentou estender os flaps de pouso durante a aproximação, mas a aeronave rolou bruscamente para a esquerda. Portanto, o capitão Gibson ordenou que os flaps fossem recolhidos e planejado para um pouso sem flaps.

Os dois principais indicadores do trem de pouso mostraram condições inseguras do trem de pouso, então o capitão fez uma passagem de baixa altitude pela pista para verificar o trem de pouso. A torre de controle e o pessoal de resgate relataram que todos os três trens de pouso pareciam estar estendidos. Por volta das 22h31, o capitão pousou a aeronave na pista 3 de Detroit sem incidentes.

O mergulho do voo TWA 841 (Animação: TheFlightChannel)

Danos na aeronave e ferimentos a bordo


Durante a rolagem e descida violentas, a aeronave experimentou altas forças G, que sobrecarregaram a estrutura do avião. O movimento de rolamento também fez com que objetos dentro da cabine voassem, atingindo passageiros e tripulantes. O gravador de voz da cabine capturou os sons de gritos, objetos caindo e os pilotos lutando para recuperar o controle do avião.

A ripa de ponta nº 7 na asa direita estava faltando. O cilindro do atuador do slat foi quebrado cerca de 1 1/2 polegada à frente de seu munhão; a parte traseira do cilindro permaneceu presa à asa. Ambas as portas de pouso do trem principal e seus mecanismos operacionais foram danificados extensivamente e uma linha hidráulica foi rompida. A porta do trem de pouso frontal também foi danificada.

Embora os tripulantes não tenham sido examinados clinicamente, cinco passageiros relataram ferimentos logo após o pouso em Detroit. Três deles foram levados para um hospital para tratamento de distensões e contusões.

Um passageiro teve um joelho machucado e sangrando e um tornozelo inchado. Mais tarde, mais três passageiros relataram ferimentos, mas apenas um foi hospitalizado por distensão muscular grave e problemas de vertigem/equilíbrio.

Investigação e Descoberta


Após o angustiante incidente do voo 841 da TWA, o National Transportation Safety Board (NTSB) lançou uma investigação que foi a mais longa investigação de acidentes em sua história até então.

O conselho de segurança determinou que o incidente foi causado pelo slat do bordo de ataque nº 7 permanecendo estendido devido a um desalinhamento pré-existente, combinado com a manipulação da tripulação de voo dos controles de flap/slat e as entradas inoportunas do controle de voo do capitão. A análise das evidências constatou que a manobra descontrolada começou quando o slat nº 7 do bordo de ataque da asa direita da aeronave ficou isolado na posição estendida ou parcialmente estendida, causando uma rolagem lenta para a direita de cerca de 35 graus.

No entanto, a Air Line Pilots Association (ALPA) discordou das conclusões do NTSB e alegou que uma interação complexa envolvendo os controles de voo lateral e direcional na aeronave B727 causou o acidente. Os tripulantes negaram que suas ações tenham sido a causa da extensão dos flaps. Pelo contrário, o fabricante afirmou que era impossível que os flaps se estendessem sem manipular os controles.

Superfícies do sistema de controle de voo do Boeing 727 (Imagem: NTSB)
De acordo com a investigação do NTSB, a rolagem foi interrompida brevemente, mas depois retomada, com a aeronave rolando para cerca de 35 graus da margem direita em aproximadamente quatro segundos. Neste ponto, a combinação do número de Mach, ângulo de ataque e derrapagem reduziu a margem de controle lateral da aeronave para zero ou menos, e a aeronave continuou a rolar para a direita em uma espiral descendente. Nos 33 segundos seguintes, a aeronave completou um giro de 360 ​​graus enquanto descia para cerca de 21.000 pés. Durante esse tempo, a ripa nº 7 foi arrancada da aeronave. O controle da aeronave foi recuperado a uma altitude de cerca de 8.000 pés.

A Gibson e a ALPA recorreram várias vezes das conclusões do NTSB de 1983 a 1995. Eles recorreram ao NTSB e ao Tribunal de Apelações do Nono Circuito dos Estados Unidos, mas ambas as apelações foram rejeitadas. O NTSB rejeitou a petição por falta de novas evidências, e o tribunal rejeitou o recurso por falta de jurisdição, uma vez que as decisões do NTSB não estão sujeitas a revisão.

Após a investigação, a aeronave foi reparada e voltou ao serviço no final de maio de 1979.

Via Sam Chui

Avião utilizado como UTI aérea atola no aeródromo de cidade da Bahia

Aeronave ficou atolada no estacionamento do Aeródromo de Ipiaú, no sábado (31/5). O avião realizaria o transporte de um paciente para Salvador.

Avião utilizada como UTI aérea atola no aeródromo de cidade da Bahia (Foto: Site Giro Ipiaú)
A aeronave Beechcraft C90 King Air, prefixo PS-PEC, da PEC Táxi Aéreo, utilizada como Unidade de Tratamento Intensivo (UTI) aérea ficou atolada no estacionamento do aeródromo da cidade de Ipiaú, no sul da Bahia, neste sábado (31). O avião realizaria o transporte de um paciente para Salvador.

Ao g1, a Secretaria da Saúde do Estado da Bahia (Sesab) confirmou que o paciente chegou à capital baiana por volta das 16h30, em um novo voo. O órgão não forneceu informações sobre o estado de saúde do paciente e não detalhou o tipo de tratamento que ele realiza.


Por meio de nota, a Secretaria de Infraestrutura (Seinfra) afirmou que não há problemas estruturais da na Pista de Pouso e Decolagem (PPD) do aeródromo de Ipiaú. O órgão destacou que o incidente com o avião aconteceu na lateral do pátio do estacionamento de aeronaves, devido ao excesso de chuvas que sobrecarregou o sistema de drenagem.

(Foto: Site Giro Ipiaú)
Ainda conforme o órgão, o problema já havia sido sinalizado para a empresa responsável desde a última terça-feira (27). "A pista principal, no entanto, segue em boas condições operacionais, sem apresentar riscos para pousos e decolagens", enfatizou a Seinfra.

Além disso, a Seinfra detalhou que prestou todo o apoio necessário a aeronave e adotou as providências técnicas cabíveis.

Via g1 BA, TV Santa Cruz e ANAC

Vídeo: "AF 447 - A história do acidente que mudou a aviação comercial"



Vídeo: Mayday Desastres Aéreos - Voo Air France 447