quarta-feira, 27 de setembro de 2023

Aconteceu em 27 de setembro de 1977: Japan Airlines 715 Mau tempo e erro do piloto causam acidente na Malásia


Em 27 de setembro de 1977, o voo 715 da Japan Airlines era um voo do Aeroporto de Haneda, em Tóquio, no Japão, para o Aeroporto Internacional de Cingapura, em Cingapura, com escalas no Aeroporto Kai Tak, em Kowloon Bay, em Hong Kong, e no Aeroporto Sultan Abdul Aziz Shah, em Subang, na Malásia, levando a bordo 10 tripulantes e 69 passageiros. 


A aeronave que operava o voo era o McDonnell Douglas DC-8-62H, prefixo JA8051, da JAL - Japan Airlines (foto acima), lançado em 1971 e entregue à Japan Airlines em 23 de agosto daquele ano. A aeronave era movida por quatro motores turbofan Pratt & Whitney JT3D-3B.

Após duas horas de voo, o controle de tráfego aéreo do aeroporto Sultan Abdul Aziz Shah informou ao voo 715 para iniciar sua aproximação e pousar na pista 15. A tripulação de voo iniciou a aproximação, baixando o trem de pouso e estendendo os flaps.

Porém, a aeronave desceu abaixo da altitude mínima de descida de 750 pés (230 m) e, em seguida, a 300 pés (91 m) e acabou colidindo com a encosta de uma colina a 4 milhas do aeroporto, perto de uma propriedade chamada Ladang Elmina, na Malásia.


A aeronave quebrou com o impacto e um incêndio estourou imediatamente, que foi extinto pelo resgate do aeroporto e combate a incêndios.

O acidente matou 34 pessoas, sendo oito dos 10 tripulantes e 26 dos 69 passageiros. Quarenta e cinco sobreviventes, entre passageiros e tripulantes, foram levados para um hospital.


Mais de 25 ambulâncias, 30 carros de polícia, helicópteros e outros equipamentos de resgate foram colocados em serviço.


Os destroços do acidente podiam ser encontrados no solo ao redor da propriedade até 2011. Depois, a maior parte das terras foi convertida em empreendimentos. Um memorial foi construído no cemitério japonês na Malásia.


O acidente foi o segundo desastre de aviação mais mortal a ocorrer na Malásia até a queda do voo 653 da Malaysian Airline System, dois meses depois, com 100 vítimas fatais.

O Departamento de Aviação Civil da Malásia investigou o acidente. No momento do acidente, o tempo ao redor do aeroporto estava ruim e a aeronave estava em uma aproximação VOR. 


A investigação apurou que a causa do acidente foi o capitão descendo abaixo da altitude mínima de descida sem ter a pista à vista, e continuando a descida, causando a queda da aeronave antes de chegar ao aeroporto. 


A tripulação de voo perdeu a visão do aeroporto devido ao mau tempo, que também contribuiu para o acidente. Além disso, o primeiro oficial não desafiou o capitão por violar os regulamentos.


Por Jorge Tadeu (Site Desastres Aéreos) com Wikipédia, ASN e baaa-acro

Aconteceu em 27 de setembro de 1973: Voo Texas International Airlines 655 - Voo às cegas nas montanhas

Ative a legenda em portugues nas configurações do vídeo

Na noite de 27 de setembro de 1973, o voo 655 da Texas International Airlines, operado pelo Convair CV-600, prefixo N94230 (foto abaixo), estava realizando um voo regular entre Memphis e Dallas, juntamente com escalas em Pine Bluff, El Dorado, e Texarkana, Arkansas. A bordo estavam três tripulantes e oito passageiros.

Enquanto no solo em El Dorado, a tripulação conversou com os pilotos na Estação de Serviço de Voo (FSS) e discutiu o tempo no trajeto para Texarkana. De particular preocupação foi uma linha de fortes tempestades que se estendeu entre El Dorado e Texarkana. O exame do tempo indicou uma possível interrupção nas tempestades a cerca de 35 milhas a oeste-noroeste de El Dorado.

O voo 655 da Texas International partiu de El Dorado às 20h15. Embora autorizado pelo despacho para uma viagem com regras de voo por instrumentos (IFR), na partida a tripulação entrou em contato com o FSS e informou ao controlador que o voo prosseguia visualmente para Texarkana. 

Em vez de seguir direto, o voo virou para noroeste e seguiu vários rumos durante os trinta minutos seguintes. 

No comando da aeronave estava William “Fred” Tumlinson, de 37 anos, atuando como primeiro oficial. O capitão Ralph Crosman, de 41 anos, estava emitindo direções e altitude conforme o voo progredia. Na parte de trás da cabine, atendendo os oito passageiros, estava a comissária de bordo Marilla Lotzer, de 23 anos.

Lidando com a aeronave e as cartas de navegação, Tumlinson agora mostrava preocupação e começou a questionar Crosman sobre a rota e a localização do avião. 

Tumlinson perguntando: "Você tem alguma ideia de onde estamos?" 

"Sim, 2-16 nos levará direto ao VOR", respondeu Crosman e acrescentando: "Não estou preocupado com isso, não estou nem aí".

Aos vinte e sete minutos de voo, Crosman ordenou que Tumlinson fizesse uma curva para 290 graus e uma descida para 2.000 pés. 

Tumlinson disse: "Cara, eu gostaria de saber onde estávamos para ter uma ideia do terreno geral ao redor deste lugar"

Crosman respondeu: "Eu sei o que é ... Que o ponto mais alto aqui tem cerca de doze mil metros. Toda a área geral, e então nem estamos onde é, não acredito". 

Trinta segundos depois, o avião começou a receber o sinal do Page VOR (localizado em Oklahoma). 

"Cerca de cento e oitenta graus para Texarkana", disse Crosman. 

"Cerca de cento e cinquenta e dois", respondeu Tumlinson, consultando os seus mapas. "A altitude mínima de rota aqui é de quarenta e quatro hund ....".

Na escuridão total e provavelmente nas nuvens, a aeronave atingiu a montanha Black Fork, na Cordilheira de Ouachita, entre o oeste do Arkansas e o sudeste de Oklahoma, a 188 nós (207 milhas por hora) se desintegrando com o impacto. 

Dos oito passageiros e três tripulantes, ninguém sobreviveu. Os tanques de combustível da asa se romperam e a maior parte do combustível vaporizou, deixando um pequeno incêndio pós-choque na seção central da asa que se extinguiu algumas horas depois.

A violência do impacto foi seguida de silêncio, já que a aeronave, com base nas regras da época, não era obrigada a ter um transmissor localizador de emergência para transmitir um sinal de socorro. Horas se passaram e ninguém sabia o que havia acontecido com o voo 655.

Uma busca foi iniciada assim que a aeronave foi declarada atrasada. Essa busca envolveria, em última análise, pessoal e aeronaves do Texas International, da Guarda Nacional do Exército e da Patrulha Aérea Civil. Apesar desses esforços, o voo 655 não foi encontrado até três dias após o acidente. 

A busca se tornou trágica no primeiro dia, quando um UH-1D Huey da Guarda Nacional do Arkansas, de Camp Robinson, caiu perto de Prescott, AR, enquanto a caminho da área de busca. Os três tripulantes foram mortos.

Vários destroços da aeronave ainda podem ser encontrados hoje, no local da queda.


O gravador de voz da cabine revelou mais tarde que o primeiro oficial estava pilotando o avião enquanto o capitão o informava sobre os rumos e altitudes a tomar para navegar ao redor da tempestade. O capitão desviou o avião 100 nm (115 mi; 185 km) para o norte na tentativa de contorná-lo. O primeiro oficial expressou preocupação por não saber a posição deles e qual era a liberação do terreno para a área. 

Depois que o capitão ordenou que ele descesse a 2.000 pés (610 m), ele consultou uma carta de instrumentos de rota. Ele alertou o capitão que eles estavam muito baixos, dizendo: "A altitude mínima em rota aqui é de quarenta e quatro hun..." Nesse ponto, o gravador foi desligado quando o avião atingiu a montanha Black Fork.

A investigação do National Transportation Safety Board concluiu que a causa do acidente foi a decisão do capitão de continuar voando em mau tempo durante a noite, não aproveitando as ajudas nas proximidades de navegação para obter uma correção de sua posição, e sua decisão de descer, apesar da preocupação do primeiro oficial sobre a posição do avião e o terreno.


Por Jorge Tadeu (Site Desastres Aéreos) com ASN, Wikipédia, lostflights.com e Jeff Wilkinson

Aconteceu em 27 de setembro de 1946: Acidente com o DC-3 PP-PCH da Panair do Brasil em Minas Gerais


Na tarde do dia 
27 de setembro de 1946, o avião Douglas DC-3A-228D, prefixo PP-PCH, da Panair do Brasil (imagem abaixo), decolou às 16h10, do aeródromo de Lagoa Santa (hoje Aeroporto da Pampulha), em Belo Horizonte, com destino ao Rio de Janeiro, levando a bordo 22 passageiros e três tripulantes.


O DC-3 comandado por Otávio Bezerra Cavalcanti fez seus último contato por rádio com a estação da Panair às 16h38, quando sobrevoava a cidade de Conselheiro Lafaiete, ainda em Minas Gerais.

O avião não pousou no aeroporto de Santos Dumont, nem deu notícias. As buscas por sua localização foram desencadeadas. 

Alguns moradores da região de Alto do Rio Doce (MG) disseram ter ouvido uma forte explosão por volta das 16h40 que confundiram com um trovão devido à forte tempestade que havia naquele momento. 

Às 16h40, após penetrar num possível cumulonimbus, onde perderia sustentação, o Douglas DC-3 bateu no morro dos Marimbondos, na Serra da Samambaia, próxima ao povoado de Abreus, a cerca de 12 km da zona urbana de Alto Rio Doce, próximo a Barbacena, no interior de Minas Gerais. Todos os seus 25 ocupantes morreram no acidente.


Voando por instrumentos e sem contar com radar meteorológico para identificar zonas de turbulência fortes, a turbulência grave levou a perder o controle do avião. O avião caiu e colidiu com o solo a alta velocidade.







Por Jorge Tadeu (Site Desastres Aéreos) com Wikipédia e ASN

O mito do voo 513 de Santiago: explorando uma lenda moderna

Ative a legenda em português nas configurações do vídeo

Poucas histórias captam tanto a imaginação humana como aquelas que ultrapassam as fronteiras da realidade e se aventuram no reino do estranho e do inexplicável. Uma dessas histórias é a do voo 513 de Santiago, uma história tão convincente que se infiltrou na cultura popular, apesar de estar firmemente enraizada como um mito urbano.

O incidente do voo 513 de Santiago envolveu um Lockheed Super Constellation, uma aeronave quadrimotora conhecida por sua confiabilidade e amplo alcance. Tripulado por uma tripulação qualificada, o voo completou com sucesso inúmeras viagens antes de sua infeliz decolagem.

A história do voo 513 de Santiago começa



Segundo a lenda, o voo Santiago 513, um avião comercial operado por uma companhia aérea chamada Santiago Airlines, partiu de Aachen, na Alemanha , em 4 de setembro de 1954, com 88 passageiros e quatro tripulantes a bordo. A aeronave, considerada um Lockheed Super Constellation, tinha como destino Porto Alegre, Brasil .

Reza a história que, após a descolagem, o avião desapareceu sem deixar rasto, causando profundo pesar e confusão entre os familiares dos passageiros e tripulantes, bem como na indústria da aviação em geral. Supostamente, esforços de busca e resgate foram realizados, mas nenhum destroço ou sinal do avião foi encontrado.

Um retorno inesperado


A história do voo 513 de Santiago dá uma guinada extraordinária com a afirmação de que em 12 de outubro de 1989, 35 anos após seu desaparecimento, o avião reapareceu repentinamente. Segundo a história, ele pousou perfeitamente no aeroporto de Porto Alegre, surpreendendo os controladores de tráfego aéreo e despertando o interesse imediato das autoridades e da mídia.

A história fica ainda mais assustadora com as descrições do que foi encontrado dentro do avião: os restos mortais de 92 pessoas, todas em seus assentos e aparentemente intactas, com exceção do piloto que ainda segurava os controles.

A natureza das lendas urbanas


Normalmente, histórias como a do voo 513 de Santiago ganham força porque misturam a realidade – viagens aéreas, desaparecimentos, acontecimentos inexplicáveis ​​– com elementos do fantástico. A história tem todas as características de uma lenda urbana, um gênero de folclore moderno que inclui histórias não verificadas circulando como verdade.

As lendas urbanas muitas vezes contêm elementos de humor, horror ou mistério e podem ter lições morais subjacentes. A história do voo 513 de Santiago certamente se alinha com os elementos de terror e mistério, contribuindo para o seu apelo.

Fato versus ficção


Para testar a veracidade da história do voo 513 de Santiago, devemos considerar os factos. Existem vários sinais de alerta significativos que sugerem fortemente que é fictício:

Companhia aérea inexistente

Não existem registros históricos relativos a uma companhia aérea chamada Santiago Airlines. Além disso, Aachen é uma cidade na Alemanha que não é conhecida pelo seu aeroporto principal, nem por ter um aeroporto internacional significativo de onde pudesse partir um voo transatlântico.

Falta de registros oficiais

Não há registros oficiais de aviação ou relatos do suposto desaparecimento do vôo 513 de Santiago em 1954 ou reaparecimento em 1989.

Ausência de reportagens

Incidentes graves, como o desaparecimento ou reaparecimento de um voo, atraem considerável atenção da mídia. No entanto, não se sabe de nenhum meio de comunicação confiável que tenha noticiado o voo 513 de Santiago na época, seja na década de 1950 ou em 1989.

Violação das leis físicas

Escusado será dizer que a história também desafia as leis conhecidas da física e da biologia. É impossível um avião permanecer no ar 35 anos sem reabastecer, sem falar na impossibilidade de corpos humanos se transformarem em restos de esqueletos no ambiente controlado de um avião.

Resumindo

Embora a história do voo 513 de Santiago tenha cativado a imaginação de muitos, a falta de provas tangíveis deixa claro que esta história é um mito urbano convincente e não um facto histórico. A sua persistência reflete o nosso fascínio humano pelo misterioso e inexplicável, proporcionando uma narrativa que simultaneamente intriga e perturba.

Em última análise, é um lembrete de que as histórias, sejam elas baseadas na verdade ou tecidas a partir dos fios da imaginação, têm um poder significativo. 

Edição de texto e imagens por Jorge Tadeu (com informações de Aerotime Hub)

Por que, mesmo com tudo eletrônico, alguns aviões têm impressora na cabine?

Mesmo aviões mais modernos podem ter impressora a bordo (Foto: Divulgação/Boeing)
A cabine de um avião se mantém em constante evolução com o tempo. Desde os antigos modelos, com mostradores analógicos que mais pareciam "reloginhos", até os mais atuais, com telas de LCD, a comunicação também evoluiu.

Hoje, grande parte da papelada que era necessária a bordo foi substituída por tablets, e as informações estão presentes nas telas em tempo real. Ainda assim, alguns dos mais modernos aviões têm impressoras a bordo.

Esses dispositivos localizados nas cabines de comando ajudam os pilotos a lidar com o alto volume de dados que precisam ser gerenciados. Imprimir informações sobre meteorologia, rotas e aeroportos, por exemplo, evita que tenham que decorar uma grande quantidade de dados.

Leitura fácil


Impressoras térmicas utilizadas a bordo de aviões para imprimir informações sobre o voo
para os pilotos (Foto: Reprodução/AstroNova)
Durante o voo, os pilotos recebem um conjunto de informações oriundas do Atis (Automatic Terminal Information Service — Serviço Automático de Informação Terminal). É um serviço via rádio que repassa informações aos pilotos sobre condições meteorológicas, pista de pouso dos aeroportos, procedimentos a serem realizados, visibilidade, entre outros.

Na versão digital do Atis (D-Atis), esses dados podem ser exibidos em uma das telas da cabine, ou podem ser impressos. Quando vão para o papel, as telas ficam livres para exibir outras informações importantes para os pilotos.

Em algumas situações, o volume de dados é tão grande que há várias páginas impressas, como nos avisos chamados de Notam.

Não vem de fábrica


No geral, aviões de grande porte, como o Boeing 777 e o Airbus A330, por exemplo, podem ter uma impressora. O equipamento não é obrigatório de fábrica, e pode ser instalado de acordo com a necessidade de cada operador.

Também é possível, quando necessário, imprimir mapas e cartas aeronáuticas diretamente das EFB (Eletronic Flight Bag — Mala de Voo Eletrônica), que são tablets feitos para substituir o grande volume da papelada geralmente encontrada nos aviões (que também inclui manuais e listas de checagem, entre outros).

Impressora térmica


Para diminuir peso e facilitar a manutenção, as impressoras costumam ser térmicas, como as de supermercados, e não a jato de tinta. Também existem impressoras para aviões militares e para a tripulação imprimir bilhetes de embarque e conexão, antes mesmo de o passageiro deixar o avião. Comunicação livre e menos erros.

Comunicação livre e menos erros


Impressora térmica utilizada a bordo de aviões para imprimir informações
sobre o voo (Foto: Reprodução/AstroNova)
Com a informação em mãos em tempo real, na tela ou por meio da impressão em papel, as frequências de rádio ficam livres para pilotos e controladores se comunicarem. Isso é fundamental para a segurança, pois toda comunicação deve ser o mais curta e objetiva possível.

Assim, informações repetitivas ou que podem ser passadas de forma automatizada para serem impressas permitem desafogar a comunicação, que pode ser utilizada apenas para questões emergenciais ou informações sobre pousos e decolagens, por exemplo. 

Por fim, o recebimento dos dados por meio dos canais de comunicação da aeronave com o solo, para leitura na tela ou para ser impressos, diminui a chance de erros, já que o piloto ou controlador podem, eventualmente, se confundir com a mensagem via rádio.

Por Alexandre Saconi (UOL)

Desenvolvendo o Dreamliner: 5 melhorias que o Boeing 787 viu desde que entrou em serviço

Uma análise mais detalhada de algumas maneiras pelas quais a popular aeronave widebody da Boeing mudou em relação à sua fabricação.

Um Boeing 787-9 Dreamliner em solo em Farnborough (Foto: Ryan Fletcher)
Apresentado pela primeira vez no final de outubro de 2011 pela transportadora japonesa ANA, o 787 Dreamliner da Boeing é famoso por muitas de suas tecnologias iniciais . Utilizando extensivamente materiais compósitos, incluindo vários recursos de economia de combustível, como controle de fluxo laminar híbrido, e utilizando vários controles eletrônicos avançados, o jato widebody é uma peça incrível de engenharia.

No entanto, não é isento de problemas. De certa forma, o Boeing 787 é famoso por múltiplas séries de incidentes, falhas e, mais recentemente, problemas de controle de qualidade. Dada a longa história do fabricante com sede em Everett no negócio, não é surpreendente que, no devido tempo, estas coisas sejam resolvidas, e as companhias aéreas tenham recebido entregas de aviões familiares 787 durante grande parte do ano . Vamos dar uma olhada em algumas coisas que mudaram nos últimos 13 anos em relação à produção e desenvolvimento do jato widebody.

1. Uma bateria redesenhada


Muitas pessoas familiarizadas com a situação saberão que alguns anos após a introdução do Boeing 787, vários incêndios a bordo foram causados ​​por um problema na bateria da aeronave. Após três incidentes, o último envolvendo um pouso de emergência que resultou em múltiplos ferimentos sofridos, o tipo foi aterrado até que o fabricante pudesse encontrar uma solução.

Embora os três incidentes tenham acontecido em janeiro de 2013, a Boeing foi capaz de fornecer uma solução em apenas algumas semanas que acabaria por apaziguar a FAA e retirar o solo dos aviões. De acordo com um comunicado da época, os procedimentos de produção e testes incorporariam uma triagem mais rigorosa das células da bateria antes da montagem. Para ajustes térmicos e elétricos, a faixa de tensão do sistema seria aumentada e um invólucro especializado impediria o início de incêndios.

2. Mudanças nos motores Trent 1000 da Rolls-Royce


Em 2019, vários Boeing 787 tiveram que ser aterrados devido a um problema no motor. A Rolls-Royce fornece seu modelo Trent 1000 para alimentar o avião comercial de fuselagem larga. Ele foi até aprimorado ao longo dos anos, com o fabricante britânico de motores produzindo o “Trent 1000 TEN” com melhor consumo de combustível do que o Pacote C e era uma opção altamente competitiva contra o popular motor GEnx da GE.

Vista frontal do ventilador de admissão do motor Rolls Royce Trent 1000 do
Boeing 787 Dreamliner (Foto: Maxene Huiyu/Shutterstock)
Infelizmente, muito além das expectativas, os clientes notaram lâminas de motor corroídas e rachadas em seus Dreamliners equipados com Trent 1000. No entanto, a Rolls-Royce conseguiu resolver seus problemas resolvendo o problema de sulfetação das pás da turbina de pressão intermediária e redesenhando as pás da turbina de alta pressão. Notavelmente, a Rolls-Royce conseguiu superar todo o acúmulo de 787 aterrados em um ano.

3. Ajuste de fabricação de asas


De acordo com várias redes de notícias dos EUA, em março de 2014, a Boeing informou que foram encontradas rachaduras em exemplares de produção atual da aeronave widebody. Confiante de que o problema de produção não afetava nenhum Dreamliner em operação na época, algo precisava ser feito em relação às dezenas de modelos que ainda não estavam no final do processo de fabricação.

A Mitsubishi Heavy Industries, responsável pela fabricação das asas compostas de carbono no Japão, foi a empresa que avisou a fabricante de aviões com sede em Washington. Percebeu-se que algo em seu processo de fabricação foi a causa raiz das rachaduras encontradas em uma série de amarrações nas nervuras da asa do 787. Algumas semanas de trabalho foram gastas inspecionando as asas suspeitas de estarem danificadas enquanto o processo de fabricação japonês poderia ser alterado.

4. Peças totalmente novas em titânio


Embora o 787 seja composto por 80% de compósitos em volume, isso representa apenas cerca de 50% em peso. Outros 15% do peso vêm na forma de titânio, um metal incrível, mas exorbitante. Para economizar uma quantia significativa de dinheiro, em 2017, a Boeing fez parceria com a norueguesa Norsk Titanium para encontrar uma solução para suas necessidades de titânio.

Ao utilizar peças metálicas impressas em 3D, a Boeing estimou uma economia de custos de até US$ 3 milhões por Dreamliner. A impressão 3D não é uma solução inovadora para a indústria, com empresas como a GE utilizando este processo de fabricação para reduzir 300 peças de motor para apenas sete . Curiosamente, embora não relacionado, a Boeing teve um problema com outras peças de titânio encontradas em uma das seções da fuselagem do 787. Esses componentes foram fornecidos por outro fornecedor terceirizado, que confirmou o problema após uma auditoria realizada pelo fabricante de aeronaves com sede nos EUA.

5. Melhorando a comunhão em toda a família


A fim de aumentar o valor do produto para os operadores, os fabricantes de aeronaves tentam manter algum tipo de semelhança entre as famílias de aviões comerciais. Isto ajuda as companhias aéreas a poupar tempo e dinheiro, uma vez que os pilotos e tripulantes poderão trabalhar facilmente em mais de um tipo ou variante específica de aeronave.

Os Boeings 787 -8, -9 e -10 voando em formação (Foto: Boeing)
Conforme relatado pela Leeham News and Analysis, os Boeing 787-9 e -10 foram projetados com uma impressionante semelhança de 95%. No entanto, o -8, que veio antes dos outros, tinha muito menos pontos em comum. Para corrigir isso, a Boeing implementou ajustes de fabricação em 2018 que veriam o design estrutural da variante Dreamliner mudar para garantir que ela fosse construída de maneira muito semelhante às outras duas. Como resultado, os clientes poderiam facilmente operar duas ou três variantes sem muita reflexão.

Com informações de Simple Flying, Reuters, NBC News e Leeham News e Analysis

terça-feira, 26 de setembro de 2023

As dez maiores tragédias aéreas do mundo deixaram 3.772 pessoas mortas

Nos 10 mais trágicos acidentes aéreos ocorridos no mundo, nada menos do que 3.772 pessoas perderam a vida. Em duas dessas tragédias, o número de mortos passou dos 500. 

Acidente de Tenerife



Foram as que envolveram o choque de dois aviões no aeroporto de Gran Canária, nas Ilhas Canárias espanholas, em 27 de março de 1977. Houve a explosão uma bomba no aeroporto de destino e os voos foram desviados para um aeroporto menor, onde em meio a uma terrível confusão, os dois Boeing's 747, da KLM Royal Dutch Airlines e da Pan American World Airways se chocaram. De um dos aviões morreram todos os 248 ocupantes. No outro aparelho, morreram 335 dos 396 ocupantes.

Voo 123 da JAL



O outro desastre com mais de 500 mortos (exatamente 520 vítimas fatais), ocorreu em em 12 de Agosto de 1985, no Japão, com um Boeing da Japan Air Lines, que ia de Tóquio com destino a Osaka. Pouco depois de decolar, o aparelho traseiro que controla a pressão explodiu, causando sérios danos a aeronave. O avião perdeu altitude e caiu. A explosão matou 520 dos 524 ocupantes.

Os demais acidentes mais graves da história foram esses a seguir:


Colisão aérea de Charkhi Dadri



Em 12 de Novembro de 1996, na Índia, a colisão entre duas aeronaves na região de Charkhi Dadri. O Boeing 747-100B da Saudi Arabian Airlines e o Ilyushin Il-76, da Kazakhstan Airlines, se chocaram e mataram todos a bordo em ambos os voos. Investigações mostraram que houve falhas na comunicação entre as duas aeronaves e que o avião da Kazakhstan Airlines, em determinado momento. O total de mortos nos dois aviões foi de 349 pessoas.

Voo 981 da Turkish Airlines - Acidente de Ermenonville



Na França, em 1974, 346 pessoas morreram, quando o voo 981 da Turkish Airlines, que fazia a rota Istambul para Londres, caiu na região de Paris, matando os seus 346 ocupantes.

Voo 182 da Air India



O voo 181/182 da Air-India chegou em Toronto, no Canadá, depois de voar por Bombaim, Delhi e Frankfurt. Ali, ele sofreu um pequeno reparo na asa esquerda. O voo partiu então para Montreal, onde chegou em segurança. O voo mudou de 181 para 182 e se preparou para voltar para Bombaim, com paradas em Londres e Delhi. Em 23 de junho, no caminho de Londres, no Oceano Atlântico, uma explosão aconteceu no compartimento de carga. O avião se dividiu em dois antes de atingir o mar e matar todos os 329 passageiros. A explosão foi causada por uma bomba. Reportagens mostraram que um passageiro despachou a sua bagagem, mas não embarcou. A suspeita é que extremistas Sikh, que lutam na Índia, tenham promovido o atentado.

Voo 163 da Saudia Arabian Airlines



Em 1980, na Arábia Saudita, um avião da Saudia Arabian Airlines que fazia um voo doméstico entre o Riyadh International Airport e o Jeddah-King Abdulaziz International Airport, pegou fogo, fez um pouso forçado de emergência e morreram todos os seus 301 ocupantes.

Voo 655 da Iran Air



No dia 3 de julho de 1988, o voo civil da Iran Air, sobrevoando o Oceano Índico, que viajava entre Teerã, no Irã, e Dubai, nos Emirados Árabes, quando foi atingido por um míssil americano, disparado por um cruzador da Marinha americana, o USS Vincennes. O avião pertenmcia à Iran Air, viajava de Teerã, no Irã, a Dubai, nos Emirados Árabes. Todos os seus 290 ocupantes morreram.

Acidente da Guarda Revolucionária do Irã



Em 19 de fevereiro de 2003, o Ilyushin Il-76, do exército iraniano, caiu na região montanhosa de Kerman, matando os seus 275 ocupantes. As causas do acidente ainda não são claras. As condições do tempo eram péssimas no momento do acidente, o que pode ter causado problemas na aeronave. Tudo parece crer que se tratou de atentado terrorista. O grupo extremista Abu-Bakr, sem muitos detalhes, disse que tinha sido o responsável pelo acidente. Morreram todos os 275 ocupantes da aeronave.

Voo 191 da American Airlines



Em 1979, nos Estados Unidos, o voo 191 da American Airlines voaria em 25 de maio do Aeroporto Internacional O'Hare, em Chicago, para Los Angeles. Assim que decolou em Chicago, ele perdeu o controle e caiu, matando os 271 passageiros e outras duas pessoas no solo.

Voo 007 da Korean Airlines



Em 1983, a 1º de Setembro, no Oceano Pacífico o voo 007 da Korean Airlines, entre Nova York e Seul, passava pelo Mar do Japão quando foi atingido por mísseis de um navio da Marinha soviética. Todos os 269 passageiros morreram na hora. Entre os passageiros, estava o congressista americano Lawrence McDonald, o que causou uma crise diplomática entre os dois rivais da Guerra Fria. Os soviéticos negaram, no começo, qualquer envolvimento com o acidente. Depois, admitiram o acidente, mas alegaram que o avião tinha invadido o espaço aéreo deles, na região do Alasca.

Via Meio Norte, Site Desastres Aéreos e Blog Notícias e Histórias sobre Aviação


O que são e como funcionam os ailerons?

Ailerons da asa de um Boeing 747 (Foto via Aeroin)
Quando Wilbur e Orville Wright projetaram o primeiro avião motorizado bem-sucedido, eles sabiam que teriam que controlar a elevação das asas para manter o nível do avião. Para rolar o avião para a esquerda e para a direita, eles criaram um sistema para deformar o formato das asas. Para controlar a dobra da asa, o piloto tinha que balançar os quadris para uma direção ou outra! Graças a Deus, foi encontrada uma maneira mais conveniente de operar grandes aviões, ou então os pilotos teriam que ser ótimos dançarinos!

Como funcionam os ailerons?


A maioria dos aviões modernos não dobra suas asas - em vez disso, eles usam ailerons. Os ailerons são os controles de vôo que fazem o avião girar em torno de seu eixo longitudinal.


Os ailerons funcionam criando mais sustentação em uma asa e reduzindo a sustentação na outra, de modo que a asa com menos sustentação desce e aquela com mais sustentação sobe. O piloto move os ailerons e gira o avião girando a roda de controle para a esquerda ou direita - não é necessário dançar.

O que são Ailerons?


Os ailerons são um dos três principais controles de voo em um avião. Cada um desses três controles do piloto muda a direção em que o avião está voando. Eles movem o avião em torno de um dos três eixos de voo. Os três controles de vôo e eixos de voo são:
  • Os ailerons controlam a rotação do avião em torno do eixo longitudinal (do nariz à cauda).
  • O profundor controla a inclinação do avião em torno do eixo lateral (ponta de asa a ponta da asa) - ele move o nariz para cima e para baixo.
  • Finalmente, o leme controla a guinada do avião em torno do eixo vertical - ele move o nariz para a esquerda e para a direita.
Eixo de voo e controles de voo
Os controles de voo, incluindo ailerons, são abordados no Capítulo 6 do Manual do Piloto de Conhecimento Aeronáutico da FAA.

Como funcionam os ailerons em um avião?


Para entender como funcionam os ailerons, você deve primeiro entender um pouco sobre como uma asa faz a sustentação.

A asa de um avião é uma forma de aerofólio, que força o ar que passa acima da asa a se mover mais rápido do que o ar abaixo dela. Esse ar que se move mais rápido exerce menos pressão. A pressão mais alta abaixo da asa tentou preencher a pressão mais baixa e, como a asa está no caminho, levanta o avião.

Vista da asa pela janela do avião
Ao voar, se um piloto quiser fazer mais sustentação, ele precisa fazer pelo menos uma de duas coisas. Eles precisam voar mais rápido, o que aumentará a diferença entre as pressões mais altas e mais baixas, fazendo mais sustentação. Ou eles precisam aumentar o ângulo de ataque .

O ângulo de ataque é o ângulo entre a corda da asa e o vento relativo. Quando é aumentada, a asa faz mais sustentação. A linha de corda é simplesmente uma linha imaginária desenhada da borda de ataque à borda de fuga do aerofólio.

Os ailerons funcionam movendo a linha do acorde. Quando o aileron, montado no bordo de fuga da asa, se move para baixo, ele muda a linha do acorde. O resultado é que o ângulo de ataque é aumentado na localização do aileron. Essa área da asa faz mais sustentação do que o resto.

Como os ailerons são montados nas pontas das asas externas, uma pequena quantidade de sustentação extra fará com que o avião gire ou role para longe do aileron lançado.

Rolamento de um Tupolev Tu-334
Do outro lado do avião, o aileron oposto se move para cima. Essa mudança reduz o ângulo de ataque daquela asa, fazendo menos sustentação do que a asa circundante. A ponta da asa cai. Quando combinado com o movimento do outro aileron, o avião rola rapidamente para um lado ou outro.

Do ponto de vista do piloto, quando o manche é movido para a esquerda, o aileron esquerdo deve subir e o outro descer. Na curva à direita, o aileron direito sobe e o esquerdo desce.

Guinada adversa


Para o projetista de aviões, o grande problema dos ailerons está fundamentalmente na maneira como funcionam.

Sempre que a sustentação é aumentada aumentando o ângulo de ataque, mais arrasto é criado também. Esse arrasto é um subproduto da sustentação e está sempre lá. É chamado de arrasto induzido.

No caso dos ailerons, o ângulo de ataque só é aumentado na ponta da asa que sobe. Essa força fará com que o nariz do avião se afaste da curva. Uma vez que essa força de guinada não está ajudando o piloto a fazer uma curva, é conhecida como guinada adversa.

Todos os ailerons dão guinadas adversas, mas em alguns aviões, não é muito perceptível. Os designers descobriram algumas maneiras bastante inteligentes de minimizá-lo. Por exemplo, alguns ailerons são projetados para adicionar arrasto ao lado elevado do aileron também. O resultado é que ambos os lados causam arrasto, então o nariz não se move em nenhuma direção.

A guinada adversa é a principal razão pela qual os aviões precisam de lemes. O leme é o controle de voo que abre o nariz do avião para a esquerda ou para a direita.

Para executar corretamente uma curva em um avião, o piloto rola o avião com o volante ou manche e aplica pressão no pedal do leme na mesma direção.

Cockpit de uma aeronave DC 3

Ailerons x flaps


Muitas pessoas confundem ailerons com flaps. Ambos os controles ficam nas bordas traseiras das asas e são semelhantes, mas funcionam de maneira diferente e são usados ​​para coisas diferentes.

Os flaps também funcionam alterando a linha da corda da asa para aumentar o ângulo de ataque. Os flaps se estendem igualmente em cada lado do avião, de modo que a sustentação é aumentada uniformemente ao longo da envergadura. Eles são usados ​​para ajudar o avião a voar mais devagar e ajudar os pilotos a fazerem aproximações íngremes dos aeroportos sem aumentar a velocidade no ar.

Os flaps são um controle de voo secundário - eles são usados ​​para controlar melhor a sustentação e tornar o trabalho do piloto um pouco mais fácil. Na maioria dos aviões, os flaps não são necessários para um vôo seguro, mas ajudam de várias maneiras. Os flaps são estendidos em etapas incrementais e, uma vez configurados, permanecem estacionários até que a configuração do flap seja aumentada ou diminuída.

Os ailerons, por outro lado, são controles primários de voo necessários para controlar a aeronave. Eles estão localizados nas partes externas das asas. Quando um desce, o outro lado sobe. Eles operam apenas quando os controles são movidos na cabine, da mesma forma que os pneus se movem quando o motorista move o volante de um carro.

Uma boa visão das superfícies de controle de um avião comercial. Da esquerda para a direita,
você pode ver o aileron, flap externo, flaperon e flaps internos
Alguns planos combinam os dois controles em uma superfície de controle. Flaperons são flaps e ailerons combinados. Eles são encontrados em alguns aviões e, embora a ideia pareça complicada, é muito simples. Todo o trabalho é feito no projeto do avião, portanto, do cockpit, não há diferença para o piloto. Flaperons são mais frequentemente vistos em aviões de passageiros porque são projetados para voar muito rápido e muito devagar.

Tipos de Ailerons


Existem três outros tipos principais de ailerons, além dos flaperons mencionados acima.

Os ailerons diferenciais são projetados para operar em diferentes quantidades, de modo que o aileron elevado é colocado mais para cima do que os ailerons reduzidos são descartados. Isso cria o arrasto do parasita na asa que viaja para baixo, o que é igual ao arrasto induzido da asa elevada. Não elimina a guinada adversa, mas ajuda.

Os ailerons de fraise são projetados de modo que uma pequena parte da superfície de controle também desvia para fazer arrasto adicional quando o aileron levantado sobe. Novamente, este projeto adiciona arrasto do parasita à ponta da asa que se desloca para baixo para igualar o arrasto induzido feito no outro lado.

O tipo final de projeto de aileron é quando os controles entre os ailerons e o leme estão vinculados. Quando o piloto aplica ailerons à esquerda ou à direita, uma série de molas também aplica pressão do leme nessa direção. A guinada adversa ainda está lá, mas a ligação ajuda o piloto a contê-la aplicando um pequeno leme.

Edição de texto e imagens por Jorge Tadeu

Vídeo: Mayday Desastres Aéreos - Garuda Indonesia 152 - Curva Letal